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ABSTRACT 

The application of deep learning methods to raw electroencephalogram (EEG) data is growing increasingly 

common. While these methods offer the possibility of improved performance relative to other 

approaches applied to manually engineered features, they also present the problem of reduced 

explainability. As such, a number of studies have sought to provide explainability methods uniquely 

adapted to the domain of deep learning-based raw EEG classification. In this study, we present a taxonomy 

of those methods, identifying existing approaches that provide insight into spatial, spectral, and temporal 

features. We then present a novel framework consisting of a series of explainability approaches for insight 

into classifiers trained on raw EEG data. Our framework provides spatial, spectral, and temporal 

explanations similar to existing approaches. However, it also, to the best of our knowledge, proposes the 

first explainability approaches for insight into spatial and spatio-spectral interactions in EEG. This is 

particularly important given the frequent use and well-characterized importance of EEG connectivity 

measures for neurological and neuropsychiatric disorder analysis. We demonstrate our proposed 

framework within the context of automated major depressive disorder (MDD) diagnosis, training a high 

performing one-dimensional convolutional neural network with a robust cross-validation approach on a 

publicly available dataset. We identify interactions between central electrodes and other electrodes and 

identify differences in frontal θ, β, and γlow between healthy controls and individuals with MDD. Our study 

represents a significant step forward for the field of deep learning-based raw EEG classification, providing 

new capabilities in interaction explainability and providing direction for future innovations through our 

proposed taxonomy. 
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INTRODUCTION 

In recent years, studies have increasingly applied deep learning approaches to raw 

electroencephalography (EEG) data. Relative to studies using traditional machine learning and deep 

learning methods with extracted features, deep learning studies using raw EEG allow for automated 

feature learning and the discovery of EEG features that might ordinarily be overlooked. This benefit has 

the potential to enhance model performance. Nevertheless, the use of raw EEG also occasions an 

important shortcoming. Namely, deep learning models with raw EEG are not as explainable as traditional 

machine learning [1] or deep learning models [2], [3] applied to extracted features. This has resulted in 

the development of a subfield of EEG analysis seeking to make deep learning models with raw EEG more 

explainable. To a large extent, these studies have succeeded. Under certain circumstances, EEG 

explainability approaches can provide insight into key channels [4]–[11], frequency bands [4], [5], [8], 

[12]–[18], and waveforms [5], [8], [14], [16], [17]. However, existing methods do not provide insight into 

interactions between channels. In this study, we present a taxonomy of deep learning-based raw EEG 

explainability approaches, identifying critical gaps in the capabilities of the field. We then present a series 

of explainability approaches that form a framework for systematically evaluating what a deep learning 

model has learned from raw EEG. Specifically, we train a high-performing one-dimensional convolutional 

neural network (1D-CNN) with a robust cross-validation approach to differentiate between healthy 

individuals and individuals with clinically diagnosed major depressive disorder (MDD) on multichannel EEG 

data. We present approaches to (1) identify the relative importance of each channel, (2) identify 

interactions uncovered by the model between channels, (3) identify key frequency bands in each channel, 

(4) identify interactions between frequency bands in each channel and other channels, and (5) identify 

representative samples of each class and the waveforms of importance to their classification. Our 

identification of spatio-spectral interactions is to our knowledge the first implementation of such a 

method in raw EEG-based deep learning explainability. Moreover, our study represents a significant step 

forward for the domain of raw EEG-based deep learning explainability and has the potential to stimulate 

future advances in the field. 

Modalities Used for Analysis of Neurological and Neuropsychiatric Disorders and Advantage of EEG 

Multiple modalities have been used to study neurological and neuropsychiatric disorders. A few of these 

modalities include EEG [1]–[3], [9], [10], [19]–[27], magnetoencephalography (MEG) [28]–[30], and 

functional magnetic resonance imaging (fMRI) [30]–[37]. Each modality offers both advantages and 

disadvantages. For example, fMRI has enhanced spatial resolution relative to EEG and MEG. However, 

EEG and MEG have significantly improved temporal resolution relative to fMRI, which can afford better 

insight into the effects of disorders upon brain dynamics. Additionally, relative to MEG, EEG devices can 

be performed much more cheaply and are more widespread, making it better suited for deployment in a 

clinical setting. Within the domain of EEG analysis, both task [8], [11], [38] and resting-state [5], [6], [9], 

[10], [25], [39], [40] analyses are commonly performed. However, most brain activity spontaneously 

occurs (i.e., reflects brain networks that are unmodulated by any task), so resting-state activity better 

reflects the activity that is common to an individual with a disorder. Additionally, individuals with a 

disorder may perform a task less effectively than healthy individuals, which could introduce a confounder 

in any subsequent analyses [41]. As such, in this study, we focus on explainability for resting-state EEG. 

Features Commonly Included in EEG Analyses 
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Historically, many features have been extracted from EEG for insight into neurological and 

neuropsychiatric disorders. These include single-channel features like spectral power [1]–[3], [18], [25], 

[28], [42]–[45] and multi-channel features like temporal and spectral connectivity [26], [27], [46]–[49]. 

Spectral power has been associated with disorders like schizophrenia [43], attention deficit hyperactivity 

disorder (ADHD) [43], obsessive compulsive disorder (OCD) [43], Parkinson’s disease, and major 

depressive disorder [50]. Connectivity features have shown high discriminative power and been 

associated with a many disorders including schizophrenia [49], MDD [27], and Alzheimer’s disease [51]. 

Importantly, previous studies of MDD have identified effects upon connectivity between all frequency 

bands [27] and between frontal electrodes, between temporal electrodes, and between temporal and 

central electrodes [26]. 

Transition from Manually Engineered Features to Raw EEG Data 

Building upon these features, many studies have trained machine learning [25], [28], [42] and deep 

learning [2], [3], [18], [19], [39], [45], [52] models on spectral power features. Additionally, a few studies 

have trained machine learning [47] and deep learning models [48] on extracted connectivity features. 

These studies have obtained high levels of model performance while simultaneously offering high levels 

of explainability. They have obtained high levels of explainability largely because many methods have 

been previously developed to explain traditional machine learning models [53]–[55] and many methods 

like saliency [56], gradient-weighted class activation mapping (Grad-CAM) [57], and layer-wise relevance 

propagation (LRP) [58] have been developed within the domain of image classification to explain deep 

learning models. However, models using extracted features have an inherit limitation. Namely, they 

restrict the space of features over which models can learn. As such, over time, as the field of deep learning 

has further developed, an increasing number of studies have begun training deep learning models on raw 

EEG data [4]–[14], [16]–[18]. Deep learning models employ an automated feature extraction approach 

that precludes the need for manually engineered features. As such, deep learning models are theoretically 

able to learn from the entire feature space when applied to raw EEG data. Unfortunately, they also have 

reduced explainability due to the high dimensionality of the input data. 

Explainability in Models with Manually Engineered Versus Automatically Learned Features 

Deep learning models applied to raw EEG are not less explainable because existing explainability methods 

cannot be applied in the context of EEG. Rather, deep learning models applied to raw EEG are less 

explainable because the temporal nature of EEG data presents unique problems relative to tabular and 

image data. Traditional explainability methods cannot be directly translated to provide insight into key 

frequency bands because the input to models is a time-series. Traditional methods [59] cannot be directly 

translated to identify key waveforms because to extract useful global insight thousands or hundreds of 

thousands of samples might need to be analyzed. Traditional methods [60] that account for interactions 

are also difficult to translate directly to EEG because of the large number of features per sample of EEG 

data (e.g., a sample may have 19 to 60 channels and be thousands of time points long). As such, over time 

a growing number of studies have begun seeking to develop explainability methods uniquely adapted to 

the domain of deep learning-based raw EEG analysis. It should be noted, however, that methods like those 

developed for multimodal data explainability [6], [7], [61], [62] can be adapted to multichannel EEG data 

with minimal inconvenience. 

Taxonomy of Explainability Methods for Deep Learning Models Trained on Raw EEG 
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In this section, we describe a taxonomy of explainability methods for deep learning models trained on raw 

EEG. As shown in Figure 1, deep learning-based explainability methods for raw EEG can be categorized on 

a hierarchy with two general levels: (1) based on the traditional features into which they provide insight 

and (2) based on the mechanisms by which they provide that insight. Existing explainability approaches 

can generally provide insight into 3 types of features: (1) spatial features (i.e., identifying specific brain 

regions or electrodes of importance), (2) spectral features (i.e., identifying specific frequency bands of 

importance), and (3) temporal features (i.e., identifying specific waveforms of interest). Approaches for 

identifying spatial or multimodal importance typically use some variation of ablation [6], [7], [9], [14], [63], 

[64], in which information from a particular channel is removed and the effect upon model performance 

or softmax activations is quantified, or a gradient-based feature attribution (GBFA) approach [65] like LRP 

[61], [63], in which importance is summed across all time points for each channel.  

 

Approaches for identifying spectral importance generally fall within one of four categories. (1) They use 

interpretable classifiers with filters designed to extract specific frequencies [4], [66]. While highly 

innovative, these classifiers still inherently limit the space of possible features. (2) They use methods like 

activation maximization [56]. Two studies have sought to identify the frequencies at which sinusoids 

maximize the activation of early convolutional layers [14], [67], and one study sought to optimize the 

multi-spectral content of a sample to maximize the activation of the final softmax output layer in a class-

specific manner [16]. These approaches do not actually indicate the importance of frequency bands to a 

classifier. Rather, they show a set of frequencies that are extracted at a particular layer or representative 

of a particular class. As such, they can produce a highly useful representation of what a model has learned. 

It should be noted that in methods like that in [16] there are theoretically multiple possible 

representations that could have high class-specific activations, so resulting samples may not contain all of 

the features important to the capacity of the model to identify each class. (3) A number of studies have 

used the fast Fourier transform to convert to and from the frequency domain wherein the perturbed 

specific frequency bands and examined the resulting effect upon model performance [9], [13] or 

predictions [12], [68]. These methods are highly effective. However, in some models, if performed on 

training data or sometimes even test data, perturbation may have a negligible effect upon model 

performance or activations, and an explanation may not be obtained. As an example, note how 

perturbation of frequency bands in the Awake class sample, which had an extremely high activation, had 

minimal effect upon the model activation in [16]. (4) Several studies have created specialized CNN 

architectures with extended first layer filters capable of extracting distinct waveforms [5], [40], [67]. The 

 

Figure 1. Taxonomy of Explainability Approaches for Deep Learning Models Using Raw EEG Data. The taxonomy has 3 levels 

that are each separated by black horizontal dashed lines: (1) the overall field of EEG explainability methods, (2) the types of 

features into which the explainability methods provide insight, and (3) the types of explainability approaches that provides 

insight into the different feature types. Light blue boxes correspond to specific types of features. Note that the type of method 

or explainability approach generally corresponds to methods that were first developed outside the domain of EEG analysis 

and then adapted to the domain. Dark blue, red, and gold boxes show methods that provide local, global, and both local and 

global explanations. Boxes surrounded by dashed black lines show explainability approaches first proposed in this study. 
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filters can then be converted to the frequency domain and visualized. These methods provide a very 

effective way for understanding what frequencies were extracted by a model. Additionally, when 

combined with perturbation, they can also provide an effective approach for estimating spectral 

importance. Nevertheless, they require the development of a highly specialized architecture and are thus 

incompatible with many architectures developed within the field. 

Approaches for temporal waveform importance generally fall into one of three categories. Additionally, 

while these approaches can be effective to a degree, they all have key shortcomings, and there is generally 

significant room for continued innovation within this type of EEG explainability. (1) Windows of individual 

samples can be perturbed. Those windows that cause the largest change in softmax layer activation can 

then be considered important [14]. While this approach can give insight into the importance of individual 

waveforms for the classification of an individual sample, the perturbation of individual time windows may 

not always have a significant effect upon the softmax layer activation. A key shortcoming is that the 

identified waveforms also cannot be assumed to be of global significance, and it is impractical to perturb 

windows across a dataset with thousands or hundreds of thousands of samples. (2) Similar to approaches 

in spectral importance, activation maximization [56] can be applied to identify key waveforms [16]. 

Activation maximization approaches have been applied to other types of time-series classification [69], 

[70]. The methods in these two studies optimize the content of a sample in the time domain and are 

effective for short time-series (i.e., around 30 time points long). However, when applied to longer time-

series like those found in resting-state EEG, they tend to do a very poor job creating recognizable 

waveforms [16]. This led to one study optimizing the spectral content of a sample to create waveforms 

[16]. This approach obtains more realistic waveforms than the approaches shown in other domains for 

shorter time-series [69], [70] but still leaves room for improvement. (3) Lastly, model visualization 

approaches that provide insights into important spectral features can also identify the importance of 

waveforms when paired with perturbation of model filters [5], [8], [40], [67]. However, while these 

approaches give the clearest insight into identified waveforms, they also require the design of special 

architectures that may not be able to obtain high levels of classification performance for all applications. 

It should also be noted that there is a tentative fourth category for identifying temporal waveform 

significance. GBFA methods like LRP can be applied to identify the relative importance of waveforms. This 

is a tentative category because while the approach has been used to identify important time points [71], 

it has not yet been applied to identify key waveforms. As demonstrated in several fMRI classification 

studies, this approach can also provide global insight into patterns of importance distribution [72], [73]. 

While significant advancement has been made in the field of deep learning-based explainability for raw 

EEG, there is still significant room for continued innovation and development. As previously described, 

models may sometimes not be sensitive enough to existing perturbation approaches to produce a 

significant change in model softmax activations or performance, which can prevent the approaches from 

providing usable explanations [16]. Additionally, the most effective approaches for insights into temporal 

waveform importance require the use of specially designed classifiers [5], [8], [40], [67], and there is a 

need for approaches that can be applied to any deep learning architecture. Lastly, while we have not yet 

mentioned this shortcoming and some explainability approaches have been applied to multichannel EEG 

data, many existing EEG explainability approaches have been developed within the context of single 

channel sleep stage classification. This is likely due to (1) the well-characterized features of sleep stages 

[74], (2) the comparative ease of developing models for sleep stage classification, and (3) the public 

availability of large EEG sleep stage datasets [75]–[77]. As such, there is a need to extend these approaches 
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to multichannel EEG data, which is often used for more complex classification tasks [9], [21], [24], [26], 

[27], [78]–[81]. Related to this problem of multichannel explainability, is that, to the best of our 

knowledge, no existing approaches have sought to provide insight into interactions between different 

frequency bands and channels, which is a key limitation given the relative importance of connectivity-

based features in models using traditional feature extraction [46]–[48]. 

In this study, we expand on the taxonomy that we previously presented. We present a systematic 

framework for evaluating the features of a deep learning classifier that includes inter-channel and spatio-

spectral interaction - a novel feature type for deep learning-based raw EEG explainability. As such, our 

framework encompasses spatial, spectral, temporal, and interaction-based explanations. We (1) identify 

the relative importance of each channel, (2) identify interactions uncovered by the model between 

channels, (3) identify key frequency bands in each channel, (4) identify interactions between frequency 

bands in each channel and other channels, and (5) identify representative samples of each class and the 

waveforms of importance to their classification. We present our approach within the context of explaining 

a 1D-CNN trained on data from individuals with MDD (MDDs) and healthy controls (HCs). Our framework 

represents a significant step forward for the field of deep learning-based raw EEG explainability, and we 

hope that it will inspire future methods also capable of solving the problems that we presented in our 

taxonomy of explainability approaches. 

METHODS 

In this section, we describe our proposed framework. As detailed in Figure 2, we (1) used multi-channel 

resting-state EEG data from 28 healthy controls (HCs) and 30 individuals with MDD (MDDs). (2) We trained 

a one-dimensional convolutional neural network (1D-CNN) for classification and evaluated model 

performance. (3) We applied layer-wise relevance propagation (LRP) to identify the relative importance 

of each channel, and (4) we applied a combination of ablation and LRP to identify interactions in the 

representations learned by the model between channels. We applied a combination of LRP and spectral 

perturbations to identify (5) the relative importance of each canonical frequency band in each channel 

and (6) interactions between the representations learned by the model for the canonical frequency bands 

in each channel and every other channel. (7) We applied a combination of a novel prototyping approach 

and LRP to identify representative samples of each class and identify important waveforms that the model 

used to differentiate them. Our code is publicly available on GitHub and can be found at: 

https://github.com/cae67/MultichannelExplainabilityFramework.git. 

Description of Data Acquisition and Preprocessing 

We used a publicly available scalp EEG dataset [23] consisting of 30 MDDs and 28 age-matched HCs 

between the ages of 12 to 77 that has been used in multiple studies [24], [26], [78]. The data can be found 

at https://figshare.com/articles/dataset/EEG_Data_New/4244171. While we were not involved with data 

collection, we detail the collection procedures below. MDD participants met the diagnostic criteria for 

MDD defined in the Diagnostic and Statistical Manual-IV (DSM-IV) [82]. Common symptoms of MDD 

include a depressed mood, a loss of interest or pleasure, changes in appetite or weight, psychomotor 

agitation, feelings of worthlessness or excessive guilt, diminished ability to concentrate, and frequent 

thoughts of death [83]. HCs were determined to be healthy following examination for psychiatric 

conditions. To avoid potential confounding effects of medication, all MDDs underwent a two-week 

washout period prior to the first EEG recordings. All participants gave informed consent prior to data 
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collection that was approved by the human ethics committee of the Hospital Universiti Sains Malaysia 

(HUSM) in Kelantan, Malaysia.  

 

While separate recordings were performed at resting state with both eyes open and eyes closed for each 

participant, we only used data from recordings with eyes closed in this study. Participants were instructed 

to sit in a semi-recumbent position and minimize head movements and eye blinks. The Brain Master 

Discovery amplifier (Make: Brain Master, Model: Discovery 24e, Manufacturer: Brainmaster Technologies 

Inc.) was used to amplify EEG signals from the sensors. Recordings were performed for 5 to 10 minutes 

with a sampling rate of 256 Hertz (Hz) using a standard 10-20 format with 64 electrodes. The data were 

band pass filtered from 0.1 to 70 Hz and were notch filtered at 50 Hz to remove line-related noise. EEG 

data were recorded with the linked ear reference and were re-referenced to the infinity reference [84].  

Due to the high levels of correlation present between scalp EEG channels, we only used a subset of 

electrodes. This approach is similar to those of other studies of neuropsychiatric disorders [9], [20], [25], 

[85]. Specifically, we used the Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2 

electrodes. We downsampled the data from 256 Hz to 200 Hz. To increase the number of samples 

available for classification, we used a 25-second sliding window with a 2.5-second sliding step size to 

separate the recordings into epochs. After dividing the data into epochs, we channel-wise z-scored the 

epochs for each participant separately. Our final dataset consisted of 2,950 SZ epochs and 2,942 HC 

epochs. Importantly, we did not remove any samples with extreme amplitude values. 

Description of Model Development 

We adapted an architecture (Figure 3) that was originally developed in [85] for schizophrenia classification 

and was later used in [78] for MDD classification. We implemented the model in Keras 2.2.4 [86] to 

 

Figure 2. Overview of Methods. (1) We used a publicly available resting-state EEG dataset containing data from healthy 

individuals and individuals with major depressive disorder (MDD). (2) We first trained a one-dimensional convolutional neural 

network for automated MDD diagnosis and evaluated overall model performance. (3) We applied layer-wise relevance 

propagation (LRP) to identify the relative importance of each electrode (i.e., spatial importance). (4) We combined LRP with 

ablation to quantify how much the amount of LRP relevance assigned to each channel changed following the perturbation 

of other channels (i.e, spatial interaction). (5) We combined LRP with spectral perturbation to quantify how much the amount 

of LRP relevance assigned to a channel changed following the perturbation of frequency bands within that channel (i.e., 

spatio-spectral importance). (6) We combined LRP with spectral perturbation to quantify how much the amount of LRP 

relevance assigned to a channel changed following the perturbation of frequency bands within other channels (i.e., spatio-

spectral importance). (7) Lastly, we combined a prototyping approach with LRP to identify representative samples of each 

class and to identify the relative importance of waveforms in each of those samples (i.e., temporal importance). 
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maintain compatibility with explainability libraries. Input samples had dimensions of 5,000 time points x 

19 channels. Relative to [85], we added multiple batch normalization layers and converted ReLU activation 

functions to ELU activation functions. We also modified the training approach from [78] in an effort to 

enhance model performance. As mentioned in [27], many previous studies involving classification of MDD 

EEG data have used poor cross-validation approaches, which can lead to an inflation of model 

performance. In an effort to enhance the generalizability of our models, we used a 10-fold stratified group 

shuffle split cross-validation approach to ensure that samples from the same participants were not 

simultaneously distributed across training, validation, and test sets in the same fold. Approximately, 75%, 

15%, and 10% of samples were assigned to training, validation, and test sets, respectively. 

 

During model training, we used a data augmentation approach that has previously been used in [15] to 

double our training set size. After separating the data into training, validation, and test sets in each fold, 

we duplicated the training data and augmented the duplicate data via the addition of Gaussian noise 

(mean = 0, standard deviation = 0.7). We then trained the model on the combined original and augmented 

data. To account for class imbalances that might randomly occur in the allocation of the training set, we 

used a class-weighted categorical cross-entropy loss function. We used an Adam optimizer [87] with a 

learning rate of 0.0075 and a batch size of 128 samples. We trained for a maximum of 35 epochs, using 

early stopping to end training if validation accuracy (ACC) did not improve after 10 consecutive epochs. 

To help ensure the generalizability of the model, we also selected the model from the epoch with the 

peak balanced validation accuracy (BACC). When assessing model test performance, we calculated the 

mean and standard deviation of the sensitivity (SENS), specificity (SPEC), ACC, and BACC across folds. All 

convolutional and dense layers, except for the final dense layer which had a softmax activation function 

with Glorot normal initialization [88], were initialized with He normal initialization [89]. Explainability 

analyses were performed on the test data from the model with the highest overall BACC. 

Description of Spatial Importance Approach 

We applied the αβ-rule [90] of LRP [58], [91] for insight into the relative importance of each channel. LRP 

is a popular approach in the domain of explainability for image classification and has also been used 

extensively in the domain of neuroimaging and neurological time-series classification [5], [39], [40], [62], 

[63], [72], [73], [78], [92]–[97]. We implemented LRP using the Innvestigate library [98]. LRP involves 

multiple steps. (1) A sample is forward passed through a network. (2) A total relevance value of 1 is 

 

Figure 3. Model Architecture. The model can be subdivided into two segments that are separated by an alpha dropout layer 

(alpha) – feature extraction (i) and classification (ii). The feature extraction segment repeats 4 times, and the light grey inset 

within the classification segment repeats twice. Segment (i) has 4 one-dimensional convolutional layers (conv1d) that are 

each followed by max pooling layers (pool1d). The conv1d layers have 5, 10, 10, and 15 filters and have kernel sizes of 10, 10, 

10, and 5. The pool1d layers have pool sizes and strides of 2. Segment (ii) has 3 dense layers with 64, 32, and 2 nodes, 

respectively. All alpha layers have dropout rates of 0.5. Yellow circles containing an “E”, “B”, or “S” indicate ELU activations, 

batch normalization, and softmax activations, respectively. Note that conv1d and dense layers have max norm kernel 

constraints with max values of 1. 
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assigned to the output node corresponding to the class of interest. (3) The total relevance is iteratively 

propagated from layer to layer back through the network to the input space using a relevance rule. LRP 

can propagate both positive (i.e., identifying features that provide evidence for the class of interest) and 

negative (i.e., identifying features that provide evidence for a class other than the class of interest) 

relevance. To simplify our analysis by only examining relevance for samples corresponding to their true 

class, we used the αβ-rule. The αβ-rule has α and β terms, where α and β control positive and negative 

relevance propagation, respectively. We used α = 1 and β = 0. The equation below shows the αβ-rule. 

𝑹𝒋 = ∑ (𝜶
(𝒂𝒋𝒘𝒋𝒌)

+

∑ (𝒂𝒋𝒘𝒋𝒌)
+

𝟎,𝒋

− 𝜷
(𝒂𝒋𝒘𝒋𝒌)

−

∑ (𝒂𝒋𝒘𝒋𝒌)
−

𝟎,𝒋

)

𝒌

𝑹𝒌 

Where the subscripts 𝑘 and 𝑗 correspond to values for one of 𝐾 nodes in a deeper layer and one of 𝐽 nodes 

in a shallower layer, respectively. The model weights are referenced by 𝑤, and 𝑎𝑗 is the shallower layer 

activation output. 

We output relevance corresponding to the true classes of all test samples in the model with the highest 

test BACC. While LRP theoretically propagates relevance in a manner that sums to 1, practically, the total 

relevance can sometimes diverge. As such, after extracting relevance for each test sample, we normalized 

the absolute relevance of each sample to sum to 100 percent. Specifically, we summed the total absolute 

relevance assigned to each sample, divided the absolute relevance for each time point and channel by the 

total absolute relevance, and multiplied by 100. We next summed the total percent of absolute relevance 

assigned to each channel to estimate spatial importance for each sample. Lastly, to obtain class-specific 

spatial importance estimates, we averaged separately across HC, MDD, and HC + MDD samples. 

The last spatial analysis that we performed sought to determine whether the average spatial importance 

for each channel was significantly above a uniform spatial distribution of relevance (i.e., where relevance 

for each channel equals total percent of absolute relevance divided by 19 channels). To this end, we 

performed a 1-sample t-test comparing the mean relevance of each channel to 100 percent / 19 channels. 

We then applied false discovery rate (FDR) correction [99] with α = 0.001 to reduce the likelihood of false 

positive test results. We performed this analysis for HC, MDD, and combined HC and MDD groups. 

Description of Spatial Interaction Approach 

After identifying the relative importance of each channel, we sought to understand whether the model 

uncovered interactions between channels. To this end, we combined spatial LRP as detailed in the 

previous section with ablation. (1) We output the percent of absolute relevance for each sample and 

channel 𝐶 (see previous section). (2) We ablated channel 𝑐 of the test samples by replacing it with zeros. 

While we could have used line-related noise-based ablation approach similar to [63], we elected to use 

zeros, as line noise was notch filtered during data acquisition. (3) We re-output the percent of absolute 

relevance for each sample and channel 𝐶. (4) We calculated the absolute change in relevance belonging 

to each channel 𝐶.  

The thought process behind our approach was that if a model has uncovered interactions between 

channels 𝑐1 and 𝑐2, then the model should rely upon 𝑐1 to interpret information in 𝑐2 and vice versa. 

Thus, if information in channel 𝑐1 is removed via ablation and the model uncovered a relationship 

between channels 𝑐1 and 𝑐2, the relevance of channel 𝑐2 should decrease because the model is no longer 

able to use the information in channel 𝑐2 as effectively. Additionally, if the relevance of channel 𝑐2 
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increases, then that indicates that the model compensated for the loss of channel 𝑐1 by relying more upon 

𝑐1. As such, in our approach, we repeated steps 1 through 4 for each of 𝐶 channels and measured the 

effect of the ablation of channel 𝑐 upon spatial relevance for all of 𝐶 − 1 channels. Our approach relies 

upon the idea that the relevance of each channel is a combination of its relevance independent of other 

channels and of its interaction with all other channels. 

𝑅𝑒𝑙𝑐 = 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡_𝑅𝑒𝑙𝑐 + ∑ 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑅𝑒𝑙𝑐,𝑖

𝐶

𝑖=1,𝑖 ≠𝑐

 

Where 𝑅𝑒𝑙𝑐 is the total relevance assigned to channel 𝑐, 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡_𝑅𝑒𝑙𝑐 is the relevance 

independently assigned to channel 𝑐, and 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑅𝑒𝑙𝑐,𝑖 is the relevance of channel 𝑐 that results 

from interactions between channel 𝑐 and channel 𝑖, which is not channel 𝑐.  

After outputting the change in relevance of all channels following the ablation of all channels, we sought 

to determine whether the interactions were statistically significant. To this end, we performed paired 

two-sample t-tests comparing the relevance assigned to channels before and after the ablation of each 

channel 𝑐. We next applied FDR correction [99] with α = 0.001 to reduce the likelihood of false positive 

test results. We performed this analysis separately for HC, MDD, and combined HC and MDD groups. 

Description of Spatio-Spectral Importance Approach 

We next sought to uncover the relative importance of each canonical frequency band in each channel. 

We analyzed the canonical frequency bands: 𝛿 (0 – 4 Hz), 𝜃 (4-8 Hz), α (8 – 12 Hz), β (12 – 25 Hz), γlow (25 

– 45 Hz), and γhigh (55 – 100 Hz). Note that most of γhigh was removed during the band pass filtering of the 

preprocessing, so analyzing γhigh enabled us to sanity check our findings, as γhigh importance should 

theoretically be very low. Our spatio-spectral importance analysis consisted of multiple steps. (1) We 

output the percent of absolute relevance for each test sample and channel 𝐶 (see previous sections). (2) 

We converted each sample to the frequency domain using a fast Fourier transform (FFT). (3) We assigned 

coefficients corresponding to frequency band 𝑓 in channel 𝑐 to values of zero. We could have randomly 

permuted coefficient values or reassigned them from a Gaussian distribution [10], [13], [15], [68]. 

However, doing so would have required repeatedly perturbing each channel and frequency band dozens 

of times, which would have been computationally prohibitive given subsequent steps. (4) We re-output 

the percent of absolute relevance for each sample and channel 𝐶. (5) We calculated the absolute change 

in relevance assigned to each channel 𝑐 following the perturbation of frequency band band 𝑓 in channel 

𝑐. 

After outputting the change in relevance of all channels following the perturbation of frequency bands, 

we sought to determine whether the frequency bands in each channel had statistically significant 

importance. To this end, we performed paired, two-sample, two-tailed t-tests comparing the relevance 

assigned to channels before and after the ablation of each channel 𝑐. We next applied FDR correction [99] 

with α = 0.001 to reduce the likelihood of false positive test results. We performed this analysis separately 

for HC, MDD, and combined HC and MDD groups. 

Description of Spatio-Spectral Interaction Approach 

After identifying the relative importance of each frequency band in each channel, we sought to determine 

whether the model uncovered interactions between frequency bands 𝑓 in each channel 𝑐 with all other 
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channels 𝐶 not including 𝑐. This analysis was highly similar to that described in the section, “Description 

of Spatio-Spectral Importance Approach”. The only difference between the two analyses was that in step 

5, we calculated the absolute change in relevance assigned to all channels 𝐶 not including channel 𝑐 

following the perturbation of frequency band 𝑓 in channel 𝑐. After obtaining the percent change in 

relevance assigned to channels 𝐶 following the the perturbation of frequency band 𝑓 in channel 𝑐, we 

employed the same paired, two-tailed, two-sample t-test approach followed by FDR correction described 

in the previous section. 

Description of Temporal Prototyping and Importance Approach 

We lastly sought to uncover any key waveforms differentiating MDDs from HCs. To this end, we combined 

a prototyping-based approach to identify samples that ideally represented each class and applied LRP to 

identify the relative importance of each time point and channel for those samples. Our approach consisted 

of several stages. (1) We input all test samples for both classes into the model and output the activations 

from the final convolutional layer. (2) We applied principal component analysis (PCA) with 3 components 

to reduce the dimensionality of the extracted activations for samples in both classes. (3) We applied k-

means clustering to the 3 principal components of the activations with 100 initializations sweeping from 

2 to 10 clusters. We selected the optimal number of clusters using the maximum silhouette score [100]. 

We performed clustering separately for each class. (4) We selected the samples closest to the cluster 

centroids for each class. (5) We output normalized absolute LRP relevance for each sample using the αβ-

rule. (6) We applied a moving average with a window size of 20 time points to the relevance assigned to 

each channel to make visualizing relevance distributions easier. This analysis was two-fold. Firstly, it 

enabled us to identify samples representative of each class that could be visually inspected for differences. 

Secondly, it gave insight into how the model analyzed the samples temporally (e.g., Was the relevance 

temporally distributed or focused on specific highly localized time points? Was the model focused 

exclusively on unique waveforms or only a few of many similar waveforms?). 

RESULTS 

In this section, we describe our model performance, spatial importance, spatial interaction, spatio-

spectral importance, spatio-spectral interaction, and temporal prototyping and importance results. 

Model Performance Results 

Table 1 shows the classification test performance of our model across all folds. Mean performance for all 

metrics was above 80%. The model more effectively identified MDDs than HCs, as SENS was near 90% 

while SPEC was closer to 80%. Additionally, SPEC had a slightly higher standard deviation than SENS. BACC 

and ACC differed some for specific folds but were on average highly similar. The model test performance 

for the fold used for explainability was 100% across all metrics. 

 

Spatial Importance 

Table 1. Model Performance Results 

 ACC BACC SENS SPEC 

Mean 84.90 85.57 89.03 82.11 

Standard Deviation 09.39 09.93 13.92 17.43 
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Figure 4 shows the average total absolute relevance for HCs, MDDs, and both classes combined as well as 

the t-test results comparing the relevance per channel to a uniform distribution of relevance (i.e., 100% 

relevance / 19 channels = 5.26% relevance per channel). Across classes, O1 and O2 were generally far 

below uniform. Additionally, F3 and C4 were unimportant across classes. Frontal (Fp2, F7, and F8) and 

parietal (Pz and P4) were consistently highly important across classes. Additionally, a few electrodes were 

of great importance for one class but not the other. C3 and T4 were highly important for MDD, and T6 

was highly important for HC. T5 and P3 were also of moderate importance for HCs. 

 

Spatial Interactions 

Figure 5 shows the results for our spatial interaction analysis. Channels that had a negative change in 

relevance following the perturbation of another channel can be considered to have an interaction with 

that channel. The P3 electrode which was of moderate importance to identifying HCs had a reduction in 

relevance when some frontal, temporal, and parietal electrodes were perturbed, indicating that the 

model likely relied upon information present in other electrodes to effectively use the information in the 

P3 electrode. Several other parietal and temporal electrodes (P4 and T6) also had reductions in relevance 

following the perturbation of some frontal, central, and parietal electrodes in HCs. While HCs tended to 

have reductions in more posterior electrodes (P3, P4, and T6) following the perturbation of other 

electrodes, MDDs tended to have reductions in central electrode relevance following the perturbation of 

other central electrodes. This was particularly the case for C3, which had MDD relevance above the 

uniform distribution, and Cz, which had MDD relevance slightly below the uniform distribution. While the 

HCs and MDDs did seem to have interactions between electrodes, there were comparatively fewer 

interactions similar across both classes. It should be noted that HCs seemed to have slightly more negative 

interactions than MDDs. Additionally, the model had reductions in relevance for a number of electrodes 

in both classes following the perturbation of occipital electrodes O1 and O2.  

 

Figure 4. Spatial Importance Results. The leftmost panels show heatmaps of the average relevance for HCs, MDDs, and both 

classes in descending order. The heatmap to the right of the leftmost panels indicates the amount of relevance corresponding 

to the heatmap values. The rightmost panels show heatmaps of the t-statistics that resulted from our one-sample, two-tailed 

t-tests comparing the relevance of each channel to a uniform distribution of relevance (i.e., 100% of relevance / 19 channels). 

Panels values for HCs, MDDs, and both classes in descending order. Black dots indicate channels with statistically significant 

p-values following FDR correction (α = 0.001). The two color bars to the right of the leftmost panels indicate the t-statistic 

values corresponding to the channels with relevance below the uniform distribution and above the uniform distribution. Note 

that the names corresponding to each channel are displayed along the x-axis. 
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While there were a few channels with negative changes in relevance following the perturbation of other 

channels, a larger number of channels had significant increases in relevance following the perturbation of 

other channels. In HCs, the model tended to increase relevance to frontal, central, and temporal 

electrodes following the ablation of any electrode. The model had particularly large increases in relevance 

for F4 and C3 following the perturbation of Fp2 and F3. In MDDs, the model tended to increase relevance 

assigned to central, temporal, and parietal electrodes following the ablation of all but parietal and thoracic 

electrodes. 

Spatio-Spectral Importance 

Figure 6 shows the importance of each channel and the change in channel relevance following the 

perturbation of each canonical frequency band. The perturbation of most frequency bands did cause a 

significant reduction in relevance assigned to their corresponding channels. Nevertheless, there were 

differences in the magnitude of those effects between HCs and MDDs. The model relied upon θ more 

strongly and across more channels for identifying HCs than MDDs, and the model relied upon β and γlow 

across a wider range of channels for identifying MDDs than HCs. Importantly, the model relied upon α for 

identifying both classes. The model did not rely extensively upon γhigh. The overall most important 

frequency and channel combinations for HCs were more posterior parietal (P3, PZ, P4) and temporal (T6) 

θ and α and frontal (Fz, F4, F8) θ. Overall most important frequency and channel combinations for MDDs 

were Fp2 α and β, and F7, F8, T4 β and γlow.  

 

Figure 5. Spatial Interaction Results. From left to right, panels show average relevance interactions for HCs, MDDs, and both 

classes. The top panels show the change in relevance (relevance 2 – relevance 1), and the bottom panels show t-statistics for 

the paired, two-tailed, two-sample t-tests comparing the importance of channels before another channel was ablated versus 

after another channel was ablated. The x-axis indicates channels that were ablated, and the y-axis indicates channels in which 

a change in relevance is measured (i.e., response channels). Black dots indicate channel combinations in which there was a 

significant change in the relevance of a response channel after ablation following FDR correction (α = 0.001). Heatmaps to 

the right of the top and bottom rows of panels indicate the relative magnitude of the change in relevance and the t-statistic 

values for the t-tests, respectively. Note that values along the left-to-right diagonal were replaced with zeros, as the percent 

of relevance of a channel decreased much strongly when that channel was itself ablated and such extreme values prevented 

a visualization of the change in relevance of other channels. 
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Spatio-Spectral Interactions 

Figure 7 shows spatio-spectral interactions for each frequency band and channel and other channels. For 

HCs, the model identified a reduction in relevance for parietal and occipital (P3, Pz, P4, T6, O1, O2) 

following the perturbation of most other channels and frequency bands. However, P3 was the only 

channel with consistently statistically significant reductions in relevance following the perturbation of 

other channels. For MDDs, several channels along the frontal and central planes (F7, C4) tended to have 

strong reductions in relevance following the perturbation of most channels, and a couple other channels 

in the frontal and central planes had reductions in relevance following the perturbation of a few channel 

and frequency combinations (Fp1, T3, C3). The channel F7 was the only channel with consistently 

statistically significant reductions in relevance following the perturbation of frequency bands in other 

channels. Those channels that did not have negative changes in relevance generally had strongly positive 

changes. Few channels had near-zero positive changes, though some had near-zero negative changes. 

 

Figure 6. Spatio-Spectral Importance Results. The left, middle, and right columns of panels show results for HCs, MDDs, and 

both HCs and MDDs, respectively. The top row of panels indicates spatial relevance of each channel. The middle row of panels 

indicates average change in relevance of specific channels across samples following the perturbation of frequency bands 

within those channels. The bottom row of panels indicates the t-statistics for the two-sample, two-tailed, paired t-tests 

comparing the relevance of a channel before versus after perturbation of a frequency band within that channel. Black dots 

indicate channel and frequency band combinations in which there was a significant reduction in the relevance of a channel 

after perturbation following FDR correction (α = 0.001). The x-axis shows channels, and the y-axis shows frequency bands. 

Their corresponding color bars are to the right of the middle and bottom rows, and the corresponding color bars for the top 

row are located above the panels. 
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Temporal Prototyping and Importance 

Figure 8 shows the extracted CNN features with dimensionality reduced via PCA. It also shows the clusters 

and samples closest to each cluster centroid. We identified 3 HC clusters and 2 MDD clusters based on the 

maximal silhouette scores for clustering each class. Figure 9 shows the 3 HC and 2 MDD samples closest 

to each cluster centroid along with an overlayed LRP relevance heatmap that highlights the most 

important regions of each time-series. MDD and HC clusters were highly separable. HC cluster 2 seemed 

to have a representation more comparable to that of the MDD clusters. HC clusters 1 and 3 were relatively 

similar, though they seemed to be somewhat separable along the vertical axis. Interestingly, the samples 

for the HC 1, HC 3 and MDD 2 clusters were higher along vertical axis and tended to have more high 

frequency activity, with HC 1 and HC 3 seeming to have high amounts of γlow and MDD 2 having activity at 

the boundary of β and γlow. HCs had consistent levels of θ oscillations, which were not present in MDDs. 

Additionally, both MDDs seemed to contain β oscillations that were not found in HCs. Both HCs and MDDs 

seemed to have α oscillations. LRP relevance tended to be more highly concentrated in HCs than MDDs, 

and MDD 2 relevance was much more concentrated than MDD 1 relevance, which had a more diffuse 

representation as shown through PCA. In HCs, rather than selecting unique waveforms, the model seemed 

to focus on a few of many reoccurring waveforms (e.g., θ waveforms). This was also often the case for 

MDD 2, though some unique bursts of high frequency activity (e.g., between 19 and 20 seconds in Figure 

9) were also highlighted. In MDD 1, many high amplitude bursts of parietal α were relevant, and these 

 

Figure 7. Spatio-Spectral Interaction Results. The top, middle, and bottom panels show heatmaps of the t-statistics from the 

two-sample, two-tailed, paired t-tests comparing the amount of relevance in a channel before versus after the perturbation 

of frequency bands in other channels for HCs, MDDs, and both classes, respectively. Perturbed channels and frequency 

bands are arrayed along the x-axis. Perturbed channels are separated by thick vertical dashed lines, and from left to right 

within each set of vertical dashed lines are shown results for the perturbation of 𝛿 (0 – 4 Hz), 𝜃 (4-8 Hz), α (8 – 12 Hz), β (12 

– 25 Hz), γlow (25 – 45 Hz), and γhigh (55 – 100 Hz) frequency bands. Channels in which a change in relevance was measured 

are arrayed along the y-axis (i.e., response channels). The color bars to the right of the figure are shared by all panels and 

indicate the value of the t-statistics in the heatmaps. Black dots indicate channel and frequency band combinations in which 

there was a significant change in the relevance of a channel after perturbation following FDR correction (α = 0.001). 
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bursts sometimes co-occurred with β activity in central electrodes highlighted (e.g, around 1 second in 

Figure 9). 

 

DISCUSSION 

In this study, we make two major contributions. (1) We define a taxonomy of explainability approaches 

for deep learning models trained on raw EEG data. (2) We present a framework for systematically 

evaluating a deep learning model trained on raw multichannel EEG data that provides insight into each 

type of feature (i.e., spatial, spectral, and temporal) found in our taxonomy while also expanding upon 

that taxonomy to provide insight into new types of features (i.e., spatial and spatio-spectral interactions). 

Importantly, to the best of our knowledge, our methods for examining spatial and spatio-spectral 

interactions are the first of their kind for raw EEG deep learning classification. Additionally, our approach 

for spectral importance enables a more sensitive identification of key frequency bands than previous 

approaches by examining the change in relevance of individual channels (rather than the change in a 

softmax activation or model accuracy) following perturbation. Both our novel spectral and interaction 

explainability approaches can provide both local and global insights. Lastly, in contrast to previous 

approaches that required a specially designed architecture or required that a model be sensitive to the 

perturbation of input samples, our approach for temporal importance offers an approach for global 

importance estimation that is applicable to a variety of deep learning classifiers. As a whole in recent 

years, the field of explainable deep learning for EEG has made great progress, but existing approaches still 

leave much to be desired. The collection of novel methods presented in our study represents a significant 

step forward for the field, and the taxonomy that we propose represents a key advancement that will 

provide guidance for future studies and developments. 

 

Figure 8. PCA Extracted Activation Clustering Results for Temporal Explainability. Three principal components were used to 

reduce the dimensionality of activations for the test samples from the final convolutional layer. HC and MDD reduced 

activations are shown in blue and red, respectively. Two MDD and 3 HC clusters were optimal. Different clusters for each class 

are each indicated by markers with a different shape, as shown in the legend to the left of the plot. A black “x” is used to 

mark the samples closest to the cluster centroids that were used in subsequent temporal explainability analyses. 
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Training a High Performing Model with a Robust Cross-Validation Approach 

We developed a model for the classification of individuals with MDD and healthy controls. Our overall 

model performance was very high (i.e., greater than 80% across all metrics), and the model performance 

from the fold used in explanations was at 100% across all metrics, increasing the likelihood of the potential 

generalizability of our explainability findings. Relative to previous studies performing automated diagnosis 

of MDD using raw EEG data with robust cross-validation techniques, our model obtained higher 

performance [78], and relative to studies using extracted features with traditional machine learning 

approaches and robust cross-validation techniques, our model obtained comparable or higher 

performance [27]. There were some studies that obtained higher test performance than our model using 

either raw EEG data [80], [81] or extracted features [3], [21], [24], [26]. However, it appears based on the 

descriptions of their cross-validation approaches that those studies allowed data from the same study 

participants to leak across training, validation, and test sets within the same folds. That leakage would 

inflate model test performance and prevent the test performance from actually giving an indication of the 

generalizability of the patterns learned by their models. This problem in the field is unfortunately relatively 

common and has been described more extensively in previous studies [27]. Our stratified group shuffle 

split cross-validation approach protected against this leakage and helped ensure the reliability of our 

performance findings. 

 

Figure 9. Prototyping and Temporal Importance Results. The time-series of samples closest to the cluster centers of clusters 

HC 1, HC 2, HC 2, MDD 1, and MDD 2 (as shown in Figure 8) are displayed in panels from top to bottom. The x-axis shows time 

in seconds, and the y-axis shows EEG channels. The mean of the data for each channel was subtracted for easier display. A 

heatmap of LRP importance is overlayed on the time-series. Color bars to the right of the panels show the values of the LRP 

relevance out of 100% for their respective panels. 
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Identifying Electrodes and Electrode Interactions Important to the Identification of Healthy Individuals 

and Individuals with MDD 

The model relied upon frontal and parietal information for identifying both classes indicating that it was 

able to uncover discriminatory activity for both classes in those areas. However, the model also relied 

upon more central electrodes for identifying MDDs and upon more posterior electrodes for identifying 

HCs. This finding is interesting when combined with our channel interaction results. Namely, the model 

tended to rely upon more central interactions when identifying MDDs and more posterior interactions 

when identifying HCs. This finding of spatially widespread effects of MDD is consistent with previous 

studies that found it necessary to rely upon information from spatially distributed electrodes to obtain 

high levels of performance [27]. Additionally, it is interesting that while the model did not rely heavily 

upon occipital (O1 and O2) electrodes, the model did seem to uncover widespread interactions between 

those electrodes and other electrodes across the scalp. As such, while information in the O1 and O2 

electrodes may have not been highly discriminative, that information may have helped the model 

interpret information in other electrodes. 

Examining Why Electrodes are Important by Identifying Their Important Composite Frequency Bands 

and Frequency Band Interactions 

Our findings of spatial importance are further illuminated within the context of our findings on spatio-

spectral importance and interactions. While some frequency bands like α that have well-characterized 

importance in MDD [50], [79] were of widespread importance to the model for identifying both classes, 

some combinations of frequency bands and channels were important to specific classes. The importance 

of the posterior electrodes that were important for identifying HCs can be attributed to the presence of θ 

and α in those electrodes, and the presence of interactions between more posterior electrodes with other 

electrodes is also found in spatio-spectral interactions where there are widespread interactions with all 

frequency bands across most channels. The importance of the central electrodes to MDDs is attributable 

to α in those electrodes. While spatial importance indicates that frontal electrodes are important to both 

classes, spatio-spectral importance indicates that frontal electrodes are important to each class for 

different reasons. In HCs, frontal θ is more important, and in MDDs, frontal β and γlow are more important. 

Importantly, frontal θ has been identified as discriminatory between HCs and MDDs [26], and frontal and 

central β and γlow have previously been associated with inattention in MDD [101]. Additionally, our finding 

of low γhigh importance supports the reliability of the methods, as much of γhigh was filtered during initial 

signal amplification. It is curious that spatio-spectral interactions tend to be more widespread than spatial 

interactions. This is potentially attributable to how our use of zero-out ablation for identifying spatial 

interactions and use of perturbation for identifying spatio-spectral interactions interacted differently with 

the model. Previous studies have shown the importance of choosing ablation and perturbation methods 

specific to the target domain [63]. While it would have been ideal to be able to use a line noise-related 

ablation approach in our spatial interactions, the data that we used was publicly available, and line noise 

was notch filtered during the data collection process. As such, the model would not have learned to 

consider line noise as neutral information, and the line noise-related ablation approach would thus not 

be viable. 

Identification of Characteristic Samples for Each Class and Key Waveforms Within Those Samples 

Our dimensionality reduction and clustering approach seemed to uncover some underlying structure in 

the representations learned by the model. For example, clusters higher along the vertical dimension 
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seemed to have more high frequency activity, and there seemed to be high levels of separation between 

MDD and HC clusters. Additionally, the model did not seem to uncover unique waveforms of particularly 

high importance in HCs and MDD 1. Rather it seemed to primarily focus in a highly temporally localized 

manner on specific waveforms that were identical to many other waveforms found across the 25-second 

samples. This indicates that while we used 25-second sample sizes, it may have been possible to train an 

effective classifier with much shorter samples. For MDD 2, the model seemed to have a much more diffuse 

PCA representation and much more temporally distributed relevance. Additionally, the identified 

waveforms also illuminate our spatio-spectral importance findings. Specifically, we previously identified 

that θ was highly important to identifying HCs, and in the samples identified via our prototype approach, 

HCs had consistently high levels of θ oscillations that were not found in MDDs. Both HCs and MDDs had 

high levels of α oscillations, which explains why α was important for identifying both classes, and MDDs 

had high levels of β oscillations, which explains the importance that the model placed upon β for 

identifying MDDs. 

Limitations and Next Steps 

There are several new opportunities for future research directions that are spawned by this study. Our 

prototyping approach could potentially be expanded upon in future studies. The waveforms identified 

with our prototyping approach seemed to align well with our previously identified spatio-spectral 

importance estimates. However, future studies might apply more local explainability approaches to the 

identified samples to determine how well the findings for the identified prototypes fit with findings for 

the entire dataset. If there is a high degree of alignment between the findings for each of the prototypes 

and the global dataset findings, future studies could potentially adapt more robust methods like SHAP 

[60] for insight into spectral, spatial, and interaction importance that would otherwise not be viable for 

application with whole EEG datasets given their computational complexity. Additionally, while we applied 

LRP to provide a measure of channel importance that could change following perturbation and that 

approach should be broadly applicable to both CNNs and models with recurrent units, future studies 

might apply approaches similar to ours within the context of other architectures by measuring changes in 

model attention. Lastly, all of our analyses were performed in the sensor space. Future efforts might use 

inverse modeling to obtain source space signals and train models on those signals. Resulting explanations 

could provide enhanced insights into specific brain regions associated with classification performance. 

While our proposed explainability approaches were highly effective and present new opportunities for 

future research, our study methods and findings do have some limitations. Some of the limitations are 

not unique to our study but rather a problem for the overall field of deep learning-based studies using 

explainability methods. Specifically, model explanations are not meant to provide an exhaustive 

investigation of which features could possibly be discriminatory between individuals with MDD and 

healthy controls. EEG data can be very rich, and as has been shown in previous studies [9], [25], there are 

often multiple sets of features upon which a model can rely when performing a classification. As such, if 

our presented methods were to be used in an attempt to obtain exhaustive insight into all of the features 

that might possibly be useful for diagnosing MDD, it would be necessary to use a more robust training 

procedure (e.g., many more folds than is the popular practice) and use multiple independently collected 

datasets. Another limitation of our study findings is related to our dataset size. If we were to try to make 

generalizable claims about which features are most important for diagnosing MDD, we would need a 

much larger dataset. Lastly, there are several limitations to the methods proposed in this specific study. 

Namely, we only perturbed features once, and it would be ideal if we could examine the effects of multiple 
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perturbations upon the same features. Perturbing features only once is relatively common within studies 

ablating whole channels or modalities, so it is not overly problematic for our spatial interaction analysis. 

Within spectral importance analyses, it is more common to perturb individual frequency bands more than 

once; however, due to the computational complexity of repeatedly outputting LRP explanations, we 

elected to just replace the coefficients of each frequency band with zeros. That said, our use of statistical 

testing to identify the most important features does help ensure the reliability of our findings. Our use of 

spectral perturbation may also have caused some edge effects, though this is also a potential problem for 

all spectral perturbation explainability methods. Alternative approaches might consider applying windows 

to samples to attenuate any edge effects or performing notch filtering. 

CONCLUSION 

The application of deep learning methods to raw EEG data is becoming increasingly common. However, 

relative to other methods that use traditional machine learning or deep learning with extracted features, 

deep learning models applied to raw EEG data are less easily explainable. As a result, a field of research 

has developed seeking to explain these models. In this study, we propose a taxonomy of the explainability 

methods that have been developed for deep learning models trained on raw EEG. We then introduce an 

explanatory framework consisting of a series of methods that build upon our proposed taxonomy. In 

addition to providing insights into key spatial, spectral, and temporal features like existing approaches, 

the methods in our framework also provide insight into spatial and spatio-spectral interactions uncovered 

by models. We present our framework within the context of a 1D-CNN trained for automated major 

depressive disorder diagnosis, identifying interactions between central electrodes and other electrodes 

and identifying differences in frontal θ, β, and γlow between healthy individuals and individuals with major 

depressive disorder. Our study represents a significant step forward for the field of deep learning-based 

raw EEG classification, providing new capabilities in interaction explainability and providing directions for 

future research innovations through our proposed taxonomy. 
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