
Active mesh and neural network pipeline for cell aggregate segmentation

Matthew B. Smith,1, ∗ Hugh Sparks,2 Jorge Almagro,1 Agathe
Chaigne,3 Axel Behrens,4 Chris Dunsby,2 and Guillaume Salbreux1, 5, †

1The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
2Photonics Group, Department of Physics, Imperial College London, London, SW7 2AZ, UK

3Cell Biology, Neurobiology and Biophysics, Department of Biology,
Faculty of Science, Utrecht University, Utrecht 3584 CH, Netherlands

4 Cancer Stem Cell Team, The Institute of Cancer Research, London, SW3 6JB, UK
5Department of Genetics and Evolution, Quai Ernest-Ansermet 30, 1205 Geneva, Switzerland

(Dated: February 16, 2023)

Abstract: Segmenting cells within cellular aggregates in 3D is a growing challenge in cell biology, due to
improvements in capacity and accuracy of microscopy techniques. Here we describe a pipeline to segment
images of cell aggregates in 3D. The pipeline combines neural network segmentations with active meshes. We
apply our segmentation method to cultured mouse mammary duct organoids imaged over 24 hours with oblique
plane microscopy, a high-throughput light-sheet fluorescence microscopy technique. We show that our method
can also be applied to images of mouse embryonic stem cells imaged with a spinning disc microscope. We
segment individual cells based on nuclei and cell membrane fluorescent markers, and track cells over time. We
describe metrics to quantify the quality of the automated segmentation. Our segmentation pipeline involves a
Fiji plugin which implement active meshes deformation and allows a user to create training data, automatically
obtain segmentation meshes from original image data or neural network prediction, and manually curate
segmentation data to identify and correct mistakes. Our active meshes-based approach facilitates segmentation
postprocessing, correction, and integration with neural network prediction.

Statement of significance: In vitro culture of organ-like structures derived from stem cells, so-called
organoids, allows to image tissue morphogenetic processes with high temporal and spatial resolution. Three-
dimensional segmentation of cell shape in timelapse movies of these developing organoids is however a signif-
icant challenge. In this work, we propose an image analysis pipeline for cell aggregates that combines deep
learning with active contour segmentations. This combination offers a flexible and efficient way to segment
three-dimensional cell images, which we illustrate with by segmenting datasets of growing mammary gland
organoids and mouse embryonic stem cells.

I. INTRODUCTION

We describe here a full pipeline for segmenting microscopy
images of cells in 3D, using active meshes and artificial neural
networks. This includes a plugin for Fiji, Deforming Mesh
3D (DM3D), which provides an assisted way to segment cells
in 3D over time. We apply our pipeline to segmentation of
dynamic, relatively small cell aggregates (∼ 10’s of cells).

The field of segmenting and tracking cells and nuclei in 3D
microscopy images has experienced numerous recent devel-
opments [1]. Semi-automated or assisted tools such as ilastik
[2] or Labkit [3] can be used to segment images using pixel
classification. Leveraging neural networks, techniques such
as StarDist [4] allow the users to generate segmentations au-
tomatically, in the case of StarDist by localizing nuclei using
star-convex polygons. In these tools, segmentations can be ob-
tained by either using a pretrained model, or creating training
data manually and training a new model, or by augmenting
an existing model through generating new training data and
further training. Other tools that use neural networks are Cell-
pose [5], which creates a topological map where gradient flow
tracking [6] is used to find the contour of the cell, and Embed-
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Seg [7], an embedding-based instance segmentation method.
These techniques are appropriate for detecting and segment-
ing cells as binary blobs. Another technique to segment cells
involves creating a mesh representation and evolving active
contours to best fit the image [8–10]. Integrating tracking with
detection can improve segmentation efficiency, as tracking al-
gorithms or networks can be used to predict cells in successive
frames and improve the seeding of new cells for segmentation
[11–16].

Our technique uses a workflow common to other neural-
network based methods: the user can manually segment a sub-
set of data, then use a neural network to automatically create
more segmentations for the remaining data. Our method how-
ever incorporates the use of active meshes in this workflow
for initial manual segmentation, for automatically segmenting
the neural network generated images, and for manual correc-
tion. This brings an important advantage, as editing meshes in
3D is an intuitive and convenient way to perform 3D segmen-
tation, notably compared to using 2D pixel based segmenta-
tion tools. Active meshes are handled and deformed using a
custom-made Fiji plugin, Deforming Mesh 3D (DM3D). This
plugin is based on an implementation of an active mesh defor-
mation method and handles several segmentation meshes in
the same image frame.

In our pipeline (Fig. 1), manually obtained 3D meshes are
used to create labels that are learned by a neural network with
a 3D Unet architecture [17]. One of the labels the neural net-
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work learns to create is the distance transform, a label which
associates to each voxel a value corresponding to its distance
to the edge of the object it is associated with. The distance
transform or watershed transform [18] have been used previ-
ously in combination with deep learning neural networks for
object detection and separating overlapping objects [18, 19].

The trained neural network processes a 3D timelapse movie
and predicts a modified distance transform for each voxel
within each frame. The distance transform is modified in
the sense that it takes non-zero values only within the surface
which it measures the distance from. This distance transform
is used to locate 3D regions that represent individual cells or
their nuclei. A triangulated mesh is initialized within each of
these regions. An active mesh method is then used to deform
the mesh to the outer surface of nuclei or cell membranes.

To demonstrate the effectiveness of our technique we seg-
mented and tracked 6 mammary gland organoids for 24 hours
at 11 minutes imaging intervals (Fig. 2). Organoids have
nuclei labelled with the dye SiR-DNA and membrane la-
belled with tdTomato (see Material and Methods). Image data
was obtained using multichannel dual-view oblique plane mi-
croscopy [20], and we selected organoids that appeared to
have good signal to noise at the beginning of the imaging pe-
riod. We refer to this dataset as Movies 1-6.

To segment this dataset, we first generated original training
data by manually creating segmentations of a subset of the
data. We then processed the whole dataset with a trained neu-
ral network to obtain initialisation for segmentation meshes,
which are deformed using the DM3D plugin. We then re-
fined the generated segmentations by manual inspection and
tracking cells with DM3D, to segment the complete timelapse
movies.

To evaluate the quality of the neural network segmenta-
tions, we prepared ground truth data set from manual segmen-
tations and compared that to segmentations from the fully au-
tomated pipeline. We show an overview of the segmentation
results, and a measure of their quality, by comparing results
from the pipeline to manual segmentations.

To also verify that our pipeline can be applied to different
types of cells and microscopy images, in section IV we also
quantify segmentation results of mouse embryonic stem cells
imaged with a spinning disc microscope.

II. METHODS

A. Manual segmentation of original image data

Here we describe the mesh-based segmentation technique
we use to manually segment cell nuclei and cell membranes
from original image data (Fig. 3). To generate manual seg-
mentation using DM3D we initialise a coarse version of the
nucleus or the cell to segment in 3D. This is performed by
manually positioning spheres within the nucleus or the cell,
trying to capture their shape. A mesh approximating the shape
of the resulting collection of spheres is created, using a ray-
cast technique to fill the spheres [8]. This initial mesh is sub-
sequently deformed to conform to the nucleus shape, by mini-

mizing an effective energy with two contributions: an intrinsic
force which depends on the mesh shape as described in Ap-
pendix B 1, and a force arising from an “image energy” that
depends on the mesh and on the voxel values. We use differ-
ent effective energies for manually segmenting nuclei and cell
membranes from original image data, as described below.

1. Segmentation of cell nuclei from original image data

To deform meshes to outer surfaces of nuclei, we use a “per-
pendicular gradient energy”. Labelled nuclei are essentially
3D-filled continuous regions of high intensity. Therefore, we
use an an energy that is based on the gradient of the nuclear
channel [21]. We denote I(x) the image intensity at a voxel
position x. We associate a unit normal vector n to a node on
the mesh by averaging and normalising the unit normal vec-
tors to triangles connected to the node. The energy associated
to a node on the mesh and evaluated at position x is then de-
fined as:

Eimg(x) =−


w∑

i=−w
kiI(x + in)

w∑
i=−w

|ki|


2

, (1)

with N is a normalisation factor, we choose w = 5, and the
coefficients ki are obtained from the derivative of a Gaussian
kernel with standard deviation σ:

ki =− i√
2πσ3

exp

[
− i2

2σ2

]
. (2)

Eq. 1 corresponds to an approximate evaluation of the square
magnitude of the intensity gradient, along the direction n. We
choose σ = 2 pixels, a value which we determined empir-
ically to ensure high enough smoothing of intensity profiles
while maintaining a low computing cost. To obtain a force
acting on a mesh node, one evaluates a finite difference:

F = −wimg
2

[Eimg(x + n)− Eimg(x− n)]n , (3)

with wimg a factor modulating the weight of the contribution
of the image energy relative to the intrinsic mesh forces. To
calculate the energy at a point not located exactly at the center
of a voxel, we use linear interpolation to evaluate the intensity
I(x). This force is added to a force contribution intrinsic on
the mesh, which depends on its curvature and the distance be-
tween nodes, to penalise surface bending and surface area [8]
(Appendix B 1).

2. Segmentation of cell membranes from original image data

To segment the membrane we use a “perpendicular inten-
sity energy”. As the labelled membrane can be considered as
a bright surface, we use an energy which attracts a mesh node
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FIG. 1: Overview of segmentation pipeline, from an original 2-channel 3D fluorescent microscopy image to a set of meshes that represent the
cell nuclei and the cell membranes.
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FIG. 2: x-y cross sections through the equator of 6 different
organoids after 8 hours of imaging. Scale bar is 10 µm. Red la-
bel: membrane dye, magenta: DNA label. Organoids in A-F are
later referred to as Movies 1-6.

to regions of high intensity. Considering a node at position x
with unit normal vector n, defined as in section II A 1:

Eimg(x) =− 1

N

∫
duGσ(u)I(x + un) (4)

whereGσ is a one-dimensional Gaussian kernel with standard
deviation of 2 pixels, and N is a normalisation factor. Eq. 4
corresponds to a convolution operation between the kernelGσ
and the intensity profile I evaluated along the normal n.

A B C

D E F

FIG. 3: Manual initialisation of segmentation meshes that are then
deformed using the active mesh method to the cell nucleus (A-C) or
to the cell membrane (D-F). A,D) Orthogonal cross section views
and a 3D view during mesh initialization. Red circles: boundaries of
the spheres used for mesh initialization. The yellow and blue circles
are handles that can be manipulated by the user to adjust the position
and radius of the spheres. B, E) Same orthogonal views with the
initialized mesh. F,G) Mesh after deformation to the nucleus or cell
membrane image intensity.

We then use the following force acting on a mesh node at
position x, obtained by evaluating a discretized version of the
gradient of the energy Eimg in Eq. 4, along the normal to the
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mesh node n:

F = wimg

w∑
i=−w

kiI(x + in)

w∑
i=−w

|ki|
n , (5)

where ki is defined in Eq. 2, and wimg is a factor modulat-
ing the weight of the contribution of the image energy relative
to the intrinsic mesh forces. Here one can use a collection of
manually created spheres to initialize a segmentation mesh,
similar to what was done to segment cell nuclei; alternatively
one can also use the nuclear mesh as initialisation and subse-
quently deform it to the membrane channel.

3. Manual improvement of active mesh segmentation

A segmentation problem arises when the mesh does not sta-
bilize to a steady state that suitably follows the contour of the
object. Such a situation can be caused by image artefacts, poor
initialization, or a poor choice of mesh deformation parame-
ters. These issues can be addressed with DM3D by interac-
tively editing meshes. Meshes can also be manually initialised
more closely to the desired shape. Parameters α, β affecting
the mesh evolution can be adjusted (see Appendix B 1 for a
definition), and the resulting effect on mesh deformation can
be observed directly within the plugin. Mesh deformation iter-
ations can also be performed by modulating the weight wimg
of the image energy relative to the intrinsic mesh energy. Re-
ducing the role played by the intrinsic mesh energy allows the
mesh to capture more prominent, irregular features of the cell
nucleus or membrane. An additional tool is available within
the DM3D plugin to manually edit meshes and deform them
to the desired output.

B. Neural network training

In order to train the neural network, we initially generated
manual segmentations of cell nuclei and membranes for 3 time
frames of Movie 2. Manual segmentation meshes are used to
create training labels to train a 3D Unet [17]. As first de-
scribed in Ref. [22], we modified the Unet architecture to
predict 3 separate labels (Appendix C): i) a binary mask label
that indicates all voxels contained within a mesh, ii) a binary
label indicating the border of the binary mask, iii) a distance
transform label with values ranging from 0 to 32. Labels are
created for training by first generating a binary image (see Ap-
pendix B 3) from all of cell nuclei meshes or all of cell mem-
brane meshes; in this binarisation, voxels which are contained
within a mesh have value 1, and voxels outside have value 0.
This binary image directly provides the mask label, while the
binary label for the border are the edge voxels of the mask la-
bel. The distance transform is obtained by iteratively eroding
the binary image in 3D, and labeling the eroded voxels with
the current iteration depth value: the 0th depth eroded corre-
sponds to border voxels, while voxels eroded at the next itera-
tion have distance transform value of 1. We choose to saturate

the distance transform value to 32, for ease of manipulation of
images.

Two neural networks were trained using labels calculated
from the nuclei and membrane meshes respectively. Each net-
work is trained to learn all three labels simultaneously by us-
ing a loss function that is the sum of three loss functions:

L = weLe + wkLk + wdLd , (6)

where Le, Lk and Ld are loss function for the border, mask
and distance transform labels respectively, and we, wk and
wd are the corresponding weights in the total loss function.
Le and Lk are Sorensen-Dice coefficient loss functions, L =
(|TP |+ 1)/(|T |+ |P |+ 1), and Ld is the Log-Mean-Square-
ErrorLd = log((T−P )2), with T the truth pixel values and P
the network predicted pixel value. Neural network parameters
can be adjusted to optimize the segmentation results. Here we
found that setting the weights we = wk = wd = 1 in Eq. 6
led to acceptable results.

The distance transform contains in principle all of the in-
formation of the other two channels, so strictly speaking the
membrane and mask channels do not need to be learned by
the neural network. However, training the network to learn the
membrane and mask labels helps to determine if the network
is training properly. Incorrect learning of one of the training
labels indeed likely indicates a problem with the training data.

C. Obtaining nuclei segmentation meshes

To test the pipeline, we first used the network trained on nu-
clei labels to obtain nuclei segmentation meshes for all frames
of Movie 2. To achieve this, we used the neural network to
predict the distance transform of all frames of the movies. The
predicted distance transforms are then turned into a binary im-
age through a thresholding step, and continuous regions are
labelled and filtered by size. We found that using a distance
transform threshold of 1 did not allow to separate all nuclei,
as some nuclei are close to each other. To address this, we se-
lected a higher threshold value of 3, and use a region-growing
or watershed algorithm to expand the detected regions, based
on the distance transform image. The detected regions are
then used to seed meshes, as follows: for each region, an ap-
proximately spherical mesh is generated by creating an isoca-
hedral mesh, centered at the center of mass of the region, and
subsequently subdividing the triangles of the mesh. Rays are
cast from the center of mass of the region towards nodes of
the spherical mesh. Each node is repositioned to the furthest
voxel on the inner surface of the detected region that inter-
cepts the corresponding ray [8]. The initialized mesh is then
deformed by calculating the “perpendicular intensity energy”
of the distance transform with a negative image weight (see
section II A 1). This causes the mesh to be attracted to low
values of the distance transform, away from the internal vol-
ume of the nucleus. A choice of positive and sufficiently large
value of the parameter α (Appendix B 1) counteracts this ef-
fect by ensuring that the mesh tends to shrink and so wraps
around the nucleus.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.17.528925doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528925
http://creativecommons.org/licenses/by/4.0/


5

The step of mesh deformation is strongly affected by the
quality of the neural network prediction. When the regions
detected from the distance transform predicted by the neural
network appear to correspond to a visible nucleus, the mesh
deformation process reaches a steady-state. When a steady
state cannot be found by the active mesh deformation algo-
rithm, the mesh tends to shrink and can then be removed fol-
lowing detection of small volume meshes. This can indicate
a false positive, where the neural network wrongly identifies
a nucleus and the corresponding region needs to be removed.
Failure of the mesh to converge to steady-state therefore acts
as a filtering step.

To evaluate the segmentation results, we plotted the total
number of cells over time. Fluctuations in cell count which do
not correspond to cell division indicated that the network was
failing to accurately segment some frames. For the first movie
we segmented, Movie 2, a large number of mitosis events
were causing the network to fail. We used DM3D to manually
segment 5 additional frames (numbered 21-25) and trained the
network using this additional data. After another iteration, we
found that the later frames of the movie had some degradation
in segmentation quality, due to a change in image quality. We
therefore manually corrected a late time point (frame 132),
and trained again the network including this frame. This step
reduced the number of corrections required to segment late
time points.

D. Obtaining cell membrane segmentation meshes

To obtain cell membrane segmentation meshes, we use the
predicted nuclei meshes to initialize active meshes, and de-
form them to the membrane distance transform predicted by
the neural network trained using manually obtained mem-
brane labels. We use a perpendicular intensity energy (Eq.
5), with a negative weight wimg to ensure that the mesh is
converging to minima of the distance transform.

III. RESULTS: SEGMENTING MAMMARY GLAND
ORGANOIDS

A. Test of fully automated pipeline on seen and unseen data

1. Automated nuclei segmentation

To verify the quality of segmentation results, we compared
fully automated segmentations to manually segmented vali-
dation data (Fig. 4). We used two sets of validation data: 9
“seen” 3D images which correspond to the training data taken
from Movie 2, and 6 “unseen” 3D images which consist of
single frames from Movie 1 to 6 (Fig. 2) that the network
has not seen during training. The ground truth is a labelled
image generated from manually segmented meshes, where
each mesh is binarized and labelled with a unique number.
A fully automated segmentation is generated as follows: the
neural network is used to create a distance transform image
for nuclei. Seed points are then determined from the distance

  0
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FIG. 4: Analysis of automated segmentation quality. A,B) Scatter
plot of best Jaccard Index (JI) versus the distance between the ground
truth center of mass and the predicted center of mass (∆ CM) for
cells from a “seen” and “unseen” dataset. A) Results of automated
segmentation of cell nuclei at full resolution (voxels with side length
0.175 µm). A nucleus diameter is about 8 µm. B) Results of au-
tomated segmentation of cell membrane at full resolution. Insets:
histogram of best Jaccard Index distributions. Individual data points
outside of the plot range: A: 1/300, B: 2/300.

transform based on a thresholding step with threshold value of
3. Seed points are used to initialise segmentation meshes for
nuclei. These segmentation meshes are deformed using the
“perpendicular intensity energy” of the distance transform, as
described in section II C. Parameters for mesh iteration are
given in Appendix B. The resulting meshes are used to create
a fully automated labelled image, which can be compared to
the ground truth labels.

To measure the accuracy of the resulting automatic segmen-
tation, we considered two metrics: the best Jaccard Index (JI),
and the distance between the ground truth and predicted cen-
ter of mass ∆CM (Fig. 4). The best Jaccard Index value for
cell i JIi is calculated for a given ground truth label i by cal-
culating the Jaccard Index between i and each prediction label
j, and finding the optimal value over prediction labels:

JIi = max
j

[
Ti ∩ Pj
Ti ∪ Pj

]
. (7)

Here Ti denotes the set of voxels with the ground truth label i,
Pj the set of voxels with predicted label j, Ti∩Pj is the size of
the intersection between Ti and Pj and Ti ∪Pj the size of the
union, in number of voxels. The predicted cell that gives the
maximum Jaccard Index is also used to calculate the distance
between predicted and ground truth center of mass ∆CMi for
cell i.

In Fig. 4A we show a scatter plot in the space of values of
(∆CMi, JIi) for each nucleus, as well as corresponding aver-
ages for all detected cells. This graph allows to visualise the
accuracy of nuclei detection and reproduction of their shapes,
using full resolution images to generate meshes for the nuclei.
The pipeline achieves excellent results, with 98% of the un-
seen segmented cells with a JI above 0.7. Surprisingly, the
pipeline achieves overall better results for unseen than from
seen data. This may be because some of the “seen” dataset
frames were selected because they caused segmentation is-
sues due to cell mitosis or degraded image quality, while the
“unseen” dataset was chosen arbitrarily and therefore has no
comparable bias.
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2. Full resolution images, automated membrane segmentation

We then tested our pipeline on cell membrane segmenta-
tion. Here the automated membrane segmentation was ob-
tained by adjusting meshes obtained from the automated seg-
mentation of nuclei, using the predicted distance transform to
the cell membrane, as described in section II D. Parameters
for mesh iteration are given in Appendix B. The ground truth
segmentation was obtained by manual edits of membrane seg-
mentation meshes. Comparing the result of automated seg-
mentation to the ground truth segmentation (Fig. 4B) shows
that the automated segmentation is giving excellent results, al-
though slightly less accurate than nuclei segmentations. This
reflects additional difficulty in segmenting cell membranes:
their shapes are generally more complex, for instance due to
membrane appendages which are difficult to identify automat-
ically at the imaging resolution achieved here.

B. Full organoid segmentation over time

We then turned to full segmentation and tracking of the
whole 24 hour organoid movies (Fig. 5 and 6). Using the
automated segmentation steps described in section III A, we
first obtained a fully automated segmentation of nuclei for all
6 movies.

To compare these results to a ground truth, we then manu-
ally corrected them. We proceeded as follows: segmentation
of nuclei were used to track the cells over time by using a
naive bounding box tracking algorithm (see Appendix B 6),
and we quantified the cell count over time. Tracking errors
and changes in cell count allow to find segmentation errors,
when a nucleus appears or disappears, not due to cell division
or death. Meshes were corrected by manually initialising a
new mesh, deleting incorrect meshes, or splitting meshes that
contain multiple nuclei. The corresponding dataset constitutes
a new ground truth nuclei segmentation.

We then evaluated the detection accuracy of cell nuclei
between this manually corrected dataset and the automated
segmentation, for all time frames in the 6 organoid movies.
To measure the detection accuracy, we mapped predicted to
ground truth nuclei. We associate to each nucleus an axis-
aligned bounding box, with axis aligned along the x,y,z di-
rections of the image. We then compare the Jaccard indices
of the bounding boxes of predicted and ground truth nuclei,
as defined in Eq. 7. A predicted nucleus maps to the ground
truth nucleus in the same frame with the highest JI value. We
perform the symmetric operation and map ground truth nuclei
to predicted nuclei. If a predicted nucleus and ground truth
nucleus are singly mapped to each other, then we count the
predicted nucleus as a True Positive (TP). When multiple pre-
dicted nuclei map to the same ground truth nucleus, then we
count those predicted nuclei as False Positive (FP). If multiple
ground truth nuclei map to a single predicted nucleus, or are
not mapped at all, then these ground truth nuclei are counted
as False Negative (FN). Better networks have a higher num-
ber of TP cells, and a smaller number of FP and FN cells. The
corresponding results are reported in Table I. This showed that

Model N TP FP FN TP/N
Full resolution 18414 16630 182 1637 90.3%
Half resolution 18414 18216 72 131 98.9%

TABLE I: Detection accuracy for models at half and full resolution.
Data corresponds to frames from all 6 organoids. N corresponds to
the total number of segmented nuclei. The “half-resolution” model
has been trained with 234 additional frames.

the automated procedure has an accuracy of ∼ 90%, as evalu-
ated by the fraction of TP cells.

To visualise the outcome of the full organoid segmenta-
tion, we use corrected nuclei segmentation meshes to initialise
membrane segmentation meshes. These meshes are then de-
formed according to a perpendicular intensity energy calcu-
lated with the neural network predicted distance transform to
cell membranes. Here the procedure is fully automatic and
no further correction is performed. The corresponding results
for tracked nuclei and membrane meshes are plotted in Fig.
5. We used these nuclear segmentation results to evaluate cell
motion in the organoids. All 6 organoids are highly dynamic,
as quantified by histograms of cell velocity (Fig. 7A). Plotting
the number of cells as a function of time also revealed signi-
fication variation in cell proliferation, with some organoids
keeping a constant number of cells while others exhibit sig-
nificant cell division (Fig. 7B).

C. Reduction of image resolution and additional training

We then tested if the detection accuracy of cell nuclei could
be improved by enlarging the training dataset. Incorporating
a larger number of full resolution images in neural network
training proved to be lengthy; therefore we resorted to half-
resolution images. Training the network on half resolution
images indeed requires 8 times less space, less memory re-
quirement, and processing time.

To generate training data, we used nuclei segmented
meshes from all 134 frames from Movie 2 and 100 frames
from Movie 3 (excluding frames which are part of the “un-
seen” dataset described above), and trained a neural network
on images at half resolution. We note that additional ground
truth data in this larger dataset was manually curated with less
accuracy than the original dataset used for initial training of
the network. The network was trained over 116 epochs, dur-
ing 10 days on a single Nvidia 3080 GPU workstation. For
membrane segmentation data, we used the original training
data consisting of 9 frames from Movie 2 at half resolution to
train a neural network. Here the network was trained over 86
epochs, during 9 hours on a single Nvidia 3080 GPU worksta-
tion.

We then evaluated the quality of mesh segmentation result-
ing from this newly trained neural network. Comparing Fig.
8 to Fig. 4 shows that both the ∆CM prediction accuracy and
the JI measurement are slightly worse with decreased image
resolution, despite using an enlarged dataset. However, the
prediction accuracy is still acceptable.
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FIG. 5: Segmentations results for cell membrane and cell nuclei for six different mammary gland organoids, segmented over 24 hours of
growth. A-F) Within each box, segmentation meshes are shown at 0, 8, 16 and 24 hours for each organoid. Within each box, top row: solid
volumes correspond to nuclei segmentation meshes and wireframes to cell membrane segmentation meshes. Bottom row: example trajectory
of a cell nucleus and the nuclei of the cell progeny, during the movie.

FIG. 6: Cross-section and 3D view for one frame of one mammary
gland organoid shown in Fig. 5. The cross-sections display overlay
of nuclei (filled volumes) and membrane (wireframes) segmentation
meshes on the original data (red: membrane dye, grey: DNA label).
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FIG. 7: Quantifications associated to tracked nuclei for the 6 seg-
mented organoids. A) Probability distribution of nucleus velocity,
for each individual movie. B) Number of cells as a function of time.

We then evaluated the detection accuracy. Remarkably,
training at half resolution with a larger dataset increased sig-
nificantly the detection accuracy, reaching an excellent value
of ∼ 99% (Table I). We think that this improvement can be
attributed to the larger dataset used for training. We conclude
that half-resolution images can be used for efficient and fast
nuclei segmentation and tracking, while full resolution images
can help with accurate nucleus and membrane segmentation.
We note that the mesh representation is based on the actual
size of the image volume, so that different scale images can
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FIG. 8: Analysis of automated segmentation quality at half-
resolution, with a larger training dataset. A,B) Scatter plot of best
Jaccard Index (JI) versus the distance between the ground truth cen-
ter of mass and the predicted center of mass (∆CM) for cells from
the same “seen” and “unseen” dataset as in Fig. 4 (here the train-
ing dataset is larger than the “seen” dataset). A) Results of auto-
mated segmentation of cell nuclei at half-resolution (0.350 µm vox-
els). B) Results of automated segmentation of cell membrane at half-
resolution. Insets: histogram of best Jaccard Index distributions. In-
dividual data points outside of the plot range: A: 0/300, B: 10/300.
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FIG. 9: Analysis of segmentation quality with StarDist. A,B) Scat-
ter plot of best Jaccard Index (JI) versus the distance between the
ground truth center of mass and the predicted center of mass (∆CM)
for cells from a “seen” and “unseen” dataset. A) Results of auto-
mated segmentation of cell nuclei. B) Results of automated segmen-
tation of cell membrane. Insets: histogram of best Jaccard Index
distributions. C) Representative example of nucleus prediction from
StarDist, for two different planes of views. D) Representative exam-
ple of membrane prediction from StarDist, for two different planes of
views. In (C,D), grey regions correspond to StarDist predicted labels,
coloured lines indicate ground truth segmentation meshes. Individual
data points outside of the plot range: A: 2/300, B: 7/300.

be used with the same set of meshes.

D. Comparison to StarDist

We then compared our segmentation results to outcomes
obtained from the widely used Stardist software [23]. We
generated StarDist labels using ground-truths labels from the
“seen” set of images, as described in section III A 1. We
trained two StarDist models, for the nucleus and membrane

labels respectively, using the default parameters and with full
resolution images. We use a provided default parameter of
Nray = 96 for the number of rays. We then tested the output
of StarDist segmentation on the “seen” and “unseen” datasets
(Fig. 9). We quantified the JI measurement and ∆CM pre-
diction accuracy for nuclei and membrane, as was done us-
ing our pipeline (Figs. 4A,B and 9A,B). The comparison of
these quantifications revealed that the StarDist segmentation
outcome was slightly inferior to the result obtained with our
pipeline, for both nucleus and membrane segmentation. How-
ever, we can not exclude that StarDist would not achieve better
results by optimizing its parameters. For example, the num-
ber of rays determines the level of detail with which Stardist
segment objects. We would expect that accurately segment-
ing cell membranes require more rays than segmenting nuclei.
We note that in any case, a central advantage or our pipeline
is the ability to easily manipulate and correct segmentation
meshes, and use them to generate labels for further neural net-
work training.

IV. RESULTS: SEGMENTING AGGREGATES OF MOUSE
EMBRYONIC STEM CELLS

We then tested our methods on images from a different cell
type, obtained with a different microscope. We applied our
pipeline to a 10-frame movie of an aggregate of mouse em-
bryonic stem cells (mESCs), imaged with a spinning disc mi-
croscope with 5 min time interval between frames (Fig. 10A).
The resulting images have non-isotropic voxels, with a pixel
size of 244 nm in the x-y plane and a 2 µm spacing between
adjacent slices in the z direction. Because our neural network
was initially trained on data with isotropic voxels, we inter-
polated the spinning disc images along the z axis to obtain
modified images with isotropic voxels of size 244 nm. These
modified images were then used for training the neural net-
work and segmenting the images.

We first attempted to segment the mESCs aggregates with
the network previously trained on mammary gland organoid
aggregates. We found that the neural network provided out-
puts which were acceptable for nucleus segmentation, al-
though some border voxels appeared inside the nuclei (Fig.
10B, “before training”). The neural network output for the
membrane was however strongly underdetecting cells (Fig.
10B, “before training”). To improve on these results, we man-
ually segmented two frames of the movie and retrained the
neural network. We then generated fully automated segmen-
tation meshes for nuclei and membranes for the 10 frames
of the movie, as described in section III for mammary gland
organoids. We manually corrected these meshes to obtain a
ground truth segmentation. We then compared the results of
the automated segmentation before and after training the net-
work with two additional frames from the new dataset, against
the ground truth (Fig. 10C, D). We found that retraining of the
neural network significantly improved the segmentation ac-
curacy, which reached values comparable to our results with
mammary gland organoids, despite the limited size of the ad-
ditional training data set (compare with Figs. 4 and 8). We
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FIG. 10: Mouse embryonic stem cell colony imaged on a spinning
disc confocal microscope. A) Cross-sections of original image (left)
with ground truth segmentation result overlaid (right). White: nu-
clear label, red: membrane label, other colors: contours of mem-
brane segmentation meshes and filled regions of nuclei segmentation
meshes. B) Cross-section of neural network output, before and after
training the network on the spinning disc images. Top images: nu-
clei segmentation, bottom images: membrane segmentation. Colors
correspond to different outputs of the neural network. Green: mask,
red: border, blue: distance transform. Green mask label indicates
background. C, D) Scatter plot of best Jaccard Index (JI) versus the
distance between the ground truth center of mass and the predicted
center of mass (∆CM), before (“untrained”) and after (“trained”)
training of the network on 2 frames of a movie of the colony. C)
Results of automated segmentation of cell nuclei. D) Results of au-
tomated segmentation of cell membrane. Insets: histogram of best
Jaccard Index distributions. Individual data points outside of the plot
range: C, trained: 0/140; C, untrained: 10/140; D, trained: 6/140, D,
untrained: 18/140.

conclude that we expect that our pipeline can be applied to
datasets coming from different microscopes and different cell
types.

We observed that mESCs aggregates often have closely
spaced nuclei, making their segmentation challenging. We
found that the ability of the neural network to predict the dis-
tance transform aids in separating nuclei from one another, as
the predicted distance transform can be used to identify the
center of the nuclei.

V. DISCUSSION

We showed that using a neural network is an effective way
to initialise and deform active meshes on a large number of
images. We found that combining active meshes segmentation
with a deep learning neural network has several advantages.
Notably, active meshes provide a direct and intuitive under-
standing of the origin of successful or failed segmentation, in
contrast to neural network predictions. Relaxation of a mesh

to a steady-state generally indicates that the image is of high
enough quality for segmentation to succeed. If the mesh does
not reach a steady-state, manual inspection of the image helps
the user to understand the origin of failure. For instance, in the
organoids we have segmented, we have found that automated
nucleus segmentation by the neural network could fail because
of nuclear dye accumulation artefacts, which could attract the
nucleus segmentation mesh, or because of nuclear envelope
breakdown during mitosis, as a well-defined nucleus is not
visible. Manual mesh initialisation and subsequent mesh de-
formation allows to correct for these issues. In addition, re-
training the neural network after mesh correction allows to
obtain a predicted distance transform which improves on these
issues. Overall, the combination of neural network prediction
with active meshes allows for efficient manual curation and
post-processing of the segmentation data and improvement of
neural network prediction. Following manual curation of seg-
mentation data, retraining of the network improves the out-
come of automated segmentation. As Table I indicates, we
could improve the accuracy in nuclei detection from∼ 90% to
∼ 99% by manually correcting 234 frames and retraining the
network; showing the importance of using a neural network
in our pipeline. Possibly, repeating these steps of manual cor-
rection and network training may allow to further increase this
accuracy.

When considering a new dataset to segment, manually
segmenting with active meshes also allows to directly test
whether the image quality is sufficient for segmentation. This
step can be more revealing than directly segmenting a new
dataset with a neural network, where segmentation failure
could arise from from inadequate parameters within the neural
network, but also from insufficient image quality.

In addition, mesh segmentations are independent of image
resolution; this can be useful for locally downloading lower
resolution images, or for generating training data at different
resolutions.

We also note that the algorithm used to deform the active
mesh can be applied to the image directly, instead of the dis-
tance transform prediction returned by the neural network.
This can in principle ensure that the final segmentation result
is independent of the parameters of the neural network and its
training history.

Using a neural network also alleviates known drawbacks to
active meshes: that an initialisation seed has to be found by
hand, and that deformation parameters need to be adjusted for
different image conditions. Indeed, in addition to providing
with a high quality initialisation of the active mesh, the neural
network effectively removes noise and, through the prediction
of a distance transform, adjusts signal levels, such that a good
set of active mesh parameters will work over a larger range of
data qualities.

In this study we have considered two datasets where cells
have relatively regular shapes. Our pipeline might have to
be adapted to segment more complex cell shapes, possibly
by adjusting deformation and re-meshing parameters of active
meshes.

The DM3D interactive plugin used in this study was built
around an active mesh deformation method [8], introduces
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handling of multiple meshes in the same time frame, steric
interaction between meshes, and a remeshing algorithm (Ap-
pendix B), so that the plugin is adapted to organoid segmen-
tation. The plugin can also share formats, and produce seg-
mentations from a variety of image sources. The plugin also
works with virtual image stacks and can be used with or with-
out a 3D display; this makes it practical to work both locally
or on remote computers. It is also effective for monitoring
segmentations at different points in the pipeline. In an effort
to make our plugin more accessible we have added ways to
export meshes as other 3D mesh formats, as TrackMate [24]
files to apply more advanced tracking algorithms, or as in-
teger labelled images. In addition to describing the DM3D
plugin, we have reported the development of a new 3D-Unet
based segmentation approach that works in conjunction with
the DM3D tool. Neural networks and the DM3D plugins are
available as described in Appendix A. We provide a tutorial
which can be used to analyse example data with 6 frames and
a few cells. Generation of neural network prediction and ac-
tive mesh evolution take a few minutes on a standard laptop to
generate for images used in this tutorial.

We believe that the combination of active meshes and neu-
ral network offers a flexible and efficient way of segmenting
3D image data, and we hope that our tool will prove valuable
for the scientific community.
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Appendix A: Code and data availability

This project is composed of two open source
projects available on github: DM3D an interactive

plugin for creating and deforming meshes, and Ac-
tiveUnetSegmentation a tensorflow implementation of
a 3D Unet available at https://github.com/
PaluchLabUCL/DeformingMesh3D-plugin and
https://github.com/FrancisCrickInstitute/
ActiveUnetSegmentation respectively. DM3D is
also distributed as a Fiji plugin by using the Fiji update
site, https://sites.imagej.net/Odinsbane.
Additional documentation and usage examples can be
found at https://franciscrickinstitute.
github.io/dm3d-pages/. A detailed tutorial for
the DM3D plugin, with example data, can be found at
https://franciscrickinstitute.github.io/
dm3d-pages/tutorial.html. Additional data and
trained neural networks used in this study can be found at
https://zenodo.org/record/7544194.

Appendix B: Details of the DM3D plugin

In this Appendix we provide details of the active mesh
DM3D plugin.

1. Mesh iteration

As described in Ref. [8], a mesh node i with position xti
at pseudotime t of mesh evolution, evolves according to the
following equation:

γ(xt+1
i − xti) =Fti − α

∑
〈j〉i

(xt+1
i − xt+1

j )

− β

2(ni − 3)
∑
〈j〉i

(xt+1
i − xt+1

j )

−
∑
〈j〉i

∑
〈〈k〉〉i,j

(2xt+1
j − xt+1

i − xt+1
k )

 ,

(B1)

where 〈j〉i denotes the set of nodes j directly connected by
an edge to node i, ni is the number of nearest neighbours of
node i, and 〈〈k〉〉i,j denotes the set of nodes k neighbours of j
which are not neighbours of i. Fti is an additional force which
is obtained from Eq. 3 or 5. α and β are mesh evolution
parameters which can be adjusted.

For automated segmentation of nuclei based on the pre-
dicted distance transform, we use the “perpendicular intensity
energy” with α = 1, β = 0.1, γ = 1000 and wimg = −0.05,
and perform 100 iterations of each mesh. The same param-
eters were used for automated segmentation of membrane
based on the distance transform, except with wimg = −0.1,
800 iterations of each mesh, and intermediate steps of auto-
matic remeshing with minimum length 0.75 µm and maximal
length 1.6 µm.
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2. Remeshing

We use a remeshing algorithm which splits long edges
(larger than a threshold) and remove short edges (smaller than
a threshold). This allows meshes to deform in an uncon-
strained manner. Remeshing is performed by first sorting each
edge by length. The longest edge is then split in two and the
two adjacent triangles are replaced by four new triangles. The
process is iterated going through edges by decreasing order of
length.

Once all of the long edges have been split through this pro-
cess, short edges are removed if a number of conditions are
satisfied. One denotes i and j the nodes connected by the
edge. One then finds the sets of neighbouring nodes that share
an edge with nodes i and j. If the neighbours of i and the
neighbours of j have exactly 2 nodes in common, denoted k
and l, then the connection is removed if both k and l have
strictly more than 3 edges connected to them. If the two sets
of neighbours have 3 nodes or more in common, the edge is
not removed. These criterions allow to prevent meshes with
problematic topologies. After removal of the edge, a new node
replacing nodes i and j is generated at the mid point between
the nodes i and j; edges previously connected to i and j are
connected to the new node, and duplicate edges are removed.

The remeshing algorithm significantly improves the quality
of meshes, by allowing them to deform to more exotic shapes
with better distributions of triangles.

3. Binarizing a mesh

We use the following procedure to obtain a binary image
from segmentation meshes, with label 0 indicating voxels out-
side of segmentation meshes and label 1 indicating voxels in-
side meshes. For each y, z value in the 3D image we cast a
virtual ray through the mesh, going along the x axis. As one
progresses along the x axis of the image, a topological depth is
iterated, starting from value 0. When the ray crosses the mesh,
the topographical depth increases by 1 if the scalar product
between the normal and the unit vector giving the direction of
the ray is negative. Indeed, meshes are defined with normal
vector of triangles pointing towards the outside. Conversely
the depth decreases by 1 if the scalar product is positive. The
voxels are then scanned across and are determined to be inside
of the mesh if they coincide with a region of positive depth,
and outside if they coincide with a region of zero or negative
depth.

4. Modified distance transform

The modified distance transform is found by iteratively
eroding the binary representation of a segmentation mesh. A
distance transform image is initialized with voxels with value
0. At first, all positive binary voxels that are neighbouring a
0 valued voxel in the binary image are allocated a distance
transform value of 0. A new eroded binary image is obtained
by setting these voxels to 0. All positive binary voxels that

are neighbouring a 0 value voxel are then allocated a distance
transform value of 1, and a new eroded binary image is ob-
tained by setting these voxels to 0. This process is iterated up
to a distance transform value of 32; remaining positive binary
voxels are allocated a distance transform value of 32.

5. Steric energy

To help with semi-automated mesh-based segmentation, we
have introduced a steric energy between active meshes. Sev-
eral meshes can be evolved simultaneously according to Eq.
B1, with an additional contribution to the force Fti that mini-
mizes a steric interaction energy. This method can be used to
help deform segmentation meshes, when a feature of the im-
age prevents them from deforming properly if unconstrained.
The extra contribution to the force Fti is calculated based
on the penetration depth of mesh points into neighbouring
meshes. Here we have not used this tool for automated seg-
mentations.

6. Tracking algorithm

Tracking is performed by bounding box Jaccard index de-
tection. The axis-aligned bounding box of each mesh is calcu-
lated, and the bounding boxes of successive frames are used
to calculate the Jaccard index. Cells with the highest Jaccard
index between successive frames are mapped to each other.
After this first pass tracking algorithm is used, manual track-
ing error correction can be performed. Tracking errors can
be found notably from large displacements, or tracks ending
abruptly.

Appendix C: Unet modification

We trained a Unet network with the architecture described
in Ref. [17], with the following modifications: we use 3 sep-
arate convolution output layers instead of a single one. Two
ouput layers for the mask and distance transform are obtained
from the network at depth 0, while the output layer predict-
ing the object border is obtained from the network at depth 1.
We use different activation functions for the 3 output layers:
sigmoid activation for the mask and border labels, and ReLu
activation for the distance transform.

Appendix D: Material and methods

1. Mouse Models

Mice were bred and maintained at the Biological Research
Facility of the Francis Crick Institute and the Biological Ser-
vices Unit of the Institute of Cancer Research. MMTV-PyMT,
mTmG and LifeAct-GFP mice were described before [25–
27]. Mice were kept in individually ventilated cages at 21◦C
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and fed ad libitum. Mouse husbandry and euthanasia for tis-
sue collection was performed conforming to the UK Home
Office regulation under the Animals (Scientific Procedures)
Act 1986 including the Amendment Regulations 2012. Ear
biopsies were sampled for genotyping. All mice were culled
by cervical dislocation and confirmation of cessation of circu-
lation.

2. Organoid culture

Organoids were established from healthy mammary glands
or mammary tumours of females of 10-12 weeks of age. Mice
were humanely culled by cervical dislocation and tissue dis-
sected in aseptic conditions. Mammary glands were digested
in 30 µg/mL collagenase (SIGMA-Aldrich) in DMEM/F12
(GIBCO) using a MACS dissociator (Miltenyi) at 37◦C for
20 minutes. Digested tissue was transferred to a 15 mL
centrifuge tube and centrifuged at 3,000 rpm, supernatant
discarded, and pellet resuspended in 1 mL red blood cell
lysis buffer (SIGMA-Aldrich) for 3 minutes. 9 mL of
DMEM/F12 were used to stop the red blood cell lysis and
tubes were centrifuged in the same conditions. Supernatant
was discarded and pellet resuspended in 1 mL of 1x trypsin
(GIBCO) and incubated at 37◦C for 3 minutes. 5 mL of
DMEM/F12 with 10% FBS (GIBCO) were used to stop
the trypsinization reaction and tubes were centrifuged. Su-
pernatant was discarded and pellet resuspended in 5 mL
DMEM/F12, passed through a 70 µm filter and centrifuged
again. Supernatant was discarded and pellet resuspended
in Matrigel™ (Corning) and plated in 25 µL domes, one
dome per well of a 24-well plate (Costar) for maintenance.
Domes were polymerized at 37◦C for 30 minutes and cov-
ered in mouse mammary gland organoid media consisting of
50 ng/mL EGF (Preprotech), 100 ng/mL FGF (Preprotech),
4 µg/mL heparin (SIGMA-Aldrich), 1X B27 (GIBCO), 1X
N2 (GIBCO), 1X penicillin/streptomycin (GIBCO), 10 mM
HEPES (GIBCO) and L-glutamine-containing DMEM/F12
(GIBCO). Organoids were maintained at 5% CO2 and 20%
O2 at 37◦C. For maintenance, weekly organoid splitting was
performed by washing the Matrigel™ dome in 500 µL PBS,
digestion in 300 µL TrypLE (GIBCO) for 10 minutes, dilu-
tion of TrypLE in 700 µL DMEM/F12, centrifugation at 3,000
rpm for 3 minutes, discarding supernatant, and resuspending
pellet of cells in Matrigel™. For microscopy, cells were dis-
aggregated in TrypLE as described before, counted using Try-
pan Blue and an automatic cell counter, resuspended in Ma-
trigel™ and plated in a 96-well plate (Cellvis) in a 30 µL disc
per well. Matrigel™ was polymerized for 30 minutes at 37◦C
and wells topped up with 200 µL organoid media containing
3µM SiR-DNA dye (Spirochrome). For position registration,
1:20 TetraSpeck™ 0.1 µm beads (ThermoFisher) were resus-
pended in Matrigel™, plated in 30 µL discs, and topped up
with 200 µL organoid media.

3. Dual-view oblique plane microscopy (dOPM)

For time-lapse imaging of multiple organoids in parallel in
a multi-well plate format, a dual-view oblique plane micro-
scope (dOPM) was used, which was a modified version of the
system reported in reference [20]. Briefly, the system is a type
of light-sheet fluorescence microscope (LSFM) [28] that em-
ploys a single-objective for sample illumination and fluores-
cence detection [29] designed for multi-view single plane illu-
mination microscopy (mSPIM) [30]. This type of microscope
is suitable for fast 3D imaging with low light dose and reduced
sample-induced image artefacts, so can be applied to time-
lapse imaging of multiple live organoids in parallel. For this
work, the dOPM configuration reported in [20] was modified
to operate with a Nikon 1.2 NA 60x water immersion objec-
tive as the primary microscope objective, which has a higher
numerical aperture than the original design based around a
Nikon 1.15 NA 40x water immersion objective [20]. The
dOPM system was configured to record 3D image datasets in
sample space from the perspectives of overlapping views that
are rotated by ±35 degrees relative to one another about the
optical axis of the primary microscope objective. Organoids
were imaged every 11 minutes for 24 hours totalling 135 time
points. From the two dOPM view’s perspectives, the acquired
3D image data per time point consisted of optically sectioned
images spaced 0.6 µm apart covering a scan range of 90 µm.
Each image plane was 450 pixels in width and height and the
pixel size in sample space was 0.175 µm in each dimension
to cover a field of view of 140 µm in each dimension. The il-
lumination light-sheet used had a calculated full width at half
maximum of 3 µm at the waist in the sample plane.

To image fluorescence from tdTomato labelled membrane,
a 561 nm laser was used for fluorescence excitation and a
600/52 nm (central wavelength/band pass) emission bandpass
emission was used for detection. To image fluorescence from
nuclear SiR-DNA, a 642 nm laser was used for fluorescence
excitation and a 698/70 nm (central wavelength/band pass)
emission bandpass emission was used for detection.

For each spectral channel the information from the 3D
dataset of each dOPM view was combined into a single 3D
dataset by using a fusion routine in the Multiview fusion plu-
gin available in ImageJ [31]. This routine required registra-
tion information to correctly co-register the two dOPM view.
This information was determined from dOPM datasets of 3D
samples of beads suspended in Matrigel which was included
in the multiwell plate assay as discussed in section D 2 – see
[31] for details of the bead-based co-registration method. Fol-
lowing fusing, the 3D datasets were converted to tiff stacks
for segmentation.

4. Culture and imaging of mouse embryonic stem cells

Mouse embryonic stem cells (E14 cells stably expressing
H2B-RFP [32] were cultured as described in [33] on 0.1%
gelatin in PBS (in N2B27+2i-LIF + penicillin and strepto-
mycin, at a controlled density 1.5 - 3.0 × 104 cells cm−2)
on Falcon flasks and passaged every other day using Accutase
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(Sigma-Aldrich, #A6964). They were kept in 37◦C incubators
with 7% CO2. Cells were regularly tested for mycoplasma.

The culture medium was made in house, using DMEM/F-
12, 1:1 mixture (Sigma-Aldrich, #D6421-6), Neurobasal
medium (Life technologies #21103-049), 2.2 mM L-
Glutamin, home-made N2 (see below), B27 (Life tech-
nologies #12587010), 3 µM Chiron (Cambridge Bioscience
#CAY13122), 1 µM PD 0325901 (Sigma-Aldrich #PZ0162),
LIF (Merck Millipore # ESG1107), 0.1 mM β-Mercapto-
ethanol, 12.5 µg mL−1 Insulin zinc (Sigma-Aldrich #I9278).
The 200 X home-made N2 was made using 8.791 mg mL−1

Apotransferrin (Sigma-Aldrich #T1147), 1.688 mg mL−1

Putrescine (Sigma-Aldrich #P5780), 3 µM Sodium Selen-
ite (Sigma-Aldrich #S5261), 2.08 µg mL−1 Progesterone
(Sigma-Aldrich #P8783), 8.8% BSA.

For colony imaging, the cells were plated on 35 mm Ibidi
dishes (IBI Scientific, #81156) coated with gelatin the day be-
fore the experiment, and imaged on a Perkin Elmer Ultraview
Vox spinning disc (Nikon Ti attached to a Yokogawa CSU-
X1 spinning disc scan head) using a C9100-13 Hamamatsu
EMCCD Camera. Samples were imaged using a 60X water
objective (CFI Plan Apochromat with Zeiss Immersol W oil,
Numerical Aperture 1.2). The samples were imaged acquiring
a Z-stack with ∆Z = 2 µm every 5 minutes.
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