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Abstract
Adaptive metabolic switches are proposed to underlie conversions between cellular states
during normal development as well as in cancer evolution, where they represent important
therapeutic targets. However, the full spectrum, characteristics and regulation of existing
metabolic switches are unknown. We propose that metabolic switches can be recognised by
locating large alternating gene expression patterns and associate them with specific
metabolic states. We developed a method to identify interspersed genesets by massive
correlated biclustering (MCbiclust) and to predict their metabolic wiring. Testing the method
on major breast cancer transcriptome datasets we discovered a series of gene sets with
switch-like behaviour, predicting mitochondrial content, activity and central carbon fluxes in
tumours associated with different switch positions. The predictions were experimentally
validated by bioenergetic profiling and metabolic flux analysis of 13C-labelled substrates and
were ultimately extended by geneset analysis to link metabolic alterations to cellular states,
thus predicting tumour pathology, prognosis and chemosensitivity. The method is applicable
to any large and heterogeneous transcriptome dataset to discover metabolic and associated
pathophysiological states.
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Statement of significance
We present a novel method to identify the transcriptomic signatures of metabolic switches
underlying divergent routes of cellular transformation. We illustrate the power of the method
by stratifying breast cancer into metabolic subtypes, predicting their biology, architecture and
clinical outcome.

3

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.02.17.528922doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction
Cancer development and evolution entail diverging routes of adaptation in cellular energetics
and metabolism to oncogenic signals and the tumour environment1–3. These adaptive
metabolic rearrangements often result in tumour specific vulnerabilities to pharmacological
or dietary targeting, or to the contrary, promote therapy resistance4. Evaluating patterns of
tumour metabolic adaptation is therefore essential to understanding cancer biology and will
allow development of novel therapeutic strategies.

No comprehensive evaluation of metabolic adaptation patterns in cancer has yet been
completed. Adaptation patterns are presumed to accompany both transient alterations of
cellular phenotype and the inheritable phenotype switches that underlie transitions in cellular
states. States can be determined by cell type, their environment and by cellular position in
the differentiation tree. Transitions in cell state would therefore follow changes in
differentiation status and transdifferentiation, including epithelial-mesenchymal transition
(EMT), cellular senescence, or reversion to an immature stem or progenitor phenotype5,6,
and to other cell type specific state transitions7. There has been recent interest in
understanding metabolic adaptations during cell state transitions8,9 leading to a considerable
body of knowledge of cell state specific metabolic alterations at the metabolite and flux
levels2,10–14. Using metabolites and fluxes as exclusive readouts however may not address
the question of whether the altered metabolic states represent bona fide functional
adaptations or are simply mass action driven rearrangements of metabolic networks15.
Moreover, metabolic measurements themselves are insufficient to allow exploration of the
relationship and the co-regulation of the functional adaptation with cellular state.

Gene expression pattern (GEP) alterations almost invariably accompany cellular state
transitions and transformation and bear important prognostic value16–18. Accordingly, GEPs
can provide information that links cellular state to metabolic adaptation. This can be
evaluated by exploring the metabolic transcriptome in large scale GEPs, including
expression of metabolic pathway components and nuclear encoded mitochondrial genes
which together represent >15% of the genome. Large patterns of alteration in the
transcriptome, often involving >1000 genes, can arise either from genetic (oncogenic
mutations) or non-genetic (environmental) influences. These ultimately determine cellular
phenotype and the associated cellular metabolic network19. Earlier studies on cancer related
metabolic rearrangements mostly focused on the effect of cell-autonomous oncogenic
signals on specific metabolic pathways20,21, thereby delineating either the metabolic switches
required for increased proliferation and growth or adaptation to hypoxia1,22. However, it is
now well recognised that other cellular states or features can also be associated with altered
gene expression patterns affecting metabolic networks, including not only the fundamental
EMT transdifferentiation in cancer metastasis, but also other pathological and physiological
states16,17,23,24. In order to find patterns of metabolic adaptation, we hypothesised that
alterations in metabolic gene expression patterns reflect bona fide adaptive transcriptional
regulation, driven by a specific cell state. Accordingly, metabolic switches follow transitions
between cell states, and apart from being clear pharmacological targets25, may well be used
for important pathological predictions associated with cell states. To test this hypothesis,
here we aimed to identify differential regulation patterns in the full metabolic transcriptome
and link these quantitatively with the large scale GEPs associated with different cancer cell
states. Since the transcriptome does not scale linearly with the proteome and the
metabolome26, we aimed to correlate these states with metabolic and energy flux
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measurements experimentally. Finally, we applied statistical methods to understanding the
correlation of GEPs with tumour biology and establishing their prognostic value. Identifying
these patterns will help the unbiased mapping of potential metabolic adaptation strategies in
tumours, understanding and exploitation of metabolic vulnerabilities in different cell states
represented as tumour subtypes, in particular to recognition of and targeting adaptive
patterns resulting in drug-resistant states.

Few previous studies analysed large scale metabolic gene expression data across multiple
cancer types, mostly revealing widespread deregulation of metabolic pathways compared to
adjacent normal tissue. These studies used either diverse pathway scoring methods based
on differential gene expression in numerous cancer types and/or subtypes16,18,27,28, or
analysed genomic changes associated with transcriptional adaptation to the environment22.
For example, in order to investigate shared deregulation of individual metabolic pathways
genes, Reznik et al.17 analysed differential gene co-expression in a number of cancer types,
revealing recurrent loss of co-expression of a set of genes, including mitochondrial electron
transport chain components. However, these studies did not account for large, correlated
expression patterns in broader sets of genes, which inherently underlie the complete
metabolic rewiring of phenotypic (cell state) switching. Such patterns are likely to be aligned
with specific cell states and could reveal subtype specific dependencies that provide novel
pharmacological targets or predict pathological features and clinical behaviour. In addition,
defining these patterns will help answer questions such as what drives the deregulation of
metabolic pathways, and whether it is adaptive and thus targetable, as well as how gene
expression and metabolic fluxes correlate. No current approaches to the best of our
knowledge have addressed this problem.

To undertake the unbiased discovery of large co-regulated gene expression patterns, we
have simplified our model to include the concerted on and off switching of large gene sets29,
such as bi- and multistate, or bi- and multistable gene switches. These switches thus
comprise anticorrelated gene sets in a selected set of samples representing two different cell
states or cancer subtypes. We have created a pipeline for the discovery and further analysis
of these large gene expression switches which can be used as a resource to analyse any
large heterogeneous dataset. In order to demonstrate the workflow and the value of the
resource, we describe here its use in the discovery of metabolic and mitochondrial states
(subtypes) of breast cancer, aligning these with cell state determined by the cell of origin.
Firstly by using the central tool of the resource, MCbiclust30 applied to a number of large
breast cancer transcriptome datasets, we have discovered three massive anticorrelated
gene sets. These biclusters define breast cancer metabolic subtypes which are dominated
by mitochondrial genes and are likely the result of metabolic switches that follow the cell of
origin pattern. Next, we correlated the gene expression patterns with metabolic fluxes,
measured in cellular models by mass spectrometry using heavy carbon labelled substrates.
Finally, we have demonstrated the utility of the resource through its ability to predict (i) the
metabolic phenotype of cancer cell lines and cancer tissue; (ii) the metabolic wiring
associated with certain cell states and phenotypes; and (iii) clinical outcomes of a subset of
estrogen receptor (ER) positive tumours which offers an opportunity to modify current
treatment algorithms.

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 21, 2023. ; https://doi.org/10.1101/2023.02.17.528922doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Materials and Methods

Resources

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal

anti-Hexokinase 1

Cell Signaling Technology Cat# 2024, RRID:AB_2116996

Rabbit monoclonal

anti-Hexokinase 2

Cell Signaling Technology Cat# 2867, RRID:AB_2232946

Rabbit polyclonal

anti-Triosephosphate isomerase

–N-terminal

Abcam Cat# ab135532

Monoclonal antibody

anti-Glyceraldehyde-3-phosphate

dehydrogenase

Millipore Cat# MAB374,
RRID:AB_2107445

Rabbit monoclonal anti-Pyruvate

kinase M1 isofrom

Cell Signaling Technology Cat# 7067, RRID:AB_2715534

Rabbit monoclonal anti-Pyruvate

kinase M2 isoform

Cell Signaling Technology Cat# 4053, RRID:AB_1904096

Rabbit monoclonal anti-Lactate

dehydrogenase A

Cell Signaling Technology Cat# 3582, RRID:AB_2066887

Rabbit monoclonal anti-Lactate

dehydrogenase B

Abcam Cat# ab53292,
RRID:AB_2234531

Rabbit polyclonal anti-BRP44L

(MPC1)

Abcam Cat# ab74871,
RRID:AB_1523226

Rabbit monoclonal anti-MPC2 Cell Signaling Technology Cat# 46141,
RRID:AB_2799295

Mouse monoclonal anti-Pyruvate

dehydrogenase E1-alpha subunit

Abcam Cat# ab110330,
RRID:AB_10858459

Rabbit polyclonal anti-pyruvate

dehydrogenase E1-alpha subunit

(phospho S293)

Abcam Cat# ab92696,
RRID:AB_10711672
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Rabbit polyclonal anti-IDH1 Proteintech Group Cat# 12332-1-AP,
RRID:AB_2123159

Mouse monoclonal anti-IDH2 Abcam Cat# ab55271,
RRID:AB_943793

Rabbit polyclonal anti-IDH3A Abcam Cat# ab58641,
RRID:AB_2295799

Rabbit polyclonal

anti-glutaminase

Abcam Cat# ab93434,
RRID:AB_10561964

Rabbit monoclonal anti-GLUD1 Abcam Cat# ab166618,
RRID:AB_2815030

Rabbit polyclonal anti-GOT1 Proteintech Group Cat# 14886-1-AP,
RRID:AB_2113630

Rabbit polyclonal anti-GOT2 Proteintech Group Cat# 14800-1-AP,
RRID:AB_2247898

Rabbit polyclonal anti-ME1 Abcam Cat# ab97445,
RRID:AB_10679994

Rabbit monoclonal anti-ME2 Abcam Cat# Ab139686

Rabbit monoclonal anti-PCB Abcam Cat# ab128952,
RRID:AB_11144490

Rabbit polyclonal anti- 3PGDH

(PHGDH)

Santa Cruz Biotechnology Cat# sc292792

Mouse monoclonal anti-PPAT Abcam Cat# ab128116,
RRID:AB_11143951

Rabbit polyclonal anti-PSAT1 Proteintech Group Cat# 20180-1-AP,
RRID:AB_10665948

Rabbit monoclonal anti-MDH1 Abcam Cat# ab180152

Mouse anti - GLUL BD Biosciences Cat# 610518
RRID:AB_397880

Rabbit monoclonal anti-GFPT1

[EPR4854]
Abcam Cat# ab125069,

RRID:AB_10975709

Recombinant anti-GFPT2 Abcam Cat# ab190966,
RRID:AB_2868470
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Total OXPHOS rodent antibody

cocktail

Abcam Cat# ab110413,
RRID:AB_2629281

Mouse monoclonal anti-Actin Santa Cruz Biotechnology Cat# sc-56459,
RRID:AB_830981

Rabbit polyclonal anti-beta

tubulin

Santa Cruz Biotechnology Cat# sc-9104,
RRID:AB_2241191

Rabbit polyclonal anti-grp75 Santa Cruz Biotechnology Cat# sc-13967,
RRID:AB_647720

Chemicals, Peptides, and Recombinant Proteins

[U-13C] glucose Cambridge Isotope
Laboratories, Inc.

CLM-1396

[U-13C] glutamine Cambridge Isotope
Laboratories, Inc.

CLM-1822

[U-13C] pyruvate Cambridge Isotope
Laboratories, Inc.

CLM-1575

Pyruvate Thermo Fisher Scientific Cat# 11360070

Glutamine Thermo Fisher Scientific Cat# 25030081

Glucose Thermo Fisher Scientific Cat# A2494001

Normocin InvivoGen ant-nr-1

Hoechst 33342 Thermo Fisher Scientific Cat# 62249

Tetramethylrhodamine, Methyl
Ester, Perchlorate (TMRM)

Thermo Fisher Scientific Cat# T668

Quant-iT™ PicoGreen™ dsDNA
Assay Kits and dsDNA Reagents

Thermo Fisher Scientific Cat# P11495

Rotenone Sigma-Aldrich Cat# R8875

Carbonyl cyanide
4-(trifluoromethoxy)phenylhydraz
one (FCCP)

Sigma-Aldrich Cat# C2920

Antimycin A from Streptomyces
sp.

Sigma-Aldrich Cat# A8674

Oligomycin A Sigma-Aldrich Cat# 75351

DMEM, high glucose, pyruvate Thermo Fisher Scientific
(Gibco)

Cat# 41966029
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DMEM, high glucose, glutaMAX
supplement, pyruvate

Thermo Fisher Scientific
(Gibco)

Cat# 31966021

DMEM, no glucose, no glutamine,
no phenol red

Thermo Fisher Scientific
(Gibco)

Cat# A1443001

Critical Commercial Assays

Glutamine/Glutamate-Glo Assay Promega Cat# J8022

CellTiter-Glo Luminescent Cell
Viability Assay

Promega Cat# G7570

Seahorse XF Cell Mito Stress
Test Kit

Agilent Cat# 103015-100

Experimental Models: Cell Lines

MCF7 ATCC HTB-22

T47D ATCC HTB-133

Hs578T ATCC HTB-126

MDA-MB436 ATCC HTB-130

HCC1143 ATCC CRL-2321

Source Data

METABRIC Synapse: syn1757063 https://doi.org/10.7303/syn168
8369

TCGA NCBI dbGaP phs000178.v11.p8

OsloVal Synapse: syn1710395 https://doi.org/10.7303/syn168
8370

Software and Algorithms

R v4.2.0 R Foundation for Statistical
Computing

https://www.r-project.org/

MCbiclust 1.22.0 Bentham et al.30 https://doi.org/doi:10.18129/B9
.bioc.MCbiclust

ComplexHeatmap Gu79 https://doi.org/doi:10.18129/B9
.bioc.ComplexHeatmap

GSVA 1.46.0 Hänzelmann et al44 https://doi.org/doi:10.18129/B9
.bioc.GSVA

g:Profiler Raudvere et al80 http://biit.cs.ut.ee/gprofiler/gost
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Fiji Schindelin et al.81 https://imagej.net/software/fiji/

Prism 9.0 GraphPad Software https://www.graphpad.com/

Other

SnakeSkin Dialysis Tubing, 3.5K
MWCO, 35 mm dry I.D., 35 feet

Thermo Fisher Scientific Cat# 88244

Seahorse XF96 cell culture
microplates

Agilent Cat# 102416

Falcon® 96-well Black/Clear Flat
Bottom TC-treated Imaging
Microplate

Corning Life Sciences Cat# 353219

Resource availability

Lead contact
Further information and requests for resources and reagents should be directed to and will
be fulfilled by the lead contact, Gyorgy Szabadkai (g.szabadkai@ucl.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data are available via links provided in the Methods section and Key Resources table.
Code for the full analysis pipeline is available from the authors upon request.

Experimental model and subject details

Cell lines
Human breast cancer cell lines MCF7, T47D, Hs578t, MDA436 and HCC1143 were
purchased from ATCC. Their identity was confirmed through cell line authentication carried
out by BMR Genomics (Italy) by amplification of 23 STR loci (PowerPlex Fusion System kit,
Promega). Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, #41966029),
supplemented with 10% Fetal Bovine Serum (FBS) (Thermo Fisher Scientific) and Normocin
(0.1 mg/mL, InvivoGen) and maintained in a 37°C incubator set with 5% CO2 and 95%
humidity. Cell numbers for each experimental setting were counted using a hemocytometer.
For the restricted nutrient condition and stable isotope labelling experiments, cells were
cultured using DMEM (no glucose, no glutamine, no phenol red, Thermo Fisher Scientific
#A1443001) complemented with glucose, glutamine and pyruvate, as indicated. For the
stable isotope labelling, the required amount of labelled compounds, [U-13C] glucose, [U-13C]
glutamine and [U-13C] pyruvate, were added. FBS was dialyzed using a SnakeSkin dialysis
tubing (Thermo Fisher Scientific) and filtered using 0.22 µm PES filter before being added in
10% proportion, together with Normocin. The conditions were named according to their
nutrient concentrations either stably labelled or not (Figure 4A): high and low glutamine (H/L
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= 1mM/0.1mM) levels were combined with the presence and absence of pyruvate (+/- =
1mM/0mM), glucose was kept at 10 mM.

Methods details

Discovery of large gene cluster switches with MCbiclust
MCbiclust (doi:10.18129/B9.bioc.MCbiclust, current version 1.2.1, R package available in
Bioconductor82) was used to identify gene cluster switches as described previously30,31 on the
METABRIC33, TCGA34 (BRCA) and Oslo235 datasets. We have used two defined and two
random starting genesets of approximately 1000 genes. The defined genesets were either
only mitochondrial (Mitocarta 1.083) or mitochondria related, by choosing the 1000 genes
most correlated with the mitochondrial ribosomal gene MRPL58 across the METABRIC
dataset. MCbiclust was run for 1000 iterations using each geneset on the University College
London high performance cluster. The initial bicluster seeds found are shown in Figure S1,
following the selection of the highest correlating gene groups using the HclustGenesHiCor
function. The silhouette method was used to determine the number of independent
biclusters. Biclusters were then extended (i) by calculating the correlation vector (CV) values
for the whole transcriptome using the CVEval function, and (ii) to all samples using
SampleSort. The correlation pattern was summarised using principal component analysis
(PCA) of the CV values using PC1VecFun. The bifurcating patterns, defining the forks
(switch positions), were plotted using the sort order (index) and PC1 values for each sample
(see Figures 1B, S1).

Gene set enrichment and pathway analysis
Functional analysis of gene clusters were performed with g:Profiler80. The default KEGG
data source was used in g:GOSt for functional profiling of all metabolic pathways. The
KEGG results were manually filtered to include only metabolic pathways. For mitochondrial
functional profiling the custom MitoCarta 3.0 orthology was used as data source36 in
g:Profiler. Signalling pathway activity was assessed using the PARADIGM integrated
pathway levels (IPLs) from the PARADIGM39 analysis on a pan-cancer dataset37

(https://www.synapse.org/#!Synapse:syn5633407), filtered for BRCA samples. Gene set
variation analysis for molecular signature identification was performed using the GSVA
1.46.0 package44.

Assessment of mitochondrial activity
Oxygen consumption rate was measured with the Seahorse XFe96 bioanalyzer using the
Seahorse XF Cell Mito Stress Test Kit (Agilent), or using High-Resolution Respirometry
(Oxygraph-2K, Oroboros Instruments, Austria). For the Seahorse measurements cells were
seeded on XF96 cell culture microplates (Agilent) 2 days before the experiment (1 × 104

cells/well). For the experiment, the culture medium was replaced with Seahorse XF Base
medium (Agilent) supplemented with pyruvate, glutamine and glucose (Thermo Fisher
Scientific) as indicated, and incubated for 30 min at 37 °C in a CO2-free incubator before
loading into the Seahorse Analyser. After measuring basal respiration, the drugs oligomycin
A (5 µM), FCCP (1 µM), and rotenone/antimycin A (0.5 µM/0.5 µM) were added to each well
in sequential order. Data were analysed using the XF Cell Mito Stress Test Report
Generator. After the assay, cells were stained with Hoechst 33342 (1 µg/mL; Thermo Fisher
Scientific) for 30 min. ImageXpress Micro XL was then used for cell nuclei (cell numbers)
counts in each well.
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For High-Resolution Respirometry the Oxygraph-2K instrument was used. Prior to the assay,
OROBOROS chambers were calibrated with the recording media (DMEM #A1443001,
glucose (10 mM), glutamine (1mM), pyruvate (1mM), HEPES (10 mM)). Confluent 10 cm
plates of cells were trypsinized and re-suspended in the same media. 2.5*106 cells were
added to each chamber, and the O2 flow signal was allowed to stabilise to basal respiration
rate. Drugs were added to chambers using in the following concentrations and order:
Oligomycin (2.5µM), FCCP (2µM) and Antimycin A (2.5 µM). Respiratory rate given as
oxygen flow in pmol/min/cell was recorded. Data collection and analysis was performed
using Datlab 5.0 software.

Imaging
For imaging overall mitochondrial structure and function in a large cell population, a
wide-field high content imaging system (ImageXpress MicroXL, Molecular Devices) was
used. Cells were seeded in 96-well black clear thin bottom tissue culture treated imaging
plates (Corning). For mitochondrial membrane potential measurements cells were incubated
with 30nM TMRM (Thermo Fisher Scientific) in recording media (DMEM #A1443001,
glucose (10 mM), glutamine (1mM), pyruvate (1mM), HEPES (10 mM)) for 30 minutes prior
to starting imaging and left for the whole time of the experiment at 37ºC. For labelling the
nuclei cells were co-loaded with Hoechst 33342 (1 µg/mL; Thermo Fisher Scientific) for
30 min. For TMRM intensity quantification a 20X Nikon (S PLAN FLUOR ELWD 0.45 NA) air
objective was used. Images were analysed with the integrated metaXpress imaging and
analysis software using the granularity analysis module. Following local background
subtraction, the average TMRM intensity/field was used as readout.
For morphology analysis a Nikon 40X (Plan Apo 0.95 NA) air objective was used. Cells were
co-loaded with TMRM (30 nM), picoGreen (2.5µL/mL) and Hoechst 33342 (1 µg/mL; Thermo
Fisher Scientific) in recording media (DMEM #A1443001, glucose (10 mM), glutamine
(1mM), pyruvate (1mM), HEPES (10 mM)) for 30 minutes prior to starting imaging. TMRM
was left for the whole time of the experiment at 37ºC. Cells were imaged using a custom
protocol to image 3 wavelengths (Lumencor solid state illumination with Semrock [Brightline]
filters (nm) ex377/50 em447/60 for Hoechst 3342; ex472/30 em520/35 nm for picoGreen,
ex531/40 em593/40 for TMRM), 16 fields/well with a Nikon 40X Plan Apo NA 0.95 air
objective, binning 1 with a CMOS detector. TMRM and picoGreen Images were analysed
with MetaXpress 5.0 software, using the granularity module, total mitochondrial area and
average object size as readout from the TMRM images. For picoGreen analysis, the
integrated pit intensity (granularity module) was used as a readout following ratioing with the
Hoechst images, background subtraction and thresholding.

Determination of total cellular ATP
Total cellular ATP concentration was measured using CellTiter-Glo® Luminescent Cell
Viability Assay (Promega). The method determines the number of viable cells based on the
quantification of the ATP present, as readout of metabolically active cells, thus allowing the
estimation of total cellular ATP produced by a known number of seeded cells. In detail, 5K
cells were seeded in an opaque black 96-well plate and treated with the experimental media
(Figure 4A) for 24h. Wells containing the experimental medium only (the blank - for removing
the medium background) and 10nM ATP standard (on which the samples luminescence was
normalised to) were included. The protocol was carried out according to the manufacturer’s
instructions. Briefly, i): plates were equilibrated at room temperature (RT) for approximately
30 minutes, avoiding temperature gradients which could cause uneven signals; ii) a volume
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of CellTiter-Glo® Reagent equal to the volume of cell culture medium present in each well
(e.g., 100μl of reagent to 100μl of medium containing cells for a 96-well plate) was added; iii)
2 minutes of orbital shaking favouring cell lysis; then, iv) plates were left at RT for 10 minutes
to stabilise luminescent signal and v) the luminescence was recorded using PerkinElmer
EnVision plate reader. For each plate the triplicate values for the samples total ATP
produced, the ATP standard and five replicates of medium luminescence for the background
were acquired. The average of the replicates was calculated, and the medium background
was subtracted. The resulting values were normalised to the ATP standard previously
adjusted for the background and further normalised to the protein content, evaluated using
the BCA protein assay (Pierce).

Western Blotting
For the baseline expression of metabolic enzymes and mitochondrial respiratory chain
subunits at protein level, proteins were extracted from cells plated in 10 cm dish and cultured
in DMEM. Briefly, cells were detached by scraping in cold PBS 1X and pulled down by
centrifugation. Whole cell lysate was obtained incubating cell pellet with cold RIPA buffer
(150 mM NaCl, 50 mM Tris, 0.5% sodium deossicolate, 0.1% (w/v ) SDS, 1% (v/v) Triton) in
presence of protease inhibitor cOmplete (Roche), phosphatase inhibitors PhosStop (Roche)
and PMSF (Sigma) for 30 minutes on ice and spun down at 4 °C. Protein quantification was
done using a BCA protein assay kit (Pierce). Samples were denatured in presence of
reducing agents (DTT) at 95°C for 5 minutes, while for probing mitochondrial respiratory
chain subunits the optimal temperature was 60°C for 10 minutes. 20 µg of protein lysate was
loaded onto a NuPAGE 4-12% bis-tris gel (Thermo Fisher) and run using MOPS 1X buffer.
Blotting was done for 2 h at 30 V in a wet system (Invitrogen - Thermo Fisher), by
transferring proteins onto nitrocellulose membrane for metabolic enzymes and PVDF for
mitochondrial subunits. Membranes were incubated in 5% non-fat dry milk in TBS 1X – 0.1%
Tween 20 or 5% BSA in TBS 1X – 0.1% Tween 20 as blocking buffers (according to each
antibody datasheet) for 1 h at room temperature. Primary antibody was incubated in blocking
buffer overnight at 4°C. The working dilution was 1:1000 for the most of antibodies except for
MitoProfile (1:2000), grp75 (1:3000), actin (1:3000). Horseradish-conjugated secondary
antibodies (BioRad) were diluted 1:5000 in blocking buffer and membranes were incubated 1
h at room temperature. The blots were visualised using SuperSignal West Pico
Chemiluminescent Substrate (Thermo Fisher) and UVITEC Cambridge Mini HD9 Imaging
System (Eppendorf). If necessary, membranes were stripped, blocked and probed again with
a different primary antibody.

Measurement of glutamine and glutamate concentration in the media
The concentration of glutamine and glutamate in the media were measured using the
luminescence-based approach Glutamine/Glutamate-Glo TM Assay kit (Promega). The
method is based on two steps: i) glutamine is first converted to glutamate by glutaminase; ii)
glutamate is oxidised and NADH produced is used for luminescence reading. Briefly, 10k
cells were seeded in an opaque black 96-well plate. On the following day, after one wash
with warm PBS1X, cells were treated with the experimental media (Figure 4A) for 24 h. Wells
containing the experimental medium only (no cells), 5 points glutamate standard curve (to
extrapolate glutamine and glutamate concentration) and wells containing PBS1X (as
negative control) were included. Wells with only medium represent a positive control and
were used as reference of initial glutamine and glutamate concentration in the medium, on
which values subtract the glutamine and glutamate concentration obtained from cells
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containing wells, thus calculating the glutamine uptake and glutamate secreted by the cells.
The addition and removal of both PBS 1X and media were gently done using a multichannel
pipette. Each experimental medium was freshly prepared the day of the treatment. The
experiments were carried out according to the manufacturers’ instructions. After 24 hours
treatment, media were collected and a dilution of 1:25 (in PBS1X) was done in order to fit the
linear range of the assay indicated by the commercial kit. The diluted samples were
analysed the same day or frozen at -80°C and processed afterwards. The assay was done
at room temperature with media and reagent RT equilibrated to avoid uneven signals.
Luminescence was recorded using Infinite M200 plate reader (Tecan). Protein content was
evaluated using the BCA protein assay (Pierce). The results were presented as
nmoles/minutes/grams of protein.

Stable isotope labelling, metabolite extraction and quantification
Cells were grown at standard culturing conditions as described in cell culture methods; the
stable-isotope labelling was obtained by culturing cells with media containing either fully
labelled [U-13C] glucose, [U-13C] glutamine or [U-13C] pyruvate for 24 h. Before metabolite
extraction, plates were taken to a cold room and 500μL of medium from each plate was
frozen for later analysis. The remaining media was removed, and the plates placed in Fan
ice/water bath before washing twice with ice-cold PBS.
For metabolites extraction, 800μL ice-cold methanol containing an internal standard of 1mM
scyllo-inositol was added to each plate and cells were detached by scraping. This mixture
was transferred to a 15ml tube, and the plate washed with 800μL of methanol:H2O (1:1
vol/vol) that was moved to the tube, to which 400μL of ice-cold chloroform was added. The
tubes were placed in a water bath sonicator in a cold room for 1 h, with 3x8 minute pulses of
sonication and centrifuged for 10 minutes at 16,000rpm at a temperature of 0°C. The
supernatant was extracted and dried in a vacuum concentrator. The cell pellet was then
re-extracted with 300μL of methanol:H2O (2:1 vol/vol), this was sonicated, spun and the
supernatant added to the previous supernatant tube and dried again in a vacuum
concentrator. The remaining cell pellet was used for estimating dry weight and measuring
total protein. For phase partitioning, the dried supernatant was resuspended in 350μL of
chloroform:methanol:H2O (1:3:3 vol/vol) and spun for 5 minutes at 0°C and 16,000rpm. The
extract is then in a biphasic partition, with the upper phase containing the polar metabolites
and the lower phase containing lipidic metabolites. The polar phase fractions were then
transferred to GC-MS vial inserts and vacuum-dried. Separate vial inserts had 10μL of the
saved cell culture medium added, with 1mM scyllo-inositol, which were also dried in a
vacuum concentrator. Each vial insert had 30μL of methanol added, containing 1μL of 5mM
nor-leucine as another internal standard, followed by 30μL of methanol without nor-leucine,
with the vials being dried in a vacuum concentrator after each addition. Before running
samples on the mass spectrometer, polar fractions were derivatised, 20μL methoxyamine
(30mg/mL in pyridine) was added to each insert and this was vortexed briefly and incubated
at room temperature overnight, Silylation was then done by adding 20μL of BSTFA + TCMS
reagent to each insert and incubating for 1 h at room temperature.
For metabolites analysis, an Agilent 7890A GC with a 5975C triple axis detector MSD
(Agilent Technologies, Santa Clara, CA) was used. Metabolites were separated on an
Agilent J&W 122-5532G DB-5ms capillary column (30m x 0.25mm, 0.25um film thickness),
in splitless mode. The injector and transfer line temperatures were 270 and 280°C,
respectively. The flow rate of helium carrier gas was 0.7 mL/min. The oven temperature was
programmed to hold at 70°C for 2 min, increased to 295°C at a 12.5°C/min ramp rate,
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increased from 295°C to 320°C at a 25°C/min ramp rate, and held at 320°C for 3 minutes.
The mass spectrometer was operated in scan mode, after a 6 minute solvent delay with a
range of 50−565 mass/charge (m/z) and a scan-rate of 2.8 scans per second. Metabolites
were identified by matching retention times and fragmentation patterns to commercially
available standards. Metabolite peaks were integrated at each isotopologue m/z using
MassHunter Workstation software (Agilent Technologies). Peak areas were quantified based
on peak areas of known standards using nor-leucine as an internal standard, and then
metabolite levels were normalised to protein content. Mass isotopologues were stripped of
the contribution from natural abundance, based on the chemical formula of derivatized
fragments quantified. Percent enrichment for an isotopologue was calculated by dividing the
corrected intensity by the sum of corrected intensities of all isotopologues for that metabolite.
Significance of metabolite enrichment between different samples was calculated with
one-way ANOVA.

Quantification and statistical analysis
Experimental design and statistical analysis are described in the Figure legends.
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Results

1. Discovery of large gene cluster switches, defining breast tumour mitochondrial and
metabolic subtypes
In order to identify co-regulated gene clusters in subgroups of breast cancer samples we
used our previously established massive correlating biclustering method, MCbiclust30. The
method is designed to find subsets of samples in which large genesets, such as sets of
metabolic and nuclear encoded mitochondrial genes31,32 are co-regulated, as demonstrated
by the correlation of individual gene expression levels across the selected samples.
Technically, an iterative stochastic greedy search method selects the group of samples in
which the chosen gene set reaches the maximum absolute correlation score. The samples
and gene sets that have the highest score define a bicluster.

As an additional feature, MCbiclust using the absolute correlation values for sample
selection allows the finding of two groups of genes that have maximal positive correlations
within the groups, but negative correlation between each other. Thus, two genesets with
mutually exclusive expression are obtained in each bicluster, defining two groups of samples
(see31 and Figure 1A). Importantly, after defining the bicluster, quantitative correlation is
extended to the (i) whole sample set using the similarity of each sample to the bicluster
sample set, ranking them according to the correlation of their bicluster gene set expression
with that of the bicluster samples, and (ii) to the whole transcriptome, using the correlation of
each gene transcript with the average expression of a set of representative bicluster genes
(correlation vector values, CV). Thus samples and gene sets can be analysed independently
(for the schematics of the method see Figure 1A).
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Figure 1. Identification of large scale transcriptome switches
A. Geneset switch identification in bicluster samples. MCbiclust starts with a random geneset in
a random sample set, and performs a greedy search aiming for the sample set across which
the geneset has the highest correlation. Since the absolute value of correlation is maximised
during the search, the resulting top correlating samples will display two genesets with sharp
anticorrelation (switch) between them. The genesets and samplesets can be extended to the
whole transcriptome and sampleset by quantifying correlations (see main text), which provides
the basis for gene set enrichment analysis
B. Visualisation of individual switches (MB_1, MB_2, MB_3) in 2D distribution by PC1 and
ranking index in the METABRIC dataset. PAM50 classifiers are overlaid to show the differential
distribution of samples in the different switches (biclusters). Dashed lines represent the
thresholds for belonging to a fork, calculated as 0.04 * forkscale (see Methods).
C. UpSet matrix and plots of aggregates of sample intersections between upper and lower
positions of each switch (MB_1, MB_2, MB_3). Unique and overlapping (intersect) samples are
shown separately.
D, E. Interswitch relationships are shown in 2D distribution plots of samples by two biclusters
(switches). The axes represent the scale between the upper (UF) and lower (LF) of each
bicluster. The distribution of samples according to their MB_1 vs MB_2 forkscale value (See
Methods) is shown in D, whilst the combinations of MB_3 with MB_1 or MB_2 are shown in E.
F. Main heatmap shows distribution of the correlation values (CVs, Pearson r) of nearly the
whole transcriptome in the MB_1 bicluster; a small set of midrange values were hidden (see
gaps in heatmap). Annotations show the locations of mitochondrial and metabolic genes (top),
and that of the bicluster genes (bottom). For comparison between the switches, bottom
annotation curves show the CV values of each sample in the three biclusters (switches).
G. Fold enrichment of mitochondrial and metabolic (with intersections) genes in the
anticorrelated gene sets. Heatmap shows enrichment values of each geneset in each position
of all switches. Geneset intersections are illustrated at the bottom.
H. Scheme of switches. MB1 and MB2 share their LF, thus representing a multistate switch,
while MB3 is an independent bistable switch, both MB1_2 and MB_3 representing different
switch mechanisms (see Main text).

We applied the method to three independent breast cancer transcriptome datasets,
METABRIC33, TCGA34 and Oslo235 and obtained equivalent results. MCbiclust identified
three independent biclusters in the METABRIC dataset (termed mitochondrial biclusters
MB1, MB2 and MB3, Figure S1A-C), indicating three different large genesets that are
strongly co-regulated (including both + or - correlation) in specific subsets of the METABRIC
samples. Accordingly, each sample in the bicluster belongs to either of the two positions of a
toggle switch, splitting up samples in two groups (termed upper fork, UF and lower fork, LF,
see below) driven by their unique gene sets, anti-correlated between the sample groups. To
visualise the switches, for each bicluster we plotted the ranking of samples (according to
their correlation strength, i.e. the average CV of their bicluster genes) against the differences
in the correlation in their gene sets, captured by the first principal component (PC1) of each
sample (Figure 1B). The distribution pattern of the samples showed the split nature of the
biclusters, with bifurcating PC1 values in highly ranked samples. The same toggle switches
were confirmed in the TCGA and Oslo cohorts (Figure S1D,E).

Next, we compared the sample composition across the biclusters and explored gene sets
which dominate the clusters. While most forks of the three biclusters were composed of
unique samples (Figure 1C), MB1_LF and MB2_LF showed a near complete overlap, and
were therefore aggregated into a common cluster (MB12_LF). To define the position of the
samples in all of the discovered biclusters, we calculated their ‘forkscale’, indicating how
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close they are to the tip of the upper (+1) or lower (-1) forks and compared these values
between the biclusters (Figure 1D, E). Remarkably, comparison between the MB1 and MB2
bicluster switches reveals a tripolar distribution where samples are merged in a common
lower fork (MB12_LF) and are split between two distinct upper forks, MB1_UF and MB2_UF.
This indicates the presence of a multi-state switch. Comparison of MB3 with either MB1 or
MB2 did not show any significant overlap however, indicating independently regulated gene
cohorts in the MB3 bicluster.

To define the gene sets dominating the biclusters we have ranked the whole transcriptome
based on the CV of each gene, indicating its correlation with the switch pattern. Figure 1F
shows the correlation map of the MB1 bicluster. Genes with the highest and lowest CV
values were considered the dominant, most strongly regulated genes in the UF and LF
switch positions, respectively. Expression levels of these genes are anticorrelated between
the UF and LF samples (see Figures 1A and S1F). Importantly, genes with the highest CV
values (in both UF and LF switch directions) include genes additional to the bicluster,
indicating that they are part of larger scale gene regulation patterns (Table S1). The patterns
and their relationship with the bicluster genes are explored in the next section.

Notably, nuclear encoded mitochondrial and metabolic genes were markedly
over-represented in the UF of the MB1 and MB2 bicluster patterns but were excluded from
the MB12_LF as shown by the metabolic and mitochondrial gene annotation in Figure 1F.
The relative enrichment of nuclear encoded mitochondrial and metabolic genes are shown in
Figure 1G.

Altogether, MCbiclust identified large scale gene expression switches defining breast cancer
subtypes, which include the highly controlled co-regulation of a large group of metabolic and
mitochondrial genes. The gene sets identified (see Table S1), showed switch-like behaviour,
schematically represented in Figure 1H.

2. Defining metabolic patterns of mitochondrial breast cancer subtypes and their
association with cell state
Using the gene and sample sets generated by MCbiclust, we created a pipeline to generate
a series of predictions, covering tumour metabolism, oncogenic signalling and clinical
outcome. In order to understand the transcriptional metabolic signatures (TMS) of the
identified switches, we mapped all metabolic genes in all three switches on the global KEGG
metabolic pathway map (Figure S2A). These maps indicated that the TMSs comprise all
major metabolic modules, including carbohydrate, lipid, nucleotide, amino acid, glycan,
cofactor and energy metabolism. Importantly, in each switch, the TMSs of the UF and LF
sample sets were associated with either mutually exclusive pathways (e.g. lipid synthesis
versus degradation), often with enzyme isotype switches or alternative usage of substrates
(e.g. glycolytic versus glutaminolytic energy production).

To perform a more detailed in silico analysis of the metabolic phenotypes predicted by the
method, we focused on the MB12_LF vs MB1_UF/MB2_UF bi-state switch, using two
approaches. First, we compared the CVs of each gene of individual metabolic pathways,
highlighting differences in their association with different switch positions. As shown in Figure
2A, in central carbon metabolism, differential correlation (i.e. difference in CVs in the upper
and lower switch positions) of glycolytic and glutaminolytic enzyme transcripts demonstrated
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the transcriptional basis of metabolic phenotype switches, as well as the difference between
MB1 and MB2 biclusters (further pathways are shown in Figure S2B).

Second, to identify individual genes defining the three states, we used the CVs of the whole
genome in the MB1 and MB2 bicluster switches, and identified groups of genes
distinguishing the forks (CVs differ by at least 0.4 between the switches and the absolute
value of the CV is higher than 0.6), as well as those common to both biclusters (Table S2).
The resulting gene sets were then filtered for metabolic and mitochondrial genes used for
pathway analysis (see Figure 1F, G), of which the key findings are shown in Figure 2B.
Importantly, using both KEGG pathways and the MitoCarta3.0 gene set and ontology36, both
the MB1_UF and MB2_UF switch positions showed significant activation of mitochondrial
biogenesis pathways (KEGG: oxidative phosphorylation, TCA cycle; Mitocarta: mitochondrial
central dogma: including mtDNA replication, transcription and translation on the
mitochondrial ribosomes), as well as increased OXPHOS components (Figure S2B, Tables
S3 and S4).

These results indicate that the metabolic switch between the MB12_LF and both the
MB1_UF and MB2_UF positions encompass similarly increased mitochondrial biogenesis
and predict higher electron flux through the TCA cycle and OXPHOS compared to MB12_LF.
Whilst most of the intermediary metabolic pathways, with associated nucleotide, lipid and
amino acid metabolism were more strongly represented in MB1_UF and MB2_UF, both
cellular (KEGG) and mitochondrial (Mitocarta) glutamate metabolism had stronger
association with MB12_LF, representing an almost uniquely associated pathway in this
switch. This indicates an altered substrate preference. We noted that whilst the MB1_UF and
MB2_UF positions both showed higher mitochondrial biogenesis, the pattern of correlation of
individual metabolic genes differed in some key points between these switch positions.
Nucleotide, fatty acid and glutamate metabolism were strongly regulated in MB1_UF, whilst
there was a switch to pyruvate metabolism and TCA cycle with enhanced pentose
phosphate shunt in MB2_UF. This reflects the activation of distinct metabolic switch
mechanisms, presumably due to differences in cell states and their supporting metabolic
configuration, driven by cell state specific signalling.
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Figure 2. Decoding the transcriptome switch from individual genes to large scale cell
state patterns.
A, B. Metabolic phenotype predictions in the MB_1 and MB_2 bicluster switches. CV values
(association with bicluster, see Figure 1 and Methods) of individual genes in the METABRIC
breast cancer dataset analysis shown for pathways: glucose, glutamine, pyruvate metabolism
and the TCA cycle in A. Values are ranked by the MB_1 CV value. The figure allows the
identification of high CV genes and where differences are large between the switches
(biclusters). The representation of pathways according to the relative number of genes affected
is shown in B as a heatmap (top: based on top metabolic KEGG pathways; bottom: top
MitoCarta3.0 ontology pathways, see Table S5).
C. Heatmap of distribution of the top 250 most variable PARADIGM concepts across the
bicluster switches in the TCGA BRCA dataset. The term values were obtained from 37 pan
cancer analysis and hierarchically clustered. Annotations show proliferation, tumour purity,
switch identity (UF and LF of MB_1, MB_2 or MB_3), Pam50 and histology classifications.
Transcriptomic signatures based on PARADIGM concepts were assigned as shown at the right.
D, E. Correlation of known mammary gland cell states and the transcriptomic switches in the
METABRIC dataset. 2D distribution plots of samples by two biclusters is shown in D, overlaid
by either cell of origin marker enrichment values (obtained by gene set variation analysis,
GSVA - see Methods; mL: mature luminal, LP: luminal progenitor, MaSC: mammary stem cell,
genesets from 38)

Next we asked whether the observed metabolic switch positions with divergent mitochondrial
biogenesis follow the activation of specific signalling pathways. To infer signalling pathway
activity in individual samples, we analysed the distribution of the results of a previously
implemented PARADIGM analysis39 on a pan-cancer dataset37 among different switches.
Figure 2C shows the clustering of the most divergent PARADIGM pathway entities and their
association with different biclusters and forks. Overall, the switch between lower and upper
fork positions is dominated by turning on a cell proliferation cluster (MYB, FOXM1, E2F
family, P2, Figure 2C) in the upper forks (MB1_UF, MB2_UF) and by a stress and hypoxia
epig(MAPK, p53, HIF1, P5-7) and stemness (p63) signalling cluster in the lower forks
(MB12_LF). Interestingly, the MB1_UF and MB2_UF samples clustered separately, likely
due to activation of Myc in MB2_UF together with a miRNA pattern (P1). While both
MB1_UF and MB12_LF switch positions showed strong estrogen receptor signalling (P4),
MB2_UF contained only ER negative samples (for full gene list see Table S6, for statistical
analysis see Figure S3). All bicluster switches contained only a fraction of samples with high
immune signature, indicating that differences between the forks is not determined by the
immune system.

Taken together with the metabolic gene expression data, our model predicts higher
mitochondrial content in MB1_UF and MB2_UF as compared to MB12_LF, which can be
thus driven by the cell cycle and proliferation gene network activated in the upper switch
positions (see Figure 2C). The differences between MB1_UF and MB2_UF can be assigned
to Myc activation. Conversely, MB12_LF, showed no transcriptional (co-)activation of nuclear
encoded mitochondrial genes, but rather demonstrated a clear switch in substrate
preference to glutamate from glucose derived pyruvate, a metabolic phenotype associated
with stress signalling.

Finally, considering that metabolic switches have been associated with cell states and cell
fate decisions such as stemness and differentiation40–42, we assessed whether the identified
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metabolic and signalling switches among groups of breast cancer samples relate to their cell
of origin, i.e. their state of stemness or differentiation in a specific direction. Although the
so-called intrinsic (PAM50) breast cancer subtypes have been recently associated with
specific states of mammary epithelial cell differentiation43, we have found only a loose
association between switch states and intrinsic subtypes (Figure S4A). Therefore, we used
an unbiased approach by calculating GSVA scores (gene set variance analysis44) for gene
expression patterns derived from mammary stem cells (MaSC), luminal progenitors (LP) and
mature luminal cells (mL)38, and overlaying the values of each cell-of-origin pattern for each
sample on the fork distribution plots (Figures 2D, S4B). Strikingly, there was an apparent
association between the three cell states and the MB12_LF / MB1_UF / MB2_UF multi-state
switch (Figure 2D). Average scores for all three cell states were significantly higher than for
any of the intrinsic (PAM50) subtypes (Figure S4C). Stemness (MaSC) was largely
accompanied by MB12_LF features, such as low mitochondrial abundance and glutamate
substrate preference, whilst switching to either mL or LP cell state was followed by increased
mitochondrial biogenesis driven by proliferation signalling in absence (MB1_UF: mL state) or
presence (MB2_UF: LP state) of Myc/miRNA signals (Figure 2E).

3. Mitochondrial and metabolic gene expression profiles predict functional metabolic
switches
For functional verification of the predicted metabolic switches, we aimed to detect the
identified gene expression switches in cellular and in vivo breast tumour models. Using
either our custom or GSVA scoring methods on breast cancer cell line transcriptome
datasets45–47, we identified cell lines belonging to each position of the three bicluster
switches, demonstrating that cellular models represent appropriately the full spectrum of
transcriptional signatures identified in human samples (Figure 3A, Table S7). On the other
hand, in a collection of patient-derived breast cancer xenograft (PDX) models48, the
MB1-2_LF position was not represented among the successfully implanted PDXs, although
all the biclusters and forks were discoverable in the original tumours (Figure 3B). We
therefore used cell line models to explore two hypotheses based on the predictions from
computational analysis: cells with MB1_UF phenotype (i) boast higher mitochondrial content
and activity, and (ii) have altered substrate preferences as compared with the MB1_LF
phenotype. We used MCF7 and T47D cell lines to represent the MB1_UF switch and
MDA-MB-436, Hs578t and HCC1134 cell lines for modelling the MB1_LF phenotype.
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Figure 3. Mitochondrial function: MB1_UF cells show active functional biogenesis as
compared to the MB1_LF phenotype.
A. Cell line scoring to reveal cell lines belonging to the observed switches. Volcano plot of the
scores (see Methods, Table S7) and -log10 of the p-values in the MB1_UF / MB1_LF switch,
with the cell lines chosen for experimental work highlighted in red.
B. 2D distribution (PC1 vs ranking index, shown for the MB1 bicluster switch) of biopsies
obtained for generating PDX samples from the study 48, overlaid in left panel: with Pam50
categories to highlight the similarity to the MB1 switch (see Figure 1B) or in right panel: with
growth success whether the sample has grown from the biopsy to PDX status.
C. Oroboros evaluation of ~1M cells of the cell lines grouped by their switch state (MB1_UF /
MB1_LF). Reserve, ATP synthesis coupled and uncoupled respirations were quantified using
FCCP and oligomycin treatments (See Methods). 2-way ANOVA with Sidak's multiple
comparisons test.
D. Average cellular TMRM intensity grouped by switch state (MB1_UF / MB1_LF), data
obtained from high content microscopy from > 1K cells belonging to either switch state.
Unpaired Student’s t-test.
E. Relative expression of respiratory chain subunits quantified from western blot analysis.
Results are grouped by switch state (MB1_UF / MB1_LF). 2-way ANOVA with Sidak's multiple
comparisons test.
F. High content imaging analysis of mitochondrial biogenesis, structure and function in MB1_UF
and MB1_LF cells. Cells were loaded with picoGreen, Hoechst and TMRM and imaged on an
ImageXpress Micro XLS widefield high content screening system, as described in Methods.
Hoechst normalised picoGreen signal, for amplification of the mitochondrial picoGreen signal,
was overlaid and segmented for quantitative analysis on the TMRM signal, denoting thus
nucleoid (green) and mitochondrial (red) segments. Below the images, quantifications in cell
lines grouped by their switch state (MB1_UF / MB1_LF) of the picoGreen integrated intensity,
readout for mtDNA content (left panel); of mitochondrial number, total volume and individual
mitochondrial volume, to assess the state of the mitochondrial network (three panels to the
right, respectively). Unpaired Student’s t-tests.
(ns: P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01,***: P ≤ 0.001, ****: P ≤ 0.0001)

In order to determine the differences in mitochondrial content and activity, we measured
oxidative mitochondrial function and used high-resolution, high-content imaging on large cell
populations to quantify overall mtDNA content and morphology in the MB1_UF and MB1_LF
fork cell lines (Figure 3C-F). MB1_UF cells had higher oxygen consumption rate and
mitochondrial membrane potential, indicating higher redox potential to feed electrons in the
respiratory chain (Figure 3C, D). Higher mitochondrial abundance in MB1_UF cells was
confirmed by western blot analysis of respiratory chain components (Figure 3E).
High-resolution image analysis of mitochondria across cell populations (Figure 3F) showed
that while the number of mitochondria per cell was equal in both forks, MB1_UF cells had
higher mtDNA content, and greater total and individual mitochondrial area, indicating larger
mitochondrial size and overall content. These experiments confirmed a switch in
mitochondrial abundance and function as predicted by gene expression profiling using
MCbiclust.

Next, in order to detect the metabolic switch with altered substrate preferences associated
with the different mitochondrial switch positions, we performed a steady state metabolic flux
analysis of heavy carbon labelled key cellular fuels using uniformly labelled 13C-glucose,
13C-glutamine and 13C-pyruvate. MB1_UF and MB1_LF cells were incubated with each
substrate in separate experimental sets. Mass spectrometry analysis of carbon-labelled
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compounds was used to quantify isotopologues of metabolites in the main catabolic
pathways of the three substrates. In addition, to verify substrate dependencies, we
introduced conditions with combinations of reduced glutamine and pyruvate
(glutamine[glutamine] H/L = 1mM/0.1mM; [pyruvate] +/- = 1mM/0 mM, Figure 4A).

Using these methods, the fate of glucose via aerobic glycolysis was assessed by
quantifying glucose uptake, lactate production, and the relative incorporation of glucose
derived heavy carbons into lactate (m+3 isotopologue). We found no significant differences
between the MB1_UF and MB1_LF switches in all the conditions tested (Figure 4B). This
shows that aerobic glycolysis occurs in both MB1 switches at high rate, verified by the nearly
complete glucose-derived 13C labelling of glycolytic intermediates (Figure S5A). However,
MB1_UF cells produced pyruvate (m+3) from glucose at significantly higher levels than
MB1_LF (Figure 4C), suggesting that glucose flux through glycolysis was higher in the
MB1_UF switch, presumably delivering pyruvate to be oxidised in the TCA cycle.
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Figure 4. Metabolic wiring of the switch positions probed by 13C-labelled substrates
A. Nutrient supply and 13C-labelling conditions used throughout the experiments presented in
this figure. High and low glutamine (H/L = 1mM/0.1mM) levels were combined with the
presence and absence of pyruvate (+/- = 1mM/0 mM), glucose was kept at 10mM.
B. Aerobic glycolysis was tested by measuring glucose uptake (first panel) and lactate
secretion (second panel) from the mass spectrometry data obtained from cell culture media, as
well as the fractional enrichment of m+3 labelled lactate intracellularly (third panel), see
Methods. Cells were grouped by switch state (MB1_UF / MB1_LF). 2-way ANOVA with Sidak's
multiple comparisons test.
C. Fractional enrichment of the m+3 pyruvate isotopomer, following U13C-glucose labelling for
24h, in cells grouped by switch state (MB1_UF / MB1_LF). 2-way ANOVA with Sidak's multiple
comparison tests.
D. Overall model of the MB1_UF/MB1_LF metabolic switch in central carbon metabolism.
Glucose derived pyruvate is preferentially used in the TCA cycle either by the PDH or PC route
in the MB1_UF cells/position, driving high respiration. Glutamine is taken up more in MB1_LF
cells, and they use it preferentially in the TCA cycle, and their respiration relies on glutamine
derived glutamate, but glutamate is also re-secreted into the extracellular space in high amount
in these cells. Extracellular pyruvate does not contribute significantly to the TCA cycle,
preferentially used for lactate production and thus setting the cytosolic redox ratio.
E. Relative carbon contribution to citrate following 24h labelling with U13C-glucose and
U13C-glutamine, in cells grouped by switch state (MB1_UF / MB1_LF) The values were
calculated as described in Methods. 2-way ANOVA with Sidak's multiple comparison tests.
F. The fate of glucose derived carbons in the TCA cycle. Fractional enrichment of the m+2
(PDH route, left panel) and m+5 (PDH+PC route, right panel) isotopologues in citrate following
24h labelling with U13C-glucose, in cells grouped by switch state (MB1_UF / MB1_LF). 2-way
ANOVA with uncorrected Fisher's LSD multiple comparison tests.
G. The fate of glutamine in cells grouped by switch state (MB1_UF / MB1_LF). Glutamine
uptake and glutamate secretion rates were measured by specific biochemical assays in the
culture media prior and following 24h incubation with cells (left two panels). Fractional
enrichment of malate m+4 (oxidative route) and citrate m+5 (reductive carboxylation)
isotopologues following 24h labelling with U13C- glutamine (right two panels). 2-way ANOVA with
uncorrected Fisher's LSD multiple comparison tests.
H. Substrate dependence of mitochondrial respiration and cellular ATP production in cells
grouped by switch state (MB1_UF / MB1_LF). Left panel shows basal oxygen consumption rate
as measured by Seahorse XFe96 analyser (see Methods). Right panel shows total cellular ATP
content measured by a luciferase assay following lysis of cells kept in the indicated media for
24h. 2-way ANOVA with uncorrected Fisher's LSD multiple comparison tests.
(ns: P > 0.05, *: P ≤ 0.05, **: P ≤ 0.01,***: P ≤ 0.001, ****: P ≤ 0.0001)

The TCA cycle can be fed either by glucose derived pyruvate or glutamine derived glutamate
at any ratio (Figure 4D). Thus, to assess substrate preferences, we quantified the relative
carbon contribution of glucose, glutamine and externally added pyruvate carbons to the TCA
cycle. The results showed significantly higher glucose-derived pyruvate incorporation into
citrate, fumarate and malate in the MB1_UF cells, while more glutamine derived carbons
were incorporated into TCA cycle metabolites in MB1_LF cells (Figures 4E, S5B). These
results indicated a clear switch between glucose-derived pyruvate versus glutamine feeding
into the TCA cycle. Pyruvate entered the TCA cycle both via the PDH and PC routes in
MB1_UF cells (Figure 4F). In contrast, MB1_LF cells used glutamine in both the oxidative
and reductive direction at higher levels than in MB1_UF cells, and additionally showed
increased glutamine uptake and subsequent glutamate secretion (Figure 4G). In summary,
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both low (MB1_LF) and high (MB1_UF) mitochondrial activity switches in cultured tumour
cells are accompanied by aerobic glycolysis, but the switches differ in their substrate
preference to fuel their TCA cycle activity. The MB1_UF switch promotes the use of glucose
as main carbon source, while in MB1_LF glutaminolysis dominates.

To functionally verify the switch to glutamine preference in the MB1_LF phenotype, we
applied glutamine restriction (see conditions in Figure 4A). The lack of glutamine resulted in
reduced bioenergetic competence demonstrated by reduced mitochondrial oxygen
consumption rate and total cellular ATP levels limited to MB1_LF cells (Figure 4H).
Strikingly, glutamine restriction partly reverted the MB1_LF metabolic switch in the MB_UF
direction by promoting glucose derived pyruvate entry in the TCA cycle via the PC route (see
Figure 4F). Interestingly, externally added pyruvate was incorporated at only low levels into
the TCA cycle (Figure S5D) but promoted glucose derived pyruvate utilisation by the PC
route in MB1_LF cells, shifting the metabolic phenotype towards the MB1_UF switch (Figure
4F).

Thus we have discovered a metabolic switch defining MB1_UF tumour cells where a mature
luminal (mL) cell-of-origin phenotype with oestrogen receptor and cell cycle signalling is
associated with an adaptive gene expression pattern, promoting high glycolysis together with
high TCA activity and energy production, relying mostly on glucose. In the other position of
the switch, in MB1_LF mammary stem cell like cells (MASCs), glutamine is preferred to use
to fuel lower mitochondrial activity. In addition, our functional analysis also revealed that the
functional metabolic switch is adaptable to environmental changes in that the positions can
be shifted by altering substrate availability. A switch from glutamine to pyruvate supply in
MB1_LF cells not only reverted the low pyruvate entry into the mitochondria and
corresponding TCA cycle flux to levels found in MB1_UF cells (Figure 4E, F), but also
increased respiration and ATP levels (Figure 4H).

Our prediction assumes that transcriptomic profile switches can determine metabolic routes
via modulating the protein expression levels of metabolic pathway components. In order to
test this assumption, we performed western blot analysis of enzymes from key pathways by
which glucose, glutamine and pyruvate are fed into the TCA cycle (Figures 5A, S6).
Expression levels of 29 metabolic enzymes with diverse localisation clustered according to
switch positions (UF and LF) across the cell lines (Figure 5B). Higher mitochondrial
abundance in the UF was confirmed by increased grp75 expression compared to the
cytosolic β-actin marker (Figure 5B, lower panel). Interestingly, these changes when
compared with mitochondrial and cytosolic abundance, showed divergent patterns of
differential expression (Figure 5B left and right heatmaps, respectively). Moreover, scaled
protein levels of key enzymes matched the CV value of their transcripts (Figure 5C). Overall,
expression of most metabolic enzymes followed the higher mitochondrial abundance in the
MB1_UF state. Those with the largest observed difference are involved in the
malate-aspartate shuttle (GOT1, GOT2) and pyruvate utilisation (MPC2, pPDH ratio, IDH2)
(Figure 5D, E). These results support the metabolic phenotype described for MB1_UF cells
(see Figure 4). In contrast, only a small set of enzymes was overexpressed in the LF,
underpinning key characteristics of the LF, such as increased glutamine utilisation (GLS1,
GFPT2). These data confirmed that transcriptomic patterns can directly predict metabolic
pathway activities. Close correlation of transcript and protein levels indicated that
transcriptional regulation dominates metabolic pathway activities via the regulation of their
key enzymes.
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Figure 5. Protein expression profiles match transcriptomic switches
A. Western blot analysis of 29 metabolic enzymes across five cell lines representing MB1_UF
and MB1_LF switch positions and cell states. Representative blots from n ≧ 3 independent
experiments, used for quantification of signals, normalising density values to either grp75 or
β-actin.
B, D, E. Clustering and quantitative analysis of enzyme expression levels obtained from A.
Values were separately normalised to either mitochondrial (left panels) or cytosolic (right
panels) markers, grp75 or β-actin. The comparison of mitochondrial abundance based on the
grp75/β-actin ratio is shown in the lower panel in B. Heatmaps are based on a pairwise, robust
to outliers distance measure of the mean protein expression values. K-means clustering. D, E.
2-way ANOVA with uncorrected Fisher's LSD multiple comparison tests.
C. Heatmap and k-means clustering of (i) transcript CV values of the 29 enzymes from the
METABRIC dataset (see Figs. 1, 2, positive values predicting higher expression of genes in
MB1_UF, negative values corresponding to higher expression in MB1_LF), (ii-iii) the scaled
(between -1 and 1) protein expression levels averaged across all cell lines, normalised to grp75
(ii) or β-actin (iii).
(ns: P > 0.05, *:P ≤ 0.05, **: P ≤ 0.01,***: P ≤ 0.001, ****: P ≤ 0.0001)

4. Pathological and clinical predictions from metabolic gene switches
As metabolic gene switches are associated with cell states, they potentially indicate clinically
relevant features such as genotypes, phenotypes and gene transcription patterns. We tested
the correlation of switch positions with genetic, biological, pathological and clinical data in
the TCGA and METABRIC datasets to investigate this. First, in order to understand whether
a specific tumour architecture or histological origin is associated with switch positions, we
used the most recent dataset with comprehensive coverage of histological features and
classifications in the full TCGA BRCA sample set49, and tested the distribution of features
among individual forks (Figures 6A, S7, Table S8). A group of features was highly variable
between switch states, including enrichment for invasive lobular carcinoma (ILC) in the
MB12_LF switch state, and increased signs of nuclear pleomorphism in the MB2_UF (Figure
6B). Of note, ILC , the most common “special” histological subtype of breast cancer which
comprises approximately 10% of all breast cancer diagnoses in the developed world,
characteristically displays low nuclear pleomorphism50. Overall, both the MB1_UF and
MB2_UF switch positions were associated with increased proliferation (mitosis) and higher
cellularity (epi_area) in contrast to MB12_LF, in which about half of tumours were classified
as ILC. Additionally, MB2_UF was highly enriched in samples with necrosis, nuclear
pleomorphism and immune infiltration (inflam), all of which are features of more aggressive
tumours.

Next, in order to identify and compare further unique features of each switch position, we
have assessed the fraction of samples with each individual feature spanning both
histological and genetic data. As shown in Figure 6C, when analysing the MB1 and MB2
bicluster switches, the MB12_LF, MB1_UF and MB2_UF samples formed separate clusters.
MB12_LF samples characteristically showed low proliferation and were enriched in tumours
with the LumA intrinsic subtype and ILC histology. This is likely determined by specific CN
variation, methylation and miRNA clusters (Figure 6D). Epigenetic modifications triggering
metabolic switches and vice versa, have been recently studied51,52. On the other hand, while
both MB1_UF and MB2_UF samples showed increased proliferation, they diverged by
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intrinsic subtype (LumB and Basal, respectively) and the underlying genetic and
transcriptional constitution (CN variation, methylation and miRNA clusters).

Finally, we asked whether metabolic switch positions in the MB1 bicluster can predict the
clinical outcome of ER positive breast cancer. In order to do this, we performed a survival
analysis using an independent breast cancer dataset53 and applying the weighted average of
a core geneset of 44 genes to determine the MB1_UF and MB1_LF switch positions. The
MB1 switch includes almost exclusively ER positive tumours, divided into two groups, which
partly overlap with the two luminal intrinsic subtypes, LumA and LumB and the normal-like
subtype (see Figure S4A). ER positive tumours overall are sensitive to antihormonal therapy,
but adjuvant chemotherapy is usually recommended against tumours progressing to lymph
nodes. However, only a fraction of these patients respond to this distressing treatment,
motivating large recent efforts to develop gene expression pattern based methods to stratify
individual ER positive tumours into chemotherapy sensitive and resistant groups prior to
adjuvant treatment54,55. The overall survival of patients with MB1_LF pattern expressing
tumours was better than the MB1_UF group (Figure 6E). Moreover, when only tumours with
the common ER positive, Her2 negative receptor subgroup from patients with axillary lymph
node metastases who had been treated with both chemotherapy and endocrine therapy
were considered, the 10-year overall survival of patients with the MB1_LF pattern
approximated to 90% (Figure 6F). This is despite the very well-documented adverse
prognosis of axillary metastases56, a feature that is largely independent of tumour biology.
Excellent survival was also observed when the group was further filtered to include only
tumours with the LumB intrinsic subtype, which is also an adverse prognostic feature57,58

(Figure 6G). In contrast, the survival of patients with MB1_UF tumours was dramatically
poorer in these two groups.
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Figure 6. Pathological and clinical predictions from metabolic gene switches
A. Chi-squared distribution of discrete histological features across the upper, lower and
non-fork samples of the three biclusters (MB1-MB3). Heatmap shows k-means clustering of
chi-squared test p-values (-log10P), dividing the histological parameters into three groups: high,
low and none association with the bicluster.
B. Visualisation of histological feature distribution on the MB1 and MB2 switches. Classifiers of
histological tumour type (upper panel) and degree of nuclear pleomorphism are overlaid onto
2D distribution plots of TCGA samples. The axes represent the scale between the upper (UF)
and lower (LF) forks of each bicluster.
C. Clustering of histological and genetic features of samples belonging to the MB1 and MB2
switches. Fractions of samples for each feature were calculated and clustered with a custom
robust to outliers distance measure and K-means clustering. Genetic features representative of
each switch position are highlighted in bold.
D. Key genetic and transcriptional architecture of the MB1 and MB2 switches.
E-G. Survival analysis of samples in the MB1 switch. Kaplan-Meier survival plots of samples
with MB1_UF and MB1_LF patterns are shown. E. All (1660) samples compiled from the GEO
database 53. F. Subset of samples from endocrine and chemotherapy treated ER positive
patients (100). G. Subset of samples with LumB molecular subtype (51). Menkel Cox logrank
test results are shown on the individual plots.

Altogether, these results indicated that large scale mutually exclusive gene expression
clusters govern the mitochondrial and metabolic status of breast tumours. These multi-state
switches extend beyond the metabolic gene sets, and reveal the biochemistry, architecture
and chemosensitivity of tumours.
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Discussion
The current availability of large scale genomic and transcriptomic datasets on physiological
and pathological conditions escalated the need to devise computational strategies providing
statistically sound predictions of how individual genes and gene groups are regulated and
contribute to cellular phenotype. The Gene Expression Patterns (GEPs) underlying
phenotype or cell state switches59–61 are complex and have not been comprehensively
analysed, although methods to address the question are being developed62. These methods
are part of pattern recognition, subgroup discovery and dimensionality reduction techniques
that often apply biclustering approaches to enhance the probability of discovering patterns of
gene expression which only exist in sample subsets. We have recently developed a
biclustering method, MCbiclust30,31, which is optimised for discovery of large scale
anti-correlating patterns to stratify large heterogeneous sample collections. This allows the
detection of differences and switches in large-scale GEPs. We have previously shown that
this approach is able to distinguish cancer cell types according to their organ (or cell type) of
origin, and have discovered subgroups of mitochondrial succinate dehydrogenase (SDH)
deficient tumour samples partly by their altered metabolic networks30.

Here we have developed a resource to apply massive correlated biclustering as part of a
pipeline to discover metabolic switches and determine their signalling and transcriptional
regulation, as well as their potential predictive power in tumour biology and clinical outcome.
Predictions of tumour biology, energetics and metabolism were verified in experimental
models and clinical relevance was demonstrated by applying the pipeline to large breast
cancer transcriptome and genomic datasets. The pipeline consists of MCbiclust and a series
of pathway analysis approaches used to understand metabolic adaptation in >3K
heterogeneous breast cancer samples. The method identified large multi-state gene
expression pattern switches in signalling and metabolic adaptation, which coincided with
differentiation status, i.e the cell of origin of tumour cell types, and predicted metabolic
fluxes, histological features and clinical outcome.

Currently available biclustering methods have been productive in finding functionally relevant
gene networks but they do have limitations63. Our previous evaluation of MCbiclust30 showed
that the algorithm scored better than five mainstream biclustering methods that were
available at the time, due in particular to its ability to recognise large biclusters. Cell fate is
thought to be more often regulated by widespread gene expression patterns than by
activation of a small set or single genes64–66. This probably explains the ability of our method
to discover patterns in tumour subsets that have different cells of origin. In addition, while
previous methods mostly used either differential gene expression comparisons with normal
samples or pairwise differential correlation17, MCbiclust uses a greedy search to maximise
the average absolute correlation value of a large (~1K) geneset. By covering a large fraction
of the whole transcriptome, this allows the discovery of composite chequer pattern
biclusters, which contain both positively and negatively correlated gene groups, thereby
defining two gene sets that switch expression between sample subsets. The method
additionally allows the discovery of alternative, multi-state switches which we have
demonstrated here through our discovery that some subsets of multiple biclusters
(MB12_LF) showed near complete overlap.

The relationship between transcripts of individual enzymes and metabolism is not linear26,
and apart from enzyme transcript abundance, metabolic activity is fundamentally determined
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by substrate fluxes15. However, we have to emphasize that we do not seek to establish such
a direct, linear link. Rather, we argue that long term adaptive regulation of metabolism
according to cell state must be reflected by the co-regulation (correlation) of larger fractions
of the transcriptome, which necessarily includes metabolism related genes. Using MCbiclust
we discovered such large-scale gene expression patterns, involving a significant (4-5%)
fraction of the genome. These GEPs couple cellular states via cellular signalling to cell cycle,
stress responses, metabolism and bioenergetics, as shown in Figure 2C, D. We found that
cellular states along the differentiation tree of mammary epithelial cells (Figure 2D, E), are
represented by large GEPs which undergo binary, or multiple switching (Figure 1A-H). We
argue that the mitochondrial (bioenergetic) and metabolic components of these binary GEPs
carry information on the prevailing metabolic phenotype. Instead of seeking direct correlation
between metabolome and transcript abundance, we assess the link in a novel way:
1. For gene group discovery, instead of mRNA abundance, we select groups of genes which
show maximum correlation. This reflects strong co-expression/co-regulation among the
genes in the group.
2. For the selection of the gene group members we maximised the absolute correlation
value across the group, thus we considered both negative and positive correlations. This
approach results in finding two groups, the most positively and the most negatively
correlating ones. This means that, as shown in Figure 1A, the samples of the bicluster will
have higher expression of either one or the other gene groups, as compared between each
other. Accordingly, switching signifies the concerted change from ‘off to on’ (low vs high
mRNA abundance) and ‘on to off’ of large (0.5-1K) groups of genes, causing the positive and
negative checker pattern of correlations.
3. Since the correlation could be calculated for the whole transcriptome (Figure 1F), it was
straightforward to quantify the correlation of each transcript in a metabolic pathway with the
prevailing pattern (Figure 2A), giving a ranked distribution of the pathway members
associating with the GEP, primarily indicating whether the correlation values are higher in
one or the other sample group (upper or lower forks, see Figure 1B-E). This difference
usually coincides with the difference in overall abundance of transcripts in a pathway, but the
quantification is based primarily on correlation.
Thus, here we predicted relative differences in pathway activities between two groups of
samples (UF and LF)in a bicluster, based on overall transcriptional activity and regulation in
the groups along the specific pathway. We present experimental verification of one
prediction. In this specific case, correlation analysis indicated differences in glucose and
glutamine metabolism between MB1_LF and MB1_UF samples, which were confirmed
experimentally (Figures 3 and 4). Previously we have also identified an MB2_UF associated
metabolic phenotype, which has been experimentally verified and published67.

Breast cancer GEPs have been intensively studied which has led to the development of
several molecular classifications; these include intrinsic subtypes57 as defined by the PAM50
algorithm (which is available for clinical use)58, and the integrated clusters which are defined
using both GEPs and genomic data33,68. However, the further integration of the intrinsic
subtypes and integrated clusters with histological data49 and the exact origins of other
emerging subtypes are still debated35,69. The stratification of breast cancer provided by
MCbiclust only partially overlaps with other molecular classifications such as the intrinsic
subtypes (see Figure S4). It therefore provides a novel perspective on breast cancer
subgroups, particularly in respect of functional features, such as metabolic and bioenergetic
rewiring. This is a unique feature of MCbiclust in comparison to other molecular
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classifications which are all based on gene sets with much more diverse function.
Importantly, other recent biclustering approaches to breast cancer datasets provide
resolution such as that of PAM50 subtyping70,71.

Our analysis of patient survival according to the MB1 MCbiclust fork (see Figure 6) provides
preliminary data to suggest that this classification may prove to be clinically very important.
Although the analysis was performed in a retrospective cohort which allowed only limited
matching between the characteristics of a comparatively small number of included patients,
the outcome difference between the MB1_LF and MB1_UF groups is too large to have
arisen by chance. The data additionally suggest that the survival prediction may be superior
to that provided by intrinsic subtyping. ER positive tumours included in this analysis are
sensitive to endocrine therapy as a group. The additional use of adjuvant chemotherapy has
been widely recommended for patients with axillary lymph node involvement. However, only
a fraction of patients benefit from this distressing treatment, motivating large recent efforts to
develop gene expression pattern based methods to stratify ER positive tumours into
chemotherapy sensitive and resistant groups54,55. The excellent outcome of patients in the
MB1_LF despite other adverse prognostic features raises the possibility that patients in this
group could safely avoid chemotherapy. In contrast, the poor outcome of the MB1_UF group
demonstrates a need for additional or alternative approaches to treatment for these patients.

MCbiclust also provides two novel and interesting insights into tumour origin and
architecture. First, by comparing previously described patterns associated with the putative
cell of origin of different tumour types, a close correlation with the biclusters was found (see
Figures 2D,E; S4B), illustrating the power of the method to determine cell fate associated
gene expression patterns. In this analysis, the weakest correlation was found between
MaSC and MB12_LF. This might not be surprising given that MaSC represents an already
heterogeneous population of cells43, of which certain fractions might belong to other switches
(in particular MB2_UF). Second, histological analysis of samples belonging to MB12_LF
switch showed striking enrichment in invasive lobular carcinoma (ILC), a comparatively
infrequent histological tumour subtype which is increasingly identified as an entity with
molecular characteristics that are distinct from those of the common invasive ductal
carcinoma72–74. The signalling pathways associated with the MB12_LF switch might help to
explain the properties of ILC.

Intriguingly, all biclusters (including the ones arising from random genesets as starting points
- see Figures 1, S1) were significantly enriched in nuclear encoded mitochondrial genes.
This may reflect co-regulation of a large set of genes belonging to the same organelle and
indicate the necessity of shaping mitochondrial gene expression patterns according to the
actual cell state. Moreover, gene expression and metabolomic analysis have also disclosed
strong co-regulation of mitochondrial and extra-mitochondrial metabolic genes. This provides
a platform for understanding metabolic and bioenergetic adaptation in cancer development.
Interestingly, both the MB1_UF and MB2_UF switch positions showed increased
transcriptional biogenesis of mitochondria as compared to MB12_LF, where nuclear encoded
mitochondrial genes were under-represented. This observation is in line with the currently
emerging view of mitochondria in tumours, recognising that normal or high activity of certain
mitochondrial metabolic pathways often drives aberrant tumour proliferation75. Our analysis
focusing only on tumour samples, reveals only relative differences in mitochondrial
biogenesis between the switch positions, and thus cannot discriminate between (i)
upregulation of biogenesis in the MB1_UF and MB2_UF switch positions and (ii)
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suppression of mitochondrial biogenesis and function in the opposite (MB12_LF) position.
Recent data indicating loss of mitochondrial mass and function under chronic stress
conditions76 and reduced mitochondrial activity in stem cell states77 support the latter view.

In summary, we have created a methodology with the potential for discovering large,
alternating gene expression patterns and have demonstrated its utility through the analysis
of breast cancer cells and transcriptomic datasets. The method provides a useful resource
for exploring physiological and pathological78 conditions where phenotypic switches play a
major role.
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