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Abstract 
Machine learning is used to investigate the codon usage of protein-encoding genes, which is one 

of the fundamental questions of molecular biology. The presentation, parameter learning, and 

decoding of the conditional random field (CRF) model are implemented and then utilized to 

analyze the codon usage of the genes of Escherichia coli and its phages. Most genes of E. coli use 

codons conforming to the weights of the model determined by all E. coli genes. Phages use the 

codons like their host E. coli. Finally, the study evaluates the codon usage of several example 

genes in the context of the model. These results help to understand the codon usage in E. coli. 

 

 

 

Introduction 
In 1958, Francis Crick proposed the central dogma of molecular biology, i.e., the genetic 

information in the cell flows from DNA to RNA and then from RNA to protein (Crick, 1970). The 

DNA sequence determines the RNA sequence and the RNA sequence determines the protein 

sequence. However, due to the synonymous codons, there might be a huge number of possible 

DNA sequences capable of encoding a given protein. This raises the question of how the codons 

are used for the protein-encoding genes. Reports have shown that codon usage is important for 

mRNA stability and gene expression level (Zhou et al., 2016, Quax et al., 2015, Kudla et al., 

2009). The synonymous mutations are associated with protein folding and human disease (Walsh 

et al., 2020, Sauna and Kimchi-Sarfaty, 2011). A recent study showed that the synonymous 

mutations of some genes in yeast are detrimental (Shen et al., 2022). Evidently, the codons are not 

randomly used in the protein-encoding genes. The problem is how to describe the codon usage, or 

which model shall be used. 
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Deep learning seems attractive since it has played important roles in image recognition, 

protein engineering, and protein structure prediction (Zhong et al., 2021, Alley et al., 2019, 

Jumper et al., 2021, Baek et al., 2021). Researchers borrowed ideas from natural language 

processing and developed the protein language model for analyzing large numbers of protein 

sequences (Elnaggar et al., 2022). However, it is difficult to interpret the learned parameters in a 

practical sense from the universal architecture of deep learning. Moreover, deep learning needs a 

large sample to train the magnificently numerous model parameters. Moreover, there are lots of 

nodes in one layer and many layers within the neuron network of the deep learning model, which 

needs tens of thousands, or even more parameters for model description. Consequently, a large 

sample is required to train these parameters. The E. coli has only less than 5, 000 genes, by no 

means an enough large sample for the deep learning model to train the magnificently numerous 

parameters. 

Another approach is the conventional machine learning models that are reasonably mature and 

interpretable (Greener et al., 2022). The parameters are relatively few and the training does not 

require a large sample. Among the conventional machine learning models, the conditional random 

field (CRF) model is excellent for describing the relationship between the protein sequence and 

the gene sequence as it is essentially the same as the labeling of sequential data (Lafferty et al., 

2001). Fig. 1 shows the principle of the conditional field model for describing the codon usage of 

protein-encoding genes. Calculating the unnormalized probability of each path takes all of the 

edges and vertices into account, which overcomes the label bias problem and allows long-range 

dependency. In addition, the cost function of the CRF model during parameter learning is a 

convex function, which behaves well for allowing an arbitrary approximation to zero in theory. 

These merits make the CRF model an exceptionally good model for describing codon usage. 

 

 

Fig. 1. A pictorial representation of the conditional random field model of protein and DNA. (A) 

All possible DNA sequences for a given protein sequence. (B) One of the possible DNA sequences 

for a given protein sequence. An amino acid is called an observation and a codon is called a state. 

A codon-codon pair is called a state pair and a codon-amino acid is called a state observation pair. 
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For the DNA sequence in (B), the unnormalized probability can be calculated by exp 

(START-START+START-C1+C1-AA1+C1-C3+C3-AA2+,…,+C15-C63+C63-AAn+STOP-STOP), 

where each item inside the parenthesis, C1-C3 for instance, stands for the weight of C1-C3, and the 

unnormalized probability of any other DNA sequence in (A) can be calculated in this way. The 

normalized probability of each DNA sequence is obtained by dividing its unnormalized 

probability by the sum of the unnormalized probabilities of all DNAs. 

 

Here, we deal with the genes of Escherichia coli str. K-12 substr. MG1655 and write the 

Python codes for the presentation and parameter learning of the CRF, the analysis of E. coli and 

phage genes, aiming to describe and explain the codon usage of protein-encoding genes, which is 

of both theoretical and practical importance. 

 

Results 

Parameter learning and analysis of CRF 

The S algorithm is applied to perform the improved iterative scaling (IIS) for the E. coli genes to 

obtain the parameters of the CRF model, i.e., the weights in the state pair dictionary and the state 

observation pair dictionary (Lafferty et al., 2001). The results of the IIS algorithm are shown in 

Fig. 2. All the delta weights of edges are less than 1e-6 (Fig. 2A) and all the delta weights of the 

vertices are less than 1e-6 (Fig. 2B), indicating that all parameters converge to the predefined 

range. Fig. 2C and 2D show the histograms for the weights of the edges and vertices, respectively. 

The values of most weights of the edges and vertices are around zero, however, the weights of a 

few edges and vertices are far away from zero, such as the weight of TGCTAG is -19.26 and the 

weight of CTGLs is -3.17 (see the screen output of 3_get_delta_weights_of_dict.py for detail). To 

intuitively illustrate the effect achieved by parameter learning of the model, Fig. 2E shows the 

difference between the expected count and the empirical count as a percentage of the empirical 

count for each edge and Fig. 2F shows the difference between the expected count and the 

empirical count as a percentage of empirical count for each vertex. It can be seen that all of the 

errors are less than 1%. These results demonstrate that the parameter learning of the CRF model 

achieves the intended goal, which lays a solid foundation for the subsequent analysis. 
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Fig. 2. The learned parameters of conditional random field model. (A) The delta weights of the 

edges. (B) The delta weights of the vertices. (C) The weights of the edges. (D) The weights of the 

vertices. (E) The difference between the expected count and the empirical count as a percentage of 

the empirical count for each edge. (F) The difference between the expected count and the 

empirical count as a percentage of the empirical count for each vertex. 

 

Analysis of E. coli genes with CRF 

We start by defining an indicator called the codon usage index for quantifying the codon usage of 

genes. In theory, many possible DNA sequences can encode a protein sequence of interest. For any 

two of these DNA sequences, such as DNA sequence 1 and DNA sequence 2, the first codons of 

the DNA sequence 1 and DNA sequence 2 may be the same, or different, and so on for the rest of 

the codons. If we count the number of situations where the two codons are the same and then 

divide by the total number of codons in DNA sequence 1, then we get the codon usage index for 

DNA sequence 1 and DNA sequence 2. For a given protein sequence, the mathematical 

expectation of the codon usage index for the two random DNA sequences can be calculated with 

the frequency of codon usage, or calculated with the frequency of codons as equally possible. 

Since the parameters of the CRF model have been obtained, the DNA sequence of max probability 
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according to the Viterbi algorithm then is compared with the real gene sequence to get the codon 

usage index. 

With the learned parameters of the CRF model, the Viterbi algorithm is used to analyze the 

codon usage indexes of the 4292 genes of E. coli (Fig. 3) (Viterbi, 1967). For most of the genes, 

the codon usage index between the real gene sequence and the max probability gene sequence is 

greater than the mathematical expectation of the codon usage index considering the frequency of 

codon usage and even greater than the mathematical expectation of the codon usage index with the 

frequency of codons as equally possible (Fig. 3A). The difference in the codon usage index is 

greater than 0 for nearly 4, 000 genes. The groups with the largest frequency number are within 

the range of 0.1 to 0.2, accounting for over 2, 000 genes (Fig. 3B). These results demonstrate that 

the real gene sequence tends to use codons in a way similar to how the DNA sequence of the max 

probability of the CRF model uses codons. 

 

 

Fig. 3. Codon usage analysis of E. coli genes with the conditional random field model. (A) The 

sorted codon usage indexes for E. coli genes. The orange dot shows the mathematical expectation 

of the codon usage index for two random DNA sequences corresponding to the given E. coli 

protein sequence with the frequency of codons as equally possible. The red dot shows the 

mathematical expectation of the codon usage index for two random DNA sequences 

corresponding to the given E. coli protein sequence, taking the codon usage frequency into 

consideration. The blue dot shows the codon usage index for the max probability DNA sequence 

and the real DNA sequence for the given E. coli protein sequence. The genes are sorted 

increasingly according to the value of the blue dot minus that of the red dot. (B) The frequency 

number of the differences between the values of the blue dot and the corresponding red dot in (A). 

 

Distribution of the empirical counts for the edges and vertices of E. coli genes 

To investigate the distribution of the empirical counts for the edges and the vertices of E. coli, a 

random number of random genes are selected from E. coli genome to get the edge count and the 

vertex count. The Pearson product-moment correlation coefficient (PPMCC) is calculated for the 

edge counts of each sampling (containing a pair of samples) from the genes of E. coli genome (Fig. 

4). For E. coli, the PPMCCs for edges are close to 1 and those for the vertices are even closer to 1. 

This data is unexpected and very interesting. Therefore, the genome sequences of three other 

bacteria are investigated and the results are similar to that of E. coli. These results demonstrated 

that for a random subset of the genes of some bacterial genomes, the distribution of edges follows 
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a certain pattern, and the distribution of vertices follows a certain pattern as well. Both patterns are 

linear proportional, as the PPMCCs are very close to 1. This suggests that the codon usage of the 

genes of a bacterium might reach a stylistic consistency during a long time of evolution, and it is 

possible to learn approximately the parameters of the CRF model even if only a subset of the 

bacterium genes is available. 

 

 

Fig. 4. The distribution of edge and vertex of the genes for four bacteria. The name of the 

bacterium is shown on the title of each subplot. The blue dot shows the PPMCC for the edges of 

each sampling and the orange dot shows the PPMCC for the vertices of each sampling. 

 

Analysis of phage genes with CRF 

The phages depend on host E. coli to complete their life cycles (Salmond and Fineran, 2015). 

Though they have no protein manufacturing machinery, the phages might have learned to acquire 

the rules of codon usage from their host during the process of evolutionary adaptation. To test this, 

the genomes of eight phages, including T1-T7 and lambda, are used for CRF analysis (Fig. 5). 

Except for the T7, the pattern of the codon usage indexes for the genes is similar to that of E. coli 

genes. More specifically, for most genes of the T1-T6 and lambda, the codon usage of the real 

gene sequence is similar to that of the max probability DNA sequence decoded by the CRF model 

of E. coli. However, the T7 genes have codon usage indexes close to the mathematical expectation, 

which means that the T7 has not learned enough from the host about the codon usage style. 

Possibly the reason is that the T7 is a virulent phage, which has not reached a balance with the 

host. These results demonstrate that phages can adapt to the stylistic codon usage of the host and 

also provide a new viewpoint for examining the relationship between the phages and E. coli. 
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Fig. 5. Codon usage analysis of phage genes with the conditional random field model. The name 

of the phage is shown on the title of each subplot. The orange dot shows the mathematical 

expectation of the codon usage index for one given gene sequence with the frequency of codons as 

equally possible. The blue dot shows the codon usage index between the max probability DNA 

sequence and the real DNA sequence. The genes are sorted in an increasing manner according to 

the value of the blue dot minus that of the orange dot. 

 

Analyzing codon optimization of the genes with CRF 

To investigate whether the CRF model can be used in the codon optimization of the heterologous 
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genes expressed in E. coli, three genes, i.e., IL-2 (Williams et al., 1988), TTFC (Makoff et al., 

1989), and NF-1-334 (Hale and Thompson, 1998) are used for analysis. It has been reported that 

the soluble expression of IL-2, TTFC, and NF-1-334 are improved 16, 4, and 3 folds respectively 

via codon optimization (Gustafsson et al., 2004). The original sequences and the optimized 

sequences are prepared and analyzed with the E. coli CRF model (Fig. 6). For the original gene 

sequences, the codon usage indexes are near the mathematical expectation, suggesting that the 

codon usage of the original gene sequences is random (Fig. 6A). For the optimized gene 

sequences, the codon usage indexes are higher than the mathematical expectation, which means 

that the codon usage of the optimized gene sequences conforms to that of the E. coli genes (Fig. 

6B). These results suggest that the CRF model can play a useful role in the codon optimization of 

the heterologous gene expression. 

 

 
Fig. 6. Codon usage analysis of three example genes with the conditional random field model. (A) 

Codon usage analysis of the original genes. (B) Codon usage analysis of the optimized genes. The 

orange dot shows the mathematical expectation of the codon usage index for one given gene 

sequence with the frequency of codons as equally possible. The blue dot shows the codon usage 

index between the max probability DNA sequence and the real DNA sequence. The genes are 

sorted increasingly according to the value of the blue dot minus that of the orange dot. 

 

Discussion 

In this study, the codon usage of the protein-encoding genes is addressed with the CRF model to 

ensure that the model is structurally elegant and mechanistically interpretable. The results of the 

parameter learning can be explained clearly. Locally, a greater weight of the edge or the vertex 

indicates a greater possibility of the edge or the vertex. Globally, the possibility of a certain DNA 

sequence for the protein sequence in question is determined by all of its edges and vertices and 

their corresponding weights, in the context of all possible DNA sequences. 

During the analysis of E. coli genes with the CRF model, it is shown that the codon usage of 

the real gene sequence does not conform 100% to the DNA sequence of max probability. This may 

be explained plainly. The CRF model is like the voting system of our society. Each gene votes for 

the parameters of the CRF model with its edges and vertices. The voting system counts the 

number of each type of edge and each type of vertex and subsequently releases a set of 

weight-assigned parameters that both stands for the collective choice internally (genes are 

interacting via voting) and reflects the actual situation externally. Most genes may be happy to 
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find it consistent with their ballots more or less, while the rest may notice that the result does not 

match well with their choices, or even runs counter occasionally. However, the weights of the 

parameters are determined jointly by all genes, to satisfy all genes instead of some specific genes. 

Thus, the max probability DNA sequence calculated with such a weight system fits largely rather 

than completely to the real DNA sequence. 

In sum, the application of the CRF model to the E. coli codon usage helps us understand the 

codon usage systematically and quantitatively. It is useful for the codon optimization of the 

heterologous gene expression and may potentially inspire the transgene, mRNA vaccine design, 

and synthetic biology. 

 

Materials and methods 

Computer hardware and software 

The running environment includes MacBook Air (M1, 2020), macOS Monterey 12.3.1, and 

Python 3.10.4 (Van Rossum and Drake, 1995) with packages numpy 1.23.1 (Harris et al., 2020), 

mpmath 1.2.1 (Johansson et al., 2021), pandas 1.4.3 (McKinney, 2010), biopython 1.79 (Cock et 

al., 2009), and matplotlib 3.5.2 (Hunter, 2007). The improved iterative scaling (IIS) program 

7_improved_iterative_scaling.py needs hardware double Intel Xeon E5-2696 v3 CPUs with each 

CPU 18 cores/36 threads and software CentOS Linux release 7.9.2009 (Core) with conda 4.13.0 

(Anonymous, 2020). The Python 3.10 environment is created in conda and the required package 

mpmath 1.2.1 is pip installed. The IIS program 7_improved_iterative_scaling.py (may need to 

check and modify the value of the variable sub_process_count in line 324 to a proper value such 

as 8 or 72 or other depending on the CPU before running) runs over 50, 000 cycles (each cycle 

taking 38 seconds) before converging to max delta weight less than 1e-6 for all parameters of the 

CRF. All other programs can be run with MacBook Air quickly, in seconds or a few minutes. 

 

Preparation of gene data for E. coli 

The codes and data for this section are in Supplementary Material S1. The genome fasta file 

(MG1655.fasta) of Escherichia coli str. K-12 substr. MG1655 is downloaded from 

https://www.ncbi.nlm.nih.gov/nuccore/U00096.3?report=fasta. The gene information of the 

proteins (proteins_167_161521.csv) of Escherichia coli str. K-12 substr. MG1655 is downloaded 

from 

https://www.ncbi.nlm.nih.gov/genome/browse/#!/proteins/167/161521%7CEscherichia%20coli%2

0str.%20K-12%20substr.%20MG1655/chromosome/. The script 1_find_gene_id_duplications.py 

is used to look for the genes with the same IDs (944843, 945105, 946106, 945687, 946401, 

947077, 947684, 63925658, 949122) in the proteins_167_161521.csv, which are modified to id-2 

or id-3 and treated as new genes. The 2_get_genes.py is used to extract the gene sequences from 

the genome sequence and stored in the folder named gene_files. The 3_check_genes.py is used to 

check whether each gene has a complete coding frame, i.e., having a start codon and a stop codon, 

and to exclude those genes of which the base numbers are not the folds of 3 (945105-2, 946106-2, 

947369, deleted from gene_files). The 4_check_proteins.py is used to check whether there is any 

stop codon in the middle of the gene sequence (excluding the first and the last codons). Those 

genes with at least one stop codon in the middle of the sequence (946035, 948394, 948584) are 

deleted from gene_files. After all these E. coli gene data preparation and data cleaning, a total of 
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4292 genes are obtained. 

 

Presentation of the CRF model 

The structure of the probabilistic graph model CRF is defined with the keys of the Python 

dictionaries. Reference (Alberts, 2015) is used to prepare the file 0_codon_table_raw.txt, which 

records the codon dictionary. There are two dictionaries for describing CRF model in this study, 

including the state pair dictionary and the state observation dictionary. The state pair dictionary 

contains the weight, the empirical count, and the expected count for each edge of the CRF model, 

and the state observation dictionary contains the weight, the empirical count, and the expected 

count for each vertex of the CRF model. The 1_build_dictionaries.py is used to obtain these two 

dictionaries. Along with three other dictionaries produced by the 1_build_dictionaries.py, they are 

all used for parameter learning of the model. The codes and data for this section are in 

Supplementary Material S2. 

 

Parameter learning and analysis of CRF 

The 1_calculate_empirical_features.py is used to get the counts of the state pairs and state 

observation pairs in the genes of E. coli genome, which are stored in the state pair dictionary and 

the state observation dictionary, respectively. The 2_improved_iterative_scaling.py is used for the 

iterative optimization of the weights of the state pair dictionary and the state observation 

dictionary until the max_delta_weight < 1e-6. The folder zzz_CRF_weights_final stores the two 

dictionaries with learned weights. The codes and data for this section are in Supplementary 

Material S3. 

Then the two dictionaries are analyzed with the programs in Supplementary Material S4. The 

1_compare_two_dicts.py is used to compare the empirical counts before and after IIS optimization. 

The 2_get_numbers_of_edges_and_vertices.py is used to get the counts of the edges (4156 types) 

and vertices (70 types). The 3_get_delta_weights_of_dict.py is used to get the delta weights of the 

state pair dictionary and the state observation dictionary. The 

4_get_errors_between_expected_and_empirical_for_dicts.py is used to get the errors between the 

empirical and expected counts of the state pair dictionary and the state observation dictionary. 

 

Analysis of E. coli genes with CRF 

The codes and data for this section are in Supplementary Material S5. The 

1_get_proteins_from_genes.py is used to translate the E. coli genes to proteins, which are stored 

in the folder named protein_files. The 2_get_gene_max.py is used to get the DNA sequence of 

max probability according to the Viterbi algorithm for each protein sequence, which is stored in 

the folder named gene_max_files. The 3_get_codon_frequency3.py is used to get the frequency of 

codon usage in E. coli. The 4_get_codon_identity_for_each_gene.py is used to get the codon 

usage indexes for each protein, including the codon usage index between the real DNA sequence 

and the DNA sequence of max probability, the mathematical expectation of the codon usage index 

for each protein with the frequency of codon usage, and the mathematical expectation of the codon 

usage index for each protein with the frequency of codons as equally possible. The results are 

sorted with the codon usage index between the real DNA sequence and the DNA sequence of max 

probability minus the mathematical expectation of the codon usage index for each protein with the 

frequency of codon usage, and stored in the file ratios_of_identical_codons_of_genes.txt. 
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Analyzing the distribution of the empirical counts for the edges and vertices of E. coli genes 

The codes and data for this section are in Supplementary Material S6. The 1_build_dictionaries.py 

is used to produce the state pair dictionary and the state observation dictionary, both with zero 

count for each empirical value of the edges or vertex. The 2_analyze_empirical_features.py is 

used to select a random number of random genes from E. coli genes and count the edges and 

vertices and the results are stored in dictionaries. For two times of such random selection and 

counting, the Pearson product-moment correlation coefficient (PPMCC) can be calculated for each 

pair of edge dictionaries and for each pair of vertex dictionaries. Three other bacteria are 

investigated as well. The mutifasta file of the Mycobacterium tuberculosis H37Rv genome is 

downloaded from https://www.ncbi.nlm.nih.gov/nuccore/NC_000962.3. The mutifasta file of the 

Staphylococcus aureus subsp. aureus NCTC 8325 is downloaded from 

https://www.ncbi.nlm.nih.gov/nuccore/NC_007795.1. The mutifasta file of the Bacillus subtilis 

subsp. subtilis str. 168 is downloaded from https://www.ncbi.nlm.nih.gov/nuccore/NC_000964.3. 

The 2_get_single_genes_from_multifasta.py is used to get the single genes from a multifasta file 

and stored in the folder named gene_files. The 3_check_genes.py is used to filter those genes that 

are ineligible for analysis (delete if found). The 4_analyze_empirical_features.py is used to get the 

PPMCC of the edges and the PPMCC of the vertices. 

 

Analysis of phage genes with CRF 

The codes and data for this section are in Supplementary Material S7. The phages co-evolute with 

the host E. coli, which have no translation machinery to produce their proteins and must depend 

on host E. coli to accomplish the task of manufacturing proteins. The genes of the phages T1-T7 

and lambda are analyzed with the E. coli CRF model to see if they conform to the codon usage 

style of E. coli. 

The NCBI accession numbers of the Enterobacteria phages are T1: NC_005833.1, T2: 

AP018813.1, T3: NC_047864.1, T4: NC_000866.4, T5: NC_005859.1, T6: NC_054907.1, T7: 

NC_001604.1, lambda: NC_001416.1. The multifasta file of each genome is downloaded with the 

corresponding accession number from NCBI. The 1_get_single_genes_from_multifasta.py is used 

to get each gene sequence from the phage genome. The 2_get_proteins_from_genes.py is used to 

get the protein sequence for each gene. The 3_get_gene_max.py is used to get the gene sequence 

of max probability for each protein sequence. The 4_get_codon_identity_for_each_gene.py is 

used to get the codon usage indexes for each protein, including the codon usage index between the 

real DNA sequence and the DNA sequence of max probability, and the mathematical expectation 

of the codon usage index for each protein with the frequency of codons as equally possible. The 

results are sorted with the codon usage index between the real DNA sequence and the DNA 

sequence of max probability minus the mathematical expectation of the codon usage index for 

each protein with frequency of codons as equally possible, and stored in the file 

ratios_of_identical_codons_of_genes.txt. For phage T4, two genes containing characters other 

than ATCG and the two gene files are deleted before further analysis. 

 

Analyzing codon optimization of the genes with CRF 

The genes IL-2 (Williams et al., 1988), TTFC (Makoff et al., 1989), and NF-1-334 (Hale and 

Thompson, 1998) from reference (Gustafsson et al., 2004) are analyzed with CRF. The above 
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references provide the original DNA sequences and the optimized gene sequences, which are 

convenient for comparison with CRF. The codes and data for this section are in Supplementary 

Material S8. To make the gene sequence suitable for analysis, the ATG is added to the 5’ end for 

the IL-2 sequence, and the ATG is added to the 5’ end and the TAA is added to the 3’ end for the 

TTFC sequence. The 1_get_proteins_from_genes.py is used to get the protein sequence for each 

gene sequence. The 2_get_gene_max.py is used to get the DNA sequence of max probability for 

each protein sequence. The 3_get_codon_identity_for_each_gene.py is used to get the codon 

usage indexes for each protein, including the codon usage index between the real DNA sequence 

and the DNA sequence of max probability, and the mathematical expectation of the codon usage 

index for each protein with the frequency of codons as equally possible. The results are sorted 

with the codon usage index between the real DNA sequence and the DNA sequence of max 

probability minus the mathematical expectation of the codon usage index for each protein with the 

frequency of codons as equally possible, and stored in the file 

ratios_of_identical_codons_of_genes.txt. 
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