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Abstract
The combination of modern genetic perturbation techniques with high content screening has
enabled genome-scale cell microscopy experiments that can be leveraged to construct maps of
biology. These are built by processing microscopy images to produce readouts in unified and
relatable representation space to capture known biological relationships and discover new ones.
To further enable the scientific community to develop methods and insights from map-scale
data, here we release RxRx3, the first ever public high-content screening dataset combining
genome-scale CRISPR knockouts with multiple-concentration screening of small molecules (a
set of FDA approved and commercially available bioactive compounds). The dataset contains
6-channel fluorescent microscopy images and associated deep learning embeddings from over
2.2 million wells that span 17,063 CRISPR knockouts and 1,674 compounds at 8 doses each.
RxRx3 is one of the largest collections of cellular screening data, and as far as we know, the
largest generated consistently via a common experimental protocol within a single laboratory.
Our goal in releasing RxRx3 is to demonstrate the benefits of generating consistent data,
enable the development of the machine learning methods on this scale of data and to foster
research, methods development, and collaboration.

For more information about RxRx3 please visit RxRx.ai/rxrx3

Introduction
Advances in genomic technologies and high content screening (HCS) capabilities have enabled
unbiased, large-scale expression and image-based profiling experiments of genetic
perturbations. These screens have massive potential to uncover novel biology and accelerate
drug discovery, however known issues prevent these screens from obtaining this potential. For
example, most publications to date use pooled CRISPR screens which read out counts of
CRISPR guide RNAs (gRNAs) introduced into cells in bulk prior to surviving a biological
challenge, yet these selection-based readouts are limited in that they cannot differentiate
between genes acting via different mechanisms. To overcome this limitation, high content
transcriptome profiles have been measured from pooled CRISPR screens using single-cell RNA
sequencing (scRNA-seq)1. While genome-wide scRNA-seq experiments are feasible2,
scRNA-seq is still prohibitively expensive at a genome-wide scale and experiments are typically
limited to a few thousand target genes1. Additionally, their pooled nature makes it impossible to

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2023. ; https://doi.org/10.1101/2023.02.07.527350doi: bioRxiv preprint 

https://rxrx.ai/rxrx3
https://app.readcube.com/library/e386ab9a-b216-4b0d-8aee-016291647702/all?uuid=9914650767110949&item_ids=e386ab9a-b216-4b0d-8aee-016291647702:e51737c7-717b-4c40-8c93-7f7c534cca13
https://app.readcube.com/library/e386ab9a-b216-4b0d-8aee-016291647702/all?uuid=5004180934997006&item_ids=e386ab9a-b216-4b0d-8aee-016291647702:2ef2c1d7-0a6c-46ab-aef3-0a1260430310
https://app.readcube.com/library/e386ab9a-b216-4b0d-8aee-016291647702/all?uuid=5021608537501615&item_ids=e386ab9a-b216-4b0d-8aee-016291647702:e51737c7-717b-4c40-8c93-7f7c534cca13
https://doi.org/10.1101/2023.02.07.527350
http://creativecommons.org/licenses/by/4.0/


control the number of cells transfected with each gRNA and to account for cell-cell interactions
arising from different pairs of perturbations.

Arrayed genetic screening is an alternative to pooled screening that overcomes these
limitations. In arrayed genetic screens, populations of cells are perturbed by a single gRNA in
isolation, for each gRNA in the collection1. For example, the JUMP-CP Consortium recently
released a cellular imaging dataset of cells under ~116,000 chemical and ~15,000 genetic
perturbations3. Due to the size of this dataset (~800,000 images), the consortium found it
necessary to produce these images across 12 different data-generating centers, which could
result in the confounding of these readouts by cross-laboratory batch effects.

In order to create the highest degree of consistency between the readouts of such large
datasets, Recursion (recursion.com) has scaled the use of arrayed CRISPR-mediated gene
knockouts to produce genome-wide perturbation datasets using cellular morphological imaging
as readouts4 within a single automated laboratory. As an example of such readouts, in this
paper we describe RxRx3, a publicly available genome-wide arrayed CRISPR knockout screen,
containing over 2.2 million 6-channel fluorescent images (using a modified Cell Painting
protocol5,6) of 17,063 CRISPR knockouts and 1,674 compounds at multiple doses (Figure 1).
Our intention in releasing RxRx3 is to demonstrate the benefits of generating consistent data in
this way, as well as enable researchers to develop the next generation of machine learning
methods that leverage these datasets in building maps of biology7 to power the discovery of
novel relationships between genes and compounds.

Biological discovery use cases
RxRx3 was designed to discover novel gene-gene, gene-compound, and compound-compound
relationships. As every experiment in the set was executed under nearly identical conditions
(aside from nuisance variations related to experimental batch effects and differences between
compound and CRISPR protocols), images of each perturbation can be directly compared with
images from any other perturbation in the dataset. The primary computational challenge when
working with RxRx3 is featurizing the images in a way that is invariant to nuisance batch
variations (which can be significant in the raw imaging data) but preserves the biologically
meaningful information for comparing effects of perturbations. Typically cell segmentation
followed by feature extraction is used to quantify every cell in the experiment and then QC and
batch correction techniques are applied8. More recently, deep learning-based embedding
models have been shown to be a powerful alternative to segmentation and feature extraction
pipelines for featurizing microscopy images9,10. To make RxRx3 useful to a variety of users, we
released the raw images as well as pre-computed 128-dimensional embeddings (from a
proprietary deep learning model) for every well in the experiments.

With features computed for RxRx3, whether from the included embeddings or another
high-quality featurization method, one can use them to identify relationships between biological
entities (e.g., gene-gene interactions arising from protein-protein interactions, protein complexes
or signaling pathways)7. RxRx3 also explores the interface between biology and chemistry
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where the 1674 compounds can be used to search for relationships between genes and
compounds across 8 doses. These can be inferred by computing distances (e.g., Euclidean or
cosine) between aggregated perturbation representations, where smaller distances implies a
greater degree of similarity between the underlying cellular conditions. These distances can in
turn be used to visualize the global structure of perturbations through further dimensionality
reduction techniques such as uniform manifold approximation (UMAP) or direct comparison,
such as we demonstrate with MolRec™11. More details about these use cases can be found in
Celik et al., 20227.

Machine learning use cases
RxRx3 will enable the machine learning and HCS communities to develop new methods for
analyzing such datasets. Deep learning approaches have come to dominate nearly all computer
vision tasks12,13. Despite this trend, the vast majority of high-content screening studies use
traditional segmentation and feature extraction analysis pipelines14. Adoption of deep learning in
the HCS community has been hindered by the fact that different labs have very different
experimental protocols, including differences in cell types, imaging hardware, staining protocols,
reagents, etc. As a result, it can be counterproductive or even impossible to reuse a model
pre-trained on one dataset with a different dataset. One notable exception is cell and nuclear
segmentation, for which similar imaging protocols are used across labs, and deep learning
models have been developed that can generalize to new datasets without additional tuning15–17.
Despite this development, segmented cells still need to be quantified with existing feature
extraction approaches.

Attempts to quantify cellular phenotypes with deep learning have been limited by the lack of
datasets with high-quality labels. For some specific tasks like protein localization18,19 or cell cycle
classification20, enough cellular data has been manually annotated to train high-quality
supervised deep learning models on specific datasets. However, these applications represent a
small set of the possible phenotypes that can be characterized with HCS. We, along with other
members of the HCS community, aspire to build unbiased deep learning analysis pipelines that
can detect novel biological phenotypes that have not or cannot be manually annotated.

Progress toward general purpose deep learning frameworks for HCS have been driven by
weakly-supervised learning and more recently by self-supervised learning (SSL). In
weakly-supervised learning9,21, perturbation metadata (i.e. the perturbation applied to each well)
is used to label HCS images and train supervised deep learning models. This approach is
currently the state-of-the-art approach for many use cases. Its strength stems from learning
common patterns that exist in cells exposed to the same perturbation but imaged in different
experimental batches. Its weakness, however, is in requiring several experimental batches of
each perturbation to learn performant models, and from uncertainty over which perturbations
should be selected for model training (Nikita, et al.9 suggest using classical features to select
perturbations with stronger phenotypic effects for training).
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A more recent alternative deep learning framework that has been successful at learning HCS
phenotypes is self-supervised learning22,23. These models work by learning to relate cropped
and augmented regions from the same input image, thereby learning the patterns that are
inherent in the dataset. In the computer vision community, these types of approaches are now
state-of-the-art, but often benefit from pre-training on datasets that are orders of magnitude
larger that task-specific datasets like ImageNet. RxRx3 can easily be used for training
weakly-supervised models since the treatment column in the metadata has a unique string for
each of the 102,705 perturbations in the dataset. Additionally, RxRx3 can be used for training
SSL models by leveraging the raw images directly and potentially using relevant metadata23–25.

Methods

Dataset description
RxRx3 contains 6-channel fluorescent microscopy images of HUVEC cells stained with a
modified cell painting protocol5,6 from 2,222,103 experimental wells. Perturbations in these wells
span 17,063 CRISPR knockouts and 1,674 commercially available bioactive compounds at 8
concentration. Most CRISPR knockouts have 6 unique guide RNAs targeting the gene. The
identities of 736 genes are unblinded to allow discovery and validation work, whereas the
identities of the remainder are anonymized. The dataset statistics are summarized in the table 1
below:

Table 1

Images (individual fluorescent channel png files) 13,332,618

Wells 2,222,103

Plates (1536 format) 1,744

Experiments (each containing multiple plates) 180

Number of unique compounds 1,674

Number of unique CRISPR gene targets 17,063

Identified unique CRISPR gene targets 736

Anonymized unique CRISPR gene targets 16,328

Number of unique CRISPR guide RNAs 101,029

CRISPR knockout experiments (gene001 - gene176) contain 9 plates and each plate
contains control and target guides. Wells that have not passed quality control specifications
have been left out of the dataset.
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Compound experiments (compound001 - compound004) contain 1,674 compounds at 8
concentrations and are typically repeated 4 times (more often for control compounds). Wells that
have not passed quality control specifications have been omitted from the dataset.

Deep learning embeddings
All images were featurized to 128 dimensions using a custom trained neural network similar to
methods previously reported by Recursion10.

Data acquisition
Cells: HUVEC (Human umbilical vein endothelial cells, Lonza, C2519A) were cultured
according to manufacturer’s recommendations in EGM2 (Lonza, CC-3162). CRISPR-Cas9
reagents were purchased from Integrated DNA Technologies, Inc. (IDT) and prepared following
the manufacturer's guidelines and protocols.

Cells that received compounds were treated with compound via acoustic transfer (Echo 555,
Labcyte) at final concentrations of 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10 uM for 18-24 hrs. Cells
were seeded into 1536-well microplates (Greiner, 789866) via Multidrop (Thermo Fisher) and
incubated at 37C in 5% CO2 for the duration of the experiment. Plates were stained using a
modified cell painting protocol5,6. Cells were treated with mitotracker deep red (Thermo,
M22426) for 35m, fixed in 3-5% paraformaldehyde, permeabilized with 0.25% Triton X100, and
stained with Hoechst 33342 (Thermo), Alexa Fluor 568 Phalloidin (Thermo), Alexa Fluor 555
Wheat germ agglutinin (Thermo), Alexa Fluor 488 Concanavalin A (Thermo), and SYTO 14
(Thermo) for 35 minutes at room temperature and then washed and stored in HBSS+0.02%
sodium azide.

Imaging: Plates were imaged using Image Express Micro Confocal High Content Imaging
System (Molecular Devices) microscopes in widefield with 10X objectives. Single sites per well
were acquired with 6 channels per well filters as previously specified6..
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Figures
Figure 1: RxRx3 overview. HUVEC cells are plated in 1,536-well plates and treated with one of
17,063 CRISPR knockouts or 1,674 compounds. Six individual channels are captured via
staining with Hoechst 33342 (channel 1, blue), Alexa Fluor 488 Concanavalin A (channel 2,
green), Alexa Fluor 568 Phalloidin (channel 3, red), Syto14 (channel 4, cyan), MitoTracker Deep
Red FM (channel 5, magenta), Alexa Fluor 555 Agglutinin (channel 6, yellow). The similarity in
content between some channels is due in part to the spectral overlap between the fluorescent
stains used in those channels.
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