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Abstract:  

Integration of genome-scale metabolic networks with reactive transport models (RTMs) is an advanced 

simulation technique that enables predicting the changes of microbial growth and metabolism in space 

and time. Despite promising demonstrations in the past, computational inefficiency has been pointed out 

as a critical issue to overcome because it requires repeated implementation of linear programming (LP) to 

get flux balance analysis (FBA) solutions in every time step and every spatial grid. To address this 

challenge, we propose a new simulation method where we train/validate artificial neural networks 

(ANNs) using FBA solutions randomly sampled and incorporate the resulting reduced-order FBA model 

(represented as algebraic equations) into RTMs as source/sink terms. We demonstrate the efficiency of 

our method via a case study of Shewanella oneidensis MR-1 strain. During the aerobic growth on lactate, 

S. oneidensis produces metabolic byproducts (such as pyruvate and acetate), which are subsequently 

consumed as alternative carbon sources when the preferred ones are depleted. Simulating such intricate 

dynamics posed a considerable challenge, which we overcame by adopting the cybernetic approach that 

describes metabolic switches as the outcome of dynamic competition among multiple growth options. In 

both zero-dimensional batch and one-dimensional column configurations, the ANN-based reduced-order 

models achieved substantial reduction of computational time by several orders of magnitude compared to 

the original LP-based FBA models. Importantly, the ANN models produced robust solutions without any 

special measures to prevent numerical instability. These developments significantly promote our ability to 

utilize genome-scale networks in complex, multi-physics, and multi-dimensional ecosystem modeling. 
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Introduction 

 

Flux balance analysis (FBA) using genome-scale metabolic networks has proven to be a valuable tool in 

modeling microbial metabolism by providing a holistic view of an organism's metabolic capabilities (Orth 

et al., 2010; Antoniewicz, 2015). In environmental sciences, these models have been applied in studying 

the interactions between microorganisms and their environment (Henry et al., 2016; Roy Chowdhury et 

al., 2019; Saifuddin et al., 2019; McClure et al., 2022). The implementation of genome-scale metabolic 

networks in reactive transport models (RTMs) is of particular interest, because it allows us to simulate 

dynamic changes in microbial metabolism together with the movement of fluids and solutes in space and 

time (Harcombe et al., 2014; Song et al., 2014; Phalak et al., 2016, 2022; Bauer et al., 2017; Borer et al., 

2019). With the advent of high-throughput omics data, there is an increasing interest in using metabolic 

network models in ecosystem modeling as current simplistic biogeochemical models lack a high 

resolution required for effective integration of molecular data (Song et al., 2020).   

Coupling FBA with RTMs poses significant computational challenges because it requires 

iterative implementation of linear programming (LP) in every time step and spatial grid. To avoid this 

issue, Scheibe and colleagues proposed indirect and direct coupling methods (Scheibe et al., 2009; Fang 

et al., 2011). Indirect coupling developed by Scheibe et al. (2009) generates a look-up table in advance by 

collecting a large set of FBA solutions in various possible environmental conditions, which is then 

referenced throughout the dynamic simulation of the RTM. However, not all FBA solutions pre-generated 

as such are relevant for reactive-transport simulations, indicating that the look-up table is likely to 

unnecessarily include a significant portion of FBA solutions that are never used by the RTM. In the direct 

coupling method proposed by Fang et al. (2011), a look-up table is quite small in the beginning or does 

not exist but progressively grows during dynamic simulations by adding new FBA solutions to the table if 

unavailable yet. Despite promising demonstrations in case studies, these approaches including indirect 

and direct coupling are not readily extended to large-scale, spatially heterogeneous systems with multiple 

chemical and biological species. Beside the painful process of building huge-size look-up tables, iterative 

communications between reactive transport simulators and the memory space (storing the FBA look-up 

table) impede efficient simulations, requiring more efficient approaches.  

In this work, we propose a new method that enables coupling FBA with RTM in a 

computationally efficient way using machine learning. Instead of building a look-up table, we train 

artificial neural networks (ANNs) from randomly sampled FBA solutions, which serves as a reduced-

order FBA model. As the resulting ANNs are represented as algebraic equations, they can be directly 

incorporated into source/sink terms in the RTM. We apply this idea to model dynamic growth of 

Shewanella oneidensis MR-1 strain  (Pinchuk et al., 2010; Song et al., 2013), which exhibits complex 

growth patterns caused by dynamic metabolic switches among multiple substrates: in aerobic growth on 

lactate, the organism produces acetate and pyruvate as metabolic products; when lactate is depleted, it 

switches the carbon source over to pyruvate and produces acetate; when pyruvate is depleted, it takes up 

acetate for further growth. No computational methods have been formulated as of yet that would allow for 

the simulation of such intricate dynamics by joining FBA (or its surrogate models) and RTM. Because 

metabolic products in the previous stage become carbon sources for growth in the next stages, it is 

uncertain how to constrain the metabolic network model in dynamically varying media conditions. 

Training accurate ANNs that are able to portray such diverse metabolic traits of microorganisms is 

therefore an additional challenge. We demonstrate how these issues can be handled by using new 

computational methods proposed in this work. The performance of our methods is evaluated through case 
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studies of the growth of S. oneidensis MR-1 in zero-dimensional batch and one-dimensional column 

reactors.  

 

 

Methods and Materials 

 

Metabolic network model of S. oneidensis MR-1 

We used a genome-scale metabolic network of S. oneidensis MR-1 strain (termed iMR799) in the 

literature (Ong et al., 2014). The version of the model we used was loaded into KBase, which involved 

translating all model reactions and compounds to ModelSEED IDs. This was done to ensure that the 

iMR799 model would be interoperable with other KBase models as the ultimate goal of this effort is to 

simulate multi-species communities. The model in KBase was modified in several ways to ensure proper 

function: (1) three reactions ‘R_EX_TWEEN_20_E’, ‘R_EX_GEL_E’, and ‘R_EX_CAS_E’ were 

removed from the model as these allowed large mass influx without balance within KBase; (2) the 

"glycogen" metabolite in the model was adjusted to "glycogenmonomer" to ensure it does not collide with 

multimer versions of glycogen in the KBase namespace (such a collision results in mass imbalanced 

reactions in the translated model); (3) we revised the biomass production equation by adding ATP 

hydrolysis that is missing in the original model, i.e., c ATP + c H2O ↔ c ADP + c Pi + c H+ where c is 

the stoichiometric coefficient of the compounds involved in this reaction. When the value of c is low, the 

model produces excessive ATP and there is no difference between aerobic vs. anaerobic growth. As a 

default value, we put 40.11 for c in the metabolic network model (i.e., the SBML file), which was later 

adjusted (along with other additional parameters) in FBA simulations such that the model fits the 

experimentally measured yield data. The resulting metabolic network is confirmed to produce biomass 

from three individual carbon sources (i.e., lactate, pyruvate, and acetate).  

 

Formulation of multi-step FBA  

FBA is an LP-based method that enables determining a flux distribution in a metabolic network by 

maximizing biomass production (while any biologically appropriate metabolic objectives can also be 

considered). As a common option, FBA subsequently minimizes a sum of flux magnitudes as a secondary 

objective to reduce the variations of LP solutions. This typical implementation, however, failed to predict 

experimentally observed byproduct formation in S. oneidensis, i.e., the production of pyruvate and acetate 

during the growth on lactate; the production of acetate during the growth on pyruvate. To align FBA 

simulations with experimental observations, we designed a multi-step FBA that involves following a 

sequence of LPs.  

For the simulation of growth on lactate (Lac), for example, we carried out the following three 

steps. First, we perform a typical FBA to determine the maximum rate of biomass (Bio) production, 

which is denoted by 𝑟𝐵𝑖𝑜,𝐿𝑎𝑐
𝑚𝑎𝑥  where the subscript after the comma (Lac) indicates what the carbon source 

is in the growth media. Second, we perform another round of LP to determine the maximum rate of 

pyruvate (Pyr) production (denoted by 𝑟𝑃𝑦𝑟,𝐿𝑎𝑐
𝑚𝑎𝑥 ) under an additional constraint: 𝑟𝐵𝑖𝑜,𝐿𝑎𝑐 ≥ 𝛼𝐵𝑖𝑜,𝐿𝑎𝑐𝑟𝐵𝑖𝑜,𝐿𝑎𝑐

𝑚𝑎𝑥  

where 𝛼𝐵𝑖𝑜,𝐿𝑎𝑐 is a tuning parameter (ranging from 0 to 1) introduced to constrain the biomass production 

because otherwise the model does not produce enough pyruvate observed in the experiment. Lastly, we 

perform LP again to determine the maximum rate of acetate (Ace) production under the two additional 

constraints:  𝑟𝐵𝑖𝑜,𝐿𝑎𝑐 ≥ 𝛼𝐵𝑖𝑜,𝐿𝑎𝑐𝑟𝐵𝑖𝑜,𝐿𝑎𝑐
𝑚𝑎𝑥  and  𝑟𝑃𝑦𝑟,𝐿𝑎𝑐 ≥ 𝛼𝑃𝑦𝑟,𝐿𝑎𝑐𝑟𝑃𝑦𝑟,𝐿𝑎𝑐

𝑚𝑎𝑥  where 𝛼𝐵𝑖𝑜,𝐿𝑎𝑐 is the same 
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parameter introduced in the previous step and 𝛼𝑃𝑦𝑟,𝐿𝑎𝑐 is a new tuning parameter (ranging from 0 to 1) 

introduced to constrain the production of pyruvate.  

In a similar fashion, we designed a two-step LP problem to simulate the growth with pyruvate as 

the sole carbon source. It should be clear that FBA in this case introduces a new parameter, 𝛼𝐵𝑖𝑜,𝑃𝑦𝑟, 

which constrains the production of biomass. There is no need for a multi-step LP for simulating growth 

on acetate as no production of metabolic byproducts was experimentally detected. All FBA simulations 

were performed in minimal growth media conditions.  

 

Nonlinear optimization to determine the parameters in the multi-step FBA 

The multi-step FBA formulated above includes a set of parameters to tune: c (i.e., the stoichiometric 

coefficient in the metabolic network model), 𝛾𝐵𝑖𝑜,𝐿𝑎𝑐,  𝛾𝑃𝑦𝑟,𝐿𝑎𝑐, and 𝛾𝐵𝑖𝑜,𝑃𝑦𝑟. These four parameters were 

determined such that the error between predicted vs. measured yields of biomass and byproducts, i.e., 

 

 

where 𝑦𝑖 ′𝑠  and 𝑦𝑖
𝐸𝑥𝑝

′𝑠  are FBA-predicted and experimentally-measured yields of biomass and metabolic 

products, respectively, where the subscripts 1 to 3 denote the yields of biomass, pyruvate, and acetate 

from the consumption of lactate, the subscripts 4 and 5 are the yields of biomass and acetate from the 

consumption of pyruvate, and the subscript 6 is the yield of biomass from the consumption of acetate.  

 We obtained experimentally measured yield data (𝑦𝑖
𝐸𝑥𝑝

′𝑠) from Song et al. (2013). We calculated 

predicted yields (𝑦𝑖 ′𝑠 ) from multi-step FBA solutions (described in the previous section) by normalizing 

the production fluxes of biomass and byproducts with respect to the uptake flux of a given carbon source, 

i.e.,    

 

𝑦1 =
𝑟𝐵𝑖𝑜,𝐿𝑎𝑐

𝑟𝐿𝑎𝑐
𝑈𝑝𝑡𝑎𝑘𝑒 , 𝑦2 =

𝑟𝑃𝑦𝑟,𝐿𝑎𝑐

𝑟𝐿𝑎𝑐
𝑈𝑝𝑡𝑎𝑘𝑒 , 𝑦3 =

𝑟𝐴𝑐𝑒,𝐿𝑎𝑐

𝑟𝐿𝑎𝑐
𝑈𝑝𝑡𝑎𝑘𝑒 , 𝑦4 =

𝑟𝐵𝑖𝑜,𝑃𝑦𝑟

𝑟𝑃𝑦𝑟
𝑈𝑝𝑡𝑎𝑘𝑒 , 𝑦5 =

𝑟𝐴𝑐𝑒,𝑃𝑦𝑟

𝑟𝑃𝑦𝑟
𝑈𝑝𝑡𝑎𝑘𝑒 , 𝑦6 =

𝑟𝐵𝑖𝑜,𝐴𝑐𝑒

𝑟𝐴𝑐𝑒
𝑈𝑝𝑡𝑎𝑘𝑒  

 

We solved this nonlinear optimization problem using Matlab solver ‘fminsearch.m’ to determine optimal 

values of the four parameters (c, 𝛼𝐵𝑖𝑜,𝐿𝑎𝑐,  𝛼𝑃𝑦𝑟,𝐿𝑎𝑐, and 𝛼𝐵𝑖𝑜,𝑃𝑦𝑟. ). In doing this, we set the maximum 

magnitudes of the carbon uptake rate based on the kinetic parameters previously determined in Song et al. 

(2013), which are 22.1, 8.19, and 4.39 for lactate, pyruvate, and acetate, respectively.  

 

ANN model building  

We built three ANN models as surrogate models of FBA to simulate the aerobic growth of S. oneidensis 

from lactate, pyruvate, and acetate, respectively. For each case, we generated 5,000 FBA solutions with 

different values of the uptake rates of oxygen and a given carbon source, which were randomly chosen by 

assuming uniform distributions over the range from zero to their max values determined by the reaction 

rate constants identified in a previous work (Song et al., 2013). We split the dataset (i.e., 5,000 FBA 

solutions) into training (70%), validation (15%) and testing (15%) subsets. Each ANN takes the upper 

limits of the magnitudes of uptake rates of oxygen and a given carbon source as inputs and predicts the 

production rates of biomass and metabolic byproducts. We also included the ‘actual’ uptake rate of 

oxygen as part of output variables because the imposed upper limit and actual uptake for oxygen were not 

necessarily the same (see Fig. S1). We determined the optimal numbers of nodes and layers in each ANN 
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as key hyperparameters. Through the grid search, we determined the minimum numbers of nodes and 

layers, beyond which no measurable improvement in the accuracy of output variables was observed. We 

used the Bayesian regularization backpropagation method for optimization. We performed all calculations 

required for developing ANN models using the neural network toolbox in the Matlab 2022b version.   

 

 

Results 

 

Characterization of the FBA solution space  

Our multi-step LP ensured the FBA model of S. oneidensis to produce metabolic byproducts as 

experimentally observed. As described in Methods and Materials, the multi-step LP formulation 

contains a set of parameters: c,  𝛼𝐵𝑖𝑜,𝐿𝑎𝑐,  𝛼𝑃𝑦𝑟,𝐿𝑎𝑐, and 𝛼𝐵𝑖𝑜,𝑃𝑦𝑟  that need to be optimized, where the 

constant c is the stoichiometric coefficient of ATP in the biomass production equation, which is a metric 

for the growth-associated maintenance, while the other three denote the fractional production of metabolic 

byproducts compared to their theoretical maximum values under given constraints. Accurate 

determination of these values is critical for robust dynamic simulation of complex growth patterns of S. 

oneidensis. By performing nonlinear optimization, we determined c to be 195.45, which was consistent 

with the value estimated in a previous study in the literature by Pinchuk et al. (2010) ( = 220.22), and the 

other parameters were identified as follows: 𝛼𝐵𝑖𝑜,𝐿𝑎𝑐 = 0.6721,  𝛼𝑃𝑦𝑟,𝐿𝑎𝑐 = 0.6848, 𝛼𝐵𝑖𝑜,𝑃𝑦𝑟 = 0.6837, 

indicating the actual production of all metabolic byproducts in the model to be below 70% of their full 

capacity in all cases.  

 

With these parameter values, we performed the multi-step LP algorithm to characterize FBA-

predicted exchange fluxes that are relevant for simulating metabolic switches in S. oneidensis and are 

later used as input data for building ANNs. The exchange fluxes of interest include the uptake rates of 

oxygen and individual carbon sources (lactate, pyruvate, or acetate), and the production rates of biomass 

and metabolic byproducts (i.e., the production of pyruvate and acetate from the consumption of lactate, or 

the production of acetate from the consumption of pyruvate). For each of the carbon sources that are 

utilizable by S. oneidensis for growth, we individually visualized FBA-estimated exchange fluxes of 

substrate consumption (i.e., carbon and oxygen uptake) (Fig. S1) and biomass production (Fig. 1) and 

byproduct production (Fig. 2). The fluxes of biomass production were characterized by the three phase 

planes (differentiated with dashed lines), each of which represented carbon-, oxygen- and both C&O-

limited growth conditions, respectively (Fig. 1). The actual uptake rates realized by FBA were the same 

as the imposed upper limits for carbon sources, which was however not the case for oxygen (Fig. S1), 

indicating that, in addition to the production rates of biomass and metabolic products, it is necessary to 

store the values of oxygen uptakes to inform ANNs for predictions. 
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Figure 1: FBA prediction of biomass production rates in S. oneidensis MR-1: the aerobic growth on (a) 

lactate, (b) pyruvate, and (c) acetate. Three phase planes differentiated by dashed lines in each panel 

denote the growth limited by carbon (C), oxygen (O), and both C&O, respectively.  

 

Patterns for the production rates of metabolic byproducts in Fig. 2 were much more complex than 

the production rate of biomass in Fig. 1. The numbers of phase planes for the former were six and seven 

for the production of pyruvate and acetate from lactate, and four for the production of acetate from 

pyruvate. Highly nonlinear behaviors observed in the response curves in Fig. 2 may be ascribed to the 

implementation of multi-step LP with a set of parameters introduced to constrain the production rates of 

metabolic byproducts, posing a challenge in building quantitative ANN models in predicting their fluxes.  

 

 
Figure 2: FBA prediction of by-product production rates in S. oneidensis MR-1: (a) pyruvate production 

rate from lactate consumption, (b) acetate production rate from lactate consumption, and (b) acetate 

production rate from pyruvate consumption.  

 

Robust performance of ANNs: comparison of single- vs. multi-output models 

We developed ANNs as surrogate models of FBA to predict the growth of S. oneidensis on lactate, 

pyruvate, and acetate, respectively. For each of these carbon sources, we compared the following two 

approaches: (1) we generated a set of ANNs, each of which aims to predict only a single output flux by 

taking two input fluxes (i.e., upper limits of the carbon substrate and oxygen uptakes) and is therefore a 

multi-input single-output (MISO) model; (2) we also built a single ANN to predict all exchange fluxes, 

which is a multi-input multi-output (MIMO) model. Similarly, we built MISO and MIMO models for the 

growth from pyruvate and acetate, respectively. We performed the grid search to determine the optimal 

number of nodes and layers.  

In the case with lactate as the carbon source, the numbers of nodes and layers in the MISO 

models varied from six to ten (nodes), and two to three (layers) (Table S1). All MISO models with lactate 

as the carbon source led to the high correlations (> 0.9999) between the target values (i.e. FBA solutions) 

and ANN outputs in testing, validation, and testing. Interestingly, the MIMO model achieved the 
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equivalent performance with slightly larger numbers of nodes and layers (i.e., 10 and 5, respectively) 

compared to the MISO models. This observation was consistent in other cases with pyruvate and acetate 

as the carbon sources. For convenience, therefore, we used the MIMO models throughout all simulations 

in this paper.  

 

Simulation of the metabolic switching of S. oneidensis in a batch culture 

We demonstrate the effectiveness of ANNs as surrogate FBA models via the case study of the aerobic 

growth of S. oneidensis in a batch reactor in this section and in a one-dimensional column reactor in the 

next section. Mass balance equations for the batch growth are given a set of ordinary differential 

equations (Table 1). Dynamic FBA (dFBA) is the method developed to integrate FBA with microbial 

growth models (i.e., ODEs) (Mahadevan et al., 2002). While typical implementation of dFBA is 

conceptually simple, simulating metabolic switches among alternative carbon sources as in our case poses 

a challenge because the information on substrate concentrations and kinetics alone cannot tell whether the 

corresponding compounds will be consumed or produced because this is the outcome of metabolic 

regulation in microorganisms.  

While critical for robust simulation of metabolic switching, the incorporation of metabolic 

regulation is not straightforward because its full mechanistic details are generally not known. We 

therefore used the cybernetic approach as a key component of our model, which provides a rational 

mathematical description of dynamic regulation based on an optimal control theory without introducing 

additional parameters  (Ramkrishna and Song, 2012, 2018). By viewing the metabolism of S. oneidensis 

as a dynamic combination of three FBA solutions obtained from each of the carbon sources, we 

independently performed FBA three times in each time step to get the flux vector in S. oneidensis 

associated with the consumption of lactate, pyruvate, and acetate, respectively. The resulting three flux 

vectors were subsequently combined in proportion to their contribution to promote a pre-defined 

metabolic objective, for which we used ‘carbon’ uptake rate in this work. This combination is realized 

through the cybernetic variables 𝑢𝐿𝑎𝑐 , 𝑢𝑃𝑦𝑟 , and 𝑢𝐴𝑐𝑒 as defined in Table 1 where the numerical values 

multiplied on the uptake rates denote the number of carbon contained in each carbon source. FBA 

solutions are quickly generated using ANNs developed in the previous section.  

In Fig. 3, we presented the resulting simulations of aerobic growth of S. oneidensis in the batch 

reactor by comparing the original LP- and ANN-based dFBA models. While both models showed 

consistency in simulating dynamic metabolic switches through the sequential utilization of alternative 

carbon sources, the computational time taken by the ANN-based dFBA was only 0.1 to 0.2% compared to 

that of the original dFBA. Notably, the ANN-based dFBA model showed numerical stability throughout 

dynamic simulations, while the original dFBA was stuck when the level of any of the carbon sources was 

near to zeros. While this issue occurring for the original dFBA may be relieved by using specially 

designed numerical solvers (Chen et al., 2016; Phalak et al., 2016), no special treatment was necessary for 

the ANN-based dFBA model.   
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Table 1. Mass balance equations for simulating the aerobic growth of S. oneidensis MR-1 on lactate in 

batch and one-dimensional column reactors. The symbol [ ] is used to denote concentration of substrates 

and biomass, r’s are fluxes and the subscript ‘FBA’ denotes fluxes estimated by FBA , 𝑘𝐿𝑎 is the 

volumetric coefficient of oxygen transfer between the growth media and atmosphere, and [𝑂∗
2 ] is the 

saturated level of oxygen at the standard condition.  

 

System Model equations  

 

Batch 

reactor 

Mass balances: 

𝑑[𝐿𝑎𝑐]

𝑑𝑡
= −𝑢𝐿𝑎𝑐𝑟𝐿𝑎𝑐

𝑘𝑖𝑛[𝐵𝑖𝑜] 

𝑑[𝑃𝑦𝑟]

𝑑𝑡
= (𝑢𝐿𝑎𝑐𝑟𝑃𝑦𝑟,𝐿𝑎𝑐

𝐹𝐵𝐴 − 𝑢𝑃𝑦𝑟𝑟𝑃𝑦𝑟
𝑘𝑖𝑛)[𝐵𝑖𝑜] 

𝑑[𝐴𝑐𝑒]

𝑑𝑡
= (𝑢𝐿𝑎𝑐𝑟𝐴𝑐𝑒,𝐿𝑎𝑐

𝐹𝐵𝐴 + 𝑢𝑃𝑦𝑟𝑟𝐴𝑐𝑒,𝑃𝑦𝑟
𝐹𝐵𝐴 − 𝑢𝐴𝑐𝑒𝑟𝐴𝑐𝑒

𝑘𝑖𝑛)[𝐵𝑖𝑜] 

𝑑[𝑂2]

𝑑𝑡
= −(𝑢𝐿𝑎𝑐𝑟𝑂2,𝐿𝑎𝑐

𝐹𝐵𝐴 + 𝑢𝑃𝑦𝑟𝑟𝑂2,𝑃𝑦𝑟
𝐹𝐵𝐴 + 𝑢𝐴𝑐𝑒𝑟𝑂2,𝐴𝑐𝑒

𝐹𝐵𝐴 )[𝐵𝑖𝑜] + 𝑘𝐿𝑎([𝑂2
∗] − [𝑂2]) 

𝑑[𝐵𝑖𝑜]

𝑑𝑡
= (𝑢𝐿𝑎𝑐𝑟𝐵𝑖𝑜,𝐿𝑎𝑐

𝐹𝐵𝐴 + 𝑢𝑃𝑦𝑟𝑟𝐵𝑖𝑜,𝑃𝑦𝑟
𝐹𝐵𝐴 +𝑢𝐿𝑎𝑐𝑟𝐵𝑖𝑜,𝐴𝑐𝑒

𝐹𝐵𝐴 )[𝐵𝑖𝑜] − 𝑘𝑑[𝐵𝑖𝑜] 

where the unregulated uptake rates of carbon sources and the cybernetic variables are 

given as follows: 

𝑟𝐿𝑎𝑐
𝑘𝑖𝑛 = 𝑘𝐿𝑎𝑐

[𝐿𝑎𝑐]

(𝐾𝐿𝑎𝑐+[𝐿𝑎𝑐])
, 𝑟𝑃𝑦𝑟

𝑘𝑖𝑛 = 𝑘𝑃𝑦𝑟
[𝑃𝑦𝑟]

(𝐾𝑃𝑦𝑟+[𝑃𝑦𝑟])
, 𝑟𝐴𝑐𝑒

𝑘𝑖𝑛 = 𝑘𝐴𝑐𝑒
[𝐴𝑐𝑒]

(𝐾𝐴𝑐𝑒+[𝐴𝑐𝑒])
 

and  

𝑢𝐿𝑎𝑐 =
3𝑟𝐿𝑎𝑐

𝑘𝑖𝑛

3𝑟𝐿𝑎𝑐
𝑘𝑖𝑛+3𝑟𝑃𝑦𝑟

𝑘𝑖𝑛 +2𝑟𝐴𝑐𝑒
𝑘𝑖𝑛, 𝑢𝑃𝑦𝑟 =

3𝑟𝑃𝑦𝑟
𝑘𝑖𝑛

3𝑟𝐿𝑎𝑐
𝑘𝑖𝑛+3𝑟𝑃𝑦𝑟

𝑘𝑖𝑛 +2𝑟𝐴𝑐𝑒
𝑘𝑖𝑛 , 𝑢𝐴𝑐𝑒 =

2𝑟𝐴𝑐𝑒
𝑘𝑖𝑛

3𝑟𝐿𝑎𝑐
𝑘𝑖𝑛+3𝑟𝑃𝑦𝑟

𝑘𝑖𝑛 +2𝑟𝐴𝑐𝑒
𝑘𝑖𝑛 

Kinetic parameters: 

𝑘𝐿𝑎𝑐 = 22.1 [𝑚𝑀/ℎ], 𝑘𝐿𝑎𝑐 = 8.19 [𝑚𝑀/ℎ], 𝑘𝐴𝑐𝑒 = 4.39 [𝑚𝑀/ℎ] 

𝐾𝐿𝑎𝑐 = 𝐾𝑃𝑦𝑟 = 𝐾𝐴𝑐𝑒 = 0.02 [𝑚𝑀], 𝐾𝑂2
= 0.006 [𝑚𝑀]  

𝑘𝑑 = 0.01 [𝑚𝑀/ℎ], 𝑘𝐿𝑎 = 40 [1/ℎ], [𝑂2
∗] = 0.238 [𝑚𝑀] 

Initial conditions: 

[𝐿𝑎𝑐]0 = 90 [𝑚𝑀], [𝑃𝑦𝑟]0 = [𝐴𝑐𝑒]0 = 0 [𝑚𝑀], [𝑂2]0 = [𝑂2
∗], [𝐵𝑖𝑜]0 = 0.005 [𝑔/𝐿] 

 

Note: FBA solutions denoted by the superscript ‘FBA’ are determined from either LP or 

ANN by taking the upper limits (denoted by the superscript ‘U’) of the carbon and oxygen 

uptake rates as the inputs as given below: 

𝑟𝐿𝑎𝑐
𝑈 = 𝑟𝐿𝑎𝑐

𝑘𝑖𝑛, 𝑟𝑂2,𝐿𝑎𝑐
𝑈 = 𝑘𝐿𝑎𝑐

[𝑂2]

(𝐾𝑂2+[𝑂2])
 (for the lactate uptake) 

𝑟𝑃𝑦𝑟
𝑈 = 𝑟𝑃𝑦𝑟

𝑘𝑖𝑛, 𝑟𝑂2,𝑃𝑦𝑟
𝑈 = 𝑘𝑃𝑦𝑟

[𝑂2]

(𝐾𝑂2+[𝑂2])
 (for the pyruvate uptake) 

𝑟𝐴𝑐𝑒
𝑈 = 𝑟𝐴𝑐𝑒

𝑘𝑖𝑛, 𝑟𝑂2,𝐴𝑐𝑒
𝑈 = 𝑘𝐴𝑐𝑒

[𝑂2]

(𝐾𝑂2+[𝑂2])
 (for the acetate uptake) 

1-D Mass balances: 
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column 

reactor 
𝜕[𝐿𝑎𝑐]

𝜕𝑡
= 𝐷𝐿𝑎𝑐

𝜕2[𝐿𝑎𝑐]

𝜕𝑥2
− 𝑣

𝜕[𝐿𝑎𝑐]

𝜕𝑥
− 𝑢𝐿𝑎𝑐𝑟𝐿𝑎𝑐

𝑘𝑖𝑛[𝐵𝑖𝑜] 

𝜕[𝑃𝑦𝑟]

𝜕𝑡
= 𝐷𝑃𝑦𝑟

𝜕2[𝑃𝑦𝑟]

𝜕𝑥2
− 𝑣

𝜕[𝑃𝑦𝑟]

𝜕𝑥
+ (𝑢𝐿𝑎𝑐𝑟𝑃𝑦𝑟,𝐿𝑎𝑐

𝐹𝐵𝐴 − 𝑢𝑃𝑦𝑟𝑟𝑃𝑦𝑟
𝑘𝑖𝑛)[𝐵𝑖𝑜] 

𝜕[𝐴𝑐𝑒]

𝜕𝑡
= 𝐷𝐴𝑐𝑒

𝜕2[𝐿𝑎𝑐]

𝜕𝑥2
− 𝑣

𝜕[𝐿𝑎𝑐]

𝜕𝑥
+ (𝑢𝐿𝑎𝑐𝑟𝐴𝑐𝑒,𝐿𝑎𝑐

𝐹𝐵𝐴 + 𝑢𝑃𝑦𝑟𝑟𝐴𝑐𝑒,𝑃𝑦𝑟
𝐹𝐵𝐴 − 𝑢𝐴𝑐𝑒𝑟𝐴𝑐𝑒

𝑘𝑖𝑛)[𝐵𝑖𝑜] 

𝜕[𝑂2]

𝜕𝑡
= 𝐷𝐿𝑎𝑐

𝜕2[𝑂2]

𝜕𝑥2
− 𝑣

𝜕[𝑂2]

𝜕𝑥
− (𝑢𝐿𝑎𝑐𝑟𝑂2,𝐿𝑎𝑐

𝐹𝐵𝐴 + 𝑢𝑃𝑦𝑟𝑟𝑂2,𝑃𝑦𝑟
𝐹𝐵𝐴 + 𝑢𝐴𝑐𝑒𝑟𝑂2,𝐴𝑐𝑒

𝐹𝐵𝐴 )[𝐵𝑖𝑜]

+ 𝑘𝐿𝑎([𝑂2
∗] − [𝑂2]) 

𝜕[𝐵𝑖𝑜]

𝜕𝑡
= (𝑢𝐿𝑎𝑐𝑟𝐵𝑖𝑜,𝐿𝑎𝑐

𝐹𝐵𝐴 + 𝑢𝑃𝑦𝑟𝑟𝐵𝑖𝑜,𝑃𝑦𝑟
𝐹𝐵𝐴 +𝑢𝐿𝑎𝑐𝑟𝐵𝑖𝑜,𝐴𝑐𝑒

𝐹𝐵𝐴 )[𝐵𝑖𝑜] − 𝑘𝑑[𝐵𝑖𝑜] 

Boundary conditions: 

Inlet (𝑥 = 0): 𝐷𝑆
𝜕[𝑆]

𝜕𝑥
= 𝑣([𝑆] − [𝑆]𝐹) (Danckwerts boundary conditions) 

Outlet (𝑥 = 𝐿) ∶  
𝜕[𝑆]

𝜕𝑥
= 0  (Neuman boundary conditions) 

where S = Lac, Pyr, Ace, O2 ,or Bio  

Feed conditions: 

[𝐿𝑎𝑐]𝐹 = 90 [𝑚𝑀], [𝑃𝑦𝑟]𝐹 = [𝐴𝑐𝑒]𝐹 = 0, [𝑂2]𝐹 = [𝑂2
∗], [𝐵𝑖𝑜]𝐹 = 0 

Initial conditions: 

[𝐿𝑎𝑐]0 = [𝑃𝑦𝑟]0 = [𝐴𝑐𝑒]0 = 0, [𝑂2]0 = [𝑂2
∗], [𝐵𝑖𝑜]0 = 0.005 [𝑔/𝐿], 0 ≤  𝑥 ≤  𝐿   
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Figure 3: Comparison of FBA simulations of aerobic growth of S. oneidensis MR-1 in a batch reactor 

using LP (solid lines) and ANN models (dashed lines).  

 

 

Simulation of S. oneidensis growth in a one-dimensional column reactor model though FBA-RTM 

coupling 

We extend the method to couple FBA (or ANN) with microbial growth models to RTMs where the 

concentrations of substrates and biomass are spatially distributed. For simplicity, we consider a one-

dimensional column reactor in this work. The mass balances of this column model are given as a set of 

partial differential equations (PDEs) (Table 1). To solve PDEs, we discretized the spatial derivative terms 

into algebraic forms, while keeping the time derivative terms as is. This conversion termed ‘the method of 

lines’ allows us to use any ODE solvers to simulate PDE models. As a more notable advantage of using 

this conversion method, we can also use the same simulation technique employed in the previous section 

to simulate the metabolic switching of S. oneidensis in the batch reactor. No additional special treatment 

is required for coupling FBA and RTM.  

For the one-dimensional column reactor with 100 spatial grids, our ANN-based column model 

generated the solutions within one minute on a personal desktop computer. We could not make a direct 

comparison with the original LP-RTM model because the latter failed to generate stable numerical 

solutions with the same number of grids. Instead, we were able to obtain the solutions from the original 

model only for the configurations with low grid densities (i.e., only up to the 30 number of grids). 

Through the comparison using these coarse-grained simulations with the grid number of 10, 20, and 30, 

we found that the reduction of computational time by the ANN-based RTM was about three orders of 

magnitude (Fig. 4), a similar performance we observed in the previous batch simulations. For the models 

with higher grid densities, therefore, we provided only estimated computational time for the original LP-
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RTM. Again, this result highlights that numerical stability is an additional key advantage using the ANN-

RTM.  

 

 

 
 

Figure 4: Comparison of simulation times in a one-dimensional column reactor as a function of axial grid 

size: FBA simulation times by the ANN model (blue solid line) and LP (orange solid line). Gray dashed 

line denotes ‘expected’ times by LP (for 40 to 100 grids), which is estimated by multiplying an average 

ratio of the two results for the first three results (for 10 to 30 grids).  

 

 

Discussion 

 

Our new computational method significantly expands the scope of genome-scale metabolic network 

modeling to predict microbial growth in space and time by coupling with RTMs. By using machine 

learning models (i.e., ANNs) as the source/sink terms in RTMs instead of solving LP iteratively, our 

method drastically reduced computational time, while providing robust and stable simulations by 

eliminating numerical errors commonly encountered when solving FBA-coupled ordinary or partial 

differential equations. Due to these promising properties, the ANN-based surrogate FBA model 

developed in this work is currently incorporated as a key component of CompLab, a recently developed 

Lattice Boltzmann (LB)-based modeling tool to simulate fluid flow and solute transport in porous media 

by coupling metabolic networks with RTMs (Jung et al., 2022).   

Our development also opens up new opportunities for modeling the intricate metabolic switching 

among multiple alternative carbon sources, a common phenomenon observed in metabolic systems. While 

previous studies in the literature have already demonstrated the capability of simulating dynamic 

metabolic changes in varying environments by coupling FBA with RTMs , our method is the first to 

enable FBA for the simulation of drastic shifts in metabolism, e.g., as those observed in S. oneidensis. 

This type of simulation is not readily implementable by typical kinetic description of uptake rates because 

in our case the same carbon source can be consumed as the carbon source for growth or produced as a 

byproduct depending on the context. Inspired by the work by Song et al. (2013), we resolved this issue by 
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using the cybernetic modeling approach where we describe the dynamic shifts in S. oneidensis as the 

outcome of competition among three FBA solutions associated with three individual carbon sources, 

respectively. The cybernetic modeling was originally developed as an independent tool for simulating 

complex growth patterns of microorganisms (Ramkrishna and Song, 2012, 2018) and microbial 

communities (Song and Liu, 2015; Song et al., 2017, 2018, 2020), the effectiveness of which was greatly 

enhanced when used in conjunction with metabolic pathways and networks using elementary flux mode 

analysis (Kim et al., 2008, 2012; Young et al., 2008; Song et al., 2009; Song and Ramkrishna, 2010, 

2011, 2012; Franz et al., 2011) as well as FBA (Vilkhovoy et al., 2016; Luo et al., 2023). The present 

work serves as an outstanding example in this direction.  

 While critically important in making FBA predictions consistent with experimental observations 

in our work, the introduction of tuning parameters (such as the constraints on the production of biomass 

and metabolic byproducts in metabolism of S. oneidensis) may be considered an ad hoc remedy because 

those parameters are determined through datafit without having a sufficient biological basis. Imposing 

additional constraints on the internal pathways in a more mechanistic way may enable the metabolic 

network model of S. oneidensis to produce metabolic byproducts as experimentally observed without 

manual forcing. Further development of metabolic networks of S. oneidensis in this direction is an 

important task in the future, while a major focus in this work was to develop and demonstrate the power 

of machine learning as a reduced-order FBA model in simulating RTMs. 

Overall, the use of machine learning to achieve the reduction of computational time in metabolic 

network modeling by orders of magnitude represents a significant advance in diverse disciplines, 

particularly in the field of systems biology, microbial ecology, biogeochemistry and even earth science, 

where FBA is being used and can serve as a prime modeling tool. We envision that this capability will 

become more important in the future as the application of FBA is being extended to increasingly more 

complex systems. In systems biology, for example, FBA is used to model the interactions among multiple 

human organs by integrating the metabolic networks of each organ into a larger, whole-body model 

(Bordbar et al., 2011; Thiele et al., 2020). Similarly, the utility of FBA could be extended to predict 

interspecies metabolic interactions and cross-feeding in complex environmental microbial communities 

by integrating individual metabolic networks. The greatest potential benefit of this method is expected to 

be seen in ecosystem modeling, as it allows for the integration of genome-scale metabolic networks with 

RTMs, which govern the movement of chemical and biological species. In order to further improve this 

method, an important next step is to develop machine learning techniques to effectively incorporate multi-

omics data (such as genomics, transcriptomics, proteomics, and metabolomics) into genome-scale 

metabolic networks and to couple them with RTMs. This will enhance the ability to understand and link 

molecular-level mechanisms to large-scale system dynamics, which will accelerate new scientific 

discoveries.  
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Supplementary Table S1. The number of nodes and layers in ANN models. The two numbers in the 

parenthesis respectively denote the numbers of nodes and layers chosen for predicting output variables. 

MISO = multi-input single-output, and MIMO = multi-input multi-output.  

 

 

Input variables  

Output variables in MISO models Output variables in 

MIMO models 

Oxygen 

uptake 

rate 

Biomass 

production 

rate 

Pyruvate 

production 

rate 

Acetate 

production 

rate 

All 

Upper limit to the 

uptake rates of lactate 

and oxygen 

(6,2) (6,2) (8,2) (10,3) (10,5) 

Upper limit to the 

uptake rates of pyruvate 

and oxygen 

(6,2) (4,2) N/A (6,2) (8,4) 

Upper limit to the 

uptake rates of acetate 

and oxygen 

(4,2) (6,2) N/A N/A (6,2) 
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Supplementary Figure S1: Carbon source-specific FBA-determined carbon uptake rates (left panels) 

and oxygen uptake rates (right panels) in the growth of S. oneidensis MR-1. Carbon source: (a) lactate, (b) 

pyruvate, and (c) acetate.  
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