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Abstract

In a variety of practical applications, there is a need to investigate diffusion or reaction-diffusion

processes on complex structures, including brain networks, that can be modeled as weighted

undirected and directed graphs. As an instance, the celebrated Fisher-Kolmogorov-Petrovsky-

Piskunov (Fisher-KPP) reaction-diffusion equation are becoming increasingly popular for use in

graph frameworks by substituting the standard graph Laplacian operator for the continuous one

to study the progression of neurodegenerative diseases such as tauopathies including Alzheimer’s

disease (AD). However, due to the porous structure of neuronal fibers, the spreading of toxic

species can be governed by an anomalous diffusion process rather than a normal one, and if

this is the case, the standard graph Laplacian cannot adequately describe the dynamics of the

spreading process. To capture such more complicated dynamics, we propose a diffusion equation

with a nonlinear Laplacian operator and a generalization of the Fisher-KPP reaction-diffusion

equation on undirected and directed networks using extensions of fractional polynomial (FP)

functions. A complete analysis is also provided for the extended FP diffusion equation, including

existence, uniqueness, and convergence of solutions, as well as stability of equilibria. Moreover,

for the extended FP Fisher-KPP reaction-diffusion equation, we derive a family of positively

invariant sets allowing us to establish existence, uniqueness, and boundedness of solutions.

Finally, we conclude by investigating nonlinear diffusion on a directed one-dimensional lattice

and then modeling tauopathy progression in the mouse brain to gain a deeper understanding of

the potential applications of the proposed extended FP equations.

Keywords: Fractional polynomial, Fisher-KPP reaction-diffusion equation, Nonlinear diffusion,

Anomalous diffusion, Directed networks, Tauopathies

1. Introduction

A generalization of the Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) reaction-

diffusion equation [1, 2] to undirected networks has recently been employed to study the

spreading of prion-like proteins within the brain [3–6]. In fact, the Fisher-KPP equation has
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been altered by replacing the continuous Laplacian operator with the conventional graph Lapla-

cian operator. This generalization and the concept of nonlinear diffusion prompted us to propose

a new nonlinear graph Laplacian operator that allows us to capture more complex diffusion

phenomena on both undirected and directed networks. We also extend the reaction term of the

Fisher-KPP equation to introduce a larger family of reaction-diffusion models.

The dynamics of linear Laplacian operators in directed graphs have been well studied [7–10].

In the literature, the standard graph Laplacian has been developed in a variety of ways to

study spectral information, such as eigenvalues, eigenvectors, and Cheeger constants, for graphs

and hypergraphs [11–18]. Aside from the extensions regarding spectral graph theory, several

generalizations of the standard graph Laplacian exist particularly for exploring anomalous

and nonlinear diffusion processes, most of which are restricted to undirected graphs [19–31],

and for studying the dynamics of chemical reaction networks (CRNs) [32], which are directed

networks [33, 34]. Fractional graph Laplacian operators constructed by raising the Laplacian

matrix to a real power between 0 and 1 [19–22], d-path Laplacian operators defined by using

path matrices accounting for the existence of shortest paths of length d between two nodes

[23], and the Mellin-transformed d-path Laplacian operators
∑∞

d=1 Ldd
−s [24–26], where s

is a nonnegative real number, have been applied to investigate superdiffusion with a linear

differential equation. Besides the normal diffusion, in which the mean square displacement

(MSD) of particles scales linearly with time, and the anomalous superdiffusion processes, in

which MSD (t) is proportional to tζ with ζ > 1, there is a substantial body of knowledge

about the subdiffusion processes for which ζ < 1, especially observed in biological systems

[35–41]. In a recent paper [27], Diaz-Diaz and Estrada presented a linear diffusion equation

incorporating the Mellin-transformed d-path Laplacian operator, which utilizes fractional-time

derivatives to describe subdiffusion on undirected networks. Some nonlinear generalizations

of the standard graph Laplacian operator on undirected graphs are the p-Laplace operator

(∆ω,pf) (xi) =
∑

xj∼xi ω (xi, xj)
p/2 |f (xj) − f (xi) |p−2 (f (xj)− f (xi)) for a vertex xi and its

variants, which have been exploited to introduce a family of discrete-in-time diffusion equations

used in image processing [28, 29]. In order to examine the dynamics of interacting random

walkers moving over unweighted undirected graphs, a nonlinear graph Laplacian operator has

been suggested as follows [30]: Li (ρ) =
∑

j Lij (f (ρj) g (ρi)− (kj/ki) f (ρi) g (ρj)) for the mean-

field node density ρi, where Lij = aij/kj − δij is the usual graph Laplacian and ki represents

the degree of node i. Given functions f (x) = xα and g (x) = (1− x)σ for 0 ≤ x ≤ 1 and zero

elsewhere, it was illustrated that the diffusion equation formed by Li (ρ) has a unique stationary

solution under some assumptions. Nevertheless, the authors have not addressed the existence

and uniqueness of solutions of the proposed diffusion equation in a broader sense. In a recent

work [31], considering functions f (x) = xm and g (x) = 1, it has been shown that taking the

continuum limit of the diffusion equation incorporating Li (ρ) for an infinite q-homogeneous

tree, where each node has degree q + 1 and the distance between nodes is given by a, yields

the nonlinear partial differential equation (PDE) ∂tρ = a2 (q + 1) ∂xx (ρm) − a (q − 1) ∂x (ρm),

where ρ (x, t) is identified with ρ (x, t) = ρi (t). In the case of an infinite regular lattice, i.e.,
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q = 1, the aforementioned PDE reduces to the so-called porous medium equation ∂tρ = σ∆ (ρm),

with m > 1, admitting a family of self-similar solutions (in a weak sense), called Barenblatt-

Pattle solutions, representing diffusion from a point source [42, 43]. The article [31] also

verified the uniqueness of the stationary solution under specific conditions. However, similar

to [30], it did not discuss the existence and uniqueness of the solution of the graph diffusion

equation dρi/dt = Li (ρ) with initial conditions ρi (0) ≥ 0 in a more general sense. Recently,

Veerman et al. [32] propounded a nonlinear Laplacian framework for CRNs, which leads to the

polynomial system of differential equations dx/dt = −SLToutψ (x), where S is a non-negative

matrix with no zero rows, Lout is an out-degree Laplacian matrix, and each element of vector ψ

is a monomial. It has been demonstrated that for a componentwise strongly connected network

when KerS∩ImLT = {0}, the proposed polynomial system has exactly one positive equilibrium

x∗ in a specified invariant set Xz. Using a Lyapunov function, the authors concluded the (local)

asymptotic stability of that equilibrium point x∗ in Xz, and they also verified that the ω-limit

set of any positive initial condition in Xz either equals x∗ or is a bounded set contained in the

boundary of the positive orthant.

Our generalizations of the diffusion and reaction terms result in systems of differential

equations involving fractional polynomial (FP) functions whose definitions are restricted to the

nonnegative orthant, which is a closed subset of the Euclidean space. Hence, we first extend these

functions to functions on an open subset possessing a differentiable structure, empowering us to

gain the common methods and theorems of dynamical systems theory to analyze the proposed

FP equations. In addition, since the extended FP functions are continuously differentiable on

the whole space, we can investigate the properties of solutions not only with nonnegative initial

conditions but also negative ones whose practical importance can be realized by introducing the

notion of active concentration. The elaboration of the details is continued in Subsection 3. The

remainder of the paper is organized as follows; we propose a nonlinear Laplacian operator and its

corresponding diffusion equation in Subsections 4.1 and 4.2, respectively. For the extended FP

diffusion equation, the existence and uniqueness of solutions as well as positively invariant sets

are discussed Subsubsection 4.2.1, and we also establish the convergence of solutions and stability

of equilibria in Subsubsection 4.2.2. Next, our generalization of the Fisher-KPP equation and

a family of its positively invariant sets are presented in Subsection 5. For the purpose of

illustrating the potential applications of our model, we first examine nonlinear diffusion on a

directed one-dimensional lattice in Section 6 and then proceed to model tauopathy progression

in the mouse brain in Section 7.

2. Mathematical preliminaries

2.1. Definitions and notations

To delineate our model, we first need to introduce a few definitions and notations. The set of

all real numbers will be denoted by R, and given γ ∈ R, we define R≥γ = [γ,∞), R>γ = (γ,∞),

R≤γ = (−∞, γ], and R<γ = (−∞, γ). Accordingly, RM , RM
≥γ

, RM
>γ, R

M
≤γ

, and RM
<γ represent the

sets of all M -tuples whose components belong to R, R≥γ , R>γ , R≤γ , and R<γ , respectively. The
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set of all M -by-M matrices over R is indicated byMM (R), and I also denotes the identity matrix.

Throughout the paper, boldface is used to distinguish vectors and matrices from scalars. Suppose

u, v, w ∈ RM , and let Λ (v) be a diagonal matrix whose diagonal elements are the elements of

v. Then, the vector v �w defined by v �w = Λ (v)w is called the Hadamard product of v

and w, which is commutative, i.e., v�w = w�v, associative, i.e., u� (v �w) = (u� v)�w,

and distributive over vector addition, i.e., u � (v +w) = u � v + u � w [44]. We also

define functions (·)n : RM
≥0 → RM by xn = (xn1

1 , x
n2
2 , ..., x

nM
M )T , | · |n : RM → RM by |x|n =

(|x1|n1 , |x2|n2 , ..., |xM |nM )T , sgn (·) : RM → RM by sgn (x) = (sgn(x1), sgn(x2), ..., sgn(xM))T ,

and ln (| · |) : RM → RM by ln (|x|) = (x̃1, x̃2, ..., x̃M)T where

n = (n1, n2, ..., nM)T ∈ RM
>0,

xnii =

{
exp(niln(xi)) xi > 0,

0 xi = 0,

sgn(xi) =

{
1 xi ≥ 0,

−1 xi < 0,

x̃i =

{
ln (|xi|) xi 6= 0,

0 xi = 0,

(1)

and |xi| is the absolute value of xi. For notational simplicity, we will use xn and |x| rather than

xn1 and |x|1, respectively, where 1 is an all-ones vector with an appropriate dimension. It is

also obvious that x = Λ (sgn(x)) |x| and |x|n = Λ (|x|n) 1.

2.2. Autonomous systems of ODEs

Now, we recall some theorems and results concerning autonomous systems of differential

equations, which will be used in our analysis. Consider the system

ẋ :=
dx

dt
= f (x) , (2)

where f : X → RM is a continuously differentiable function from a domain (open and connected

set) X ⊆ RM into RM . Then, a point xe is said to be an equilibrium point of (2) if f (xe) = 0.

Theorem 2.1. [45] Let Ξ be a compact (closed and bounded) subset of X, and x0 ∈ Ξ. If every

solution of the system (2) with the initial condition x(0) = x0 lies entirely in Ξ, then there is a

unique solution that is defined for all t ≥ 0.

Theorem 2.2 (Lyapunov’s stability theorem). [45] Suppose that V : X∗ → R is a continuously

differentiable function defined in a domain X∗ ⊆ X which contains an equilibrium point xe of

the system (2), and let ∇V (x) be its gradient. If V (x) and its derivative along the trajectories

of the system (2), i.e., V̇ (x) = ∇V (x)T ẋ, satisfy the following conditions

• V (x) is positive definite with respect to xe; and

• V̇ (x) is negative semidefinite.
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Then xe is stable in the sense of Lyapunov, and V (x) is called a Lyapunov function.

We say that V (x) is positive (resp., negative) definite with respect to xe if V (xe) = 0

and V (x) > 0 (resp., −V (x) > 0) for all x ∈ X∗ \ {xe}. Further, if it satisfies the weaker

condition V (x) ≥ 0 (resp., −V (x) ≥ 0), it is said to be positive (resp., negative) semidefinite.

It is not difficult to check the sign definiteness of a quadratic function xTPx where P is a real

symmetric matrix. It can be shown that xTPx > 0 (resp., xTPx ≥ 0) for all x 6= 0 if and only

if every eigenvalue of P is positive (resp., nonnegative), in which case the matrix P is called

positive definite (resp., positive semidefinite) and denoted by P � 0 (resp., P � 0).

Theorem 2.3 (LaSalle’s invariance theorem). [46] Let Ξ∗ ⊂ X be a compact set that is positively

invariant with respect to the system (2), i.e.,

∀x (0) ∈ Ξ∗ ⇒ x (t) ∈ Ξ∗ ∀t ≥ 0.

If an equilibrium point xe belongs to Ξ∗ and there exists a continuously differentiable function

V : X → R such that
V̇ (xe) = 0,

V̇ (x) < 0, ∀x ∈ Ξ∗ \ {xe},

then every solution starting in Ξ∗ approaches xe as t goes to infinity.

Note that Theorem 2.3 is actually a corollary of LaSalle’s theorem [46], customized to the

situation that the set {x ∈ Ξ∗ : V̇ (x) = 0} is equal to {xe}.
Despite the fact that this manuscript has been devoted to explore systems with continuously

differentiable right-hand side functions, we need to recall some concepts and results concerning

Filippov’s differential inclusion [47–50], having been particularly developed to analyze nonsmooth

systems, since they enable us to study the convergence of solutions using nonsmooth functions.

Due to the continuity of f [48], the system (2) can be replaced with the following Filippov

differential inclusion: ẋ ∈ {f (x)}. If there is a locally Lipschitz function V : RM → R that

can be written as a pointwise maximum of a set of smooth functions, called a max function,

such as ‖x‖1 = 1T |x|, then the derivative of V along the trajectories of the differential inclusion

ẋ ∈ {f (x)} exists almost everywhere and satisfies [49]:

V̇ (x) ∈a.e. ˙̃V (x) =
⋂

ς∈∂V (x)

ςT{f (x)}, (3)

where ∂V (x) represents Clark’s generalized gradient of V at point x which is defined as [51]

∂V (x) = co{ lim
i→∞
∇V (xi) : xi → x, xi /∈ Y ∪ Z},

where co denotes the convex hull, and Y is the set of Lebesgue measure zero where ∇V does

not exist, and Z is also an arbitrary set of zero measure. For example, the function V (x) = |x|
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with x ∈ R has the Clarke generalized gradient

∂V (x) =


{+1} x > 0,[
− 1, 1

]
x = 0,

{−1} x < 0.

Theorem 2.4 (A nonsmooth version of LaSalle’s invariance theorem). [49] Assume that Ξ∗ ⊂ X

is a compact set that is positively invariant with respect to Eq. (2). If V : X → R is a locally

Lipschitz max function such that v ≤ 0 for all v ∈ ˙̃V (x) for all x ∈ Ξ∗ (note that if ˙̃V (x) is

the empty set then this condition is trivially satisfied), then every solution in Ξ∗ converges to

the largest invariant set in the closure of {x ∈ Ξ∗ : 0 ∈ ˙̃V (x)}.

It is worth noting that the original theorem [49] from which Theorem 2.4 was derived requires

uniqueness of solutions, which is automatically established here by Theorem 2.1.

Once a system of differential equations is utilized to describe the temporal evolution of

nonnegative variables such as concentrations, the system requires to preserve nonnegativity of

solutions for nonnegative initial conditions on the maximal forward time interval of existence of

each solution. This property is classically known as positivity, and if a system has it, then it is

called a positive system [52]. It is intuitively evident and shown in [53] that the system (2) with

RM
≥0 ⊂ X is positive if and only if f (x) satisfies

∀x ∈ RM
≥0 \ RM

>0 : xi = 0⇒ fi (x) ≥ 0, (4)

which henceforth will be referred to as the positivity condition.

2.3. Weighted directed graphs

A weighted directed graph (or simply a digraph) G with no self-loops is a triple (NG, EG, ωG),

where NG is a finite nonempty set of nodes (or vertices), NG = {1, 2, ...,M} with a positive

integer M , EG is a set of directed edges, EG ⊆ NG × NG \ {(k, i) ∈ NG × NG : k = i}, and

ωG : EG → (0,∞) is a function that associates each edge in G from vertex k to vertex i, k → i,

to a positive real number, ωik. If there is no such edge, we let ωik = 0. When EG also satisfies

the symmetric condition which implies if (k, i) ∈ EG, then (i, k) ∈ EG, the digraph G is here

referred to as a symmetric digraph. Note that in our context a weighted undirected graph G

can be treated as a symmetric digraph when ωik = ωki for all (i, k) ∈ EG. Given a digraph G, a

path from node k to node i is a sequence of successive edges {(k, k1) , (k1, k2) , ..., (kl, i)} ⊆ EG,

i.e.,

k → k1 → k2 → ...→ kl → i,

and denoted by k  i, and node k is also said to be strongly connected to node i if either k = i

or there are both paths k  i and i k. Strong connectivity defines an equivalence relation

on the set of nodes, whose equivalence classes are called the strongly connected components

(SCCs) of G. Now, suppose [i]SCC and [k]SCC represent the SCC having the vertex i and the

SCC containing the vertex k, respectively. We say that [i]SCC precedes [k]SCC , denoted by
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[i]SCC 6 [k]SCC , if i′  k′ for some i′ ∈ [i]SCC and some k′ ∈ [k]SCC . Since the relation 6 on

SCCs of G is transitive, reflexive, and antisymmetric, it is a partial order, and thus it enables

us to determine terminal SCCs of G, which are those [i]SCC such that if [i]SCC 6 [k]SCC then

[i]SCC = [k]SCC [54]. Here, GT denotes the set of all digraphs whose SCCs are all terminal. It is

obvious that symmetric digraphs belong to GT .

3. Extensions of fractional polynomial functions

Let EF
(
RM
)

represent the set of all functions from RM to R which can be expressed in the

form

ϕ(x) = ξ0 +
∑
k

ξk

(∏
l∈Sk

sgn (xl) |xl|nl
)
, (5)

with ξ0, ξk ∈ R, nl ∈ R≥1, where the sum is over a finite number of k’s, and Sk is a sub-multiset

of the multiset {1, 1, 2, 2, ...,M,M}. A multiset is a set whose elements can be repeated more

than once, and the number of times an element appears in a multiset is called its multiplicity

[55]. Hence, the multiplicity of each element of the sub-multiset Sk can be at most two. Taking

elements with multiplicity 2 into account allows a function ϕ ∈ EF
(
RM
)

to have terms including

(sgn(xl)|xl|nl) (sgn(xl)|xl|nl), which is equal to |xl|2nl , and thus it makes the set EF
(
RM
)

closed

under the standard multiplication of functions. Indeed, it can be shown that pointwise addition

and multiplication of functions turn EF
(
RM
)

into a commutative ring and also a commutative

and associative algebra over R if we define scalar multiplication by (γϕ) (x) := γϕ (x) for any

γ ∈ R. Note that since proving the mentioned algebraic properties of EF
(
RM
)

is similar to

proving those properties for the set of all continuous functions from RM to R [56], we have

deliberately avoided discussing their proofs in detail.

The restriction of ϕ ∈ EF
(
RM
)

to RM
≥0 is a FP function. Although FP functions have been

used in various fields of research, such as statistical modeling [57, 58], fractional calculus [59, 60],

non-integer summations [61–63], and b-function computing [64, 65], to the best of the authors’

knowledge there has been no generalization of a FP function like (5) in previous published

studies. The ultimate aim of this manuscript is to develop a framework for describing the

spatiotemporal evolution of concentrations of different species, and since the concentration of

a given species takes nonnegative values, at first glance it may appear that there would be

no reason for proposing the set EF
(
RM
)
, but we have had a theoretical as well as practical

motivation behind this generalization. The theoretical reason was to provide continuously

differentiable extensions of FP functions on the whole Euclidean space; see Lemma 3.1. Indeed,

the conventional definition of a real-valued fractional polynomial function is confined to the

nonnegative orthant, which is a closed subset of the Euclidean space, whereas in the literature

most theorems and results concerning differentiable functions are only applicable to functions

on open domains. To clarify, in any application of functions defined on a closed subset of

the Euclidean space, which requires the consideration of their differentiability, it is generally

needed either to customize the standard theorems of interest to their closed domains [66]

or more typically to find continuous differentiable extensions of these functions to an open
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subset including their domains [67], due to the fact that closed subsets of the Euclidean space

normally lack a differentiable structure. For further investigation about such extensions and

their existence, we refer to Whitney’s extension problem [68, 69] and other relevant articles

[70–72].

The practical motivation for introducing the set EF
(
RM
)

can be explained by defining

the active concentration of a given species that is calculated by subtracting the normalized

concentration of its annihilating (or neutralizing) species from its own concentration, where the

normalization is done such that zero active concentration corresponds to neutralization. As a

result, the active concentration may take negative values, and additionally, if no annihilating

species exist, the concept of active concentration is simply equivalent to the usual concept of

concentration. In fact, it allows us to simultaneously consider two species that can neutralize the

effects of each other at the expense of accepting negative values. Generally speaking, biological

studies on species affected by antibodies can benefit from the notion of active concentration.

Let us note that although we have introduced the active concentration and will continue our

theoretical discussion based on this notion, the simulations in this article are confined to

nonnegative initial conditions due to brevity. Indeed, we intend to address more empirical

aspects of this work, especially in the context of neurodegenerative diseases, in future articles.

Lemma 3.1. Every function ϕ ∈ EF
(
RM
)

is continuously differentiable on RM .

Proof. A function ϕ : RM → R is said to be continuously differentiable on RM if all its

partial derivatives exist and are continuous at each point of RM . Hence, since a function ϕ ∈
EF
(
RM
)

consists of a finite number of additions and multiplications of the terms sgn(xi)|xi|ni ,
i ∈ {1, 2, ...,M}, and also the constants ξ0 and ξk, it is sufficient, according to the linearity

of differentiation and the chain rule, to show that the derivative of sgn(xi)|xi|ni for each

i ∈ {1, 2, ...,M} with ni ∈ R≥1
exists and is also continuous at every point of R. Using the

definition of derivative and applying the L’Hôpital’s rule, it is not difficult to obtain

d

dxi
(sgn(xi)|xi|ni) =

{
niexp((ni − 1) ln(|xi|)) xi 6= 0,

0 xi = 0,
(6)

which may be written more compactly as ni|xi|ni−1. Since it can be easily seen that |xi|ni−1

with ni ≥ 1 is continuous on R, the continuity of the partial derivatives of ϕ on RM will be

assured.

Let EF
(
RM ,RM

)
denote the set of all vector-valued functions from RM to RM whose all

M real-valued components belong to EF
(
RM
)
. Since a vector-valued function is continuously

differentiable on RM if and only if all its components are continuously differentiable on RM ,

Lemma 3.1 implies the following statement.

Lemma 3.2. Any vector-valued function ϕ ∈ EF
(
RM ,RM

)
is continuously differentiable on

RM .
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4. Extended FP diffusion equation on directed networks

4.1. A generalized nonlinear Laplacian operator on directed networks

We generalize the conventional graph Laplacian operator on a digraph G with M nodes as

follows:

LG (x) = L (sgn (x)� |x|n) , (7)

where x ∈ RM , and n is a constant vector belonging to RM
≥1, which implies LG ∈ EF

(
RM ,RM

)
.

The matrix L ∈MM (R) is called the Laplacian matrix and defined by

[L]ik =

 −ωik i 6= k,∑
i′ 6=k

ωi′k i = k, (8)

where ωik is the weight of the edge k → i. It can be directly deduced from the definition (8)

that the Laplacian matrix satisfies the following equality 1TL = 0.

Lemma 4.1. [7, 73] If G is a strongly connected digraph with M nodes, then the kernel of the

Laplacian matrix L, i.e., ker (L) = {x ∈ RM : Lx = 0}, is one-dimensional [73], and there is

also a vector v ∈ ker (L) whose elements are all positive [7].

Note that [73] and [7] consider −L as the Laplacian matrix. However, since −Lv = 0 implies

Lv = 0, their results are also applicable to L.

Lemma 4.2. [7] Assume that G ∈ GT has M nodes and m SCCs. Then, there is a permutation

matrix P d that transforms the Laplacian matrix L of G into a block diagonal form, i.e.,

P dLP
T
d =


L1 0 ... 0

0 L2 ... 0
...

...
. . .

...

0 ... 0 Lm

 ,

where every block of P dLP
T
d corresponds to a unique SCC of G.

4.2. A Model for Diffusion Processes

Given a digraph G ∈ GT having M nodes and m SCCs, let us study a diffusion process on

G that may be described by

ẋ = −LG (x) , x (0) ∈ RM , (9)

where the i-th element of x (t) is the active concentration of a given species at node i at time t,

and accordingly, xtot (t) = 1Tx (t) is their total active concentration on G at time t.

Lemma 4.3. The total active concentration is preserved during a diffusion process governed by

the differential equation (9).
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Proof. Using 1TL = 0, we obtain

d

dt
(xtot) = 1T ẋ = −1TL (sgn (x)� |x|n) = 0.

4.2.1. Existence and uniqueness of solutions and positively invariant sets

Proposition 4.1. The set Υη = {x ∈ RM : ‖x‖1 ≤ η} with η ∈ R≥0 is positively invariant with

respect to the system (9).

Proof. Suppose ε = (ε1, ..., εM)T where εi is either −1 or 1. Then, we define

OM
ε = {x ∈ RM : εixi ≥ 0, ∀i ∈ {1, ...,M}}, (10)

which is obviously an orthant of RM . Each boundary segment εTx = η of the set Υη is totally

contained in the orthant OM
ε , and clearly, it can be seen that εTx ≥ 0 for x ∈ OM

ε due to

εixi ≥ 0. Calculating the derivative of εTx along the trajectories of the system (9) yields

d

dt

(
εTx

)
= −

M∑
i=1

M∑
j=1
j 6=i

sgn (xi) |xi|niωji (εi − εj)

= −
M∑
i=1

M∑
j=1
j 6=i

|xi|niωji (1− sgn (xi) εj) ≤ 0, ∀x ∈ OM
ε ,

(11)

which demonstrates that at any point on each boundary segment εTx = η, εTx is nonincreasing

along the trajectories of the system (9). Therefore, any solution x (t) with an initial condition

x (0) ∈ Υη cannot leave the set Υη, and the proof is concluded by Theorem 2.1.

Corollary 4.1. For any initial condition x (0) ∈ RM , the system (9) has a unique bounded

solution x (t) that is defined for all t ≥ 0.

Proof. For any initial condition x (0) ∈ RM , it is seen that x (0) ∈ Υη with η ≥ ‖x (0)‖1 . The

rest of the proof follows from Proposition 4.1 and Theorem 2.1.

Proposition 4.2. The sets

Ψxtot = {x ∈ RM : 1Tx = xtot}, xtot ∈ R,

Ψ
+

xtot = RM
≥0 ∩Ψxtot , xtot ≥ 0,

Ψ
−

xtot = RM
≤0 ∩Ψxtot , xtot ≤ 0,

are positively invariant with respect to the system (9).

Proof. For the set Ψxtot , the conclusion follows directly from Lemma 4.3 and Proposition 4.1.

Due to the fact that the system (45) is invariant under the change of variables x→ −x, its state

space is symmetric under reflection through the origin. Hence, it is only sufficient to continue
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the proof for the set Ψ
+

xtot . According to Lemma 4.3, any solution x (t) of the system (9) with

an initial condition x (0) ∈ Ψ
+

xtot always satisfies 1Tx (t) = xtot. Additionally, x (t) cannot leave

the set Ψ
+

xtot through the boundary of the nonnegative orthant, thanks to the fact that −LG (x)

satisfies the positivity condition (4). Thus, the solution x (t) lies entirely in the compact set

Ψ
+

xtot on the maximal forward time interval of its existence. Further, since the right-hand side of

Eq. (9) is continuously differentiable on RM , Theorem 2.1 ensures the existence and uniqueness

of the solution x (t) for all t ≥ 0. Hence, it can be concluded that

∀x (0) ∈ Ψ
+

xtot ⇒ x (t) ∈ Ψ
+

xtot ∀t ≥ 0.

Corollary 4.2. For any initial state x (0) ∈ RM
≥0 (resp., x (0) ∈ RM

≤0), the system (9) has a

unique solution x (t) remaining entirely in RM
≥0 (resp., RM

≤0) for all t ≥ 0.

Proof. Every solution x (t) of the system (9) with x (0) ∈ RM
≥0 lies entirely in the compact

set Ψ
+

xtot with xtot = 1Tx (0) by Proposition 4.2. The rest of the proof is similar to that of

Proposition 4.2.

Compared to Corollary 4.2, a stronger conclusion can be drawn when G is strongly connected.

Proposition 4.3. Assume G is strongly connected. For any initial condition x (0) ∈ RM
≥0 \ {0}

(resp., x (0) ∈ RM
≤0 \ {0}), the system (9) has a unique solution x (t) remaining entirely in RM

>0

(resp., RM
<0) for all t > 0.

Proof. Owing to the fact that the state space is symmetric under reflection through the origin,

it suffices only to proceed with the nonnegative orthant. Before we embark on the proof, let us

rewrite the system (9) as

ẋi = ai (t) xi + bi (t) ,

where
ai (t) = −

∑
k 6=i

ωki|xi|ni−1, bi (t) =
∑
j 6=i

ωijsgn (xj) |xj|nj ,

According to the solution formula for a first-order linear differential equation, we obtain

xi (t) = exp

(∫ t

0

ai (τ) dτ

)
xi (0)

+

∫ t

0

exp

(∫ t

t′
ai (τ) dτ

)
bi (t

′) dt′.

(12)

Due to x (0) ∈ RM
≥0 \ {0}, there is at least one component xi∗ for which xi∗ (0) > 0. Considering

Corollary 4.2 and the fact that ωij ≥ 0, the initial condition xi∗ (0) > 0 implies xi∗ (t) > 0 for

all t > 0 using Eq. (12). Since G is strongly connected, there is at least one edge from node

i∗ to another node j∗, which leads to bj∗ (t) > 0 for all t > 0. Thus, using again the formula

(12), we deduce that cj∗ (t) > 0 for all t > 0. Continuing this reasoning yields x (t) ∈ RM
>0 for all

t > 0.
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Recalling Lemma 4.2, it can be demonstrated that the change of variables y = P dx and

n∗ = P dn transforms the system (9) into

ẏ = −P dLP
T
d

(
sgn (y)� |y|n∗

)
, y (0) ∈ RM , (13)

where n∗ ∈ RM
≥1 due to the assumption n ∈ RM

≥1. Note that P−1
d = P T

d , resulting from

the fact that any permutation matrix is an orthogonal matrix. It is also easy to see that

xtot = 1Tx = 1Ty, and hence the set {y ∈ RM : 1Ty = xtot} is equal to the set Ψxtot , which is

positively invariant by Proposition 4.2. Since P dLP
T
d has a block diagonal form, the analysis

of a diffusion process on G governed by the differential equation (13) can be done for each SCC

of G independently. Thus, let us rewrite the system (13) as follows:

ẏl = −Ll
(
sgn (yl)� |yl|n

∗
l

)
, yl (0) ∈ RMl ,

∀l ∈ {1, ...,m},
(14)

where Ll and n∗l denote a block of P dLP
T
d and a subvector of n∗ corresponding to the l-th

SCC of G, respectively. Ml is the number of nodes belonging to the SCC l, and subsequently, it

follows that
∑m

l=1 Ml = M and the Cartesian product
∏m

l=1 RMl is equal to RM by defining the

vector (y1, ...,ym) = ([y1]1, ..., [y1]M1 , ..., [ym]1, ..., [ym]Mm)T where [yl]k is the k-th element of

yl ∈ RMl . Furthermore, given P T
dP d = I, the equality 1TL = 0 leads to

1TP T
dP dLP

T
d = 0

1TP Td =1T

======⇒

1TP dLP
T
d = 0⇒ 1TLl = 0.

(15)

Generally, a fixed value of the total concentration on a digraph belonging to GT may correspond

to more than one equilibrium point of the system (14). In other words, the set Ψxtot can contain

more than one equilibrium point. For example, given a graph G with three nodes and with no

edges, every point y ∈ R3 is an equilibrium point of the system (14), and as long as the condition

1Ty = xtot is satisfied, the equilibrium point y belongs to Ψxtot . However, in Proposition 4.4 we

show that if the total active concentration on each SCC of a digraph G ∈ GT is fixed, then the

total active concentration on G will correspond to only one equilibrium point of the system (14).

Proposition 4.4. Consider the system (14) and the sets

Ψ̃(y1,...,ym) = {(y1, ...,ym) ∈
m∏
l=1

RMl : 1Tyl = yl, ∀l ∈ {1, ...,m}},

Ψ̃∗(y1,...,ym) =
m∏
l=1

OMl

sgn(yl)1
∩ Ψ̃(y1,...,ym),

(16)

where the value yl stands for the total active concentration on the l-th SCC of G. Then, each

set in (16) contains exactly one equilibrium point of the system (14). Note that
∑m

l=1 yl = xtot

also leads to Ψ̃(y1,...,ym) ⊆ Ψxtot.
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Proof. Due to brevity, we only provide a proof for the set Ψ̃(y1,...,ym). Let ye ∈ RM be an

equilibrium point of the system (14). Suppose that yel ∈ RMl is a subvector of ye corresponding

to the SCC l. Thus, y
n∗l
el belongs to the kernel of the block Ll. Since each component of G

is strongly connected, Lemma 4.1 implies that ker (Ll) has dimension one, and there is also

a subvector vl ∈ ker (Ll) whose elements are positive. Hence, there exists a real nonnegative

number %l such that

y
n∗l
el = %lvl if yel ∈ RMl

≥0 ,(
−yel

)n∗l = %lvl if yel ∈ RMl

≤0 .
(17)

Assume without loss of generality that yel ∈ RMl

≥0 , and let us rewrite Eq. (17) as follows:

[yel ]k = (%l[vl]k)
1/[n∗l ]k ∀k ∈ {1, ...,Ml}, (18)

where the index k means the k-th element. Note that [n∗l ]k ≥ 1 for all k. Furthermore, if

ye ∈ Ψ̃(y1,...,ym), then 1Tyel = yl, and the substitution of Eq. (18) in 1Tyel = yl yields

Ml∑
k=1

(%l[vl]k)
1/[n∗l ]k = yl. (19)

Since the left-hand side of Eq. (19) is a strictly increasing function of %l for its nonnegative values,

there is a one-to-one correspondence between %l and yl, and it follows for a fixed value of yl that

there exists only one subvector yel which corresponds to yl. Therefore, there is a one-to-one

correspondence between the vector (y1, ..., ym)T ∈ Rm and the vector ye =
(
ye1 , ...,yem

)
∈ RM ,

which leads to the conclusion that the set Ψ̃(y1,...,ym) includes exactly one equilibrium point of

the system (14).

Corollary 4.3. Both sets in (16) are positively invariant with respect to the system (14).

Proof. It can be proven by repeating the proof of the Proposition 4.2 for each SCC of G.

4.2.2. Convergence of solutions and stability of equilibria

To investigate the convergence of solutions of the system (14), we first exploit the Lyapunov

function candidate

VD (y) =
m∑
l=1

yTl Λ−1 (vl)
(
sgn (yl)� |yl|n

∗
l

)
, (20)

where vl ∈ RMl

>0 belongs to ker (Ll), and its existence is guaranteed by Lemma 4.1. Note that

Λ−1 (vl) denotes the inverse of the matrix Λ (vl). The function VD (y) can also be rewritten as

follows VD (y) =
∑m

l=1 |yl|TΛ−1 (vl) |yl|n
∗
l , for which it is easy to notice the positive definiteness

with respect to y = 0, i.e.,

VD (0) = 0,

VD (y) > 0, ∀y ∈ RM \ {0}.
(21)
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Considering VD ∈ EF
(
RM
)
, this function is continuously differentiable on RM by Lemma 3.1,

and the calculation of its derivative along the trajectories of the system (14) yields

V̇D (y) =
1

2

m∑
l=1

(
ẏTl Λ−1 (vl)

(
sgn (yl)� |yl|n

∗
l

)
+ yTl Λ−1 (vl)

(
n∗l � |yl|n

∗
l−1 � ẏl

)
+
(
n∗l � |yl|n

∗
l−1 � ẏl

)T
Λ−1 (vl)yl

+
(
sgn (yl)� |yl|n

∗
l

)T
Λ−1 (vl) ẏl

)
.

(22)

Using the change of variables z∗l =
(
sgn (yl)� |yl|n

∗
l

)
, and substituting Eq. (14) into Eq. (22),

we have

V̇D (y) = −1

2

m∑
l=1

(
(z∗l )

T (LTl Λ−1 (vl) + Λ−1 (vl) Λ (n∗l )Ll
)
z∗l

+ (z∗l )
T (Λ−1 (vl)Ll +LTl Λ (n∗l ) Λ−1 (vl)

)
z∗l

)
.

(23)

Finally, the change of variables zl = Λ−1 (vl) z
∗
l brings Eq. (23) into

V̇D (y) = −1

2

m∑
l=1

zTl Γlzl,

zl = Λ−1 (vl)
(
sgn (yl)� |yl|n

∗
l

)
,

(24)

where

Γl = (Λ (n∗l ) + I)LlΛ (vl) + Λ (vl)L
T
l (Λ (n∗l ) + I) . (25)

It is easy to spot that Γl is a symmetric matrix, and thus to conclude that V̇D (y) ≤ 0 for

all y ∈ RM is equivalent to showing that Γl for all l is a positive semidefinite matrix. If the

matrix Γl is positive semidefinite, then it must possess the following property: wT
l Γlwl = 0 if

and only if Γlwl = 0 for all wl ∈ RMl . See [44] for a proof of this property. Hence, since the

relation vl ∈ ker (Ll) results in 1TΓl1 = 0, we must have Γl1 = 0, which requires

LTl n
∗
l = 0. (26)

In fact, the equality (26) is a necessary condition for Γl to be positive semidefinite. Furthermore,

since this equality ensures Γl1 = 0, it is also a sufficient condition for Γl to be positive

semidefinite by Lemma 4.4.

Lemma 4.4. Let B ∈MM (R) be a symmetric matrix whose off-diagonal elements are nonpos-

itive.

• If B1 ∈ RM
≥0, then B � 0.

• If B1 ∈ RM
>0, then B � 0.

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2023. ; https://doi.org/10.1101/2023.02.04.527149doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.04.527149
http://creativecommons.org/licenses/by-nc-nd/4.0/


Proof. It is a corollary of Geršgorin circle theorem. Geršgorin circle theorem states that every

eigenvalue λ of the matrix B belongs to the union of Geršgorin discs, i.e.,

λ ∈
M⋃
i=1

{z ∈ C : |z −Bii| ≤
M∑
j=1
j 6=i

|Bij|}, (27)

where C and Bij denote the complex plane and the entry in the i-th row and j-th column of B,

respectively. Since B is symmetric, all its eigenvalues are real. Thus, given that its off-diagonal

elements are also nonpositive, the relation (27) can be rewritten as follows:

λ ∈
M⋃
i=1

{z ∈ R :
M∑
j=1

Bij ≤ z ≤ Bii −
M∑
j=1
j 6=i

Bij}. (28)

Considering the relation (28), B1 ∈ RM
≥0 (resp., B1 ∈ RM

>0) ensures that all eigenvalues of B

are equal to or greater than zero (resp., greater than zero), which confirms that B is positive

semidefinite (resp., positive definite).

Because Ll is a square matrix, the dimension of ker (Ll) is equal to the dimension of

ker
(
LTl
)
, which is a standard result in linear algebra. Hence, given that each component of

G is strongly connected, Lemma (4.1) implies that ker
(
LTl
)

has dimension one. In addition,

owing to the fact that LTl 1 = 0 (see Eq. (15)), the condition (26) can boil down to

n∗l = n∗l 1. (29)

considering n∗ ∈ RM
≥1, the coefficient n∗l must be greater than or equal to one. An immediate

conclusion from the foregoing discussion is that if the system (14) holds the condition (29) for all

l, then by Theorem 2.2 the function VD (y) in Eq. (20) is a Lyapunov function to demonstrate

the stability of the equilibrium point at the origin, which is of no practical interest in view of

the fact that the equilibrium point ye = 0 corresponds to the zero total concentration. However,

when the condition (29) is satisfied, Lemma 4.5 reveals more details about the derivative of VD (y)

along the trajectories of the system (14) which will assist us in achieving a result concerning

the convergence of solutions in the case of an arbitrary total concentration.

Proposition 4.5. Assume that the system (14) satisfies the condition (29) for all l. Then, for

any equilibrium point ye ∈ RM and the set Ψ̃(y1,...,ym) ⊃ {ye}, the function V̇D (y) in Eq. (24)

meets the following conditions:

V̇D (ye) = 0,

V̇D (y) < 0, ∀y ∈ Ψ̃(y1,...,ym) \ {ye}.
(30)

Proof. Assume that yel is a subvector of ye corresponding to the l-th SCC of G. Since ye is an
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equilibrium point of the system (14), it must satisfy

Ll
(
sgn

(
yel
)
� |yel|

n∗l
)

= 0, (31)

for all l, from which it follows that V̇D (ye) = 0. Considering the condition (29), the function

V̇D (y) in Eq. (24) can be rewritten as

V̇D (y) = −1

2

m∑
l=1

(n∗l + 1) zTl Γ∗l zl,

zl = Λ−1 (vl)
(
sgn (yl)� |yl|n

∗
l

)
,

(32)

where

Γ∗l =
(
LlΛ (vl) + Λ (vl)L

T
l

)
. (33)

Owing to vl ∈ ker (Ll), we have Γ∗l 1 = 0, and thus the matrix Γ∗l is positive semidefinite

by Lemma 4.4. Hence, the function V̇D (y) is a summation of nonpositive terms, and it

will be sufficient to show that there is at least one nonzero term. Recalling Proposition 4.4,

the relation y ∈ Ψ∗(y1,...,ym) \ {ye} implies that y is not an equilibrium point of the system

(14). Hence, there exists at least one SCC l′ of G such that for the subvector yl′ of y

we have Ll′
(
sgn (yl′)� |yl′|n

∗
l′
)
6= 0 or equivalently Ll′Λ (vl′) zl′ 6= 0; that is to say that

zl′ /∈ ker (Ll′Λ (vl′)). In addition, since the matrix Γ∗l′ is positive semidefinite, it has the

following property: wT
l′Γ
∗
l′wl′ = 0 if and only if Γ∗l′wl′ = 0 for all wl′ ∈ RMl′ . Given wl′ = zl′ ,

the conclusion V̇D (y) < 0 for y ∈ Ψ∗(y1,...,ym) \ {ye} can therefore be drawn from the following

equality:

ker (Ll′Λ (vl′)) = ker (Γ∗l′) , (34)

which will be proven as the next step of our proof. The matrix Λ (vl′) is full rank, deduced

from the fact that vl′ ∈ RMl′
>0 . Thus, since ker (Ll′) has dimension one according to Lemma

4.1, it follows that ker (Ll′Λ (vl′)) is also one-dimensional. Further, it is easily seen that

vl′ ∈ ker (Ll′) implies 1 ∈ ker (Ll′Λ (vl′)). Hence, to demonstrate the equality (34), it suffices

to show that if wl′ ∈ ker (Γ∗l′), then for elements of wl′ we get [wl′ ]1 = [wl′ ]2 = ... = [wl′ ]Ml′
.

Let wl′ ∈ ker (Γ∗l′), and thus given Γ∗l′1 = 0, it can be written

Γ∗l′wl′ − min
1≤k≤Ml′

([wl′ ]k) Γ∗l′1 = 0. (35)

We define a set Umin ⊆ {1, 2, ...,Ml′} such that if [wl′ ]k∗ = min
1≤k≤Ml′

([wl′ ]k), then the index k∗

belongs to Umin. Due to wl′ ∈ RMl′ , there is at least one element of wl′ whose index belongs to

Umin, and thus this set is not empty. For k∗ ∈ Umin, we can obtain the following equation using

Eq. (35).
Ml′∑
k=1
k 6=k∗

(−[Ll′ ]k∗k[vl′ ]k − [vl′ ]k∗ [Ll′ ]kk∗) ([wl′ ]k − [wl′ ]k∗) = 0, (36)

where [Ll′ ]k∗k denotes the entry in the k∗-th row and k-th column of Ll′ . Since vl′ ∈ RMl′
>0 ,
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[Ll′ ]k1k2 ≤ 0 for all k1 6= k2, and [wl′ ]k ≥ [wl′ ]k∗ for all k, both terms of the summand in Eq.

(36) are nonnegative. Besides, because the component l′ of G is strongly connected, there is at

least one edge from k∗ to one of its other nodes. This implies that the first term of the summand

in Eq. (36) is in fact strictly positive, and it can be deduced that [wl′ ]k = [wl′ ]k∗ . As a result,

the set Umin is closed under outgoing edges, and hence, we conclude that Umin = {1, 2, ...,Ml′},
which means [wl′ ]1 = [wl′ ]2 = ... = [wl′ ]Ml′

.

It is now time to encapsulate our first finding regarding the convergence of solutions of the

system (14) in Corollary 4.4.

Corollary 4.4. Let ye ∈ RM be an equilibrium point of the system (14), holding the condition

(29) for all l. Then, for any initial state y (0) belonging to the positively invariant set Ψ̃(y1,...,ym) ⊇
{ye} (or Ψ̃∗(y1,...,ym) ⊇ {ye}), the solution y (t) converges to ye as t approaches infinity.

Proof. It is concluded from Theorem 2.3, Corollary 4.3, and Proposition 4.5.

In the case that the system (14) does not fulfill the condition (29), the convergence of

solutions to equilibria can also be established in two steps. First, we will demonstrate that

every solution of the system (14) with an arbitrary initial condition enters a specific subspace

containing equilibrium points. Second, it will be shown that all solutions in that subspace

converge to equilibria. The first step is accomplished by using the function V (x) = ‖x‖1

whose set-valued derivative, introduced in (3), with respect to the Filippov differential inclusion

ẋ ∈ {−LG (x)} is as follows:

˙̃V (x) =
⋂

ς∈∂V (x)

ςT{−L (sgn (x)� |x|n)}, (37)

where ς ∈ ∂V (x) can be expressed elementwise as

ςi ∈


{+1} xi > 0,[
− 1, 1

]
xi = 0,

{−1} xi < 0.

Proposition 4.6. Consider the differential inclusion ẋ ∈ {−LG (x)} and the set-valued deriva-

tive ˙̃V (x) in Eq. (37). If G is strongly connected, then

˙̃V (x) ⊆


{0} x = 0,

{0} x ∈ Int OM
ε , with |1Tε| = M,

RM
<0 x ∈ Int OM

ε , with |1Tε| < M,

∅ elsewhere,

where Int OM
ε means the interior of the orthant OM

ε , defined in Eq. (10).
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Proof. Let us first rewrite Eq. (37) as follows:

˙̃V (x) =
⋂

ς∈∂V (x)

{−
M∑
i=1

M∑
j=1
j 6=i

sgn (xi) |xi|niωji (ςi − ςj)}. (38)

For x = 0, we have

˙̃V (x) =
⋂

ς∈∂V (x)

{
M∑
i=1

M∑
j=1
j 6=i

0} = {0}.

For the case x ∈ Int OM
ε with |1Tε| = M , it is obtained that

˙̃V (x) = {−
M∑
i=1

M∑
j=1
j 6=i

|xi|niωji (1− sgn (xi) sgn (xj))} = {0},

thanks to the fact that sgn (xi) sgn (xj) = 1 for all i and j.

For the case x ∈ Int OM
ε with |1Tε| < M , Eq. (38) can be written as

˙̃V (x) = {−
M∑
i=1

M∑
j=1
j 6=i

|xi|niωji (1− sgn (xi) sgn (xj))},

which is obviously nonpositive. Owing to the fact that G is strongly connected, it is deduced

that ˙̃V (x) = 0 if and only if sgn (xi) sgn (xj) = 1 when i 6= j. Indeed, this inference comes

from the fact that there is a path passing through all nodes of G. Furthermore, since G

is strongly connected, it follows from |1Tε| < M that there is an edge i∗ → j∗ for which

sgn (xi∗) sgn (xj∗) = −1. Thus, we have ˙̃V (x) = {v} with v < 0.

In the last case, x is a nonzero vector possessing at least one zero element. Hence, due to

the fact that G is strongly connected, there is an edge i∗ → j∗ for which xi∗ 6= 0 and xj∗ = 0,

and subsequently, it follows from Eq. (38) that

˙̃V (x) ⊆
⋂

ς∈∂V (x)
ςj∗=1

{Q+ sgn (xi∗) |xi∗|ni∗ωj∗i∗}

⋂ ⋂
ς∈∂V (x)
ςj∗=−1

{Q− sgn (xi∗) |xi∗|ni∗ωj∗i∗},
(39)

where

Q = −
M∑
i=1
i6=i∗

M∑
j=1
j 6=i

sgn (xi) |xi|niωji (ςi − ςj)

−
M∑
j=i∗
j 6=j∗

|xi∗ |ni∗ωji∗ (1− sgn (xi∗) ςj)− |xi∗|ni∗ωj∗i∗ .
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According to (39), it is inferred that ˙̃V (x) ⊆ ∅ since xi 6= 0 and ωj∗i∗ > 0.

Corollary 4.5. If G is strongly connected, then every solution of the system (9) with an arbitrary

initial state converges to the largest invariant set in the union of RM
≥0 and RM

≤0.

Proof. It follows from Propositions 4.1 and 4.6 and Theorem 2.4 that a solution x (t) of the

system (9) with an initial state x (0) ∈ RM converges to the largest invariant set in the union of

RM
≥0 ∩Υη and RM

≤0 ∩Υη where η ≥ ‖x (0)‖1 .

To prove that all solutions starting in RM
≥0 or RM

≤0 converge to equilibria, we will utilize

a modified version of the “free-energy” function of the Becker-Döring model, describing the

evolution of coagulation and fragmentation of clusters [74, 75]. Buhagiar [74] observed that this

free-energy function is a Lyapunov function for the Becker-Döring cluster equations, and recently,

it has been demonstrated that it is also a Lyapunov function for any system of differential

equations generated by chemical reaction networks whose components are strongly connected

[32]. Due to the fact that it is possible to derive a system of differential equations similar to Eq.

(9), where all elements of the power vector n are nonnegative integers, from a chemical reaction

network in which each reaction has identical reactants and also yields identical products, the

mentioned free-energy function has assisted us to suggest the function ED : RM
≥0 → R, defined

by

ED (x) = nT (x� (ln (x)− ln (xe))− (x− xe)) , (40)

to assess stability properties of an equilibrium point xe ∈ RM
>0 and the convergence of solutions

of the system (9). It follows from Lemma 4.5 that ED (x) is continuous on RM
≥0 as well as

positive definite with respect to xe.

Lemma 4.5. Assume that E (x) = x (ln (x)− ln (y)) − (x− y) with x ∈ R≥0 and y ∈ R>0

where E (0) is defined to be y. Then,

• E (x) is continuous on R≥0;

• E (x) is continuously differentiable on R>0;

• E (x) > 0 for all x 6= y, and E (y) = 0.

Proof. Considering limx→0+ E (x) = y, the first item is easy to spot. Due to dE/dx = ln (x)−
ln (y), the second item is also obvious. Since d2E/dx2 = 1/x > 0 for all x > 0, the function

E (x) is strictly convex on R>0, and thus, for all x, y ∈ R>0 when x 6= y, we have

E (x) > E (y) +
dE

dx
(y) (x− y) .

Owing to the fact that E (y) = (dE/dx) (y) = 0 and E (0) = y > 0, the third item is deduced.

Calculating the derivative of ED (x) along the trajectories of the system (9) yields

ĖD (x) = − (xn)T LTΛ (n) (ln (x)− ln (xe)) , x ∈ RM
>0. (41)
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Considering the equalities

(xne )T Λ−1 (xne ) Λ (xn) = (xn)T ,

(xne )T LTΛ−1 (xne )xn = 0,

Λ (n) ln (x) = ln (xn) ,

ĖD (x) in Eq. (41) can be written as

ĖD (x) =− (xne )T Λ−1 (xne ) Λ (xn)LT (ln (xn)− ln (xne ))

+ (xne )T LTΛ−1 (xne )xn,

or as the elementwise summation

ĖD (x) = −
M∑
i=1

M∑
j=1
j 6=i

xniei ωji
(
x∗i
(
ln (x∗i )− ln

(
x∗j
))
−
(
x∗i − x∗j

))
, (42)

where x∗i = xnii /x
ni
ei

.

Lemma 4.6. If G is strongly connected, then

ĖD (xe) ≤ 0, ∀x ∈ RM
>0,

ĖD (xe) = 0,

ĖD (x) < 0, ∀x ∈ RM
>0 ∩Ψ

+

xtot \ {xe},

where xtot = 1Txe.

Proof. Due to xniei > 0 and ωji ≥ 0, Lemma 4.5 implies that ĖD (x) in Eq. (42) is nonpositive

for x ∈ RM
>0. In addition, since G is strongly connected, the equality ĖD (x) = 0 occurs if and

only if
xn1

1

xn1
e1

=
xn2

2

xn2
e2

= ... =
xnMM
xnMeM

= γ

or equivalently xn = γxne where γ > 0 using Lemma 4.5. If x simultaneously satisfies xn = γxne

and 1Tx = 1Txe, then we must have

( n1
√
γ − 1, ...,

nM
√
γ − 1)T xe = 0. (43)

Due to ni ≥ 1 and xe ∈ RM
>0, the equality (43) is only satisfied for γ = 1.

Proposition 4.7. Let xe ∈ RM
≥0 (resp., xe ∈ RM

≤0) be an equilibrium point of the system (9). If

G is strongly connected, then xe is stable, and every solution x (t) with an initial state belonging

to Ψ
+

xtot (resp., Ψ
−
xtot) with xtot = 1Txe converges to xe as t approaches infinity.

Proof. It is sufficient to proceed only with xe ∈ RM
≥0 since the state space is symmetric under

reflection through the origin. When G is strongly connected, we have either xe = 0 or xe ∈ RM
>0

by Lemma 4.1. For the trivial case xe = 0, the stability can be guaranteed by Proposition

4.1. Now, suppose that xe ∈ RM
>0. It follows from Lemmas 4.5 and 4.6 that there exists a
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domain X∗ ⊆ RM
>0 containing xe in which ED (x) and ĖD (x) satisfy the conditions of Theorem

2.2. Hence, xe is stable. According to Proposition 4.2, the compact set Ψ
+

xtot is positively

invariant. Now, we show that the function ED (x (t)) on R≥0 is decreasing for all x (0) ∈ Ψ
+

xtot

with xtot = 1Txe. Note that x (0) 6= 0 because of xtot > 0. Due to the fact that the right-hand

side of the system (9) is continuously differentiable, any initial condition x (0) ∈ Ψ
+

xtot leads to a

continuously differentiable solution x (t) ∈ RM
>0 ∩Ψ

+

xtot for all t > 0 using Proposition 4.3, and

since the function ED (x) and its derivative ĖD (x) are continuous on RM
≥0 and RM

>0, respectively,

we can apply the second fundamental theorem of calculus (FTC) as follows:

ED (x (t))− ED (x (t0)) =

∫ t

t0

ĖD (x (τ)) τ, ∀t0 ∈ R>0,∀t ≥ t0.

Because ED (x (t)) is continuous on R≥0, we obtain∫ t

0

ĖD (x (τ)) τ = lim
t0→0+

∫ t

t0

ĖD (x (τ)) τ

= lim
t0→0+

(ED (x (t))− ED (x (t0)))

= ED (x (t))− ED (x (0)) ,

and using Lemma 4.6, which implies ĖD (x) ≤ 0 for all x ∈ RM
>0, it can be deduced that for

every initial state x (0) ∈ Ψ
+

xtot , we have

ED (x (t)) ≤ ED (x (0)) , ∀t ≥ 0.

Therefore, ED (x (t)) is decreasing, and since ED (x) is also lower bounded on the compact set

Ψ
+

xtot due to its continuity, the function ED (x (t)) converges to a limit as time goes to infinity,

i.e.,

ED (x (t))→ E∞ as t→∞. (44)

Before going on, we want to recall two definitions. A point p is said to be in the positive

limit set of a solution x (t) if there is a sequence tn going to infinity with n and such that

x (tn) → p as n → ∞. A set is called invariant if for any initial condition x (0) belonging to

this set, the solution x (t) remains in it for all t ∈ R. Now, let us resume our discussion. At

this point, someone thinks of applying LaSalle’s invariance principle [46] to investigate the

convergence problem here. Owing to the fact that ĖD (x) is only continuous on RM
>0 but not RM

≥0,

the function ĖD (x) is not continuous on whole Ψ
+

xtot , and consequently, LaSalle’s invariance

theorem cannot be directly employed. However, we can take advantage of a fundamental result

concerning positive limit sets which states that if a solution x (t) is bounded for all t ≥ 0, then

its positive limit sets is nonempty, compact, and invariant [46]. Let H+ be the positive limit set

of a solution x (t) with x (0) ∈ Ψ
+

xtot . Since the positively invariant set Ψ
+

xtot is closed, it follows
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that H+ ⊆ Ψ
+

xtot . According to (44), it is deduced that

∀p ∈ H+ ⇒ ED (p) = E∞

because ED (x) is continuous on Ψ
+

xtot ⊂ RM
≥0. Consider a solution x∗ (t) with x∗ (0) ∈ H+.

Thanks to the fact that H+ is invariant, it is inferred that x∗ (t) ∈ H+ ∩ RM
>0 for all t > 0 by

Proposition 4.3. Thus, recalling again the second FTC results in∫ t

t0

ĖD (x (τ)) τ = E∞ − E∞ = 0, ∀t0 ∈ R>0,∀t ≥ t0.

Hence, since ĖD (x∗ (t)) is continuous on [t0, t1] for all t1 > t0, applying the first FTC implies

ĖD (x∗ (t)) =
d

dt
(0) = 0. ∀t ∈ (t0, t1) ,

and it follows that x∗ (t) = xe because of the fact that ĖD (x) is only zero at xe and is negative

for all x ∈ RM
>0 ∩Ψ

+

xtot \ {xe} by Lemma 4.6.

We now summarize our findings concerning the convergence of solutions of the system (14)

as well as the stability of its equilibria in Corollary 4.6.

Corollary 4.6. Suppose ye ∈ RM is an equilibrium point of the system (14). Then, ye is stable,

and for any initial state y (0) belonging to the positively invariant set Ψ̃(y1,...,ym) ⊇ {ye} (or

Ψ̃∗(y1,...,ym) ⊇ {ye}), the solution y (t) converges to ye as t approaches infinity.

Proof. Considering Proposition 4.4, this conclusion can be drawn by applying Corollary 4.5 and

Proposition 4.7 to each subsystem of the system (14).

5. Extended FP Fisher-KPP reaction–diffusion equation on directed networks

Given a digraph G ∈ GT having M nodes, let us study a reaction-diffusion process on G

that may be described by

ẋ = R (x)− σLG (x) , x (0) ∈ RM , (45)

with

R (x) = α� sgn (x)� |x|µ � (ρ− |x|ν) , (46)

where σ ∈ R>0, α ∈ RM
≥0, ρ ∈ RM

≥0, µ ∈ RM
≥1, ν ∈ RM

>0, which implies R ∈ EF
(
RM ,RM

)
, and

the i-th element of x (t) is the concentration of a given species at node i at time t, denoted by

xi (t). Accordingly, xtot (t) = 1Tx (t) is the total concentration of that species on G at time t.

Lemma 5.1. Let R (x) = sgn (x) |x|µ (ρ− |x|ν) with ρ ∈ R≥0, µ ∈ R≥1, and ν ∈ R>0. Then,

R (x) ≤
(

ρ

µ+ ν

)µ
ν

+1 (
µ
µ
ν

)
ν, ∀x ∈ R≥0, (47)
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and

R (x) + γ ≤ 0, ∀γ ∈ R≥0, ∀β ∈ R>0,∀x ≥ max{
(
γ

β

) 1
µ

, (ρ+ β)
1
ν }. (48)

Proof. The inequality (47) can be verified by the first derivative test. The derivative of R (x)

with respect to x is given by

dR (x)

dx
= |x|µ−1 (ρµ− (µ+ ν) |x|ν) . (49)

For ρ > 0, it is easy to spot that x∗ =
(

ρµ
µ+ν

) 1
ν

is a critical point of R (x), and since we have
dR(x)
dx

> 0 for all x between zero and x∗ and dR(x)
dx

< 0 for all x greater than x∗, it follows that

R (x∗), which is equal to the right-hand side of the inequality (47), is the maximum value of

R (x) in R≥0. For the case ρ = 0, it is obvious that R (x) ≤ 0 for x ≥ 0. The inequality (48)

can also be deduced by the following steps:

x ≥
(
γ

β

) 1
µ β>0

==⇒ xµβ ≥ γ,

x ≥ (ρ+ β)
1
ν

β>0
==⇒ xν ≥ ρ+ β

x>0
==⇒

xµ (xν − ρ) ≥ xµβ =⇒ xµ (ρ− xν) + γ ≤ 0.

(50)

Proposition 5.1. For the system (45), let us define the sets

Ω1 = {1, ...,M},

Ω2 = {i ∈ Ω1 : αi = 0},

Ωk = {i ∈ Ωk−1 :
∑

j∈Ω1\Ωk−1

ωji = 0}, 3 ≤ k ≤M + 1,

(51)

where αi is the i-th element of α, and let M∗ be the smallest positive integer for which ΩM∗+1 =

ΩM∗ or ΩM∗+1 = ∅. Then, the sets

Φ(V1,...,VM∗ ) = {x ∈ RM :
∑
i∈Ωk

|xi| ≤ Vk,∀k ∈ {1, ...,M∗}},

Φ
+

(V1,...,VM∗ ) = {x ∈ RM
≥0 :

∑
i∈Ωk

xi ≤ Vk,∀k ∈ {1, ...,M∗}},

Φ
−

(V1,...,VM∗ ) = {x ∈ RM
≤0 :

∑
i∈Ωk

xi ≥ −Vk,∀k ∈ {1, ...,M∗}},

(52)

with (V1, ..., VM∗)
T ∈ RM∗

≥0 is positively invariant with respect to the system (45) if Vk’s satisfy

for M∗ = 1 that

V1 ≥

 0 if Ω1 = Ω2,∑
l∈Ω1\Ω2

x∗l if Ω1 6= Ω2,
(53)
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and for M∗ ≥ 2 that

VM∗ ≥
∑
l∈ΩM∗

x∗l ,

Wk ≥
∑

l∈Ωk\Ωk+1

x∗l , 1 ≤ k ≤M∗ − 1,

Vk = Vk+1 +Wk,

(54)

where, for l ∈ Ω1 \ Ω2,

x∗l =

 ρ
1
νl
l if {l} = Ω1 \ Ω2,

max{
(
γ∗l
β∗l

) 1
µl , (ρl + β∗l )

1
νl } if {l} 6= Ω1 \ Ω2,

(55)

with

β∗l ∈ R>0, γ
∗
l =

(
1

αl

) ∑
i∈Ω1\Ω2

i6=l

αi

(
ρi

µi + νi

)µi
νi

+1(
µ
µi
νi
i

)
νi, (56)

and, for l ∈ Ωk \ Ωk+1 with k ≥ 2,

x∗l =


0 if Ωk+1 = Ωk,(

1∑
j∈Ω1\Ωk

ωjl

( ∑
i∈Ω1\Ωk

( ∑
j∈Ωk

ωji

)(
k−1∑
k′=1

Wk′

)ni)) 1
nl

if Ωk+1 6= Ωk,
(57)

where ρi, µi, νi, and ni represent the i-th elements of ρ, µ, ν, and n.

Proof. Here, we will provide a proof for the set Φ(V1,...,VM∗ ), and Consequently, since the right-

hand side of Eq. (45) satisfies the positivity condition (4), it can be inferred that Φ
+

(V1,...,VM∗ ) is

also positively invariant. Further, thanks to the fact that the system (45) is invariant under the

change of variables x→ −x, we arrive at the same conclusion for Φ
−

(V1,...,VM∗ ).

Assume that ε = (ε1, ..., εM)T where εi is either −1 or 1. Each boundary segment∑
i∈Ωk

εixi = Vk of the set Φ(V1,...,VM∗ ) is entirely contained in the orthant OM
ε , defined in

Eq. (10), and it is easy to see that
∑

i∈Ωk
εixi ≥ 0 for x ∈ OM

ε due to εixi ≥ 0. Thus, it is

sufficient by Theorem 2.1 to demonstrate that at any point x ∈ OM
ε on the boundary segment∑

i∈Ωk
εixi = Vk, the summation

∑
i∈Ωk

εixi is nonincreasing along the trajectories of the system

(45); that is,

∀ε, ∀x ∈ OM
ε :

∑
i∈Ωk

εixi = Vk ⇒
d

dt

(∑
i∈Ωk

εixi

)
≤ 0. (58)

In other words, we intend to show that any solution x (t) with an initial state x (0) ∈ Φ(V1,...,VM∗ )

cannot leave the compact set Φ(V1,...,VM∗ ) through the boundary segments
∑

i∈Ωk
εixi = Vk, for

all k ∈ {1, ...,M∗}.
Before we establish the claim (58), we verify the statements (59) and (60) which will be used

24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2023. ; https://doi.org/10.1101/2023.02.04.527149doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.04.527149
http://creativecommons.org/licenses/by-nc-nd/4.0/


in the proof. For all k ∈ {1, ...,M∗} and k′ > k,

∀x ∈ OM
ε ∩ Φ(V1,...,VM∗ ) :

∑
i∈Ωk

εixi = Vk ⇒
∑

i∈Ωk\Ωk′

εixi ≥ Vk − Vk′ , (59)

and
∀x ∈ OM

ε ∩ Φ(V1,...,VM∗ ) :
∑
i∈Ωk′

εixi = Vk′ ⇒
∑

i∈Ωk\Ωk′

εixi ≤ Vk − Vk′ . (60)

Note that Ωk′ ⊆ Ωk if k′ > k by definition. The statement (59) can be proved by contradiction,

for if it was not true there would exist x ∈ OM
ε ∩Φ(V1,...,VM∗ ) such that

∑
i∈Ωk\Ωk′

εixi < Vk−Vk′ .
Using

∑
i∈Ωk

εixi = Vk, we obtain∑
i∈Ωk\Ωk′

εixi <
∑
i∈Ωk

εixi − Vk′ ⇒
∑
i∈Ωk′

εixi > Vk′ , (61)

which contradicts the fact that x ∈ Φ(V1,...,VM∗ ). The statement (60) can also be shown by

contradiction. Suppose that there is a point x ∈ OM
ε ∩ Φ(V1,...,VM∗ ) such that

∑
i∈Ωk\Ωk′

εixi >

Vk − Vk′ . Using
∑

i∈Ωk′
εixi = Vk′ , we have

∑
i∈Ωk\Ωk′

εixi > Vk −
∑
i∈Ωk′

εixi ⇒
∑
i∈Ωk

εixi > Vk, (62)

which contradicts the fact that x ∈ Φ(V1,...,VM∗ ).

To prove the claim (58), we start by calculating the derivative of
∑

i∈Ω1
εixi along the

trajectories of the system (45).

d

dt

(∑
i∈Ω1

εixi

)
=

∑
i∈Ω1\Ω2

αiεisgn (xi) |xi|µi (ρi − |xi|νi)

− σ
∑
i∈Ω1

∑
j∈Ω1
j 6=i

sgn (xi) |xi|niωji (εi − εj)

=
∑

i∈Ω1\Ω2

αi|xi|µi (ρi − |xi|νi)

− σ
∑
i∈Ω1

∑
j∈Ω1
j 6=i

|xi|niωji (1− sgn (xi) εj) , ∀x ∈ OM
ε

(63)

In the case Ω1 = Ω2, which implies M∗ = 1, the derivative d
dt

(∑
i∈Ω1

εixi
)

in Eq. (63) is

nonpositive for all x ∈ OM
ε satisfying

∑
i∈Ω1

εixi = V1 with V1 ≥ 0; see Eq. (11). In fact,

Ω1 = Ω2 means all reaction coefficients αi’s are equal to zero, which makes the system (45)

equivalent to (9).

In the case Ω1 6= Ω2 when M∗ = 1, we have Ω2 = ∅ by definition, and it can be seen that

the derivative d
dt

(∑
i∈Ω1

εixi
)

is nonpositive for all x ∈ OM
ε satisfying

∑
i∈Ω1

εixi = V1 with

V1 ≥
∑

i∈Ω1
x∗i . To clarify, when Ω1 has only one element x1, it is easy to see that the derivative

d
dt

(∑
i∈Ω1

εixi
)

is nonpositive for x1 ∈ O1
ε1

if ε1x1 ≥ ρ
(1/ν1)
1 , and when Ω1 has more than one
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element, we obtain, for x ∈ OM
ε and l ∈ Ω1 \ Ω2,

d

dt

(∑
i∈Ω1

εixi

)
= αl|xl|µl (ρl − |xl|νl) +

∑
k∈Ω1\Ω2

k 6=l

αk|xk|µk (ρk − |xk|νk)

− σ
∑
i∈Ω1

∑
j∈Ω1
j 6=i

|xi|niωji (1− sgn (xi) εj)

≤ αl|xl|µl (ρl − |xl|νl) +
∑

k∈Ω1\Ω2
k 6=l

αk

(
ρk

µk + νk

)µk
νk

+1(
µ
µk
νk
k

)
νk,

(64)

using Lemma 5.1 and Eqs. (63) and (11). Hence, Lemma 5.1 guarantees that the derivative
d
dt

(∑
i∈Ω1

εixi
)

in Eq. (64) is nonpositive for all x ∈ OM
ε if

|xl| ≥ max{
(
γ∗l
β∗l

) 1
µl

, (ρl + β∗l )
1
νl }, (65)

where β∗l and γ∗l have been given by Eq. (56). Finally, due to V1 ≥
∑

i∈Ω1
x∗i , there is at least

one component xl of x ∈ OM
ε satisfying

∑
i∈Ω1

εixi = V1 such that εlxl ≥ x∗l , which can be

shown by contradiction. Suppose εixi < x∗i for all i ∈ Ω1, then
∑

i∈Ω1
εixi <

∑
i∈Ω1

x∗i , which

contradicts the assumption that
∑

i∈Ω1
εixi = V1 ≥

∑
i∈Ω1

x∗i .

In the case M∗ ≥ 2, evaluating that the derivative d
dt

(∑
i∈Ω1

xi
)

in Eq. (64) is nonpositive for

all x ∈ OM
ε satisfying

∑
i∈Ω1

εixi = V1 is equivalent by the statement (59) to evaluating that it is

nonpositive for all x ∈ OM
ε satisfying

∑
i∈Ω1\Ω2

εixi ≥ V1 − V2 = W1, which can be concluded if

W1 ≥
∑

i∈Ω1\Ω2
x∗i . Due to W1 ≥

∑
i∈Ω1\Ω2

x∗i , there exists at least one component xl of x ∈ OM
ε

satisfying
∑

i∈Ω1\Ω2
εixi ≥ W1 such that εlxl ≥ x∗l , which can be shown by contradiction similar

to the previous argument.

To study the other boundary segments
∑

i∈Ωk
εixi = Vk with k ≥ 2, we first calculate the

derivative of
∑

i∈Ωk
εixi, with k ≥ 2, along the trajectories of the system (45).

d

dt

(∑
i∈Ωk

εixi

)
= −σ

∑
i∈Ωk

∑
j∈Ωk
j 6=i

sgn (xi) |xi|niωji (εi − εj)

− σ
∑
i∈Ωk

∑
j∈Ω1\Ωk

sgn (xi) |xi|niωji (εi)

− σ
∑

i∈Ω1\Ωk

∑
j∈Ωk

sgn (xi) |xi|niωji (−εj)

(66)

26

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2023. ; https://doi.org/10.1101/2023.02.04.527149doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.04.527149
http://creativecommons.org/licenses/by-nc-nd/4.0/


Considering Ωk+1 ⊆ Ωk, Eq. (66) can be rewritten as

d

dt

(∑
i∈Ωk

εixi

)
= −σ

∑
i∈Ωk

∑
j∈Ωk
j 6=i

|xi|niωji (1− sgn (xi) εj)

− σ
∑

i∈Ωk\Ωk+1

|xi|ni
∑

j∈Ω1\Ωk

ωji

− σ
∑

i∈Ωk+1

|xi|ni
∑

j∈Ω1\Ωk

ωji

+ σ
∑

i∈Ω1\Ωk

∑
j∈Ωk

|xi|niωji (sgn (xi) εj) , ∀x ∈ OM
ε .

(67)

By the definition of Ωk, the third summation in the right-hand side of Eq. (67) is identical to

zero, and thus, we can obtain

d

dt

(∑
i∈Ωk

εixi

)
≤ −σ

∑
i∈Ωk\Ωk+1

|xi|ni
∑

j∈Ω1\Ωk

ωji

+ σ
∑

i∈Ω1\Ωk

|xi|ni
∑
j∈Ωk

ωji, ∀x ∈ OM
ε .

(68)

When Ωk+1 = Ωk, it can be demonstrated that d
dt

(∑
i∈Ωk

εixi
)

is nonpositive for all x ∈ OM
ε .

Assuming Ωk+1 = Ωk, we have

ωji = 0, ∀j ∈ Ω1 \ Ωk,∀i ∈ Ωk,

due to ωji ≥ 0 and consequently, since all SCCs of G are terminal, it is deduced that

ωji = 0, ∀j ∈ Ωk,∀i ∈ Ω1 \ Ωk,

which leads to the conclusion that d
dt

(∑
i∈Ωk

εixi
)

is nonpositive for x ∈ OM
ε if Ωk+1 = Ωk, using

the inequality (68). Now supposing that Ωk+1 6= Ωk, it can be seen for the inequality (68) and

l ∈ Ωk \ Ωk+1 that

d

dt

(∑
i∈Ωk

εixi

)
≤ −σ|xl|nl

∑
j∈Ω1\Ωk

ωjl − σ
∑

i∈Ωk\Ωk+1
i6=l

|xi|ni
∑

j∈Ω1\Ωk

ωji

+ σ
∑

i∈Ω1\Ωk

|xi|ni
∑
j∈Ωk

ωji,

≤ −σ|xl|nl
∑

j∈Ω1\Ωk

ωjl + σ
∑

i∈Ω1\Ωk

|xi|ni
∑
j∈Ωk

ωji, ∀x ∈ OM
ε .

(69)

Verifying that the derivative d
dt

(∑
i∈Ωk

εixi
)

for 2 ≤ k ≤M∗−1 (resp., k = M∗) is nonpositive for

all x ∈ OM
ε ∩Φ(V1,...,VM∗ ) satisfying

∑
i∈Ωk

εixi = Vk is equivalent by the statements (59) and (60)

(resp., the statement (60)) to verifying that it is nonpositive for all x ∈ OM
ε ∩Φ(V1,...,VM∗ ) satisfying
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both
∑

i∈Ω1\Ωk εixi ≤ V1 − Vk and
∑

i∈Ωk\Ωk+1
εixi ≥ Vk − Vk+1 (resp.,

∑
i∈Ω1\Ωk εixi ≤ V1 − Vk).

Thus, due to
∑

i∈Ω1\Ωk εixi ≤ V1 − Vk, it follows from Eq. (69) that

d

dt

∑
i∈Ωj

εixi

 ≤ −σ|xl|nl ∑
j∈Ω1\Ωk

ωjl

+ σ
∑

i∈Ω1\Ωk

(
k−1∑
k′=1

Wk′

)nk ∑
j∈Ωk

ωji, ∀x ∈ OM
ε .

(70)

where Wk′ = Vk′ − Vk′+1. Note by definition that V1 − Vk =
∑k−1

k′=1Wk′ . Hence, it is easy to see

that d
dt

(∑
i∈Ωk

εixi
)

in the inequality (70) is nonpositive if xl ≥ x∗l where x∗l is given in Eq. (57)

when Ωk+1 6= Ωk. Using a contradiction argument similar to the previous one, it can be shown

that d
dt

(∑
i∈Ωk

εixi
)

with 2 ≤ k ≤M∗−1 (resp., k = M∗) is nonpositive for x ∈ OM
ε ∩Φ(V1,...,VM∗ )

satisfying
∑

i∈Ωk
εixi = Vk if Wk ≥

∑
l∈Ωk\Ωk+1

x∗l (resp., VM∗ ≥
∑

l∈ΩM∗
x∗l ).

Corollary 5.1. For any initial condition x (0) ∈ RM
≥0 (resp., x (0) ∈ RM

≤0), the system (45) has

a unique solution x (t) remaining entirely in RM
≥0 (resp., RM

≤0) for all t ≥ 0.

Proof. Since the state space is symmetric under reflection through the origin, we only proceed

with the nonnegative orthant. For every solution x (t) of the system (45) with x (0) ∈ RM
≥0, we can

choose a vector (V1, ..., VM∗)
T such that a set Φ

+

(V1,...,VM∗ ) satisfying the conditions of Proposition

5.1 and also Vj ≥
∑

i∈Ωj
xi (0) for all j ∈ {1, ...,M∗}, which implies x (0) ∈ Φ

+

(V1,...,VM∗ ). Hence,

Theorem 2.1 ensures the existence and uniqueness of the solution x (t) for all t ≥ 0.

Corollary 5.2. For any initial condition x (0) ∈ RM , the system (45) has a unique bounded

solution x (t) that is defined for all t ≥ 0.

Proof. According to the definition (52) of the set Φ(V1,...,VM∗ ), we can find a vector (V1, ..., VM∗)
T ∈

RM∗

≥0 such that x (0) ∈ Φ(V1,...,VM∗ ) by choosing sufficiently large Vk’s. The rest of the proof

follows from Proposition 5.1 and Theorem 2.1.

6. Nonlinear diffusion on a directed one-dimensional lattice

Cytoskeletal motor proteins are responsible for directional transportation along microfila-

ments or microtubules within the cell. Among the prominent motor proteins associated with

microtubules, kinesins crawl anterogradely, whereas dyneins slide retrogradely along microtubules

by converting the chemical energy produced from ATP hydrolysis to mechanical energy [76].

It was experimentally demonstrated that the movement of microtubule-associated motors can

be an anomalous subdiffusion process, especially at long times [77]. In addition, to investigate

the motion of motor proteins, recent studies have modeled microtubules as one-dimensional

lattices [78–80]. Hence, it may be of potential interest to examine nonlinear diffusion processes

governed by the proposed equation (9) on a directed one-dimensional lattice.
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Consider a directed one-dimensional lattice G with M nodes and weights

ωik =


1 i = k + 1,

r k = i+ 1,

0 elsewhere,

(71)

where 0 < r ≤ 1. Here, we conduct a qualitative study of particle diffusion on G governed by

ċ = −σLG (c) , c (0) ∈ RM
≥0, (72)

where σ ∈ R>0 and n = n1 for the Laplacian operator given in Eq. (7). Fig. 1 displays the

simulation results of Eq. (72) with M = 101 at 10 different points in the parameter space when

the initial concentration at each node was set to zero except either for Node 14 or for Node 51,

which has been set to 1. As demonstrated by the first and last columns of images in Fig. 1,

decreasing r results in an anterograde-bias in the diffusion pattern. Furthermore, as seen in the

second and third columns of images in Fig. 1, while both shrinking σ and growing n contribute

to more localized diffusion over the simulation period, the tail of the distribution of particles

diffused under a regime with an increased n is sharper and smaller compared to that of particles

diffused under a regime with a reduced σ.

1

10
-1

10
-2

10
-3

10
-4

10
-5

Figure 1: It illustrates a directed one-dimensional lattice with 101 nodes and the simulation results of Eq. (72)
for 10 different scenarios when the initial concentration at each node was set to zero except either for Node 14 or
for Node 51, which has been set to 1.

Using simulation, we will now demonstrate that, regardless of directionality, diffusion is

normal if n = 1, and subdiffusion occurs when n > 1, but let us first recall two definitions

pertaining to anomalous diffusion. The average position of N particles and the variance of the
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position or mean squared displacement with respect to the average position are as follows [81]:

AV G (t) =
1

N

N∑
k=1

qk (t) ,

MSD (t) =
1

N

N∑
k=1

|qk (t)− AV G (t) |2,

(73)

respectively, where qk (t) is the position of the k-th particle at time t. Assuming ci denotes

the concentration of particles at node i, the probability of finding particles at node i can be

represented as ci/1
Tc, and subsequently, some calculations leads to the formulae

AV G (t) =
1

1Tc (t)

M∑
i=1

ici (t) ,

MSD (t) =
1

1Tc (t)

M∑
i=1

i2ci − (AV G (t))2 ,

(74)

which are simple the mean and the variance of a discrete stochastic process on the set of M nodes.

Simulation results for two directionally unbiased regimes (r = 1) and two anterograde-biased

regimes with r = 0.1 when the initial concentration at all 101 nodes was set to zero except

node 51, which was set to 1, are depicted in Fig. 2. For both directionally unbiased and

anterograde-biased regimes with n = 1, there is a linear relationship between MSD (t) and

time t, indicating normal diffusion, and for the other two regimes with n > 1, MSD (t) is

approximately proportional to tζ with ζ < 1, exhibiting subdiffusion. See Fig. 2A2,B2. Note,

however, that this conclusion is confined to a finite time interval before particles accumulate

on the lattice’s end points. Moreover, for both directionally unbiased regimes with n = 1 and

n = 2.5, AV G (t) remains unchanged at 51 (see Fig. 2A1), while it increases linearly for the

anterograde-biased regime with n = 1 and nonlinearly for the anterograde-biased regime with

n = 2.5 (see Fig. 2B1). Notice that the diffusion coefficient σ is simply a time-scaling factor.

7. Modeling tauopathy progression in the mouse brain

First discovered in 1975, tau is a multifunctional microtubule-associated protein (MAP) in the

neuron, which many researchers have extensively studied its function to stabilize microtubules and

encourage axonal prolongation [82, 83]. Tau protein is natively unfolded, and in physiological

conditions its tendency for aggregation is low. However, there are modifications, such as

phosphorylation and truncation [82], which may enable monomeric tau proteins to make

aggregates. Tau aggregation characterizes neurodegenerative diseases known as tauopathies,

including Alzheimer’s disease (AD), Huntington disease (HD), Pick disease (PiD), progressive

supranuclear palsy (PSP), argyrophilic grain disease (AGD), corticobasal degeneration (CBD),

and frontotemporal dementia with parkinsonism-17 (FTDP -17). Although the potential of

tau protein to induce such diseases has been confirmed by the identification of tau mutants

in patients with FTDP-17 [84], the mechanisms and pathways by which tau protein forms
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Figure 2: (A1) and (A2) present the average position AV G (t) and the mean squared displacement with respect
to the average position MSD (t), respectively, for two directionally unbiased regimes (r = 1), and (B1) and (B2)
also show AV G (t) and MSD (t), respectively, for two anterograde-biased regimes with r = 0.1 when the initial
concentration at all 101 nodes was set to zero except node 51, which was set to 1.

aggregates in tauopathies are not sufficiently comprehended.

Tau pathology induced by the injection of tau seeds into the mouse brain supports the idea

that the harmful species can be transmitted from the inoculation sites to synaptically connected

brain regions [85, 86]. Actually, the spreading of toxic tau species is chiefly attributed to the

axonal transportation [87], and thus, due to the porous structure of axonal bundles [88–90], it

is expected that, at the mesoscale, tau pathology is propagated by a nonlinear diffusion process.

Further, cell culture and animal model studies have indicated that misfolded tau species can be

transmitted trans-synaptically among neurons, both anterogradely and retrogradely [91, 92],

and recently, researchers have also investigated directionally biased spreading of tauopathies

using an in-silico model mimicking the two-neuron system [93] and a diffusion equation with the

linear Laplacian operator on the mouse connectome [94]. This section proposes a model that

captures the effects of both nonlinearity and directionality of spreading on the spatiotemporal

evolution of tau pathology.

7.1. Constructing the Laplacian matrix using the Allen Mouse Brain Connectome

Here, we aim to take advantage of the publicly available data from the Allen Mouse Brain

Connectivity Atlas (AMBCA) [95] (connectivity.brain-map.org) to construct a Laplacian matrix

that meets our objectives. The inter-region connectivity matrix
[
W T

ipsi W
T
contra

]T
of the Allen

Mouse Brain Connectome provides strength estimates of the mutual connections from 213

regions of interest (ROIs) in the right hemisphere to 426 (2× 213) ROIs in the right (ipsilateral)

and left (contralateral) hemispheres. Since the strength values resulted from a linear regression, a
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p-value was also assigned to each connection [95]. Fig. 3A. depicts this matrix for the maximum

accepted p-value (the significance level) of 0.5.

10
-3

10
-2

10
-1

1

10

0

500

1000

1500

2000

2500

3000

0

500

1000

1500

2000

2500

Figure 3: (A) Graphical representation of
[
W T

ipsi W
T
contra

]T
for the significance level of 0.5. Images (B), (C),

and (D) show coronal, axial, and sagittal views of the mouse brain, respectively, which demonstrate the 12 major
regions of the gray matter: isocortex (ISO), olfactory areas (OLF), hippocampal formation (HPF), cortical
subplate (CTXsp), striatum (STR), pallidum (PAL), thalamus (TH), hypothalamus (HY), midbrain (MB),
pons (P), medulla (MY), and cerebellum (CB). To generate this result, we used the dataset of the Allen Mouse
Common Coordinate Framework (CCFv3) [96] (help.brain-map.org/display/mouseconnectivity/API, specifically
annotation/ccf 2017). (E) and (F) also display the histograms of W ipsi and W contra, respectively.

In the AMBCA project, axonal projections were traced by injecting recombinant adeno-

associated virus (AAV) expressing enhanced green fluorescent protein (EGFP), which is known

as an anterograde tracer. In this sense, based on the assumption that hemispheric symmetry

holds, one can define an anterograde weighted adjacency matrix in the following way:

W an =

(
W ipsi W contra

W contra W ipsi

)
, (75)

and, consequently, it makes sense to suggest a retrograde weighted adjacency matrix W re =

rW T
an with r ∈ R>0. The two weighted adjacency matrices may eventually be combined into a

single matrix

W = W an +W re. (76)

Now, let us construct the adjacency matrix A by replacing the nonzero elements of W with

1. Using mathematical induction, it can be shown that the number of different paths of length k

from node i to node j, where k is a positive integer, equals to (j, i)-th entry of Ak. Thus, there

exists at least one path of length lower than or equal to p∗ from each node to every other node

if the matrix
∑p∗

k=1A
k has positive values in all its off-diagonal entries. The minimum value of
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p∗ for different significance levels are illustrated in Table 1, which ensures that the weighted

connectivity matrix W represents a strongly connected symmetric digraph for significance levels

greater than or equal to 10−5.

Table 1: Percentage of nonzero elements of the adjacency matrix A and the corresponding minimum value p∗ for
different maximum accepted p-values of the connection strengths.

The significance Percentage of non- The minimum
level zero elements of A value of p∗

≤ 0.5 19.34% 3

≤ 0.3 15.72% 4

≤ 0.1 11.89% 4

≤ 0.01 8.6% 4

≤ 10−5 5.12% 5

Normalizing the matrix W requires taking into account the fact that the resulting Laplacian

matrix must satisfy the condition 1TL = 0, ensuring that the total concentration will be

preserved during a diffusion process. Thus, one may propose two methods to normalize W :

either by converting W into a left stochastic matrix, i.e., a matrix with each column summing

to 1, or by dividing W by ‖W ‖1 where ‖.‖1 denotes the maximum absolute column sum of

the matrix. It is more preferable to go with the latter option, which is simply scaling W by a

coefficient, as the ratio of any two elements from different columns of W remains unchanged

after normalizing. Moreover, since ‖W ‖1 depends on r, ‖W an +W T
an‖1 will be substituted

here for ‖W ‖1 to ensure that the scaling coefficient is continuously differentiable with respect

to r, which is necessary to calculate the sensitivity function that will be discussed in Subsection

7.3. Lastly, the normalized weighted adjacency matrix

W no =
W an + rW T

an

‖W an +W T
an‖1

(77)

yields the Laplacian matrix

Lr = Λ(1TW no)−W no. (78)

7.2. Simulation results

Taking into account the Laplacian matrix Lr, let us rewrite Eq. (45) for the mouse

connectome G as follows:

ċ = R (c)− σLG (c) , c (0) = c0 ∈ R426
≥0 , (79)

where α = α1, ρ = ρ1, µ = µ1, ν = ν1, n = n1, and the parameter vector θ =

(α, ρ, µ, ν, σ, r, n)T belongs to the set

Θ = R≥0 × R≥0 × R≥1 × R>0 × R>0 × R>0 × R≥1. (80)

Having analyzed the data from transgenic tau P301S mice, which represent animal models
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of tauopathy, for up to 4 months, Meisl et al. [97] reported a doubling time of approximately 2

weeks in the brain stem, neocortex, and frontal lobe. This gives us a crude estimate of α, which

is ln(2)/2 ≈ 0.35. In animal experiments examining tauopathy progression, tau prion strains

are commonly injected into the ROIs of the hippocampal formation (HPF) such as CA1 [98].

In our simulations, we therefore consider the following initial concentrations:{
1 for CA1,

0 for the other ROIs.
(81)

0

1.89

1.51

1.13

0.75

0.38

Figure 4: It displays the in-silico spatiotemporal evolution of tau pathology for the initial concentrations given in
Eq. (81) when (α, ρ, µ, ν, σ, r, n) = (0.35, 1, 1, 1, 0.1, 1). To generate this result, we used the dataset of the Allen
Mouse Common Coordinate Framework (CCFv3) [96] (help.brain-map.org/display/mouseconnectivity/API,
specifically annotation/ccf 2017).

We conducted two in-silico experiments to examine the effect of nonlinear diffusion on the

spatiotemporal evolution of tauopathy. First, a simulation was carried out for an anterograde-

biased regime with r = 0.1 and the initial concentrations specified in Eq. (81), where α = 0.35,

and all the other parameters were set to 1; See Fig. 4. The simulation was then repeated with

the same initial conditions and parameters, except that n was changed to 1.5. Fig. 5 illustrates

how tauopathy evolved in the second in-silico experiment relative to that in the first. As shown

in Fig. 5, increasing n slowed down the spreading of tau pathology. In fact, it resulted in

tauopathy progression being localized more significantly to the ROIs adjacent to the in-silico

injection site CA1 during the simulation period. One may note that decreasing the diffusion
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coefficient σ can also lead to a similar result. To address this claim and investigate the effect

of parameter variations on the progression of tauopathy, we intend to perform a sensitivity

analysis.

-0.66

0.29 

0.1  

-0.09

-0.28

-0.47

Figure 5: It exhibits the relative spatiotemporal evolution of tauopathy for the initial concentrations given in Eq.
(81) in the in-silico experiment with the parameters (α, ρ, µ, ν, σ, r, n) = (0.35, 1, 1, 1, 0.1, 1.5) in comparison with
that of one with the same parameters, except that n = 1. To generate this result, we used the dataset of the Allen
Mouse Common Coordinate Framework (CCFv3) [96] (help.brain-map.org/display/mouseconnectivity/API,
specifically annotation/ccf 2017).

7.3. Sensitivity analysis

Let P (c, θ) = R (c)− σLG (c); then, by integration, the system (79) can be written as

c (t,θ) = c0 +

∫ t

0

P (c (τ,θ) ,θ) dτ (82)

having a unique solution c (t,θ) for an initial concentration c0 ∈ R426
≥0 and a parameter vector

θ ∈ Θ by Corollary 5.1. Calculating the partial derivatives of P (c,θ) with respect to c and θ

yields
∂P
∂c

= αΛ
(
|c|µ−1

)
(µρ1− (µ+ ν) Λ (|c|ν))− nσLrΛ

(
|c|n−1

)
,

∂P
∂α

= sgn (c)� |c|µ � (ρ1− |c|ν) ,

∂P
∂ρ

= αsgn (c)� |c|µ,
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∂P
∂µ

= αsgn (c)� ln (|c|)� |c|µ � (ρ1− |c|ν) ,

∂P
∂ν

= −αsgn (c)� ln (|c|)� |c|µ+ν ,

∂P
∂σ

= −Lr (sgn (c)� |c|n) ,

∂P
∂r

= − σ

‖W an +W T
an‖1

(
Λ(1TW T

an)−W T
an

)
(sgn (c)� |c|n) ,

∂P
∂n

= −σLr (sgn (c)� ln (|c|)� |c|n) ,

(83)

where are continuous for all (c,θ) ∈ R426 ×Θ∗ with

Θ∗ = R× R× R>1 × R>0 × R× R× R>1. (84)

Note that limc→0 ln (|c|) � |c|n = 0 for n > 0. Thanks to the continuous differentiability of

P (c,θ) with respect to c and θ, the solution c (t,θ) is differentiable with respect to θ near a

nominal value θ0 ∈ Θ∗. Thus, we can obtain the following equation by taking partial derivatives

of Eq. (82) with respect to θ.

∂c

∂θ
(t,θ) =

∫ t

0

(
∂P
∂c

(c (τ,θ) ,θ)
∂c

∂θ
(τ,θ) +

∂P
∂θ

(c (τ,θ) ,θ)

)
dτ (85)

For a nominal solution c (t,θ0) with θ0 ∈ Θ ∩Θ∗, differentiating both sides of Eq. (85) with

respect to t gives the sensitivity equation

Ṡ (t) =
∂P
∂c

(c,θ)

∣∣∣∣∣
θ = θ0

c = c (t, θ0)

S (t) +
∂P
∂θ

(c,θ)

∣∣∣∣∣
θ = θ0

c = c (t, θ0)

, S (0) = 0, (86)

where S (t) = ∂c
∂θ

(t,θ0). The sensitivity function S (t) provides a first-order estimate of the

effect of parameter variations on the solution c (t,θ0). In other words, for θ sufficiently close to

θ0, the solution c (t,θ) can be approximated by a Taylor series about the solution c (t,θ0), i.e.,

c (t,θ) = c (t,θ0) + S (t) (θ − θ0) + higher-order terms.

Due to the large number of elements in the sensitivity function S (t), i.e., 426× 7, it is difficult

to scrutinize the simulation results for this function, and therefore a version of S (t) with a

lower dimension is required. For the solution c (t,θ), let us now define the spatial average

concentration at time t

SAC (t,θ) =
bTc (t,θ)

1Tb
, (87)

where the i-th element of the vector b is the number of voxels occupied by the i-th ROI,

according to the dataset of the Allen Mouse Common Coordinate Framework (CCFv3) [96]

(help.brain-map.org/display/mouseconnectivity/API, specifically annotation/ccf 2017). The
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spatial average concentration approximately represents the spatial average of the distribution of

the species concentration over the entire brain. It is easy to see that the sensitivity function for

the spatial average concentration is derived as follows:

∂SAC

∂θ
(t,θ0) =

bTS (t)

1Tb
. (88)

Taking into account the initial concentrations given in Eq. (81), we computed the sensitivity

function S (t) and its corresponding function ∂SAC/∂θ (t,θ0) at 16 different points θ0 in the

parameter space. The maximum absolute value over time of each element of ∂SAC/∂θ (t,θ0)

have been reported in Table 2 for the chosen parameter values. Fig. 6 also illustrates the

simulation results from which we derived the maximum absolute values in the first two rows

of Table 2. As outlined in Table 2, the spatial average concentration of tauopathy generally

appears to be more sensitive to variations in the parameter µ than to variations in the other

parameters. Among the reaction term coefficients, including α, ρ, µ, and ν, the variation in ν

also has the least impact on the model output at the selected points in the parameter space, and

in general, there is a greater sensitivity to variations in α than that to variations in ρ. However,

as indicated in Fig. 6, variations in ρ can substantially change the steady state of the spatial

average concentration. According to Table 2, when restricting ourselves to the diffusion term

coefficients, namely, σ, r, and n, the average concentration of tau pathology seems chiefly to

be most sensitive to r at the points in the parameter space with an anterograde-biased regime

(r = 0.1) and to n at the points with a directionally unbiased regime (r = 1). Additionally,

among all the seven parameters considered, variations in the parameter σ have the least influence

on the model output.

8. Conclusion

In this manuscript, the extended FP diffusion and Fisher-KPP reaction-diffusion equations

on weighted digraphs whose SCCs are terminals were introduced. For the extended FP diffusion

equation, it was shown that all solutions remain bounded and converge to equilibria which are

stable. Further, we found positively invariant sets containing exactly one equilibrium point.

Indeed, the domain of attraction of each equilibrium point was obtained. We also presented a

family of positively invariant sets for the extended FP Fisher-KPP reaction-diffusion equation.

Since a weighted undirected graph can be considered as a symmetric digraph, our results are

also applicable to any arbitrary weighted undirected graph. To assess the practical significance

of the proposed equations, it was first illustrated that the extended FP diffusion equation can

generate a directionally-biased anomalous subdiffusion process on a one-dimensional lattice,

which can be applied to describe the motion of motor proteins on microtubules. Moreover,

we modeled tauopathy progression in the mouse brain connectome using the extended FP

Fisher-KPP equation and then conducted a sensitivity analysis to estimate the effect of model

parameter variations on solutions.

Here, the active concentration was also introduced. By definition, the active concentration
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Figure 6: The elements of ∂SAC/∂θ (t,θ0) are depicted in (A) for a directionally unbiased regime and in (B)
for an anterograde-biased regime with r=0.1, where the initial concentrations are taken as Eq. (81).

of a given species can take a negative value, indicating the dominance of an antibody of that

species. The concept of active concentration combined with the proposed extended FP equations

enables us to capture the dynamics of a given species in presence of its antibody, which provides

a useful framework for future research on studying antibodies, such as anti-tau and anti-amyloid

antibodies for Alzheimer’s disease.
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Table 2: The maximum absolute value over time of the elements of ∂SAC/∂θ (t,θ0) for some different nominal
values θ0, where the initial concentrations are taken as Eq. (81).

θ0 The maximum absolute value over time of

α ρ µ ν σ r n ∂SAC
∂α

∂SAC
∂ρ

∂SAC
∂µ

∂SAC
∂ν

∂SAC
∂σ

∂SAC
∂r

∂SAC
∂n

0.35 1 1.01 1 1 1 1.01 4.09 1.98 4.49 0.39 0.32 0.15 0.45

0.35 1 1.01 1 1 0.1 1.01 4.36 2.19 6.18 0.28 0.33 1.36 0.45

1 1 1.01 1 1 1 1.01 1.5 2.04 5.53 0.34 0.32 0.13 0.51

1 1 1.01 1 1 0.1 1.01 1.56 2.14 7.25 0.25 0.31 1.12 0.54

0.35 0.5 1.01 1 1 1 1.01 1.89 1.88 2.29 0.44 0.15 0.1 0.26

0.35 0.5 1.01 1 1 0.1 1.01 2.1 2.16 3.22 0.43 0.16 0.8 0.25

0.35 1 1.3 1 1 1 1.01 5.04 2.73 3.9 0.63 0.5 0.23 0.13

0.35 1 1.3 1 1 0.1 1.01 4.5 2.68 4.49 0.39 0.44 3.05 0.39

0.35 1 1.01 0.3 1 1 1.01 3.01 3.45 3.17 2.31 0.16 0.23 0.31

0.35 1 1.01 0.3 1 0.1 1.01 3.98 4.34 5.45 2.63 0.24 0.82 0.43

0.35 1 1.01 2.5 1 1 1.01 5.02 1.97 5.44 0.07 0.45 0.19 0.47

0.35 1 1.01 2.5 1 0.1 1.01 4.3 1.74 6.09 0.03 0.34 1.55 0.4

0.35 1 1.01 1 1.5 1 1.01 4.06 1.96 4.18 0.41 0.2 0.18 0.42

0.35 1 1.01 1 1.5 0.1 1.01 4.37 2.2 5.87 0.29 0.22 1.49 0.4

0.35 1 1.01 1 1 1 1.5 3.89 2.02 3.89 0.42 0.3 0.12 0.3

0.35 1 1.01 1 1 0.1 1.5 4.37 2.26 5.48 0.34 0.34 1.15 0.31
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diffusion and lévy flights, Physical Review E 90 (3) (2014) 032809. doi:https://doi.org/

10.1103/PhysRevE.90.032809.

[20] L. Aceto, P. Novati, Rational approximation to the fractional Laplacian operator in reaction-

diffusion problems, SIAM Journal on Scientific Computing 39 (1) (2017) A214–A228.

doi:https://doi.org/10.1137/16M1064714.

[21] M. Benzi, D. Bertaccini, F. Durastante, I. Simunec, Non-local network dynamics via

fractional graph Laplacians, Journal of Complex Networks 8 (3) (2020) cnaa017. doi:

https://doi.org/10.1093/comnet/cnaa017.

[22] D. Bertaccini, F. Durastante, Nonlocal diffusion of variable order on complex networks,

International Journal of Computer Mathematics: Computer Systems Theory 7 (3) (2022)

172–191. doi:https://doi.org/10.1080/23799927.2022.2114381.

[23] E. Estrada, Path laplacian matrices: introduction and application to the analysis of

consensus in networks, Linear algebra and its applications 436 (9) (2012) 3373–3391.

doi:https://doi.org/10.1016/j.laa.2011.11.032.

[24] E. Estrada, E. Hameed, N. Hatano, M. Langer, Path Laplacian operators and superdiffusive

processes on graphs. I. One-dimensional case, Linear Algebra and its Applications 523

(2017) 307–334. doi:https://doi.org/10.1016/j.laa.2017.02.027.

[25] E. Estrada, E. Hameed, M. Langer, A. Puchalska, Path Laplacian operators and superdiffu-

sive processes on graphs. II. Two-dimensional lattice, Linear Algebra and its Applications

555 (2018) 373–397. doi:https://doi.org/10.1016/j.laa.2018.06.026.

[26] E. Estrada, Path laplacians versus fractional laplacians as nonlocal operators on networks,

New Journal of Physics 23 (7) (2021) 073049. doi:10.1088/1367-2630/ac14ac.

[27] F. Diaz-Diaz, E. Estrada, Time and space generalized diffusion equation on graph/networks,

Chaos, Solitons & Fractals 156 (2022) 111791. doi:https://doi.org/10.1016/j.chaos.

2022.111791.

[28] A. Elmoataz, O. Lezoray, S. Bougleux, Nonlocal discrete regularization on weighted graphs:

a framework for image and manifold processing, IEEE transactions on Image Processing

17 (7) (2008) 1047–1060. doi:10.1109/TIP.2008.924284.
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