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Abstract

Pathogen nomenclature systems are a key component of effective communication and
collaboration for researchers and public health workers. Since February 2021, the Pango
nomenclature for SARS-CoV-2 has been sustained by crowdsourced lineage proposals as new
isolates were added to a growing global dataset. This approach to dynamic lineage designation
is dependent on a large and active epidemiological community identifying and curating each
new lineage. This is vulnerable to time-critical delays as well as regional and personal bias. To
address these issues, we developed a simple heuristic approach that divides a phylogenetic
tree into lineages based on shared ancestral genotypes. We additionally provide a framework
that automatically prioritizes the lineages by growth rate and association with key mutations or
locations, extensible to any pathogen. Our implementation is efficient on extremely large
phylogenetic trees and produces similar results to existing Pango lineage designations when
applied to SARS-CoV-2. This method offers a simple, automated and consistent approach to
pathogen nomenclature that can assist researchers in developing and maintaining
phylogeny-based classifications in the face of ever increasing genomic datasets.

Introduction

Pathogen nomenclature systems, or the designations of groups below the level of
species, are important for facilitating effective research, treatment, and communication about
diseases. Despite the universal importance and long history of nomenclature systems for
pathogens, there remains a plurality of approaches to apply to new emerging pathogens. These
nomenclature systems are generally based on some combination of three elements: phenotype,
genotype, and geography. Phenotype-based systems are often predicated on vulnerability to
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antibiotics (Collins et al. 1982) or serology (Lancefield 1933); pathogens with serology based
nomenclature systems include Salmonella spp. (Brenner et al. 2000), dengue viruses (Cuypers
et al. 2018; Simmonds et al. 2017), and Streptococcus spp. (Facklam 2022; Lancefield 1933).
Geography-based classification systems may be appropriate for pathogens where the primary
reservoir is in non-human species, such as Chikungunya virus (CHIKV) (de Bernadi Schneider
et al. 2019) and the Zaire Ebola viruses (Kuhn et al. 2014). Finally, genotype-based
nomenclature divides a species-wide phylogeny into statistically well-supported, mutually
exclusive taxa generally referred to as “lineages” or “clades”. These groups can be defined as
clusters of samples below a genetic diversity threshold or as the descendents of an inferred
common ancestor on a single phylogeny. Genotype-based classification has become
increasingly common in application to viruses such as RSV (Ramaekers et al. 2020), dengue
(Cuypers et al. 2018) and influenza viruses (Anderson et al. 2016).

The Pango system is a genotype-based dynamic lineage nomenclature for SARS-CoV-2
characterized by the manual designation of new lineages from a global phylogenetic tree
(Rambaut et al. 2020). Pango lineages are hierarchical and comprehensive, including hundreds
of nested designations for any subgroup of viruses that may be of concern. The Pango system
has provided initial names used for all Variants of Concern (VOCs), including B.1.1.7 (Alpha)
and B.1.1.529 (Omicron), and defined the serial replacement of Omicron lineages through time
(BA.1, BA.2, BA.5). Pango has played a critical role in facilitating effective tracking of and
communication about emerging SARS-CoV-2 strains over the course of the pandemic. The
maintenance and continued efficacy of this system is therefore of critical importance for public
health.

Currently, Pango relies on manual curation and designation, including the crowdsourcing
of lineage proposals on a public forum (https://github.com/cov-lineages/pango-designation).
More than 2500 SARS-CoV-2 variants have been named under the Pango system as of
January 2023, an average of more than two new lineages per day since the beginning of the
pandemic. The trained human eye is excellent at distinguishing new lineages of interest from
groups of low-quality or contaminated isolates, but the Pango group’s resources are becoming
strained as the volume of data increases and public investment decreases. Furthermore,
crowdsourced proposals are vulnerable to delays as well as regional and personal bias, as
individual researchers have differing opinions on the importance of various mutations and are
more or less likely to search for clades from specific parts of the world. A more objective metric
to evaluate candidates for lineage designation could help to reduce this bias and streamline the
lineage proposal and review process.

Additionally, it is uniquely challenging to define lineages for SARS-CoV-2, due primarily
to low genetic diversity and massive volumes of data. Other diseases often have lineages with
common ancestors inferred to have been circulating several years to decades in the past, with
well-defined characterizing genetic changes. These stable nomenclatures rarely need active
updates, being defined with respect to a single phylogeny that remains largely unchanged. In
SARS-CoV-2, however, a single mutation may be all that defines a new epidemiologically
distinct lineage (O’Toole et al. 2021). The volume of SARS-CoV-2 sequencing data is also
orders of magnitude greater than other pathogens, straining existing systems (Hodcroft et al.
2021). The SARS-COV-2 phylogeny itself is regularly updated (McBroome et al 2021),
necessitating further review and updates to any lineage nomenclature. Pango is therefore a
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dynamic nomenclature, needing constant maintenance as new epidemiological lineages
emerge. This makes it substantially more burdensome to maintain through manual surveillance.
A computable metric to automatically identify and sort lineage candidates would assist curators
in building and maintaining the Pango system. Moreover, as pathogen genome sequencing
expands in other species, similar difficulties in rapid lineage designation will become
commonplace.

We propose a simple heuristic approach for the definition and expansion of
genotype-based dynamic nomenclature systems. Our method is rooted in information theory,
optimizing for the representation of sample-level haplotype information. It requires only a
phylogeny with branch lengths scaled to genetic distance and a set of user parameters. It is
efficient in application to extremely large phylogenies and produces a comprehensive hierarchy
of genetically distinct lineages. Our lineage system is flexible and can be effectively weighted in
any number of ways, allowing epidemiologists and researchers working with any pathogen to
prioritize critical elements for lineage definition and tracking efforts. Importantly, it can expand a
preexisting lineage system, making adoption of this approach for the maintenance and
expansion of existing nomenclature straightforward. We, in collaboration with the Pango
designation team, have implemented this system as a new input for the existing Pango lineage
designation infrastructure (https://github.com/jmcbroome/autolin). This approach can easily be
generalized, and as sequencing technology becomes more widely applied, our scalable and
generalizable method can be applied to produce and maintain nomenclature systems for novel
and extant pathogens.

Results

The Genotype Representation Index

A nomenclature system can be likened to a language, where additional words,
analogous to lineages, are defined for common, unique concepts to reduce the average number
of words per sentence. Along these lines, an effective nomenclature summarizes a complex
phylogeny into useful, distinct categories to facilitate effective analysis and communication. The
lineage hierarchy is generally defined with respect to a specific rooted phylogeny, where a
number of specific ancestral nodes are designated as lineage roots (Supplementary Figure 1).
Higher-level lineages are divided hierarchically into finer sublineages. Individual samples,
represented as tips of the tree, are members of every lineage that is rooted in its inferred
ancestry. To automate the definition of this hierarchy, we need an objective measure of
distinctiveness or importance that can be computed for individual nodes across the tree. Once
we have a measure of lineage efficacy, we can iteratively construct a nomenclature by
identifying high-value nodes and designating them as lineage roots. These lineages can then be
presented to an end user, or directly incorporated into an expanding nomenclature.

To this end, we define the following index, hereafter referred to as the “genotype
representation index” (GRI) (Figure 1).
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Here, N is the number of descendent tips from the node, D is the total branch length from the
node to the root of the tree or parent lineage, and S is the total branch length from the node to
each descendent tip. For example, for a mutation-annotated tree (Turakhia et al 2021), such as
those used for SARS-CoV-2, the branch length (D and S) is in units of total mutations across the
genome. However, the GRI can be computed on any rooted tree topology, as long as branch
lengths are scaled by genetic distance. The GRI is high for internal nodes where descendent
samples are genetically similar to one another and the node itself is genetically distinct from the
rest of the phylogeny, desirable qualities for lineage designation (Rambaut et al. 2020).

To define a lineage system based on the GRI, we apply a greedy maximization
algorithm. The GRI is computed for each node on the tree and the node with the highest value
is chosen as a new lineage root. Additional mutually exclusive lineages are defined by
disregarding all samples covered by an existing lineage label and recomputing the GRI for all
remaining samples and their ancestors. Additional hierarchical lineages are defined similarly by
only considering samples descended from an existing “parent” lineage root. This process is
repeated until a desired number of lineage labels have been defined or all available nodes fail to
pass thresholds for designation. This iterative approach is not guaranteed to find the highest
overall GRI lineage configuration among many possible combinations of lineages, but it scales
well to millions of samples and a rapid pace of lineage updates.

The GRI is rooted in information theory; the node with the highest value will convey the
most information on average if given a lineage label. Additional details on the motivating theory
can be found in the Methods section.
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Figure 1: Computation of GRI. This cartoon depicts two candidate nodes for lineage definition.
The path to the root is in orange, paths to each descendent in teal, and descendants
represented by lilac circles. Lilac circles on the same horizontal line are genetically identical. All
vertical lines represent a single mutation, hence node A has a GRI of ~2.1, and node B has a
much larger GRI of ~5.6. The B node is more desirable as a lineage label because it represents
a distinct and large group of low-diversity samples. Such a group of samples, with many shared
mutations, is more likely to be an epidemiologically distinct category.

Adjustments to the Genotype Representation Index

In practice, pathogen lineage nomenclature systems are generally designed for
purposes beyond summarization of a phylogenetic tree. Lineages often carry connotations of
distinct phenotypic behavior, such as serological types, immune evasion, transmissibility, and
other metrics. Some parts of the genome may contribute more than others to these phenotypes.
For example, some spike protein changes are known to alter immune escape in SARS-CoV-2
(Greaney et al. 2022). Information about parts of the genome associated with important
phenotypes is inherently more valuable and more worth representing in our lineage system.
Accordingly, we may want to weight our GRI calculation by giving additional value to these
mutations when computing distances. Conversely, we may want to disregard parts of the
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genotype that are not informative for phenotypic behavior or that are not readily interpretable,
such as repetitive noncoding sequences or sites prone to recurrent errors.

The GRI, while based on genotype representation, can be flexibly altered to focus on the
representation of important elements. The original Pango rules for the definition of SARS-CoV-2
lineages have requirements around evidence for international transmission and changes to
proteins to designate lineages that are more likely to be epidemiologically important (Rambaut
et al. 2020). By using these weighting schemes for GRI, we can automatically propose lineage
designations of high epidemiological import. This allows researchers to develop fully-informed
and highly applicable nomenclature systems.

Example Lineages

To demonstrate the utility of our approach, we applied our method to the global public
phylogeny as of 2022-12-11 from
http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/ (McBroome et al.
2021). We generated 187 new lineage designations using the default configuration parameters,
which only considers samples collected in the preceding 8 weeks (Supplementary File 1). 24 of
these lineages were actively sampled in December 2022 as of 2022-12-11. These active
designations were highly dispersed in size, with a mean size of 82 samples and a median of 45
samples. The full report for the active designations is available in Supplementary Table 1.

We fit an exponential growth model to each active lineage (see Methods)
(Supplementary Table 1; Figure 2) and obtained a 95% confidence interval estimate of the rate
of exponential growth. The average confidence interval for the exponential growth interval was
relatively large (0.07, 0.49), due primarily to the effects of limited sample sizes. 16 of the 24
lineages had a positive lower interval bound, which is evidence for active spread in the countries
they are present in. The width of the interval is dependent on the data available; while the
average estimate for our lineages is +/- 0.2, estimates for lineages with at least 50 total
collected samples had a much narrower average value of +/- 0.07. All model confidence
intervals are reported in Supplementary Table 1. All code for fitting and reproducing these
results is available at https://github.com/jmcbroome/lineage-manuscript.
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Figure 2: Exponential Growth Modeling. The above four plots describe some of the lineage
annotations produced by our method based on the public SARS-CoV-2 data. The black line is
the median estimated growth trajectory, while the dotted lines represent the lower and upper
bounds of the 95% confidence interval of the growth trajectory. The x-axis is represented in
weeks since first detection among each country.

Figure 2 displays a small selection of lineages and model fits in further detail. The
naming schema matches the Pango naming schema, with the addition of an “auto” prefix
denoting that the lineage in question was created by our approach and not manually designated
by the Pango team. ”auto.CH.1.1.3”, while exclusive to England, exhibits a very rapid expansion
in latter weeks that drive a very high, if wide, estimate of growth. “auto.BQ.1.8.3” and
“auto.BA.5.2.9.1” are more international, but less consistent; the latter appears to grow
consistently in the United States, but fluctuates to a much greater degree in England. Finally,
“auto.BE.1.2.2.” is an example of a low-priority designation, with no strong evidence of positive
growth. Altogether, our models are capable of capturing a diverse set of lineage trajectories and
rapidly and effectively identifying lineages undergoing exponential expansion.

We have collaborated with the Pango team to incorporate our approach into the existing
SARS-CoV-2 lineage designation infrastructure. Statistics such as lineage size, associated
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mutations, and geographic localization are computed and reported as a part of a pull request to
the curated Pango repository. Our update includes links to external data exploration sources
such as cov-spectrum (Chen et al. 2022) and taxonium (Sanderson 2022; Kramer et al. 2022),
as well as programmatic generation of all files requisite for the incorporation of the new
designations. All code for this procedure can be found at https://github.com/jmcbroome/autolin.

Application to Other Pathogens

The GRI approach can be applied outside of updating dynamic nomenclature like
Pango. We evaluated its potential for automatically producing stable lineage systems based on
more traditional phylogenies with Chikungunya virus (CHIKV, geographic nomenclature) and
Venezuelan equine encephalitis virus complex (VEE, serology based nomenclature) using the
currently available nextstrain builds (CHIKV Nextstrain build 5.1
(https://nextstrain.org/groups/ViennaRNA/CHIKVnext) and VEE Nextstrain build 2.1
(https://nextstrain.org/groups/ViennaRNA/VEEnext). Overall the CHIKV geographic
nomenclature aligns with the automated lineage designations at its base level (ARI=0.69,
p=0.018), with further breaking down of the tree in certain regions such as the Indian Ocean
Lineage (Figure 3). On the other hand, VEE’s serology based nomenclature is paraphyletic and
does not represent phylogenetic lineages or clades (Forrester et al. 2017, de Bernardi
Schneider & Wolfinger 2023). We elected to present two levels of annotation, reflecting the
distinction between VEE viruses generally and the Venezuelan Equine Encephalitis Virus
(VEEV) and its subtypes. VEEV itself is successfully identified from the VEE complex by our
lineage approach at the first level of annotation (ARI=0.9, p=0.0003). However, our method was
unable to reliably recapitulate VEEV serotypes at the second level of annotation (ARI=0.28,
p=0.25, Figure 4), due largely to the paraphyletic nature of VEEV’s serotype-based
nomenclature. Regardless, these two examples show how this method can generate de novo
lineage classification of pathogens, independent of context and consistent with human intuition.
Our implementation for the generation of lineage labels for arbitrary pathogens can be found at
https://github.com/jmcbroome/automated-lineage-json. It is provided as both a command line
interface tool and as an online Streamlit app, accessible at
https://jmcbroome-automated-lineage-json-streamlit-app-3adskh.streamlit.app/. This
demonstrates that the GRI approach can be applied in a pathogen-agnostic fashion to produce
nomenclature consistent with existing systems.
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Figure 3: Comparison of the geography lineage designation (left tree) with automated lineage
designation (right tree) of Chikungunya virus, based on a tree previously generated by the
Augur pipeline (Huddleston et al 2021) and visualized on FigTree v.1.4.4.
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Figure 4: Comparison of the serology subtype designation (left tree) with automated lineage
designation (right tree) of the Venezuelan equine encephalitis virus complex (VEE), based on a
tree previously generated by the Augur pipeline (Huddleston et al 2021) and visualized on
FigTree v.1.4.4. According to the current nomenclature, VEE encompasses Everglades virus
(EVEV), Mucambo virus (MUCV), Tonate virus (TONV), Pixuna virus (PIXV), Cabassou virus (CABV),
Rio Negro virus (RNV), Mosso das Pedras virus (MDPV), Pirahy virus (PIRAV) and the Venezuelan
equine encephalitis virus (VEEV) . The VEEV clade is labeled in the tree.

Discussion

We have presented a new index-based method for the generation of genotype-based
nomenclature, capable of both expanding existing nomenclature systems and generating novel
nomenclature on understudied or emerging pathogens. While designed for the demands of the
SARS-CoV-2 pandemic, this approach can be easily applied to any rooted tree with branch
lengths scaled by genetic distance, such as those created and distributed by Nextstrain
(Hadfield et al. 2018). Our implementation is efficient and includes several parameters to adjust
the behavior of the metric. These include prioritizing the labeling of specific mutations or specific
tips and only considering mutations effects on specific proteins.

Nonetheless, our approach does exhibit a few potential issues, shared with many
lineage nomenclatures. First, it is defined with respect to a specific phylogeny. This can be
problematic when attempting to maintain lineages over time, as new data is collected and the
phylogeny is updated. Phylogenetic inference is naturally uncertain, and optimization of an
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existing phylogeny may alter lineage relationships or invalidate identified lineages. The dual
system of comprehensive, automatically designated clades and a curated subset of
epidemiologically distinct lineages is largely robust against these issues, as manual curators
may be more likely to spot problematic clades and prevent them from being designated as full
lineages. In rare cases, lineages may need to be retracted or redefined, as is the case for
current Pango lineages when new data suggest alternative relationships than the one originally
used for lineage designation.

Second, SARS-CoV-2 recombines at low rates (Jackson et al. 2021; Turakhia et al.
2022). The apparently long branches which occur on the phylogeny as a result will often be
picked up by this method as a new lineage annotation, but the ancestry of that lineage
annotation cannot be accurately represented by a single tree topology. Incorporating new
samples or optimizing the phylogeny may relocate it from the acceptor to the donor parent
lineage, vice versa, or elsewhere on the phylogeny altogether. In this scenario, a recombinant
lineage may have to be retracted or renamed. Alternatively, lineages identified as recombinants
can receive special designation names and we have previously developed methods for
comprehensively identifying recombinant lineages within SARS-CoV-2 phylogenies (Turakhia et
al. 2022) that may facilitate this effort.

SARS-CoV-2 is likely to become an endemic pathogen, similar to the influenza virus
(Otto et al. 2021). Accordingly, there is likely to be a long-term pattern of replacement of existing
strains, demanding ongoing designation of new lineages for effective monitoring of pathogen
diversity (Rambaut et al. 2020). Investing into infrastructure to reduce manual curation will lead
to long-term consistency and effectiveness of designation. Additionally, it is likely that automated
approaches will be faster than many human-based systems, thereby promoting stability of
public and scientific discourse by labeling potentially important lineages before they are
widespread and contributing to major epidemiological patterns worldwide. The results we
present here may serve for consistent, immediate SARS-CoV-2 lineage designation for years to
come.

Overall, this approach for lineage designation is generic, flexible, and applicable to future
datasets with unclear nomenclature or expansive phylogenies. At the time of publication it is
somewhat limited in practical application, with SARS-CoV-2 being the only pathogen with the
scale of data to strain direct manual curation. However, global pathogen sequencing is on the
rise, and generalized concepts for the creation of new nomenclature or expansion of existing
systems, as we exemplified with CHIKV and VEE, will be critical for future public health
challenges. There is currently no universal definition of nomenclature below the species level
(ICTV Code), leading to widespread debate and confusion between epidemiological analyses.
This method can serve to unify and streamline the definition and maintenance of future
nomenclature systems.
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Methods

Information Theoretical Underpinnings

A lineage system can be formulated as a sender/receiver information scenario. The
sender possesses the full phylogenetic tree and a lineage system L, while the receiver
possesses only the lineage system L and the associated mutation paths that define each
lineage. For initial simplicity, we assume the lineage system consists of a single label, applied to
branch B. Let the receiver be interested in the full ancestry of an arbitrary sample S. S may or
may not be a member of a lineage L. If it is, the receiver already has all ancestry information
associated with that lineage L for the sample S. How much additional information is required to
specify the full ancestry of sample S?

A single site’s state can be represented in a finite number of bits; 2 bits to represent the
state and 15 bits to represent the location, for SARS-CoV-2. Therefore, the full ancestry path of
a given branch can be represented in a finite number of bits, proportional to the number of
mutations separating it from the root.
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Therefore, the additional information required to specify the ancestry of sample S, given a
lineage system with a label at branch B, is

Where D(B) is the set of descendant samples from labeled branch B. This extends to lineage
systems with multiple branches B by checking membership of each outermost branch label B.
Given that the receiver may be interested in any arbitrary sample S, we choose to place our
label at branch B such that the additional information required to specify the full ancestry of S is,
on average, minimized.

𝑉(𝐵) =  𝑆=0

𝑛

∑ 𝐴(𝑆,𝐵)

𝑛

We choose B such that V(B) is minimized. To accomplish this, we need to maximize both the
number of descendants of the branch we chose and the representation by that branch of those
samples. The genotype representation index (GRI) is the mean of I(B) for all samples S
descended from B, times the number of samples descended from B. We use the multiplied
mean value of I(B) instead of the sum both for computational ease and to reduce the impact of
outlier leaves with excessively long path lengths. The higher the GRI of branch B, the lower the
A(S,B) of the system from that branch. As A(S,B) is reduced, so is V(B). Choosing the branch
with the highest GRI as our lineage branch B will yield a system with a low V(B) and high
informational efficiency.

Extending this approach to additional lineages is straightforward. “Serial” or non-overlapping
lineages, where

Can be assigned by repeating the minimization procedure while disregarding all samples that
are a member of existing lineages. This can be repeated until some minimum percentage of
samples are contained within some set D(L).

“Hierarchical” or nested lineages, where
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Can be assigned by treating L1 as the root of the tree, with ancestry information conveyed with
respect to it. There are no other types of lineage relationship, as a rooted phylogenetic tree is a
directed acyclic graph and lineages are always defined as a monophyletic clade. It is not
possible for two clades to partially overlap when they are defined by internal nodes on a fixed
phylogenetic tree.

If an arbitrary number of lineages are allowed to be labeled, eventually every internal
node may be labeled as a unique lineage- the receiver will therefore already possess the exact
and complete phylogeny, and additional information will never be necessary. However, this
defeats the point of the lineage system, which is intended as an effective summary of the
phylogeny that captures most relevant information without costing as much to store and
manage.

We should consider that a lineage ought to include more than a mere handful of
samples, even if those samples have relatively long unique paths. Many lineage systems
require a minimum number of samples to be represented by that label. We therefore define a
minimum m; we subtract the weighted mean information represented by a theoretical set of m
samples with the same path length distribution from the true information distribution for the
node. If the net information represented is negative, then we reject this node as a candidate for
a new lineage definition.

Essentially, we require that N > m, where m is a user selected parameter, in order to define a
new lineage. Setting this to X will produce only proposed lineages that convey some information
about at least X leaves.

Similarly, we can set a minimum distinguishing distance from the subtree root/parent lineage.
Often lineage designation systems require some number of unique distinguishing mutations for
a new sublineage. We therefore define

When p < D, this value is negative and we reject this candidate node. Setting this to two, for
example, will produce only lineages that convey at least two unique mutations distinct from the
parent lineage or tree root. Combining both of these filters, we reject nodes where either or both
of these inequalities are not passed. Together, this allows automatic proposals to fulfill standard
conditions required by lineage nomenclature review groups.
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Additional Parameters

Our pipeline implementation includes a substantial set of configurable parameters.
These include minimum lineage size and minimum distinction, as outlined above. We also can
simply threshold on the GRI itself, ignoring marginal designations that contain relatively little
additional information.

Notably, we can additionally incorporate arbitrary sample-level weighting. This allows our
lineage system to prioritize effective representation of high-interest samples. R(S), below, is a
function representing the “importance” of sample S. This might be high for a sample S from an
under sequenced region, or lower for a sample S from a heavily sequenced time or place.

Samples from regions that contribute a small percentage of all samples will have
substantially higher weights than ones from regions that contribute a large percentage of
sequences, though all samples will have a weight greater than 1 under this schema. This is just
one potential weighting schema for handling geographic sequencing bias, and the user can
define any schema and set weights on a per-sample basis.

Similar concepts can apply to computing path lengths- we may consider only part of the
haplotype, or assign additional weight to specific mutations of interest that we want our lineage
system to prioritize representing. We provide options for the user to select genes of interest for
representation, as well as the ability to ignore mutations that do not change amino acid content
of proteins and represent coding haplotypes only.

We also provide arbitrary weighting schema for mutations of interest, similar to samples.
As an example, we provide a parameter that heavily weights mutations that are predicted to
increase vaccine escape (Greaney et al. 2022). This parameter multiplies the escape weight
value estimated by the Bloom lab calculator by the user’s parameter and adding 1. In this
schema, mutations that are not predicted to contribute to immune escape have a weight of 1,
while mutations that do contribute have a weight greater than 1 that is proportional to the
strength of escape conferred. The resulting lineage system is more likely to include designations
that have a change in immune escape. This is just one possible schema and the user can
define weights on a per-mutation basis in our implementation.

All parameters and configuration information used in the production of these results can
be found in Supplementary File 1.

Bayesian Growth Model

To identify high-priority lineages after designation, we fit a geographically stratified
exponential growth model to each proposed lineage using Markov Chain Monte Carlo (MCMC)
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implemented in the package PyMC3. Bayesian methods of this type are appropriate for
inference with small, noisy datasets, as the uncertainty in the model is directly quantified. To
summarize, we construct a posterior distribution of exponential growth coefficient scores filtered
through a binomial sequencing model. Lineage proposals which have a high, low-variance
posterior distribution of growth are likely rapidly expanding and are of high priority for labeling.

For lineage L in country C, we model the true percentage P as increasing in an
approximately exponential fashion. This is appropriate for newly emerging lineages that consist
of a small percentage of total cases in any country where they are found but are successfully
spreading. Each data point consists of the total number of samples from lineage L found in a
specific country during a specific week. We assume that the inherent exponential growth
coefficient for L is shared across all countries in which it is found and combine all datapoints
across countries and times for each lineage. The first week that any sample from lineage L was
found in country C is treated as the initial timepoint (t=0) for data from that country.

We do not directly observe the true percentage of cases P that are of lineage L. Instead,
some number N of all cases are sequenced, and we observe some number X of these samples
to be lineage L. As the number of cases is much larger than the number of samples, we can
model this process as a binomial sampling procedure with N trials and a probability of success
being the true percentage P.

Our Bayesian model combines both this sampling procedure and the exponential growth
model to yield a posterior distribution of growth values which can explain the behavior of lineage
L. Often these distributions are wide, due to sparse sampling and noise over few datapoints.
Additionally, some lineages may not fit an exponential growth model at all, due to being
outcompeted by newly introduced lineages or simple epidemiological noise, leading to highly
variable estimates of growth. Accordingly, we compute the 0.025 and 0.975 quantiles (95% CI)
for this distribution for each lineage L and sort the output by the lower quantile. Lineages with a
large positive value for the lower quantile will reliably resemble a high exponential growth model
and are more likely to be of epidemiological concern.

All code for our modeling and reporting process can be found at
https://github.com/jmcbroome/lineage-manuscript and https://github.com/jmcbroome/autolin.

Method validation - Other Pathogens

To validate that this method can be applied to pathogens other than SARS-CoV-2, we
selected two nextstrain instances for Chikungunya virus and the Venezuelan Equine
Encephalitis complex viruses, which are currently classified based on their geography and
serology, respectively. We applied our generalized implementation
(https://github.com/jmcbroome/automated-lineage-json) under default settings for the Auspice
JSON files of each virus (CHIKV Nextstrain build 5.1 available at
https://nextstrain.org/groups/ViennaRNA/CHIKVnext (doi:10.5281/zenodo.7514289) and VEE
Nextstrain build 2.1 available at https://nextstrain.org/groups/ViennaRNA/VEEnext
(doi:10.5281/zenodo.7524848)) to obtain lineage assignments. These Nextstrain JSON were
generated by the Augur pipeline (nextstrain-augur v19.1.0, treetime v 0.9.4, iqtree v2.2.0). We
then downloaded the nexus file with annotations from the new JSON file from Nextstrain and
visualized and compared the annotations using FigTree v.1.4.4. Tree figure comparisons were
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made by extracting them in pdf format as displayed in FigTree, mirrored and aligned on a photo
editing software. Taxon labels were colored according to the lineage assignment and were
replaced with bars representing the color of the lineage for best visualization.

We compared the automated lineage assignments with the previous nomenclature using
the Adjusted Rand Index (ARI). We randomly selected nodes in the amount of the number of
categories found for each annotation to create a distribution of random ARI’s to evaluate the
robustness of the method. By selecting random nodes within the tree and taking their
descendants to construct our null comparisons, we account for natural correlation from the tree
structure, while the Adjusted Rand Index itself accounts for variations in group sizes. We then
compute the percentile of the true Adjusted Rand Index of our lineage proposals against the
existing nomenclature from the permuted null distribution, yielding the reported p-values. All
code for this can be found at https://github.com/jmcbroome/lineage-manuscript.
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