
 1 

 
Coevolution of the CDCA7-HELLS ICF-related nucleosome remodeling complex 
and DNA methyltransferases 
 
Hironori Funabiki1,3, Isabel E. Wassing1, Qingyuan Jia1, Ji-Dung Luo2, and Thomas 
Carroll2 
 
1Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, 

NY 10065 

 
2Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065 

 
3 Correspondence: funabih@rockefeller.edu 
 
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 28, 2023. ; https://doi.org/10.1101/2023.01.30.526367doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526367
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Summary 
5-Methylcytosine (5mC) and DNA methyltransferases (DNMTs) are broadly conserved 
in eukaryotes but are also frequently lost during evolution. The mammalian SNF2 family 
ATPase HELLS and its plant ortholog DDM1 are critical for maintaining 5mC. 
Mutations in HELLS, its activator CDCA7, and the de novo DNA methyltransferase 
DNMT3B, cause immunodeficiency-centromeric instability-facial anomalies (ICF) 
syndrome, a genetic disorder associated with the loss of DNA methylation. We here 
examine the coevolution of CDCA7, HELLS and DNMTs. While DNMT3, the 
maintenance DNA methyltransferase DNMT1, HELLS, and CDCA7 are all highly 
conserved in vertebrates and green plants, they are frequently co-lost in other 
evolutionary clades. The presence-absence patterns of these genes are not random; almost 
all CDCA7 harboring eukaryote species also have HELLS and DNMT1 (or another 
maintenance methyltransferase, DNMT5). Coevolution of presence-absence patterns 
(CoPAP) analysis in Ecdysozoa further indicates coevolutionary linkages among 
CDCA7, HELLS, DNMT1 and its activator UHRF1. We hypothesize that CDCA7 
becomes dispensable in species that lost HELLS or DNA methylation, and/or the loss of 
CDCA7 triggers the replacement of DNA methylation by other chromatin regulation 
mechanisms. Our study suggests that a unique specialized role of CDCA7 in HELLS-
dependent DNA methylation maintenance is broadly inherited from the last eukaryotic 
common ancestor. 
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Introduction 
DNA methylation, particularly 5-methylcytosine (5mC) at CpG sequences, is widely 
conserved in eukaryotes. Along with its role in silencing transposable elements and 
suppressing aberrant intragenic transcription (Choi et al., 2020; Deniz et al., 2019; Neri et 
al., 2017), DNA methylation plays critical roles in developmental control, genome 
stability and the development of diseases such as cancers and immunodeficiencies 
(Greenberg and Bourc'his, 2019; Lyko, 2018; Nishiyama and Nakanishi, 2021; 
Robertson, 2005). Despite its versatility as an epigenetic control mechanism, DNA 
methyltransferases (DNMTs) are lost in multiple evolutionary lineages (Bewick et al., 
2017b; Huff and Zilberman, 2014; Kyger et al., 2021; Ponger and Li, 2005; Zemach et 
al., 2010). While the evolutionary preservation and loss of DNMTs and other proteins 
involved in 5mC metabolism has been studied (Bewick et al., 2017b; de Mendoza et al., 
2018; Dumesic et al., 2020; Engelhardt et al., 2022; Huff and Zilberman, 2014; Iyer et al., 
2011; Lewis et al., 2020; Mondo et al., 2017; Mulholland et al., 2020; Nai et al., 2020; 
Tirot et al., 2021; Zemach et al., 2010), it remains unclear if there is any common process 
or event that leads to the loss of DNA methylation systems in certain evolutionary 
lineages. Since eukaryotic genomes are compacted by nucleosomes, DNA methylation 
systems must deal with this structural impediment (Felle et al., 2011). Could the 
emergence or loss of a specific nucleosome regulator affect the evolution of DNA 
methylation as an epigenetic mechanism?  
 
DNMTs are largely subdivided into maintenance DNMTs and de novo DNMTs (Lyko, 
2018; Ponger and Li, 2005). Maintenance DNMTs (directly or indirectly) recognize 
hemimethylated CpGs and restore symmetric methylation at these sites to prevent the 
passive loss of 5mC upon DNA replication. Conversely, methylation by de novo DNMTs 
does not require methylated DNA templates. In animals, 5mC is maintained during DNA 
replication by DNMT1 together with UHRF1, which directly recognizes hemimethylated 
cytosine via the SRA domain and stimulates activity of DNMT1 in a manner dependent 
on its ubiquitin-ligase activity (Nishiyama and Nakanishi, 2021). De novo DNA 
methylation is primarily carried out by DNMT3 in animals, while plants encode the 
closely related de novo methyltransferase DRM (Cao et al., 2000). Some species, such as 
the fungus Cryptococcus neoformans, lack de novo DNA methylation activity (Catania et 
al., 2020; Dumesic et al., 2020; Huff and Zilberman, 2014). In C. neoformans, DNA 
methylation is maintained by DNMT5, which has a SNF2-family ATPase domain that is 
critical for its methyltransferase activity (Dumesic et al., 2020; Huff and Zilberman, 
2014). Although DNMT5 orthologs cannot be found in land plants and animals, their 
broad existence in Stramenopiles, Chlorophyta and Fungi suggests that DNMT5, perhaps 
together with DNMT1, coexisted in the last eukaryotic common ancestor (LECA) (Huff 
and Zilberman, 2014).  
 
DNA hypomethylation is a hallmark of immunodeficiency–centromeric instability–facial 
anomalies (ICF) syndrome, a rare genetic disorder which causes severe immune defects 
(Ehrlich, 2003; Ehrlich et al., 2006; Vukic and Daxinger, 2019). Activated lymphocytes 
of ICF patients display a characteristic cytogenetic abnormality at the juxtacentromeric 
heterochromatin of chromosome 1 and 16, where the satellite II repetitive element is 
highly enriched. In about 50 % of ICF patients, classified as ICF1, the disease is caused 
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by mutations in the de novo DNA methyltransferase DNMT3B (Hansen et al., 1999; 
Okano et al., 1999). The rarer genotypes known as ICF2, ICF3 and ICF4, are caused by 
mutations in ZBTB24, CDCA7, and HELLS (Helicase, Lymphoid Specific, also known 
as LSH, Lymphoid-Specific Helicase), respectively (de Greef et al., 2011; Thijssen et al., 
2015; Unoki, 2021). While hypomethylation at satellite II repeats is common to all ICF 
genotypes, ICF2-4 patient-derived cells, but not ICF1 patient cells, additionally exhibit 
hypomethylation at centromeric alpha satellite repeats (Jiang et al., 2005; Thijssen et al., 
2015; Velasco et al., 2018). Knock out of ICF genes in human HEK293 cells reproduces 
the DNA methylation profile observed in patient cells (Unoki et al., 2019). In mice, 
ZBTB24, HELLS and CDCA7, but not DNMT3B, are required for methylation at 
centromeric minor satellite repeats (Dennis et al., 2001; Hardikar et al., 2020; Ren et al., 
2015; Thijssen et al., 2015). Therefore, although all ICF proteins promote DNA 
methylation, the ZBTB24-CDCA7-HELLS axis may target additional loci such as alpha 
satellites for DNA methylation in a DNMT3-independent manner. Indeed, the importance 
of HELLS in DNA methylation maintenance by DNMT1 has been reported (Han et al., 
2020; Ming et al., 2020; Unoki, 2021; Unoki et al., 2020). 
 
HELLS belongs to one of ~25 subclasses of the SNF2-like ATPase family (Flaus et al., 
2006). Among these diverse SNF2 family proteins, HELLS appears to have a specialized 
role in DNA methylation. Reduced genomic DNA methylation was observed in HELLS 
(LSH) knockout mice (Dennis et al., 2001), transformed mouse fibroblasts (Dunican et 
al., 2013), mouse embryonic fibroblasts (Myant et al., 2011; Yu et al., 2014), and 
zebrafish and Xenopus embryos (Dunican et al., 2015). In fact, this function of HELLS in 
DNA methylation was originally inferred from studies in Arabidopsis, where mutations 
in the HELLS ortholog DDM1 (Decrease in DNA Methylation) cause drastic reduction of 
5mC in transposable and repetitive elements (Miura et al., 2001; Vongs et al., 1993). Like 
HELLS, DDM1 is a SNF2 ATPase with demonstrable in vitro nucleosome remodeling 
activity (Brzeski et al., 2003; Jenness et al., 2018). Since DNA methylation defects in 
ddm1 mutants can be rescued by the loss of histone H1, it has been proposed that DDM1-
mediated remodeling of H1-bound nucleosomes is important for DNA methylation 
(Zemach et al., 2013).  
 
CDCA7 (also known as JPO1) was originally identified as one of eight CDCA genes that 
exhibited cell division cycle-associated gene expression profiles (Walker, 2001). A 
putative 4CXXC zinc finger binding domain (zf-4CXXC_R1) is conserved among 
CDCA7 homologs, including its paralog CDCA7L (also known as JPO2 and R1) (Chen 
et al., 2005; Ou et al., 2006). Multiple lines of evidence support the idea that CDCA7 
functions as a direct activator of the nucleosome remodeling enzyme HELLS. First, in 
Xenopus egg extracts, HELLS and CDCA7e (the sole CDCA7 paralog present in 
Xenopus eggs) both preferentially interact with nucleosomes rather than nucleosome-free 
DNA, and binding of HELLS to chromatin depends on CDCA7e (Jenness et al., 2018). 
Second, HELLS alone exhibits little nucleosome sliding activity, but CDCA7e greatly 
stimulates it (Jenness et al., 2018). Third, HELLS directly binds to CDCA7e (as well as 
CDCA7 and CDCA7L), even in the absence of DNA (Jenness et al., 2018). Fourth, 
HELLS and CDCA7 interact in human cells (Unoki et al., 2019), where chromatin 
binding of HELLS also depends on CDCA7 (Jenness et al., 2018). ICF disease mutations 
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located in the conserved zf-4CXXC_R1 domain (R274C, R274H and R304H in human 
CDCA7) inhibited chromatin binding of CDCA7 and HELLS without interfering with 
CDCA7-HELLS interaction (Jenness et al., 2018), such that the zf-4CXXC_R1 domain 
likely serves as a chromatin binding module. Therefore, we proposed that CDCA7 and 
HELLS form a bipartite nucleosome remodeling complex, termed CHIRRC (CDCA7-
HELLS ICF-related nucleosome remodeling complex) (Jenness et al., 2018).  
 
We previously suggested that ZBTB24, CDCA7, and HELLS form a linear pathway to 
support DNA methylation (Jenness et al., 2018). ZBTB24 is a transcription factor which 
binds the promoter region of CDCA7 and is required for its expression (Wu et al., 2016). 
As CDCA7 binds HELLS to form the CHIRRC, we proposed that its ATP-dependent 
nucleosome sliding activity exposes DNA that was previously wrapped around the 
histone octamer and makes it accessible for DNA methylation (Jenness et al., 2018). 
Indeed, DNMT3A and DNMT3B cannot methylate DNA within a nucleosome (Felle et 
al., 2011), and the importance of HELLS and DDM1 for DNA methylation at 
nucleosomal DNA has been reported in mouse embryonic fibroblasts and Arabidopsis, 
respectively (Lyons and Zilberman, 2017). Given the frequent loss of 5mC as an 
epigenetic mark in multiple evolutionary lineages, it is striking that the role for 
HELLS/DDM1 in DNA methylation appears to be conserved in evolutionarily distant 
mammals and plants. Importantly, this would suggest that the promotion of DNA 
methylation through nucleosome sliding is specific to HELLS and cannot be substituted 
by other SNF2 family nucleosome remodelers, such as SNF2 (SMARCA2/4), INO80, 
and ISWI (SMARCA1/5). If the specific function of HELLS and CDCA7 in DNA 
methylation is indeed derived from the last eukaryotic common ancestor (LECA), we 
hypothesize that HELLS and CDCA7 coevolved with other DNA methylation 
machineries. We here test this hypothesis and discuss the potential sequence of events 
that led to the loss of DNA methylation in some species. 
 
Results 
 
CDCA7 is absent from the classic model organisms that lack genomic 5mC 
CDCA7 is characterized by the unique zf-4CXXC_R1 domain (Pfam PF10497 or 
Conserved Domain Database [CDD] cl20401) (Lu et al., 2020; Mistry et al., 2021). 
Conducting a BLAST search using human CDCA7 as a query sequence against the 
Genbank protein database, we realized that no zf-4CXXC_R1-containing proteins are 
identified in the classic model organisms Drosophila melanogaster, Caenorhabditis 
elegans, Schizosaccharomyces pombe and Saccharomyces cerevisiae, which are all also 
known to lack any DNMTs and genomic 5mC (Zemach et al., 2010). However, we 
identified a protein with a zf-4CXXC_R1 motif in the bumblebee Bombus terrestris and 
the thale cress A. thaliana, which have both maintenance and de novo DNMTs (Bewick 
et al., 2017b; Chan et al., 2005; Li et al., 2018; Zemach et al., 2010) (Figure 1 and Figure 
1–source data 1). Based on the reciprocal best hits (RBH) criterion using human HELLS 
as a query sequence (see Methods) (Ward and Moreno-Hagelsieb, 2014), HELLS-like 
proteins were identified in A. thaliana (DDM1) and S. cerevisiae (Irc5) in line with 
previous reports (Litwin et al., 2017), as well as in B. terrestris. No clear HELLS-like 
proteins were identified in D. melanogaster, C. elegans, or S. pombe. This pilot-scale 
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analysis based on the RBH criterion led us to hypothesize that the evolutionary 
maintenance of CDCA7 is linked to that of HELLS and DNMTs. In order to statistically 
validate this hypothesis, we set out to systematically identify and classify homologs of 
CDCA7, HELLS and DNMTs in a broad range of evolutionary lineages.  
 
CDCA7 family proteins in vertebrates 
We first characterized evolutionary conservation of CDCA7 family proteins in 
vertebrates, where 5mC, DNMT1 and DNMT3 are highly conserved. A BLAST search 
against the Genbank protein database identified two zf-4CXXC_R1 domain-containing 
proteins, CDCA7/JPO1 and CDCA7L/R1/JPO2, throughout Gnathostomata (jawed 
vertebrates) (Figure 2A, Figure 2B, Figure 2– figure supplement 1, and Figure 1–source 
data 1). In frogs (such as Xenopus, but not all amphibians), and some fishes (such as 
Astyanax mexicanus and Takifugu rubripes), a third paralog CDCA7e exists. CDCA7e is 
the only CDCA7-like protein that can be detected in Xenopus eggs (Jenness et al., 2018), 
and thus likely represents a form specific to oocytes and early embryos in these species. 
Among twelve conserved cysteine residues originally reported in the zf-4CXXC_R1 
domain (Ou et al., 2006), the 12th cysteine residue is not conserved in Rhincodon typus 
(whale shark) CDCA7 and in Xenopus laevis CDCA7e. In general, the 12th cysteine 
residue of the zf-4CXXC_R1 domain is least conserved among CDCA7 homologs within 
and outside of vertebrates, such that we do not consider it a key component of the zf-
4CXXC_R1 domain (see below). Considering that the jawless fish Petromyzon marinus 
(sea lamprey) and other invertebrates commonly possess only one CDCA7 family gene 
(Figure 2, see Figure 6 and Figure 1–source data 1), the CDCA7 paralogs may have 
emerged in jawed vertebrates. Overall, the zf-4CXXC_R1 sequence is highly conserved 
among vertebrate CDCA7 homologs, including three residues that are mutated in ICF3 
patients (R274, G294 and R304 in human CDCA7) (Figure 2B) (Thijssen et al., 2015). 
Note that these amino acid positions of the ICF3 mutations in human CDCA7 are based 
on the previously reported sequence of an NP_665809 (Thijssen et al., 2015), which is 
annotated as isoform 2 (371 amino acids), whereas we list the isoform 1 (NP_114148) 
with 450 amino acids in this study (Figure 2A). 
 
While the presence of four CXXC motifs in the zf-4CXXC_R1 domain is reminiscent of 
a classic zinc finger-CXXC domain (zf-CXXC, Pfam PF02008), which binds to 
nonmethylated CpG (Long et al., 2013), their cysteine arrangement is distinctly different, 
perhaps reflecting the capacity of zf-4CXXC_R1 domain to recognize nucleosomes 
(Jenness et al., 2018) and potentially specific epigenetic marks or DNA sequences. In 
vertebrate CDCA7 paralogs, eleven conserved cysteines are arranged as 
CXXCX10CX4CX7CXXCX19CXXCX3CXCXXC. In contrast, in the classic zf-CXXC 
domain eight cysteines are arranged as CXXCXXCX4-5CXXCXXCX8-14CX4C (Long et 
al., 2013). Apart from the zf-4CXXC_R1 domain, vertebrate CDCA7 family proteins 
often, but not always, contain one or two Lens epithelium-derived growth factor 
(LEDGF)-binding motif(s) (Figure 2A and Figure 2C), defined as ([E/D]XEXFXGF) 
(Tesina et al., 2015). It has been reported that human CDCA7L and CDCA7 both interact 
with c-Myc but apparently via different regions, a leucine zipper and a less-defined 
adjacent segment that overlaps with a bipartite nuclear localization signal, respectively 
(Gill et al., 2013; Huang et al., 2005). This leucine zipper sequence is highly conserved 
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among vertebrate CDCA7 family proteins (Figure 2A and Figure 2D). In contrast to zf-
CXXC domain-containing proteins such as KDM2A/B, DNMT1, MLL1/2, and TET1/3, 
the vertebrate CDCA7 family proteins do not contain any predicted enzymatic domains 
(Huang et al., 2005; Maertens et al., 2006; Tesina et al., 2015). 
 
Plant homologs of CDCA7 
A BLAST sequence homology search identified three classes of zf-4CXXC_R1 domain-
containing proteins in Arabidopsis thaliana (Figure 3). Class I proteins have one zf-
4CXXC_R1 domain with no other detectable domains listed in CDD or Pfam/InterPro 
(Paysan-Lafosse et al., 2023). Strikingly, all three ICF-associated residues (R274, G294 
and R304 in human CDCA7) as well as all eleven characteristic cysteines of the zf-
4CXXC_R1 domain are conserved, with the exception that the position of the fourth 
cysteine is shifted two residues toward the N terminus. We define the domain with the 
conservation of the signature cysteine residues and three ICF-associated residues as 
“class I zf-4CXXC_R1” and hypothesize that proteins with class I zf-4CXXC_R1 are 
CDCA7 orthologs (including their highly homologous paralogs in this report). 
 
Class II proteins contain a zf-4CXXC_R1 domain, a DDT domain and a WHIM1 
domain. These proteins were previously identified as DDR1-3 (Dong et al., 2013). DDT 
and WHIM1 domains are commonly found in proteins that interact with SNF2h/ISWI 
(Aravind and Iyer, 2012; Li et al., 2017; Yamada et al., 2011). Indeed, it was reported 
that Arabidopsis DDR1 and DDR3 interact with the ISWI orthologs CHR11 and CHR17 
(Tan et al., 2020). Among the eleven cysteine residues in the zf-4CXXC_R1 domain of 
these proteins, the position of the fourth residue is shifted towards the C-terminus. The 
ICF-associated glycine residue (G294 in human CDCA7, mutated to valine in ICF3 
patients) is replaced by isoleucine. We define the zf-4CXXC_R1 containing a 
substitution at this glycine residue as class II zf-4CXXC_R1. 
 
Class III proteins are longer (~1000 amino acid) and contain an N-terminal zf-
4CXXC_R1 domain and a C-terminal JmjC domain (Pfam, PF02373), which is predicted 
to possess demethylase activity against histone H3K9me2/3 (Saze et al., 2008). While all 
eleven cysteine residues can be identified, there are deletions between the 4th and 5th 
cysteine and 6th and 7th cysteine residues. None of the ICF-associated residues are 
conserved in the class III. One of these class III proteins is IBM1 (increase in bonsai 
mutation 1), whose mutation causes the dwarf “bonsai” phenotype (Saze et al., 2008), 
which is accompanied with increased H3K9me2 and DNA methylation levels at the 
BONSAI (APC13) locus. Double mutants of ddm1 and ibm1 exacerbate the bonsai 
phenotype, indicating that DDM1 and IBM1 act independently to regulate DNA 
methylation (Saze et al., 2008). Another class III protein is JMJ24, which harbors a RING 
finger domain in addition to the 4CXXC and JmjC domains. This RING finger domain 
promotes ubiquitin-mediated degradation of the DNA methyltransferase CMT3, and thus 
opposes DNA methylation (Deng et al., 2016). 
 
Homologs of these three classes of CDCA7 proteins found in Arabidopsis are widely 
identified in green plants (Viridiplantae), including Streptophyta (e.g., rice, maize, moss, 
fern) and Chlorophyta (green algae) (Figure 3–figure supplement 1 and Figure 1–source 
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data 1). Other variants of zf-4CXXC_R1 are also found in Viridiplantae. In contrast to 
green plants, in which the combined presence of HELLS/DDM1-, CDCA7- and DNMT- 
orthologs is broadly conserved, no zf-4CXXC_R1-containing proteins can be identified 
in red algae (Rhodophyta) (Figure 1–source data 1, see Figure 5 and Figure 5–figure 
supplement 1).  
 
Zf-4CXXC_R1-containing proteins in Fungi 
Although S. pombe and S. cerevisiae genomes do not encode any CDCA7 family 
proteins, a BLAST search identified various fungal protein(s) with a zf-4CXXC_R1 
domain. Among the zf-4CXXC_R1-containing proteins in fungi, 10 species (Kwoniella 
mangroviensis, Coprinopsis cinere, Agaricus bisporus, Taphrina deformans, Gonapodya 
prolifera, Basidiobolus meristosporus, Coemansia reversa, Linderina pennispora, 
Rhizophagus irregularis, Podila verticillate) harbor a class II zf-4CXXC_R1 domain 
with two notable deviations (Figure 4A). First, the space between the third and fourth 
cysteine residues is variable. Second, the fifth cysteine is replaced by aspartate in 
Zoopagomycota (Basidiobolus meristosporus ORX82853, Coemansia reversa PIA14937, 
Linderina pennispora ORX71196) (Figure 4). As these proteins do not contain any 
additional CDD-annotated domain like vertebrate and plant CDCA7 orthologs (except for 
Taphrina deformans CCG81269, which also has a CHROMO domain), we define this 
fungal protein family as CDCA7F, which forms a distinct clade in our phylogenetic 
analysis of zf-4CXXC_R1 sequence alignment (Figure 2–figure supplement 1 and Figure 
3–figure supplement 1).  
 
Besides CDCA7F, several fungal species encode a protein with a diverged zf-
4CXXC_R1 domain, including those with a JmjC domain at the N-terminus (Figure 4B, 
Figure 1–source data 1). This composition mimics the plant class III proteins, for which 
the JmjC domain is located at the C-terminus. Among these proteins, it was suggested 
that Neurospora crassa DMM-1 does not directly regulate DNA methylation or 
demethylation but rather controls the deposition of histone H2A.Z and/or H3K56 
acetylation, which inhibit spreading of heterochromatin segments with methylated DNA 
and H3K9me3 (Honda et al., 2010; Zhang et al., 2022). Thus, the known roles of these 
divergent variants of zf-4CXXC_R1 are not directly associated with DNA methylation. 

 
Systematic identification of CDCA7 and HELLS homologs in eukaryotes 
To systematically identify CDCA7 and HELLS homologs in the major eukaryotic 
supergroups, we conducted a BLAST search against the NCBI protein database using 
human CDCA7 and HELLS protein sequences. To omit species with a high risk of false 
negative identification, we selected species containing at least 6 distinct proteins with 
compelling homology to the SNF2 ATPase domain of HELLS, based on the assumption 
that each eukaryotic species is expected to have 6-20 SNF2 family ATPases (Flaus et al., 
2006). Indeed, even the microsporidial pathogen Encephalitozoon cuniculi, whose 
genome size is a mere 2.9 Mb, contains six SNF2 family ATPases (Flaus et al., 2006). As 
such, we generated a panel of 180 species encompassing all major eukaryote supergroups 
(5 Excavata, 18 SAR [2 Rhizaria, 6 Alveolata, 10 Stramenopiles]), 1 Haptista, 1 
Cryptista, 15 Archaeplastida [3 Rhodophyta and 12 Viridiplantae], 4 Amoebozoa, 136 
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Opisthokonts [34 Fungi, 3 Holozoa, and 99 Metazoa]) (Figure 5–figure supplement 1, 
and Figure 1–source data 1). 
 
To annotate HELLS orthologs, a phylogenetic tree was constructed from a multiple 
sequence alignment of the HELLS homologs identified based on the RBH criterion 
alongside other SNF2-family proteins of H. sapiens, D. melanogaster, S. cerevisiae, and 
A. thaliana. If HELLS orthologs are correctly identified (i.e. without erroneously 
including orthologs of another SNF2-subfamily) they should cluster together in a single 
clade. However, the sequence alignment using the full-length protein sequence failed to 
cluster HELLS and DDM1 in the same clade (Figure 5–figure supplement 2). Since 
HELLS and other SNF2-family proteins have variable insertions within the SNF2 
ATPase domain, multiple sequence alignment of the SNF2 domains was then conducted 
after removing the insertion regions, as previously reported (Flaus et al., 2006). By this 
SNF2 domain-only alignment method, all HELLS orthologs formed a clade, separated 
from CHD1, ISWI, SMARCA2/4, SRCAP, and INO80 (Figure 5–figure supplement 3). 
An independent phylogenetic tree construction with a maximum-likelihood based method 
and 1000 bootstrap replicates confirmed these assignments (see Methods, Figure 5–
source data 1 and Figure 5–source data 2). 
 
A BLAST search with the human CDCA7 sequence across the panel of 180 species 
identified a variety of proteins containing the zf-4CXXC_R1 domain, which is prevalent 
in all major supergroups (Figure 5, Figure 5–figure supplement 1, and Figure 1–source 
data 1). Each of these identified proteins contains only one zf-4CXXC_R1 domain. The 
resulting list of CDCA7 BLAST hits were further classified as prototypical CDCA7 
orthologs if they preserve the criteria of the class I zf-4CXXC_R1 (signature eleven 
cysteine residues and the three ICF-associated residues) (Figure 3–figure supplement 1). 
A phylogenetic tree analysis of zf-4CXXC_R1 domains from diverse species confirmed 
that these CDCA7 orthologs with the class I zf-4CXXC_R1 domain are clustered under 
the same clade (Figure 2–figure supplement 1, also see Methods, Figure 2–source data 1 
and Figure 2–source data 2). CDCA7 orthologs are broadly found in the three supergroup 
lineages (Archaeplastida, Amoebozoa, Opisthokonta) (Figure 5, Figure 5–figure 
supplement 1, and Figure 1–source data 1). In Excavata, the amoeboflagellate Naegleria 
gruberi encodes a protein that is a likely ortholog of CDCA7 with an apparent C-terminal 
truncation (XP_002678720), possibly due to a sequencing error (Figure 3–figure 
supplement 1). In SAR, CDCA7 orthologs are absent from all available genomes, except 
stramenopile Tribonema minus, which encodes a distantly related likely ortholog of 
CDCA7 (KAG5177154). These conservations suggest that the class I zf-4CXXC_R1 
domain in CDCA7 was inherited from the LECA. 
 
In addition to the class I zf-4CXXC_R1 domain, we also identified divergent zf-
4CXXC_R1 domains across eukaryotes, although metazoan species only contain CDCA7 
orthologs (and their paralogs such as CDCA7L and CDCA7e) with the exception of the 
sponge Amphimedon queenslandica, which also encodes a protein (XP_019849176) with 
the class II zf-4CXXC_R1 domain, DDT, and WHIM1 domain, the composition of which 
is similar to plant DDR1-3 (Figure 3, Figure 5, Figure 3–figure supplement 1, and Figure 
1–source data 1). The Amoebozoa Acanthamoeba castellanii encodes a protein 
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(XP_004340890) containing the class II zf-4CXXC_R1 domain as well as the CHROMO 
domain (cd00024) (Figure 3–figure supplement 1 and Figure 1–source data 1). This 
domain combination is also found in the Taphrina deformans CDCA7F, CCG81269 
(Figure 4). Proteins with a combinatory presence of a diverged zf-4CXXC_R1 domain 
and the JmjC domain are found in plants, fungi, Amoebozoa, and Naegleria gruberi 
(Figure 1–source data 1). 
 
Despite the prevalence of the zf-4CXXC_R1 domain and its variants in eukaryotes, no zf-
4CXXC_R1 domain was found in prokaryotes and Archaea. This is in contrast to SNF2 
family proteins and DNA methyltransferases, which can be identified in prokaryotes and 
Archaea (Colot and Rossignol, 1999; Flaus et al., 2006; Huff and Zilberman, 2014; 
Ponger and Li, 2005), pointing toward a possibility that the zf-4CXXC_R1 domain 
emerged to deal with unique requirement of eukaryotic chromatin.  
 
Classification of DNMTs in eukaryotes 
A simple RBH approach is not practical to classify eukaryotic DNMT proteins due to the 
presence of diverse lineage-specific DNMTs (Huff and Zilberman, 2014). Therefore, we 
collected proteins with a DNMT domain within the panel of 180 eukaryote species, and 
then extracted the DNMT domains from each sequence (based on an NCBI conserved 
domains, Dcm [COG0270], Dcm super family [cl43082], AdoMet_MTases superfamily 
[cl17173]). Generating a phylogenetic tree based on the multisequence alignment of the 
DNMT domains, we were able to classify the majority of all identified DNMTs as 
previously characterized DNMT subtypes according to their sequence similarity (Figure 
5–figure supplement 4, Figure 5–source data 3 and Figure 5–source data 4). These 
DNMT subtypes include DNMT1; DNMT3; the plant specific de novo DNA 
methyltransferases DRM1-3; the “true” plant DNMT3 orthologs (Yaari et al., 2019); the 
plant specific CMT (Bewick et al., 2017a); the fungi-specific maintenance 
methyltransferase Dim-2 and de novo methyltransferase DNMT4 (Bewick et al., 2019a; 
Nai et al., 2020); the SNF2 domain-containing maintenance methyltransferase DNMT5 
(Dumesic et al., 2020; Huff and Zilberman, 2014); DNMT6 (a poorly characterized 
putative DNMT identified in Stramenopiles, Haptista and Chlorophyta) (Huff and 
Zilberman, 2014), and the tRNA methyltransferase TRDMT1 (also known as DNMT2) 
(Figure 5–figure supplement 4). In this report, we call a protein DNMT3 if it clusters into 
the clade including metazoan DNMT3, plant DNMT3, and DRM. We also identified 
other DNMTs, which did not cluster into these classes. For example, although it has been 
reported that DNMT6 is identified in Micromonas but not in other Chlorophyta species 
such as Bathycoccus and Ostreococcus (Huff and Zilberman, 2014), we identified 
Chlorophyta-specific DNMTs that form a distinct clade, which seems to be diverged 
from DNMT6 and DNMT3. We temporarily called this class Chlorophyta DNMT6-like 
(Figure 5–figure supplement 4). Other orphan DNMTs include the de novo DNA 
methyltransferase DNMTX in fungus Kwoniella mangroviensis (Catania et al., 2020), 
and an uncharacterized DNMT in N. gruberi (XP_002682263). 
 
Coevolution of CDCA7, HELLS and DNMTs 
The classification of homologs of CDCA7, HELLS and DNMTs across the panel of 180 
eukaryotic species reveals that they are conserved across the major eukaryote 
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supergroups, but they are also dynamically lost (Figure 5, Figure 5–figure supplement 1 
and Figure 1–source data 1). We found 40 species encompassing Excavata, SAR, 
Amoebozoa, and Opisthokonta that lack CDCA7 (or CDCA7F), HELLS and DNMT1. 
Species that encode the set of DNMT1, UHRF1, CDCA7 and HELLS are particularly 
enriched in Viridiplantae and Metazoa. A clear exception in Amoebozoa is 
Acanthamoeba castellanii, whose genome also encodes these four proteins and is 
reported to have methylated cytosines (Moon et al., 2017). N. gruberi is an exceptional 
example among Excavata species, encoding a putative CDCA7 (XP_002678720) as well 
as HELLS; an orphan DNMT protein (XP_002682263), and a UHRF1-like protein. 
DNMT1, DNMT3, HELLS and CDCA7 seem to be absent in other Excavata lineages, 
although Euglenozoa variants of DNMT6 and cytosine methylation are identified in 
Trypanosoma brucei and Leishmania major (Huff and Zilberman, 2014; Militello et al., 
2008). The yellow-green algae Tribonema minus is the only SAR species that encodes a 
putative CDCA7 (KAG5177154), along with DNMT5 and HELLS (Figure 5, Figure 
2_figure supplement 1, and Figure 3–figure supplement 1). 
 
Among the panel of 180 eukaryote species, we found 82 species that encode CDCA7 
(including fungal CDCA7F) (Figure 5–figure supplement 1 and Figure 1–source data 1 
tab6). Strikingly, all 82 species containing CDCA7 (or CDCA7F) also harbor HELLS. 
Almost all CDCA7 encoding species also possess DNMT1. Exceptions are: the yellow-
green algae T. minus and the Mamiellophyceae lineage of the green algae/Chlorophyta 
(Bathycoccus prasinos, Ostreococcus lucimarinus, Micromonas pusilla), which lost 
DNMT1 but possess DNMT5; the amoeboflagellate N. gruberi, which encodes an orphan 
DNMT and UHRF1, and the fungus T. deformans, which encodes UHRF1 and DNMT4. 
In contrast, 20 species (e.g., S. cerevisiae) possess only HELLS, while 10 species (e.g. 
the silk moth Bombyx mori) retains only DNMT1 among the set of DNMT1, CDCA7 and 
HELLS. These observations indicate that the function of CDCA7 is strongly linked to 
HELLS and DNMT1, such that the presence of CDCA7 depends on HELLS and 
DNMT1, while CDCA7 is easier to lose than DNMT1 and HELLS. Compared to the 
apparent HELLS/DNMT1-dependent existence of CDCA7, DNMT3 seems to be more 
dispensable; besides Fungi, which lack DNMT3, 16 species (e.g., the bed bug Cimex 
lectularius and the red paper wasp Polistes canadensis) possess the set of CDCA7, 
HELLS and DNMT1 but not DNMT3/DNMT3-like proteins (Figure 5–figure supplement 
1 and supplementary file tab6). 
 
To quantitatively assess coevolution of DNMTs, CDCA7 and HELLS, we performed 
CoPAP analysis on the panel of 180 eukaryote species (Figure 6–figure supplement 
1)(Cohen et al., 2013). The analysis was complicated due to the lineage-specific diverse 
DNMT classes (e.g., Dim2, DNMT5, DNMT6 and other plant specific DNMT variants) 
and divergent variants of zf-4CXXC_R1. Considering this caveat, we conducted CoPAP 
analysis of five DNMTs (DNMT1, Dim-2, DNMT3 [including DRM], DNMT5, 
DNMT6), UHRF1, HELLS, CDCA7, proteins with class II zf-4CXXC_R1, and proteins 
with zf-4CXXC_R1 and JmjC. As fungi-specific CDCA7F contains class II zf-
4CXXC_R1, and all the other class II zf-4CXXC_R1 containing proteins were identified 
in species that also possess CDCA7, we conducted CoPAP against two separate lists; in 
the first list (Figure 6–figure supplement 1A) CDCA7F was included in the CDCA7 
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category (i.e. considered as a prototypical CDCA7 ortholog in fungi), whereas in the 
second list (Figure 6–figure supplement 1B) CDCA7F was included in the class II zf-
4CXXC_R1 category. As positive and negative controls for the CoPAP analysis, we also 
included subunits of the PRC2 complex (EZH1/2, EED and Suz12), and other SNF2 
family proteins SMARCA2/SMARCA4, INO80 and RAD54L, which have no direct role 
related to DNA methylation, respectively. As expected for proteins that act in concert 
within the same biological pathway, both CoPAP results showed significant coevolution 
between DNMT1 and UHRF1, as well as between the PRC2 subunits EZH1 and EED. 
Suz12 did not show a significant linkage to other PRC2 subunits by this analysis, most 
likely due to a failure in identifying diverged Suz12 orthologs, such as those in 
Neurospora and Paramecium (Jamieson et al., 2013; Miro-Pina et al., 2022). The 
evolutionary linkage between DNMT5 and DNMT6 were also observed (Figure 6–figure 
supplement 1). In the result of CoPAP analysis against the first list, where CDCA7F was 
included in the CDCA7 category, CDCA7 exhibited a coevolutionary linkage to DNMT1 
(Figure 6–figure supplement 1A). In the second CoPAP, where CDCA7F was included in 
the class II zf-4CXXC_R1 category, CDCA7 exhibited linkage to UHRF1 and HELLS 
(Figure 6–figure supplement 1B). Notably, none of these proteins show an evolutionary 
association with the PRC2 proteins or other SNF2 family proteins, while the 
coevolutionary linkage between CDCA7 and the DNMT1-UHRF1 cluster was 
reproducible. 
 
We next conducted the CoPAP analysis against a panel of 50 Ecdysozoa species, where 
DNA methylation system is dynamically lost in multiple lineages (Figure 6A) (Bewick et 
al., 2017b; Engelhardt et al., 2022), yet the annotation of DNMTs, UHRF1, CDCA7 and 
HELLS is unambiguous. As a negative control, we included INO80, which is 
dynamically lost in several Ecdysozoa lineages, such as C. elegans (Figure 5, Figure 6A 
and Figure 5–figure supplement 1). As expected, CoPAP analysis showed a highly 
significant coevolutionary interaction between DNMT1 and UHRF1 (Figure 6B). In 
addition, HELLS interacts with DNMT1, UHRF1 and CDCA7. In contrast, no linkage 
from INO80 or DNMT3 was determined. Altogether, these CoPAP analyses reproducibly 
found coevolutionary linkages between DNMT1-UHRF1 and CDCA7-HELLS, although 
the exact interaction topology is sensitive to the selection of species and protein 
classification methods. 
 
Loss of CDCA7 in braconid wasps together with DNMT1 or DNMT3 
CoPAP analysis detected the coevolutionary linkage between CDCA7 and DNMT1-
UHRF1, rather than DNMT3. We were therefore intrigued by the apparent absence of 
CDCA7 and DNMT3 in two insect species, the red flour beetle Tribolium castaneum and 
the braconid wasp Microplitis demolitor, whose genomic DNA does not have any 
detectable 5mC despite the presence of DNMT1 (Bewick et al., 2017b; Schulz et al., 
2018; Zemach et al., 2010) (Figure 5). To further validate the co-loss of CDCA7 and 
DNMT1/DNMT3 in insects, we focused on the Hymenoptera clade (including M. 
demolitor), for which genome synteny has been reported (Li et al., 2021). Indeed, a 
striking synteny is observed in the genome region surrounding CDCA7 among the 
parasitic wood wasp (Orussus abietinus) and Aculeata species (bees Bombus terrestris 
and Habropoda laborlosa, and the eusocial wasp Polistes canadensis), which diverged 
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~250 MYA (Li et al., 2021; Peters et al., 2017) (Figure 7 and Figure 7–source data 1). In 
these species, CDCA7 is located between Methyltransferase-like protein 25 homolog 
(MET25, E) and Ornithine aminotransferase homolog (OAT, F). In fact, the gene cluster 
containing LTO1 homolog (D), MET25 (E), OAT (F), and Zinc finger protein 808 
(ZN808, G) is highly conserved in all the analyzed Hymenoptera species, but not outside 
of Hymenoptera (e.g., Drosophila). 
 
However, CDCA7 is absent from this gene cluster in parasitoid wasps, including 
Ichneumonoidea wasps (braconid wasps [M. demolitor, Cotesia glomerata, Aphidius 
gifuensis, Fopius arisanus] and ichneumon wasp [Venturia canescent]) and chalcid 
wasps (Copidosoma floridanum, Nasonia vitripennis) (Figure 7 and Figure 7–source data 
2). Among Ichneumonoidea wasps, CDCA7 is undetectable in the genome of braconid 
wasps, while CDCA7 is located on a different chromosome in the ichneumon wasp 
Venturia canescens. In chalcid wasps, CDCA7 is present at a genome segment between 
Artemis (I) and Chromatin accessibility complex protein 1 (CHRC1, J). Supported by the 
chromosome-level genome assembly for Cotesia glomerata and Aphidius gifuensis (Feng 
et al., 2020; Pinto et al., 2021), the synteny analysis strongly indicates that CDCA7 is lost 
from braconid wasps. Intriguingly, braconid wasps co-lost CDCA7 either with DNMT3 
(in M. demolitor, Cotesia glomerata, Cotesia typhae and Chelonus insularis) or with 
DNMT1 and UHRF1 (in Fopius arisanus, Diachasma alloeum and Aphidius gifuensis) 
(Figure 7 and Figure 7–source data 2). Notably, in addition to M. demolitor (which lacks 
CDCA7 and DNMT3), it has been reported that little or no 5mC can be detected in 
Aphidius ervi (which lacks CDCA7, DNMT1 and UHRF1, Figure 7–source data 2) 
(Bewick et al., 2017b). In contrast, all Hymenoptera species that are known to have 
detectable 5mC possess CDCA7 along with DNMT1, UHRF1, DNMT3, and HELLS, 
except for Polistes canadensis, which has all but DNMT3 (Figure 7 and Figure 7–source 
data 2). This co-loss of CDCA7 and DNA methylation (together with either DNMT1-
UHRF1or DNMT3) in braconid wasps suggests that evolutionary preservation of CDCA7 
is more sensitive to DNA methylation status per se than to the presence or absence of a 
particular DNMT subtype. Consistent with this idea, among the panel of 180 eukaryote 
species, none of the 17 species where absence of genomic 5mC has been experimentally 
shown encodes CDCA7 (Figure 1–source data 1 tab8) (Aliaga et al., 2019; Antequera et 
al., 1984; Bewick et al., 2019a; Bewick et al., 2017b; Cock et al., 2010; Engelhardt et al., 
2022; Geyer et al., 2011; Mondo et al., 2017; Noordhoek et al., 2018; Schulz et al., 2018; 
Singh et al., 2018; Zemach et al., 2010). 
 
Discussion 
Although DNA methylation is prevalent across eukaryotes, DNA methyltransferases are 
missing from a variety of lineages. Our study reveals that the nucleosome remodeling 
complex CHIRRC, composed of CDCA7 and HELLS, is frequently lost in conjunction 
with DNA methylation status. More specifically, evolutionary preservation of CDCA7 is 
tightly coupled to the presence of HELLS and DNMT1-UHRF1. The conservation of 
CDCA7’s signature cysteine residues alongside three ICF-associated residues across 
diverse eukaryote lineages suggests a unique evolutionary conserved role in DNA 
methylation. Our co-evolution analysis suggests that DNA methylation-related 
functionalities of CDCA7 and HELLS are inherited from LECA. 
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The evolutionary coupling of CDCA7, HELLS and DNMT1 is consistent with a 
proposed role of HELLS in replication-uncoupled DNA methylation maintenance (Ming 
et al., 2020). Commonly, DNA methylation maintenance occurs directly behind the DNA 
replication fork. Replication-uncoupled DNA methylation maintenance is distinct from 
this process (Nishiyama et al., 2020), and HELLS and CDCA7 may be important for the 
maintenance of DNA methylation long after the completion of DNA replication, 
particularly at heterochromatin where chromatin has restricted accessibility (Ming et al., 
2020). The tighter evolutionary coupling of CDCA7-HELLS to DNMT1 rather than to 
DNMT3 may also reflect a potential capacity of CDCA7 in sensing DNA methylation, 
similar to the way that the zf-CXXC domain is sensitive to CpG methylation (Long et al., 
2013), but in a replication-coupled manner. However, this does not necessarily suggest 
that the role of CDCA7 is always coupled to maintenance DNA methylation. 
 
The loss of CDCA7 is not always coupled to the loss of DNMT1 or HELLS. In the 
Hymenoptera clade, CDCA7 loss in the braconid wasps is accompanied with the loss of 
DNMT1/UHRF1 or the loss of DNMT3. Among these species, it was reported that 5mC 
DNA methylation is undetectable in M. demolitor, which harbors DNMT1, UHRF1 and 
HELLS but lost DNMT3 and CDCA7 (Bewick et al., 2017b). Similarly, in the 
Coleoptera clade, the red flour beetle T. castaneum possesses DNMT1 and HELLS, but 
lost DNMT3 and CDCA7 (Figure 6A and Figure 1–source data 1). Since DNMT1 is 
essential for the embryonic development of T. castaneum and CpG DNA methylation is 
undetectable in this organism (Schulz et al., 2018), it has been predicted that DNMT1 has 
a function independent of DNA methylation in this species. Indeed, species that preserves 
DNMTs and/or HELLS in the absence of CDCA7 emerge repeatedly during eukaryote 
evolution, whereas CDCA7 appears to be immediately dispensable in species that have a 
dampened requirement for DNA methylation. In other words, there is no evolutionary 
advantage to retain CDCA7 in the absence of DNA methylation, and CDCA7 is almost 
never maintained in the absence of any DNMTs. Alternatively, could the loss of CDCA7 
precede the loss of DNA methylation? If CDCA7 is important to promote DNA 
methylation maintenance, the loss of CDCA7 may exacerbate an impaired epigenetic 
environment and stimulate the adaptation of the organism towards DNA methylation-
independent epigenetic mechanisms, thereby decreasing the necessity to maintain the 
DNA methylation system. In this way, the loss of CDCA7 could trigger the subsequent 
loss of DNMTs (and HELLS), unless these proteins acquired important DNA 
methylation-independent roles. In line with this scenario, insects, whose DNA 
methylation is largely limited to gene bodies, possess robust DNA methylation-
independent mechanisms (such as piwi-RNA and H3K9me3) to silence transposons 
(Bonasio et al., 2012; Feng et al., 2010; Libbrecht et al., 2016; Wang et al., 2013; Zemach 
et al., 2010). The loss of CDCA7 is more frequently observed in insects than plants and 
vertebrates, where DNA methylation and HELLS/DDM1 play major roles in silencing 
transposons. (Czech et al., 2018; Dunican et al., 2013; Huang et al., 2004; Kato et al., 
2003; Miura et al., 2001; Onishi et al., 2021; Osakabe et al., 2021; Vongs et al., 1993). 
Thus, lowering the demand of DNA methylation at transposable elements might reduce 
the essentiality of CDCA7 (and then perhaps that of DNMTs), though it is difficult to 
deduce which evolutionary change occurs first.  
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Considering the importance of HELLS/DDM1 in silencing transposable elements, it is 
intriguing that CDCA7, HELLS, and DNMT1 are conserved in many insects, in which 
transposable elements are generally hypomethylated (Bonasio et al., 2012; Feng et al., 
2010; Libbrecht et al., 2016; Wang et al., 2013; Zemach et al., 2010). DNMT1 knockout 
in the clonal raider ant, Ooceraea biroi, which has a full set of DNMT1, UHRF1, 
DNMT3, CDCA7 and HELLS (Figure 7), does not cause major developmental defects 
but leads to failure in reproductive oogenesis and compromised longevity (Ivasyk et al., 
2023). Similarly, DNMT1 is essential for meiosis (but not for repression of transposable 
elements) in the milkweed bug Oncopeltus fasciatus (Bewick et al., 2019b; Washington 
et al., 2021). HELLS and DNMT1 are also important for meiotic progression in mice 
(Baumann et al., 2020; Spruce et al., 2020; Takada et al., 2021; Zeng et al., 2011). In 
Neurospora, DNA methylation is a critical component for trans-sensing homologous 
chromosomes during meiosis (Pratt et al., 2004). Since 5mC is highly mutagenic and 
DNA methylation patterns are altered during aging (Lowe et al., 2018; Wang et al., 
2020), it is tempting to speculate that the precise maintenance of DNA methylation 
patterns may act as a hallmark to distinguish between young/healthy DNA and 
old/mutated (or competitive/pathogenic) DNA during meiosis, perhaps in a way 
analogous to the role of methylated DNA for mismatch repair in bacteria (Schofield and 
Hsieh, 2003). 
 
The observation that some species retain HELLS but lose CDCA7 (while the reverse is 
never true) suggests that HELLS can evolve a CDCA7-independent function. Indeed, it 
has been suggested that the sequence-specific DNA-binding protein PRDM9 recruits 
HELLS to meiotic chromatin to promote DNA double-strand breaks and recombination 
(Imai et al., 2020; Spruce et al., 2020). Unlike CDCA7, clear PRDM9 orthologs are 
found only in metazoans, and are even lost in some vertebrates such as Xenopus laevis 
and Gallus gallus (Birtle and Ponting, 2006). Thus, it is plausible that HELLS gained a 
species-specific CDCA7-independent role during evolution through acquiring a new 
interaction partner. Another example of this may be found in S. cerevisiae, where DNA 
methylation and CDCA7 are absent and the HELLS homolog Irc5 interacts with cohesin 
to facilitate its chromatin loading (Litwin et al., 2017). In Neurospora, where genomic 
DNA is methylated, the HELLS homolog MUS-30 is not required for DNA methylation 
but plays a role in DNA damage responses (Basenko et al., 2016). We speculate that the 
role of CDCA7 is evolutionarily more tightly coupled to DNA methylation than HELLS 
is. 
 
Recently, the role of HELLS in the deposition of the histone variant macroH2A, which 
compacts chromatin, has been reported in mice (Ni and Muegge, 2021; Ni et al., 2020; 
Xu et al., 2021). Similarly, in Arabidopsis, DDM1 is critical for deposition of H2A.W, 
which is enriched on heterochromatin, in a manner independent of DNA methylation 
(Osakabe et al., 2021). The role of CDCA7 in the deposition of these H2A variants 
remains to be tested. HELLS and DDM1 can directly interact with macroH2A and 
H2A.W, respectively, even in the absence of CDCA7 (Ni and Muegge, 2021; Osakabe et 
al., 2021). It is thus possible that HELLS/DDM1 family proteins have an evolutionary 
conserved function in H2A variant deposition independent of CDCA7 and DNA 
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methylation. However, there is no clear indication of coevolution of HELLS and 
macroH2A, as macroH2A is largely missing from insects and the chelicerata 
Centruroides sculpturatus has macroH2A (XP_023217082, XP_023212717) but lost 
HELLS and CDCA7. 
 
Whereas CDCA7-like proteins with class I zf-4CXXC_R1 are evolutionarily coupled to 
HELLS and DNMT1-UHRF1, other variants of zf-4CXXC_R1 are widespread in 
eukaryotes except for metazoans, which encode only CDCA7 orthologs and their close 
paralogs (with the exception of the sponge A. queenslandica). Proteins containing a 
diverged variant of zf-4CXXC_R1 and the JmjC domain, such as IBM1 in Arabidopsis 
and DMM-1 in Neurospora, are broadly found in Viridiplantae and Fungi (Honda et al., 
2010; Saze et al., 2008; Zhang et al., 2022). Functional studies of IBM1 and DMM-1 
suggested that they contribute to DNA methylation regulation via indirect mechanisms. 
As IBM1 and DMM-1 do not preserve ICF-associated residues, which are critical for 
nucleosome binding in CDCA7 (Jenness et al., 2018), it is likely that these variants of zf-
4CXXC_R1 are adapted to recognize different structural features of the genome and no 
longer preserve the DNA methylation function of CDCA7 orthologs. 
 
Considering the broad conservation of DNA methylation in vertebrates (Hemmi et al., 
2000; Kondilis-Mangum and Wade, 2013), plants (Deleris et al., 2016), prokaryotes 
(Beaulaurier et al., 2019; Casadesus and Low, 2006; Dimitriu et al., 2020; Vasu and 
Nagaraja, 2013) and Archaea (Grogan, 2003; Hayashi et al., 2021; Ishikawa et al., 2005; 
Prangishvili et al., 1985), along with the existence of SNF2-like proteins (SSO1653) in 
prokaryotes and Archaea (Flaus et al., 2006), we hypothesize that the evolutionary advent 
of zf-4CXXC_R1-containing CDCA7 was a key step to transmit the DNA methylation 
system from the last universal common ancestor (LUCA) to the eukaryotic ancestor with 
nucleosome-containing genomes. 
 
 
Methods 
 
Key Resources Table 
Resource type Designation Source or reference Identifiers 
Software, 
algorithm 

MacVector MacVector, Inc. Version 16 - 18 

Software, 
algorithm 

Muscle https://www.drive5.com/muscle/ Muscle5.1 

Software, 
algorithm 

IQ-TREE http://www.iqtree.org/ Version 2.0.3  
and 2.2.2.6  

Software, 
algorithm 

Timetree http://www.timetree.org/ Version 5 

Software, 
algorithm 

phyloT https://phylot.biobyte.de/ Version 2 

Software, 
algorithm 

iTOL https://itol.embl.de/ Version 6 
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Software, 
algorithm 

CoPAP http://copap.tau.ac.il/source.php  

Software, 
algorithm 

ETE Toolkit http://etetoolkit.org/  

Software, 
algorithm 

Jalview https://www.jalview.org/ Version 
2.22.2.7 

 
Building a curated list of 180 species for analysis of evolutionary co-selection 
A list of 180 eukaryote species was manually generated to encompass broad eukaryote 
evolutionary clades (Figure 1–source data 1). Species were included in this list based on 
two criteria: (i) the identification UBA1 and PCNA homologs, two highly conserved and 
essential proteins for cell proliferation; and (ii) the identification of more than 6 distinct 
SNF2 family sequences. Homologs of CDCA7, HELLS, UBA1 and PCNA were 
identified by BLAST search against the Genbank eukaryote protein database available at 
National Center for Biotechnology Information using the human protein sequence as a 
query (NCBI). Homologs of human UHRF1, ZBTB24, SMARCA2/SMARCA4, INO80, 
RAD54L, EZH2, EED or Suz12 were also identified based on the RBH criterion.  To get 
a sense of genome assembly level of each genome sequence, we divided “Total Sequence 
Length” by “Contig N50” (“length such that sequence contigs of this length or longer 
include half the bases of the assembly”; https://www.ncbi.nlm.nih.gov/assembly/help/). 
In the species whose genome assembly level is labeled as “complete”, this value is close 
to the total number of chromosomes or linkage groups. As such, as a rule of thumb, we 
arbitrarily defined the genome assembly “preliminary”, if this value is larger than 100. In 
Figure 5, these species with preliminary-level genome assembly were noted as boxes 
with dotted outlines.  
 
CDCA7 homolog identification and annotation 
BLAST search was conducted using human CDCA7 (NP_114148) as the search query 
against NCBI protein database. The obtained list of CDCA7 homologs was classified 
based on the conservation of eleven cysteine and three ICF-associated residues in the zf-
4CXXC_R1 domain, as described in Results. This classification was further validated 
based on their clustering in a phylogenetic tree built from the CLUSTALW alignment of 
the zf-4CXXC_R1 domain identified by NCBI conserved domains search (Higgins and 
Sharp, 1988; Lu et al., 2020; Thompson et al., 1994) (Fig S1), using MacVector 
(MacVector, Inc.). Jalview was used to color-code amino acids based on conservation 
and amino acid types (Waterhouse et al., 2009). The cluster of class I zf-4CXXC_R1 
domain-containing proteins (where all three ICF-associated residues are conserved) was 
segregated from other variants of zf-4CXXC_R1-containing proteins except for the moss 
Physcomitrium XP_024393821 and green algae Bathycoccus XP_007512509 and 
Chlamydomonas GAX81623, which has class II zf-4CXXC-R1 (where the ICF-
associated glycine residue is substituted). To further assess this validation, another 
phylogenetic tree was built by the optimal maximum likelihood-based model selected by 
IQ-TREE 2.2.2.6 (Minh et al., 2020), using the zf-4CXXC_R1 domain alignment 
generated and selected by Muscle v5 (Figure 2–source data 1)(Edgar, 2022). A consensus 
tree was then constructed from 1000 bootstrap trees using UFBoot2 (Figure 2–source 
data 2) (Hoang et al., 2018). The phylogenetic tree built by this second method deviated 
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all class II and other zf-4CXXC_R1 variants from CDCA7 orthologs with class I zf-
4CXXC_R1 (Figure 2–source data 2).  
 
HELLS homolog identification and annotation 
HELLS homologs were first identified according to the RBH criterion. Briefly, a BLAST 
search was conducted using human HELLS as the query sequence, after which protein 
sequences of obtained top hits (or secondary hits, if necessary) in each search were used 
as a query sequence to conduct reciprocal BLAST search against the Homo sapiens 
protein database. If the top hit in the reciprocal search returned the original input 
sequence (i.e. human HELLS), it was temporarily annotated as an orthologous protein. If 
HELLS showed up as a next best hit, it is temporarily listed as a “potential HELLS 
ortholog”. To further validate the identified HELLS orthologs, full length amino acid 
sequences of these proteins were aligned using CLUSTALW in MacVector with 
homologs of the Snf2 family proteins SMARCA2/SMARCA4, CHD1/CHD3/CHD7, 
ISWI, RAD54L, ATRX, HLTF, TTF2, SHPRH, INO80, SMARCAD1, SWR1, MOT1, 
ERCC6, and SMARCAL1, which were also identified and temporarily annotated with a 
similar reciprocal BLAST search methods. The phylogenetic tree generated by this full-
length alignment separated the clade containing HELLS, DDM1, INO80, 
SMARCA2/SMARCA4, CHD1/CDH3/CHD7, and ISWI from other Snf2 family proteins 
(Figure 5–figure supplement 2). This alignment was used to define the conserved SNF2 
domain and variable linker regions in the putative HELLS orthologs and other 
homologous SNF2-family proteins (INO80, SMARCA2/SMARCA4, 
CHD1/CDH3/CHD7, and ISWI). The variable linker regions were then removed from 
selected proteins for each kingdom/phylum to conduct the secondary CLUSTALW 
alignment in MacVector, from which a phylogenetic tree was generated (Figure 5–figure 
supplement 3). A distinct cluster of HELLS and other SNF2 family proteins can be 
identified from the phylogenetic tree, hence confirming that the annotation of HELLS 
orthologs based on the reciprocal BLAST search method is reasonable. Exceptions are 
Leucosporidium creatinivorum ORY88017 and ORY88018, which did not cluster within 
the HELLS clade of the phylogenetic tree. However, we decided to annotate L. 
creatinivorum ORY88017 and ORY88018 as HELLS orthologs since among other L. 
creatinivorum SNF2-family proteins in this species these two proteins are most similar to 
human HELLS while clear orthologs of other L. creatinivorum SNF2 family proteins, 
CHD1 (ORY55731), ISWI (ORY89162), SMARCA2/4 (ORY76015), SRCAP/SWR1 
(ORY90750) and INO80 (ORY91599), can be identified. To further validate the 
phylogenetic tree generated in Figure 5–figure supplement 3, another phylogenetic tree 
was built by the optimal maximum likelihood-based model selected by IQ-TREE 2.2.2.6 
(Minh et al., 2020), using the alignment generated and selected by Muscle v5 (Figure 5–
source data 1) (Edgar, 2022). A consensus tree was then constructed from 1000 bootstrap 
trees using UFBoot2 (Figure 5–source data 2) (Hoang et al., 2018). The topology of the 
phylogenetic tree build by this second method was consistent with the original tree shown 
in Figure 5–figure supplement 3.  
 
DNMT homolog identification and annotation 
Proteins with a DNA methyltransferase domain were identified with BLAST searches 
using human DNMT1 and DNMT3A. Additional BLAST searches were conducted using 
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human DNMT2, C. neoformans DNMT5, N. crassa Dim-2 and DNMT4, Thalassiosira 
pseudonana DNMT6 (XP_002287631) (Huff and Zilberman, 2014), and Kwoniella 
mangroviensis DNMTX (XP_019001759) (Catania et al., 2020). DNMT domains were 
extracted from selected proteins that represent each kingdom/phylum and DNMT type 
(including ambiguous classes) based on a NCBI conserved domains search and were 
aligned with CLUSTALW to build a phylogenetic tree in MacVector. To further assess 
this validation, another phylogenetic tree was built by the optimal maximum likelihood-
based model selected by IQ-TREE 2.0.3 (Minh et al., 2020), using the alignment 
generated and selected by Muscle v5 (Figure 5–source data 3) (Edgar, 2022). A 
consensus tree was then constructed from 1000 bootstrap trees using UFBoot2 (Figure 5–
source data 4) (Hoang et al., 2018). The topology of the phylogenetic tree built by this 
second method was largely consistent with the original tree except for placement of 
orphan DNMTs. In both trees, Vitrella brassicaformis CEM15752, Fragilariopsis 
cylindrus OEU08290, OEU15938, Thalassiosira pseudonana XP_002295472, and 
Tribonema minus KAG5185060 form a clade, which, only in the IQ-TREE generated 
tree, splits from the canonical DNMT4 clade. As proteins in this clade have been 
previously annotated as DNMT4 (Huff and Zilberman, 2014), we followed this 
classification and present this IQ-TREE-based phylogenetic tree of DNMTs in Figure 5–
figure supplement 4, which was illustrated using the ETE3 toolkit. 
 
CoPAP 
The published method was used (Cohen et al., 2013). The curated list of orthologous 
proteins listed in Figure 1–source data 1 was first used to generate a presence-absence 
FASTA file. Next, a phylogenetic species tree was generated from all orthologous protein 
sequences listed in Figure 1–source data 1 using the ETE3 toolkit. For this, protein 
sequences were retrieved using the rentrez Bioconductor package and exported to a 
FASTA file alongside a COG file containing gene to orthologous group mappings. ETE3 
was used with the parameters -w clustalo_default-trimal01-none-none and -m cog_all-
alg_concat_default-fasttree_default and the resulting tree exported in Newark format. 
CoPAP was run using default parameters and results visualized using Cytoscape. Code 
and files required for CoPAP input generation as well CoPAP parameters and output 
results can be found in our Github repository 
(https://github.com/RockefellerUniversity/Copap_Analysis). A method to calculate p-
value for CoPAP was described previously (Cohen et al., 2012). Briefly, for each pair of 
tested genes, Pearson's correlation coefficient was computed. Parametric 
bootstrapping was used to compute a p-value by comparing it with a simulated 
correlation coefficient calculated based on a null distribution of independently evolving 
pairs with a comparable exchangeability (a value reporting the likelihood of gene gain 
and loss events across the tree) 
 
As negative and positive controls for the CoPAP analysis, we identified several well-
conserved protein orthologs across the panel of 180 eukaryotic species, including Snf2-
like proteins SMARCA2/SMARCA4, INO80, and RAD54L (Flaus et al., 2006), as well 
as subunits of the polycomb repressive complex 2 (PRC2), which plays an evolutionary 
conserved role in gene repression via deposition of the H3K27me3 mark. PRC2 is 
conserved in species where DNMTs are absent (including in D. melanogaster and C. 
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elegans) but is frequently lost particularly in several lineages of SAR and Fungi (Sharaf 
et al., 2022). Among the four core subunits of PRC2, we focused on the catalytic subunit 
EZH1/2, EED, and SUZ12, since the fourth subunit RbAp46/48 has a PRC2-independent 
role (Margueron and Reinberg, 2011). We are aware that the reciprocal BLAST search 
missed previously reported highly divergent functional orthologs of SUZ12 in 
Neurospora (Jamieson et al., 2013), and EED and Suz12 in Paramecium (Miro-Pina et 
al., 2022). However, we did not attempt to use these divergent homologs of EED and 
SUZ12 as baits to expand our search in order to consistently apply our homology-based 
definition of orthologs.  
 
Hymenoptera synteny analysis 
The mapping of gene loci is based on the information available on the Genome Data 
Viewer (https://www.ncbi.nlm.nih.gov/genome/gdv). Genome positions of listed genes 
are summarized in Figure 7–source data 1. 
 
Artworks 
Artworks of species images were obtained from PhyloPic.com, of which images of 
Daphnia, Platyhelminthes, Tribolium and Volvox were generated by Mathilde Cordellier, 
Christopher Laumer/T. Michael Keesey, Gregor Bucher/Max Farnworth and Matt-Crook, 
respectively.  
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Figure legends 
 
Figure 1. CDCA7 is absent from model organisms with undetectable genomic 5mC 
Filled squares and open squares indicate presence and absence of an orthologous 
protein(s), respectively. CDCA7 homologs are absent from model organisms where 
DNMT1, DNMT3 and 5mC on genomic are absent. 
 
Figure 1–source data 1. Lists of proteins and species used in this study 
Tab1, Full list. The list contains species names, their taxonomies, Genbank accession 
numbers of proteins, PMID of references supporting the 5mC status, and genome 
sequence assembly statistics. ND; not detected. DNMT5 proteins shown in red lack the 
Snf2-like ATPase domain. UHRF1 proteins shown in red lack the Ring-finger E3 
ubiquitin-ligase domain. CDCA7 proteins shown in red indicate ambiguous annotation as 
described in the main text. CDCA7 orthologs that contain additional conserved domains 
found by NCBI CD-search were shown in light blue.  
Tab2, Full list 2. The list is used to make presence (1) or absence (0) list. 
Tab3 Ecdysozoa CoPAP. List of presence/absence annotations for Ecdysozoa species 
used for CO-PAP analysis. 
Tab4 Full CoPAP1. List of presence/absence data annotations for the panel of all 180 
species used for CO-PAP analysis. Fungal CDCA7F proteins with class II zf-4CXXC_R1 
are included in CDCA7. 
Tab5 Full CoPAP2. List of presence/absence data annotations for the panel of all 180 
species used for CO-PAP analysis. Fungal CDCA7F proteins are included in class II zf-
4CXXC_R1. 
Tab6 Full clustering. Table used for clustering analysis 
Tab7 Metazoan invertebrates. Table used for clustering analysis for metazoan 
invertebrates. 
Tab7 No 5mC list. List of species where absence of genomic 5mC has been 
experimentally shown. 
 
  
Figure 2. CDCA7 paralogs in vertebrates 
A. Schematics of vertebrate CDCA7 primary sequence composition, based on 
NP_114148. Yellow lines and light blue lines indicate positions of evolutionary 
conserved cysteine residues and residues that are mutated in ICF patients, respectively. B. 
Sequence alignment of the zf-4CXXC_R1 domain of vertebrate CDCA7-family proteins. 
White arrowheads; amino residues unique in fish CDCA7L. Black arrowheads; residues 
that distinguish CDCA7L and CDCA7e from CDCA7. C. Sequence alignment of 
LEDGF-binding motifs. D. Sequence alignment of the conserved leucine-zipper. 
 
Figure 2–figure supplement 1. Evolutionary conservation of CDCA7-family proteins 
and other zf-4CXXC_R1-containig proteins 
Amino acid sequences of zf-4CXXC_R1 domain from indicated species were aligned 
with CLUSTALW. A phylogenetic tree of this alignment is shown. Genbank accession 
numbers of analyzed sequences are indicated. The tree topology was largely consistent 
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with a tree generated by IQ-TREE based on an alignment using Muscle (Figure 2–source 
data 1 and Figure 2–source data 2). 
 
Figure 2–source data 1. Multiple sequence alignment of zf-4CXXC_R1 domains  
The zf-4CXXC_R1 domains were aligned by MUSCLE v5. 
 
Figure 2–source data 2. An IQ-TREE result of the consensus phylogenetic tree 
generation of zf-4CXXC_R1 containing proteins 
Figure 2–source data 2 was used for the analysis by IQ-TREE. 
 
Figure 3. CDCA7 homologs and other zf-4CXXC_R1-containing proteins in 
Arabidopsis 
Top; alignments of the zf-4CXXC_R1 domain found in Arabidopsis thaliana. Bottom; 
domain structure of the three classes of zf-4CXXC_R1-containing proteins in 
Arabidopsis. 
 
Figure 3–figure supplement 1. Sequence alignment and classification of zf-
4CXXC_R1 domains across eukaryotes 
CDCA7 orthologs are characterized by the class I zf-4CXXC_R1 domain, where eleven 
cysteine residues and three residues mutated in ICF patients are conserved. Class II zf-
4CXXC_R1 domain is similar to class I except that ICF-associated glycine (G294 in 
human) is substituted. Class III is zf-4CXXC_R domain with more substitutions at the 
ICF-associated residues (R274 and/or G294). Proteins that also contain JmjC domain 
(sequence not shown here) are indicated. Note that codon frame after the stop codon (an 
asterisk in a magenta box) of Naegleria XP_002678720 encodes a peptide sequence that 
aligns well with human CDCA7, indicating that the apparent premature termination of 
XP_002678720 is likely caused by a sequencing or annotation error. 
 
Figure 4. Evolutionary conservation of CDCA7F, HELLS and DNMTs in fungi 
A. Sequence alignment of fungi-specific CDCA7F with class II zf-4CXXC_R1 
sequences. B. Domain architectures of zf-4CXXC_R1-containg proteins in fungi. The 
class II zf-4CXXC_R1 domain is indicated with purple circles. Squares with dotted lines 
indicate preliminary genome assemblies. Opaque boxes of UHRF1 indicate homologs 
that harbor the SRA domain but not the RING-finger domain. 
 
Figure 5. Evolutionary conservation of CDCA7, HELLS and DNMTs 
The phylogenetic tree was generated based on Timetree 5 (Kumar et al., 2022). Filled 
squares and open squares indicate presence and absence of an orthologous protein(s), 
respectively. Squares with dotted lines imply preliminary-level genome assemblies. 
Squares with a diagonal line; Paramecium EED was functionally identified (Miro-Pina et 
al., 2022), but not by the sequence-based search in this study; homologs of EZH1/2 and 
EED were identified in Symbiodinium sp. KB8 but not in Symbiodinium microadriaticum 
(Figure 1–source data 1). An opaque box of DNMT5 in Symbiodinium indicates a 
homolog that does not contain the ATPase domain, which is commonly found in DNMT5 
family proteins. Opaque boxes of UHRF1 indicate homologs that harbor the SRA domain 
but not the RING-finger domain. Full set of analysis on the panel of 180 eukaryote 
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species is shown in Figure 5–figure supplement 1 and Figure 1–source data 1. Genbank 
accession numbers of each protein and PMID numbers of published papers that report 
presence or absence of 5mC are reported in Figure 1–source data 1. 
 
Figure 5–figure supplement 1. Evolutionary conservation of CDCA7, HELLS and 
DNMTs 
Presence and absence of each annotated proteins in the panel of 180 eukaryote species is 
marked as filled and blank boxes. The phylogenetic tree was generated by iTOL, based 
on NCBI taxonomy by phyloT. Bottom right; summary of combinatory presence or 
absence of CDCA7 (including fungal CDCA7F containing class II zf-4CXXC_R1), 
HELLS, and maintenance DNA methyltransferases DNMT1/Dim-2/DNMT5. Supporting 
information including Genbank accession numbers are listed in Figure 1–source data 1. 
 
Figure 5–figure supplement 2. Phylogenetic tree of HELLS and other SNF2 family 
proteins 
Amino acid sequences of full-length HELLS proteins from the panel of 180 eukaryote 
species listed in Figure 1–source data 1 were aligned with full length sequences of other 
SNF2 family proteins with CLUSTALW. A phylogenetic tree of this alignment is shown. 
Genbank accession numbers of analyzed sequences are indicated. 
 
Figure 5–figure supplement 3. Phylogenetic tree of the SNF2-domain 
Amino acid sequences of SNF2-doman without variable insertions from representative 
HELLS and DDM1-like proteins from Figure S3 were aligned with the corresponding 
domain of other SNF2 family proteins with CLUSTALW. A phylogenetic tree of this 
alignment is shown. Genbank accession numbers of analyzed sequences are indicated. 
The tree topology was largely consistent with a tree generated by IQ-TREE based on an 
alignment using Muscle (Figure 5–source data 1 and Figure 5–source data 2). 
 
Figure 5–source data 1. Multiple sequence alignment of the SNF2 ATPase domains 
of HELLS homologs and other SNF2-family proteins  
The SNF2 ATPase domains of HELLS and other SNF2-family proteins after removing 
the variable linker regions were aligned by MUSCLE v5. 
 
Figure 5–source data 2. An IQ-TREE result of the consensus phylogenetic tree 
generation of HELLS homologs and other SNF2-family proteins 
Figure 5–source data 1 was used for the analysis by IQ-TREE. 
 
Figure 5–figure supplement 4. Phylogenetic tree of DNMT proteins 
DNA methyltransferase domain of DNMT proteins across eukaryotes (Figure 1–source 
data 1, excluding majority of those from Metazoa), the Escherichia coli DNA methylases 
DCM and Dam, and Homo sapiens PCNA as an outlier sequence, were aligned with 
Muscle, and a consensus phylogenetic tree was constructed from 1000 bootstrap trees 
using IQ-TREE. Branch lengths are optimized by maximum likelihood on original 
alignment. Numbers in parentheses are bootstrap supports (%). 
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Figure 5–source data 3. Multiple sequence alignment of DNA methyltransferase 
domains for Figure 5–figure supplement 4. 
DNMT domains from various DNMTs were aligned by MUSCLE v5. 
 
Figure 5–source data 4. An IQ-TREE result of the consensus phylogenetic tree 
generation of DNMTs for Figure 5–figure supplement 4 
Figure 5–source data 3 was used for the analysis by IQ-TREE. 
 
 
Figure 6. Coevolution of CDCA7, HELLS, UHRF1 and DNMT1 in Ecdysozoa 
A. Presence (filled squares) /absence (open squares) patterns of indicated proteins and 
genomic 5mC in selected Ecdysozoa species. Squares with dotted lines imply 
preliminary-level genome assemblies. Domain architectures of CDCA7 proteins with a 
zf-4CXXC_R1 domain are also shown. B. CoPAP analysis of 50 Ecdysozoa species. 
Presence/absence patterns of indicated proteins during evolution were analyzed. List of 
species are shown in Figure 1–source data 1. Phylogenetic tree was generated by amino 
acid sequences of all proteins shown in Figure 1–source data 1. The number indicates the 
p-values. 
 
Figure 6–figure supplement 1. CoPAP analysis of CDCA7, HELLS and DNMTs in 
eukaryotes 
CoPAP analysis of 180 eukaryote species. Presence and absence patterns of indicated 
proteins during evolution were analyzed. List of species are shown in Figure 1–source 
data 1 (A, Tab4. Full CoPAP1; B, Tab5. Full CoPAP2). Fungal CDCA7F proteins are 
included in CDCA7 and zf-4CXXC_R1 class II in A and B, respectively. Phylogenetic 
tree was generated by amino acid sequences of all proteins shown in Figure 1–source data 
1. The number indicates the p-values. 
 
Figure 7. Synteny of Hymenoptera genomes adjacent to CDCA7 genes  
Genome compositions around CDCA7 genes in Hymenoptera insects are shown. For 
genome with annotated chromosomes, chromosome numbers (Chr) or linkage group 
numbers (LG) are indicated at each gene cluster. Gene clusters without chromosome 
annotation indicate that they are within a same scaffold or contig. Gene locations within 
each contig are listed in Figure 7–source data 1. Dash lines indicate the long linkages not 
proportionally scaled in the figure. Due to their extraordinarily long sizes, DE-cadherin 
genes (L) are not scaled proportionally. Presence and absence of 5mC, CDCA7, HELLS, 
DNMT1, DNMT3, and UHRF1 in each genome is indicated by filled and open boxes, 
respectively. Absence of 5mC in Aphidus gifuensis (marked with an asterisk) is deduced 
from the study in Aphidius ervi (Bewick et al., 2017b), which has an identical 
presence/absence pattern of the listed genes (Figure 7–source data 2).The phylogenetic 
tree is drawn based on published analysis (Li et al., 2021; Peters et al., 2017) and 
TimeTree. 
 
Figure 7–source data 1. Summary of Hymenoptera genome location for Figure 7 
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Figure 7–source data 2. Lists of proteins in Hymenoptera species supporting Figure 
7 
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Figure 1. CDCA7 is absent from model organisms with undetectable genomic 
5mC
Filled squares and open squares indicate presence and absence of an orthologous 
protein(s), respectively. CDCA7 homologs are absent from model organisms where 
DNMT1, DNMT3 and 5mC on genomic are absent.
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Figure 2. CDCA7 paralogs in vertebrates
A. Schematics of vertebrate CDCA7 primary sequence composition, based on NP_114148. Yellow lines and light blue lines indicate 
positions of evolutionary conserved cysteine residues and residues that are mutated in ICF patients, respectively. B. Sequence 
alignment of the zf-4CXXC_R1 domain of vertebrate CDCA7-family proteins. White arrowheads; amino residues unique in fish 
CDCA7L. Black arrowheads; residues that distinguish CDCA7L and CDCA7e from CDCA7. C. Sequence alignment of LEDGF-binding 
motifs. D. Sequence alignment of the conserved leucine-zipper.
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ClustalW multiple sequence alignment:
    Open Gap Penalty = 10.0; Extend Gap Penalty = 0.2; Delay Divergent = 30%
    Gap Distance = 4; Similarity Matrix = gonnet

ORX94811zn_Basidiobolus

XP_002683406zn_Naegleria

XP_004368168zn_Acanthamoeba

XP_019025386zn_Saitoella

GAQ79928zn_Klebsormidium

XP_004336244zn_Acanthamoeba

XP_007331801zn_Agaricus

XP_956257zn_Neurospora

XP_661910zn_Aspergillus

XP_006460637zn_Agaricus

GAO50750zn_Saitoella

EXX51020zn_Rhizophagus

ORX82853zn_Basidiobolus

KFH66104zn_Podila

ORX71196zn_Linderina

GAX75209zn_Chlamydomonas

XP_002955702zn_Volvox

XP_002678720+zn_Naegleria

GAX81623zn_Chlamydomonas

XP_007512509zn_Bathycoccus

XP_024393821zn_Physcomitrium

NP_195428zn_Arabidopsis

NP_001142044zn_Zea

XP_024375915zn_Physcomitrium

XP_007513594zn_Bathycoccus

GAQ86298zn_Klebsormidium

XP_004340869zn_Acanthamoeba

KAG5177154zn_Tribonema

XP_003382727zn_Amphimedon

XP_001626018zn_Nematostella

XP_011438013zn_Crassostrea

XP_014780310zn_Octopus

XP_013792150zn_Limulus

XP_011343355zn_Ooceraea

XP_021916369zn_Zootermopsis

XP_009862216zn_Ciona

XP_011607165zn_Takifugu

XP_007547606zn_Poecilia

XP_002665508zn_Danio

XP_007260759zn_Astyanax

XP_032821587zn_Petromyzon

CAF96519zn_Tetraodon

XP_011612425zn_Takifugu

XP_007548929zn_Poecilia

XP_022538370zn_Astyanax

OCT95900zn_Xenopus

XP_018411700zn_Nanorana

CAG09964zn_Tetraodon

XP_011607948zn_Takifugu

XP_007234924zn_Astyanax

XP_007546543zn_Poecilia

XP_005167472zn_Danio

NP_001091283zn_Xenopus

XP_003225686zn_Anolis

XP_007425803zn_Python

XP_020376185zn_Rhincodon

XP_018427964zn_Nanorana

XP_005300469zn_Chrysemys

XP_013816235zn_Apteryx

XP_040532940zn_Gallus

AAH66169zn_Mus

NP_114148zn_Homo

XP_020378518zn_Rhincodon

NP_001090432zn_Xenopus

XP_018431819zn_Nanorana

XP_007439779zn_Python

XP_008110846zn_Anolis

XP_005290896zn_Chrysemys

XP_013796952zn_Apteryx

NP_001026153zn_Gallus

NP_666152zn_Mus

NP_061189zn_Homo

AAG00254zn_Arabidopsis

AQK52847zn_Zea

GAQ86643zn_Klebsormidium

AAC17616zn_Arabidopsis

AQL06694zn_Zea

XP_024373437zn_Physcomitrium

XP_007508172zn_Bathycoccus

GAX77805zn_Chlamydomonas

XP_004344770zn_Acanthamoeba

0.1

0.018

0.378

0.357

0.377

0.018
0.385

0.375

0.035
0.349

0.383

0.18
0.231

0.239

0.085

0.385

0.349

0.024

0.243

0.217

0.234

0.268

0.053

0.117
0.21

0.235

0.276

0.108
0.018

0.197

0.179

0.182

0.025

0.042

0.017

0.304

0.051

0.171

0.164

0.028

0.161

0.109

0.111

0.121

0.191

0.033

0.124

0.161

0.017
0.118

0.12

0.027

0.054

0.183

0.129

0.138

0.037

0.072

0.042

0.087

0.071

0.067

0.051

0.045

0.024

0.083

0.091

0.043

0.026

0.053

0.035

0.018

0.046

0.016

0.044

0.031

0.028

0.035

0.034

0.026

0.022

0.035

0.044

0.022

0.024

0.035

0.062

0.037

0.044

0.04

0.019

0.032

0.02
0.04

0.049

0.015
0.046

0.019
0.024

0.015

0.035

0.034

0.045

0.183

0.183

0.16

0.039

0.369

0.343

0.317

0.313

0.386

0.034

0.344

Human CDCA7

Xenopus CDCA7e

Human CDCA7L

Xenopus CDCA7

CDCA7e

CDCA7

CDCA7L

Vertebrate
CDCA7

Metazoa
CDCA7

Sponge
Yellow-green algae Tribonema (Stramenopiles)

Acanthamoeba (Amoebozoa)

Arabidopsis

Naegleria (Excavata)
Green algae

Insects

CDCA7 
(zf-4CXXC_R1class I)

zf-4CXXC_R1class II (plants)

CDCA7F, zf-4CXXC_R1class II (Fungi)

zf-4CXXC_R1class III (plants)

Sea lamprey

CDCA7L (fish)

Xenopus CDCA7L

Viridiplantae
Plant
CDCA7

(zf-4CXXC_R1 class II)

Neurospora DMM-1

Figure 2–figure supplement 1. Evolutionary conservation of CDCA7-family proteins and other zf-4CXXC_R1-containig proteins
Amino acid sequences of zf-4CXXC_R1 domain from indicated species were aligned with CLUSTALW. A phylogenetic tree of this alignment is shown. 
Genbank accession numbers of analyzed sequences are indicated. The tree topology was largely consistent with a tree generated by IQ-TREE based on an 
alignment using Muscle (Figure 2–source data 1 and Figure 2–source data 2).
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Figure 3. CDCA7 homologs and other zf-4CXXC_R1-containing proteins in Arabidopsis
Top; alignments of the zf-4CXXC_R1 domain found in Arabidopsis thaliana. Bottom; domain structure of the three classes of zf-4CXXC_R1-contain-
ing proteins in Arabidopsis.
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Figure 3–figure supplement 1. Sequence alignment and classification of zf-4CXXC_R1 domains across eukaryotes
CDCA7 orthologs are characterized by the class I zf-4CXXC_R1 domain, where eleven cysteine residues and three residues mutated in ICF 
patients are conserved. Class II zf-4CXXC_R1 domain is similar to class I except that ICF-associated glycine (G294 in human) is substituted. 
Class III is zf-4CXXC_R domain with more substitutions at the ICF-associated residues (R274 and/or G294). Proteins that also contain JmjC 
domain (sequence not shown here) are indicated. Note that codon frame after the stop codon (an asterisk in a magenta box) of Naegleria 
XP_002678720 encodes a peptide sequence that aligns well with human CDCA7, indicating that the apparent premature termination of 
XP_002678720 is likely caused by a sequencing or annotation error.
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Figure 4. Evolutionary conservation of CDCA7F, HELLS and DNMTs in fungi. A. Sequence alignment of fungi-specific CDCA7F with class II zf-4CXXC_R1 
sequences. B. Domain architectures of zf-4CXXC_R1-containg proteins in fungi. The class II zf-4CXXC_R1 domain is indicated with purple circles. Squares with dotted 
lines indicate preliminary genome assemblies. Opaque boxes of UHRF1 indicate homologs that harbor the SRA domain but not the RING-finger domain.
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Figure 5. Evolutionary conservation of CDCA7, HELLS and DNMTs
The phylogenetic tree was generated based on Timetree 5 (Kumar et al., 2022). Filled squares and open squares indicate 
presence and absence of an orthologous protein(s), respectively. Squares with dotted lines imply preliminary-level genome 
assemblies. Squares with a diagonal line; Paramecium EED was functionally identified (Miro-Pina et al., 2022), but not by the 
sequence-based search in this study; homologs of EZH1/2 and EED were identified in Symbiodinium sp. KB8 but not in 
Symbiodinium microadriaticum (Figure 1–source data 1). An opaque box of DNMT5 in Symbiodinium indicates a homolog that 
does not contain the ATPase domain, which is commonly found in DNMT5 family proteins. Opaque boxes of UHRF1 indicate 
homologs that harbor the SRA domain but not the RING-finger domain. Full set of analysis on the panel of 180 eukaryote 
species is shown in Figure 5–figure supplement 1 and Figure 1–source data 1. Genbank accession numbers of each protein 
and PMID numbers of published papers that report presence or absence of 5mC are reported in Figure 1–source data 1.
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Figure 5–figure supplement 1. Evolutionary conservation of CDCA7, HELLS and DNMTs
Presence and absence of each annotated proteins in the panel of 180 eukaryote species is marked as filled and blank 
boxes. The phylogenetic tree was generated by iTOL, based on NCBI taxonomy by phyloT. Bottom right; summary of 
combinatory presence or absence of CDCA7 (including fungal CDCA7F containing class II zf-4CXXC_R1), HELLS, 
and maintenance DNA methyltransferases DNMT1/Dim-2/DNMT5. Supporting information including Genbank acces-
sion numbers are listed in Figure 1–source data 1.
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ClustalW multiple sequence alignment:
    Open Gap Penalty = 10.0; Extend Gap Penalty = 0.2; Delay Divergent = 30%
    Gap Distance = 4; Similarity Matrix = gonnet
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Figure 5–figure supplement 2. Phylogenetic tree of HELLS and other SNF2 family proteins
Amino acid sequences of full-length HELLS proteins from the panel of 180 eukaryote species listed in 
Figure 1–source data 1 were aligned with full length sequences of other SNF2 family proteins with 
CLUSTALW. A phylogenetic tree of this alignment is shown. Genbank accession numbers of analyzed 
sequences are indicated.
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ClustalW multiple sequence alignment:
    Open Gap Penalty = 10.0; Extend Gap Penalty = 0.2; Delay Divergent = 30%
    Gap Distance = 4; Similarity Matrix = gonnet
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Figure 5–figure supplement 3. Phylogenetic tree of the SNF2-domain
Amino acid sequences of SNF2-doman without variable insertions from representative HELLS and DDM1-like 
proteins from Figure S3 were aligned with the corresponding domain of other SNF2 family proteins with CLUST-
ALW. A phylogenetic tree of this alignment is shown. Genbank accession numbers of analyzed sequences are 
indicated. The tree topology was largely consistent with a tree generated by IQ-TREE based on an alignment using 
Muscle (Figure 5–source data 1 and Figure 5–source data 2).
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Figure 5–figure supplement 4. Phylogenetic tree of DNMT proteins
DNA methyltransferase domain of DNMT proteins across eukaryotes (Figure 1–source data 1, excluding 
majority of those from Metazoa), the Escherichia coli DNA methylases DCM and Dam, and Homo 
sapiens PCNA as an outlier sequence, were aligned with Muscle, and a consensus phylogenetic tree 
was constructed from 1000 bootstrap trees using IQ-TREE. Branch lengths are optimized by maximum 
likelihood on original alignment. Numbers in parentheses are bootstrap supports (%).
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Figure 6. Coevolution of CDCA7, HELLS, UHRF1 and DNMT1 in Ecdysozoa
A. Presence (filled squares) /absence (open squares) patterns of indicated proteins and genomic 
5mC in selected Ecdysozoa species. Squares with dotted lines imply preliminary-level genome 
assemblies. Domain architectures of CDCA7 proteins with a zf-4CXXC_R1 domain are also shown. 
B. CoPAP analysis of 50 Ecdysozoa species. Presence/absence patterns of indicated proteins during 
evolution were analyzed. List of species are shown in Figure 1–source data 1. Phylogenetic tree was 
generated by amino acid sequences of all proteins shown in Figure 1–source data 1. The number 
indicates the p-values.
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Figure 6–figure supplement 1. CoPAP analysis of CDCA7, HELLS and DNMTs in eukaryotes
CoPAP analysis of 180 eukaryote species. Presence and absence patterns of indicated proteins during 
evolution were analyzed. List of species are shown in Figure 1–source data 1 (A, Tab4. Full CoPAP1; B, 
Tab 5. Full CoPAP2). Fungal CDCA7F proteins are included in CDCA7 and zf-4CXXC_R1 class II in A and 
B, respectively. Phylogenetic tree was generated by amino acid sequences of all proteins shown in Figure 
1–source data 1. The number indicates the p-values.
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Figure 7. Synteny of Hymenoptera genomes adjacent to CDCA7 genes 
Genome compositions around CDCA7 genes in Hymenoptera insects are shown. For genome with annotated chromosomes, 
chromosome numbers (Chr) or linkage group numbers (LG) are indicated at each gene cluster. Gene clusters without chromo-
some annotation indicate that they are within a same scaffold or contig. Gene locations within each contig are listed in Figure 
7–source data 1. Dash lines indicate the long linkages not proportionally scaled in the figure. Due to their extraordinarily long 
sizes, DE-cadherin genes (L) are not scaled proportionally. Presence and absence of 5mC, CDCA7, HELLS, DNMT1, DNMT3, 
and UHRF1 in each genome is indicated by filled and open boxes, respectively. Absence of 5mC in Aphidus gifuensis (marked 
with an asterisk) is deduced from the study in Aphidius ervi (Bewick et al., 2017b), which has an identical presence/absence 
pattern of the listed genes (Figure 7–source data 2).The phylogenetic tree is drawn based on published analysis (Li et al., 2021; 
Peters et al., 2017) and TimeTree.
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