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Abstract  
 
A key computation in building adaptive internal models of the external world is to ascribe sensory signals to their 
likely cause(s), a process of Bayesian Causal Inference (CI). CI is well studied within the framework of two-
alternative forced-choice tasks, but less well understood within the cadre of naturalistic action-perception loops. 
Here, we examine the process of disambiguating retinal motion caused by self- and/or object-motion during 
closed-loop navigation. First, we derive a normative account specifying how observers ought to intercept hidden 
and moving targets given their belief over (i) whether retinal motion was caused by the target moving, and (ii) if 
so, with what velocity. Next, in line with the modeling results, we show that humans report targets as stationary 
and steer toward their initial rather than final position more often when they are themselves moving, suggesting 
a misattribution of object-motion to the self. Further, we predict that observers should misattribute retinal motion 
more often: (i) during passive rather than active self-motion (given the lack of an efference copy informing self-
motion estimates in the former), and (ii) when targets are presented eccentrically rather than centrally (given that 
lateral self-motion flow vectors are larger at eccentric locations during forward self-motion). Results confirm both 
of these predictions. Lastly, analysis of eye-movements show that, while initial saccades toward targets are 
largely accurate regardless of the self-motion condition, subsequent gaze pursuit was modulated by target 
velocity during object-only motion, but not during concurrent object- and self-motion. These results demonstrate 
CI within action-perception loops, and suggest a protracted temporal unfolding of the computations 
characterizing CI. 
 
Keywords: naturalistic; active sensing; eye-movements; saccades; self-motion  
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1. Introduction 
 
We do not directly access environmental objects and events. Instead, our biological sensors (i.e., retina, cochlea, 
etc.) detect noisy, incomplete, and often ambiguous sensory signals. In turn, our brains ought to leverage these 
signals to build adaptive internal models of the external world [1]. A key step in building these models is to ascribe 
sensory signals to their likely (and hidden) cause(s), a process of Bayesian causal inference (CI; [2-4]).  
 
CI has been well studied in human psychophysics, and a growing body of literature is starting to elucidate the 
neural mechanisms underpinning this computation, both in humans [5-10] and animal models [11-13]. Namely, 
whether it is localizing audio-visual stimuli [2, 5, 11], estimating heading [6, 12], perceiving motion relations in 
visual scenes [9, 10], or inferring the location of one’s own body based on visual, tactile, and proprioceptive cues 
[7, 8, 13], humans and non-human primates behave as if they hold and combine (sometimes optimally) multiple 
interpretations of the same sensory stimuli. From a neural standpoint, CI appears to be similarly subserved by a 
cascade of concurrent interpretations; sensory areas may respond to their modality of preference, intermediate 
“associative” nodes may always combine cues, and finally higher-order fronto-parietal areas may flexibly change 
their responses based on the causal structure inferred to generate sensory observations [4, 14, 15] (see [16, 17] 
for similar findings across time, from segregation to integration to causal inference). If and how this inferred 
causal structure subsequently and dynamically biases lower-level sensory representations is unknown (but see 
[18]).  
 
More broadly, the study of CI has heavily relied on static tasks defined by binary behavioral outcomes and 
artificially segregating periods of action from those of perception (see [19] for similar arguments). These tasks 
are not only a far cry from the complex, closed-loop, and continuous-time challenges that exist in human 
behavior, but may also limit and color our understanding of CI. For instance, while feedforward-only mechanistic 
models of CI may account for decisions during two-alternative forced choice tasks [20], our brains are (i) 
decidedly recurrent, and (ii) largely dictate the timing, content, and relative resolution of sensory input via motor 
output (i.e., active sensing). The focus on open-loop tasks when studying CI also limits our ability to bridge 
between CI and other foundational theories of brain function – particularly those derived from reinforcement 
learning, which are best expressed within closed loops. 
 
Here, we take a first step toward understanding CI under closed-loop active sensing. Human observers are 
tasked with navigating in virtual reality to the location of a briefly flashed target, much like the “blinking of a firefly” 
(see [21-25]). The virtual scene is composed solely of flickering ground plane elements, and thus, when 
observers move by deflecting a joystick (velocity control), the ground plane elements create optic flow vectors. 
Observers continuously integrate this velocity signal into an evolving estimate of position [26]. Importantly, in the 
current instantiation of the task, the target may itself move (i.e., object-motion). Thus, in the case of concurrent 
self- and object-motion, observers must parse the total retinal motion into components caused by self-motion 
and/or those caused by object-motion, a process of CI.  
 
First, we derive a normative account specifying how observers ought to intercept hidden and moving targets 
given their belief over (i) whether retinal motion was (at least partially) caused by the target moving, and (ii) if so, 
at what velocity. Then, we demonstrate that humans’ explicit reports and steering behavior concord with the 
model’s predictions. Further, we support the claim that humans misattribute flow vectors caused by object-motion 
to their self-motion by showing that these mis-attributions are larger when i) self-motion is passive (i.e., lacking 
an efference copy) and when ii) objects are presented eccentrically (such that object and self-motion vectors are 
congruent in direction). Lastly, via eye-movement analyses we show a behavioral unfolding during CI. Early 
saccades are largely accurate and directed toward the last visible location of the target. Thus, during this time 
period eye-movements behave as if participants perceived targets as moving. Subsequent gaze pursuit of the 
invisible target is accurate when there is no concurrent self-motion, but is consistent with the target being 
perceived as stationary during concurrent self- and object-motion. Together, the results demonstrate CI in 
attributing retinal motion to self- and object-motion during closed-loop goal-directed navigation. This opens a 
new avenue of study wherein we may attempt to understand not only the perceptual networks underpinning CI, 
but the joint sensorimotor ones. 
 
2. Results 
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2.1 A normative model of intercept behavior during visual path integration 
 

We identify behavioral signatures of CI during path integration toward a (potentially) moving target by formulating 
a normative model (Fig. 1). We take the example of a briefly visible target moving at a constant, potentially zero, 
speed (i.e., no acceleration) and with a constant direction along a lateral plane (i.e., side-to-side, Fig. 1A). We 
model concurrent self- and object-motion (vs. object-motion only) by increasing the noise associated with target 
observations (these being corrupted by a concurrent flow field). The model first forms a Bayesian belief over the 
target’s location and velocity given the brief observation period (i.e., period over which the target is visible). It 
then uses this belief to steer and intercept the target. For simplicity, within this work we only consider linear 
trajectories wherein the model selects a direction and duration over which to travel (Fig. 1A middle panel). We 
expect this trajectory to well-approximate the steering endpoints of the continuously controlled steering 
trajectories of our human participants. 
 

On each trial, before making any observation, the model assumes the target to be stationary with a certain 
probability, and to move otherwise (i.e., a prior for stationarity). If moving, it assumes that slower targets are 
more likely than faster ones (i.e., a slow-velocity prior, [27, 28]). When the target is rendered visible, the model 
gathers noisy observations of the target’s location (e.g., noisy percepts in each video frame, potentially corrupted 
by a concurrent flow field) that it uses to infer whether the target is stationary or moving. And if moving, with what 
velocity. Once it has formed these target motion estimates, it uses a simple steering policy in which it moves a 
certain distance (determined by a velocity and optimal stopping time) along a straight-line trajectory to best 
intercept the target (Fig. 1A, see Methods and Supplementary Information for details). 
 

Simulating the model across multiple trials led to two predictions. The first prediction is that whether the target is 
perceived as stationary or moving should depend on the target’s actual velocity, the observation time, and 
observation noise (i.e., “no self-motion” vs. “self-motion”, respectively in black and red; Fig. 1B). Noisy 
observations during concurrent self-motion imply that a moving target might be mistaken for a stationary one, in 
particular if this is a-priori deemed likely. Our model defaults to such a stationary target percept as long as the 
target velocity estimate remains below a specific velocity threshold (Fig. 1B, dashed vertical lines). Noise in the 
target velocity estimates thus leads to a bell-shaped relationship between the probability of a stationary target 
percept and the target’s actual velocity. This relationship is modulated by observation time and observation noise 
magnitude: both larger observation noise magnitudes and shorter observation times require stronger evidence 
to perceive a target as moving (Fig. 1B, black vs. red and left vs. right). Our model implements this by increasing 
the threshold on the target velocity estimate. This change in threshold provides a test for whether observer (i.e., 
human) behavior is truly Bayesian, in the sense that it is sensitive to changes in the observation quality [29]. If 
the moving/stationary decision is implemented by a fixed heuristic, rather than Bayesian velocity threshold, then 
the target velocity that leads to a probability of stationary percepts of 0.5 would not shift with a change in 
observation noise or time (in contrast to arrows shown in Fig. 1B). 
 

The second prediction relates the target’s true velocities to those perceived by the model. In each simulated trial, 
the model uses the target motion estimate to steer along a straight trajectory that maximizes the likelihood of 
intercepting the target, while accounting for standard path integration properties (e.g., increasing location 
uncertainty with distance traveled, see Methods and [21]). To estimate our model’s perceived target velocity, we 
intersected a straight line connecting steering start and endpoints with the line that the target moved along (which 
was the same across trials, Fig. 1A). This procedure compensates for the steering endpoint occasionally 
overshooting or undershooting the target’s location, given noisy path integration and speed priors (see [21] and 
below). Plotting these perceived velocities over true target velocities revealed characteristic S-shaped curves 
(Fig. 1C). For large target velocities, the perceived velocities linearly increase with target velocities, but 
consistently underestimate them due to the slow speed prior. Smaller target velocities reveal signatures of CI: 
as small target velocities occasionally make the target appear stationary, the perceived velocities are further 
biased toward zero. Both larger observation noise magnitudes and shorter observation times expand the range 
of true target velocities for which the perceived velocities are biased toward zero (Fig. 1C, black vs. red and left 
vs. right), in line with the stationarity reports (Fig. 1B). 
 

In summary, therefore, according to the normative model, if concurrent self- and object-motion leads to increased 
observation noise (vis-à-vis a condition with no concurrent self-motion), then we ought to expect (i) a larger 
velocity range over which targets are reported as stationary, and (ii) a characteristic S-shaped curve where 
observers more readily navigate toward the starting rather than ending location of targets. 
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Figure 1: Predicted behavioral signatures of causal inference when navigating to intercept a briefly observed 
moving target. A. Task and trajectories of a normative model. We derived the normative strategy for intercepting a 
briefly presented target that provided the model with an uncertain estimate of the target velocity and whether the target was 
moving at all. Top: the model first estimates whether the target is stationary or moving. Middle: we assumed that the model 
aimed to intercept the target by traveling along a straight line at a certain angle (𝜃∗) and for a certain distance (velocity x 
duration, 𝑣"𝑡∗). To compensate for the model overshooting or undershooting the target (given uncertainty in path integration, 
see bottom panel), we assessed the model’s perceived velocity by computing when the model’s trajectory intercepted the 
target’s path. Middle panel shows a schematized example, while bottom panel shows an example simulation including the 
best estimate endpoint (orange) and full posterior (shades of black) B. Stationary reports. The model perceived the target 
as stationary if its noisy velocity estimate fell below a velocity threshold (dashed vertical lines). Noise in the velocity estimates 
resulted in a bell-shaped fraction of stationary reports when plotted over the target’s true velocities. For a Bayesian decision 
strategy, and in contrast to simpler heuristics, the velocity thresholds increased for larger observation noise induced by self-
motion (red vs. black) and for shorter observation times (left vs. right). The bell-shaped curves widened accordingly, and 
the point at which they intersected the 0.5 proportion (grey dashed line) changed. We highlight this threshold change here 
for the self-motion vs. no self-motion case by the circles and associated black arrows. C. Perceived target velocities. 
Causal inference causes the perceived velocities to be biased toward zero for small target velocities, and to approach true 
target velocities (down-weighted by the slow-velocity prior) for larger target velocities. This bias increases for larger 
observation noise (red vs. black) and shorter observation periods (left vs. right). B and C show mean (lines) and SD (shaded 
area, C only) across 1000 simulated trajectories for each target velocity, ranging from -40 to 40 cm/s in steps of 2.5cm/s. 
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2.2 Human observers perform causal inference when navigating during concurrent object-motion 
 

We test predictions of the model by having human observers (n = 11) navigate by path integration to the location 
of targets that could either be stationary (i.e., no object velocity) or moving with different velocities relative to the 
virtual environment (Fig. 2A, dashed black line denotes object velocity). As in the model, targets moved at a 
constant speed (range from 0 to 40cm/s) and with a constant lateral direction (i.e., leftward or rightward, if 
moving). Further, at the end of each trial participants explicitly reported whether they perceived the target as 
moving or not relative to the scene. Most importantly, in different blocks of trials the observers themselves could 
either be stationary (i.e., labeled “no self-motion” and requiring participants to maintain a linear velocity under 
1cm/s for 1 second for targets to appear) or moving during the time period when the target was visible (i.e., 
labeled “self-motion” and requiring participants to maintain a linear velocity over 20cm/s for 1 second for targets 
to appear). The optic flow caused by self-motion introduces additional observation noise and requires the parsing 
of total flow vectors into self- and object-components. 
 
Explicit stationarity reports were well accounted for by Gaussian distributions (mean r2 = 0.74). As expected, 
participants most readily reported targets as stationary in the world when the object velocity was close to 0 (mean 
of Gaussian fits pooled across “self-motion” and “no self-motion” conditions; 75ms observation time: 𝜇 = -4.65 x 
10-4; 150ms observation time: 𝜇 = 9.2 x 10-3), regardless of the target observation time (p = 0.47). Most 
importantly, as predicted by the model, during concurrent self- and object-motion (red, Fig. 2B) participants 
reported targets as stationary at increasing object velocities, both for lower (75ms; Gaussian standard deviation, 
mean ± s.e.m., no self-motion: 10.89cm/s ± 2.37cm/s; self-motion: 29.39cm/s ± 7.06cm/s; paired t-test, p = 
0.021) and higher (150ms; no self-motion: 4.59cm/s ± 0.51cm/s; self-motion: 15.15cm/s ± 3.01cm/s; p = 0.0025) 
observation times. This suggests that participants putatively misattributed flow vectors caused by object-motion 
to self-motion. 
 
We similarly analyzed the end points of participants’ steering behavior. This behavior was heterogenous, with 
participants frequently stopping at the target’s end location (Fig. 2C, top left and right; examples of stationary 
and moving targets), but also at times navigating to the starting and not ending target location (Fig. 2C, middle 
left) or navigating to some intermediary location (Fig. 2C, bottom left). Likewise, participants often overshot 
targets in depth (Fig. 2C, middle and bottom right, also see [19], radial response divided by radial target distance, 
no self-motion = 1.44 ± 0.08; self-motion = 1.32 ± 0.09; no self-motion vs. self-motion, t = 1.55, p = 0.15). To 
quantify this performance, for each trial we computed a perceived target velocity analogously to the modeling 
approach (Fig. 1A and 2C). Results demonstrated that, on average, subjects underestimated the target’s velocity 
(linear fit to no self-motion condition, grand average slope =  0.82 ± 0.08; slope = 1 indicates no bias), and this 
effect was exacerbated during low observation times (Fig. 2D, slopes of linear fits, 75ms vs. 150ms observation 
times paired t-test, p = 0.05). Interestingly, when targets were presented during concurrent self-motion (Fig. 2D, 
red), intermediate target velocities were perceived (or at least steered toward) as if moving more slowly than 
when the same object velocity was presented in the absence of self-motion (Fig. 2D, red vs. black, paired 
ANOVA interaction term, 75ms observation time, p = 8.12 x 10-5; 150ms observation time, p = 1.53 x 10-9; 
Bonferroni-corrected p < 0.05 for 75ms observation time at -20cm/s, -6cm/s and +10cms, and for 150ms 
observation time at -20cm/s, -10cm/s, and +10cm/s). 
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Figure 2. Intercepting a briefly visible moving target by path integration demonstrates features of causal inference. 
A. Experimental protocol and setup. Participants are placed in a virtual scene composed of intermittently flashing textural 
elements providing an optic flow signal when participants are moving. Subjects are in closed-loop, at all times being in 
control of their linear and angular velocity. When the target has an independent motion in the environment (dashed black 
line) and subjects move toward it (red lines), the retinal motion of the target (solid black line) is composed of both object- 
and self-motion components. Inset additionally shows flow vectors. FOE (in green) indicates the focus of expansion. B. 
Stationary reports. The proportion of trials in which participants reported the target as stationary (y-axis) is plotted as a 
function of target velocity (x-axis), whether the subject was moving (self-motion, red) or not (no self-motion, black) during 
target presentation, and target observation time (left vs. right panels).Circles denote means across subjects, and error bars 
represent +/- 1 standard error of the mean (S.E.M). Transparent lines in the background show data for individual subjects. 
C. Example steering trajectories and quantification. Left: Six example trials (arbitrarily staggered). Bird’s eye view of the 
target’s starting (green circle) and ending (red circle) location, as well as individual trajectories (dashed black). The distance 
between the start of the dashed black line (origin) and the target’s starting location is always 300cm. Right: To estimate the 
perceived target velocity, we computed for each trial the distance between the target’s initial location, and the location where 
the target’s trajectory intersects a straight line connecting the human’s starting and ending locations. This recapitulates the 
definition from Fig. 1 and defines the lateral displacement of an individual trajectory above and beyond the starting location 
of the target, while also considering the depth overshooting.  D. Perceived target velocity. The perceived target velocity 
(as quantified in C, y-axis) ) is plotted as a function of actual target velocity (x-axis), whether the subject was moving (self-
motion, red) or not (no self-motion, black) during target presentation, and target observation time (left vs. right panels). 
Circles denote means, and error bars represent +/- 1 S.E.M. Individual transparent dots in the background show data for 
individual subjects.  
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2.3 Steering behavior suggests a misattribution of flow vectors during concurrent self- and object-

motion 
 

To further test the claim that during concurrent object-motion and path integration participants may misattribute 
flow vectors related to the object and self, we can make two further qualitative predictions. First, we predict that 
the location of the target at its onset will affect how object- and self-motion derived flow vectors are misattributed. 
That is, early in trials, participants move forward, toward the target. During this forward self-motion, lateral flow 
vectors on the retina – i.e., those matching the direction of target movement – are essentially null straight-ahead 
and have much greater speed in the periphery (see Fig. 2A inset). Thus, we predict that flow vectors should be 
more readily misattributed under our current protocol for eccentric, rather than central, targets. Second, within 
the current closed-loop experiment, self-motion is not solely estimated based on optic flow signals, but also by 
an efference copy of hand movements (and thus joystick position, which drives virtual velocity). In turn, we can 
predict that if self-motion during object-motion were passive (i.e., no efference copy), the estimate of self-motion 
would be more uncertain, and thus putatively more amenable to misattribution between object- and self-motion 
cues. We test these predictions while focusing our analysis on (1) the 150ms target observation time given that 
participants are more accurate in this condition, and (2) steering behavior (vs. explicit reports) given that these 
are an implicit measure of CI not prone to response biases ([27]).  
 
We test the first prediction by dividing the dataset into trials for which the target was presented centrally (i.e., 
within -5° and +5°; 48.5% of total dataset) or eccentrically (i.e., within -10° and -5°, or within +5° and +10°). As 
shown in Fig. 3A, during both central and eccentric presentations, targets were seemingly perceived as if moving 
less rapidly during self-motion rather than during no self-motion. To quantitatively ascertain whether flow vectors 
were more readily misattributed during eccentric rather than central presentations, for each condition (central vs. 
eccentric) and target velocity we computed the difference in perceived target velocity (self-motion minus no self-
motion). This difference is illustrated in Fig. 3B, and statistical contrasts indicated that the impact of self-motion 
was greater for eccentric rather than central presentation for targets moving at -10cm/s and 20cm/s (red vs. 
black, paired ANOVA object-velocity x self-motion condition interaction term, p = 0.03, post-hoc comparisons at 
each velocity, p < 0.05 Bonferroni-corrected at -10cm/s and 20cm/s). 
 
To test the second prediction, we conducted an additional experiment (same participants, see Methods) wherein 
participants’ linear velocity during target presentation (and only during this time-period) was under experimental 
control and was varied from trial-to-trial (either 0cm/s or a Gaussian profile ramping over 1 second to a maximum 
velocity of 200cm/s). In turn, we contrast the impact of self-motion on perceived target velocity either during 
closed-loop, active navigation (Fig. 3C, left, same data as in Fig. 2D, 150ms observation time) and during 
passive self-motion (Fig. 3C, right). As above, for both active and passive conditions we compute the difference 
in perceived target velocity between self-motion and no self-motion conditions. Results show that when targets 
moved at a velocity of -20cm/s and 20cm/s (Fig. 3D; ANOVA object-velocity x active vs. passive interaction term, 
p = 0.04, post-hoc comparisons, p < 0.05, Bonferroni-corrected at -20cm/s and 20cm/s), the misattribution of 
flow vectors during self-motion was greater during passive rather than active self-motion. Together, these results 
confirm our qualitative predictions, suggesting that optic flow vectors were misattributed during concurrent self- 
and object-motion. Further, the increased misattribution during eccentric target presentation and during passive 
self-motion was specific for intermediate firefly velocities, precisely when internal models are less certain.  
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Figure 3. Misattribution of optic flow vectors during concurrent self- and object-motion is exacerbated for eccentric 
targets and during passive rather than active self-motion. A. Effect of target location. Perceived target velocity (y-
axis, as estimated based on steering end-point) as a function of true target velocity (x-axis), whether participants were 
moving (red; self-motion) or not (black; no self-motion) while the target was visible, and whether targets at onset were 
central (left) or eccentric (right). Circles represent means, error bars denote +/- 1 S.E.M, and transparent dots in the 
background show data for individual subjects. B. Impact of self-motion on perceived object-velocity as a function of 
target location. Difference in perceived target velocity as a function of self-motion condition (self-motion - no self-motion; 
or red – black from Fig. 3A), and whether targets were central (purple) or eccentric (green) at onset. Circles indicate means, 
error bars denote +/- 1 S.E.M, and transparent dots in the background show data from individual subjects. C. Active vs. 
passive self-motion. Similar to A, but panels are separated as a function of whether self-motion during target presentation 
was active (i.e., closed-loop; left, data is reproduced from Fig. 2D, right) or passive (i.e., open-loop; right). D. Impact of 
active vs. passive self-motion on perceived object-velocity. Similar to B, but separated according to whether self-motion 
during target presentation was active (purple) or passive (green).  
 
 
 
 
 
 
 
 
 
 
 
 
 

A

C

Target Velocity (cm/s)
-50 50

Pe
rc

ei
ve

d 
Ta

rg
et

 V
el

oc
ity

 (c
m

/s
)

-50

50

No self-motion
Self-Motion

Central Targets

Target Velocity (cm/s)

Eccentric Targets

B

D

Target Velocity (cm/s)

Pe
rc

ei
ve

d 
Ta

rg
et

 V
el

oc
ity

 (c
m

/s
)

No self-motion
Self-Motion

Active

Target Velocity (cm/s)

Passive

Target Velocity (cm/s)

Di
ffe

re
nc

e 
in

 P
er

ce
iv

ed
 

Ta
rg

et
 V

el
oc

ity
 (c

m
/s

)

-50 50

-50 50

-50

50

-50 50

-50 50

-30

30

Central
Eccentric

Target Velocity (cm/s)
Di

ffe
re

nc
e 

in
 P

er
ce

iv
ed

 
Ta

rg
et

 V
el

oc
ity

 (c
m

/s
)

Active
Passive

-50 50

-30

30

00

00

0

0 0

0

0

0

20 cm/s

-10 cm/s

20 cm/s

-20 cm/s



 10 

 
2.4 Eye movements suggest a temporal cascade from segregation to integration to causal inference 
 

Lastly, we attempt to leverage the continuous-time nature of the task to gain insight into the timecourse of the 
computations supporting CI during closed-loop navigation. Namely, the above analyses were restricted to 
trajectory endpoints, the outcome of the computation. However, we may also use the eye movements occuring 
during and near the time of target presentation, which is the critical period during which the task-relevant 
inference ought to occur. 
 

Eye movements were composed of a rapid, ballistic saccade (Fig. 4A, thin lines show example trials and thicker 
lines show mean values, arrows indicate the mean latency to saccade offset for eccentric targets) followed by a 
more protracted smooth pursuit (Fig. 4A, slow drift after arrow). In prior work, we have demonstrated that humans 
(and non-human primates) intuitively saccade to the visible target, and then track it via smooth pursuit, even 
when hidden ([22, 25]). Unlike in these prior studies, however, here the target itself moves, and the presentation 
times were half as long (300ms before vs. maximum of 150ms here). Thus, the saccade itself happens after 
target offset (Fig. 4A). In turn, saccades and gaze pursuit may aim toward the target onset position, its final 
visible offset location, an intermediate location, and/or track an evolving location. 
 

To examine saccades, we expressed gaze location along azimuth by adding eye-in-head orientation and head 
orientation. Similarly, we expressed the onset and offset locations of the target in polar coordinates. As shown 
in Fig. 4B for a representative subject, saccades were well accounted by both the onset (representative subject 
r2 = 0.83, mean ± s.e.m.; 0.81±0.01) and offset (representative subject r2 = 0.88, 0.87±0.01) target location, yet 
better by the latter than the former (paired t-test, t(10) = 14.74, p = 4.12 x 10-8; self-motion and no self-motion 
conditions considered jointly). In general, participants were reasonably accurate, but tended to undershoot the 
lateral location of targets (onset, slope; 0.77±0.03; offset; 0.79±0.03; onset vs. offset, paired t-test, t(10) = 7.44, 
p = 2.18 x 10-5). To ascertain whether humans saccade to the initial target location or incorporate knowledge of 
object-motion and saccade to its offset location, we fit a regression model (𝑦	~	1 +	𝛽!𝑜𝑛𝑠𝑒𝑡 +	𝛽"𝑜𝑓𝑓𝑠𝑒𝑡) with 𝛽! 
and 𝛽" respectively weighting the target onset and offset locations. As shown in Fig. 4C, subjects placed more 
weight on the target offset than onset locations (onset vs. offset, no self-motion and self-motion, paired t-test, 
both t > 2.21 and p < 0.04). Similarly, while the offset regressor was significant for 11 (no self-motion) and 8 
(self-motion) of the 11 subjects, the onset regressor was significant for 9 (no self-motion) and 4 (self-motion). 
Finally, given (i) our interest in comparing between a concurrent object- and self-motion condition requiring CI, 
and an object-motion only condition not requiring CI, and (ii) the above evidence that saccade behavior was 
mostly dictated by the target’s offset location, we binned the latter and examined whether gaze to target offset 
location was modulated by self-motion. Results showed no impact of self-motion on the landing saccade position 
(Fig. 4D, unpaired ANOVA, interaction term, p = 0.95). Thus, subjects’ initial inference of target position, as 
reflected by saccades, does not appear to be affected by misattribution of retinal velocity to object motion vs. 
self-motion. 
 

Lastly, we examined the smooth pursuit that occurred after saccade offset. That is, for each trial we epoched 
and baseline-corrected the 500ms of eye movements following saccade offset. We split trials as a function of 
target velocity and self-motion condition. Strikingly, as shown in Fig. 4E (means across all subjects), while 
smooth pursuit was modulated by target velocity in the no self-motion condition, it was not during concurrent 
self- and object-motion. We quantify this effect by computing the mean velocity of eye displacement across the 
500ms following saccade offset. This analysis reveals no dependence of eye velocity on target velocity in the 
self-motion condition (one-way ANOVA,  F(10, 110) = 0.41, p = 0.93), and the presence of a strong modulation 
when object-motion was presented alone (one-way ANOVA, F(10, 110) = 21.7, p = 6.66x10-22, Fig. 4F). In fact, 
the gaze velocity along azimuth matched the target velocity in the absence of self-motion (one-way ANOVA on 
the difference between target and gaze velocity, F(10, 110) = 0.75, p = 0.67).  
 

Together, the pattern of eye movements shows largely accurate saccading to the target offset regardless of the 
self-motion condition, followed by smooth pursuit of the target that is absent in the case of concurrent self- and 
object-motion, in contrast to the object-motion only condition and our prior work (where the target never moved; 
[22, 25]). That is, during the no self-motion condition gaze velocity matches that of targets, while it is null after 
concurrent self- and object-motion. Crucially, during smooth pursuit, the target is invisible in both cases, such 
that this difference is not simply a visually-driven effect.     
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Figure 4. Saccade and smooth pursuit behavior during and following the target presentation show differential 
impact of self-motion. A. Example lateral gaze position. Top panel shows gaze (eye + head) direction along the lateral 
plane (azimuth) for targets far to the right (positive values; +9 to +10 degrees), while bottom panel shows gaze direction 
along the lateral plane for targets far to the left. Thin and transparent lines are examples (no self-motion condition), while 
the opaque and thicker line is the average. Arrows represent the mean latency of saccade. These representative data show 
a ballistic saccade (marked by the arrows) followed by smooth pursuit. The saccades happen after target offset (maximum 
target presentation time represented by gray box). B. Saccade landing locations along the lateral plane for a 
representative subject. Top; lateral gaze location (in degrees) at saccade offset as a function of the targets initial (onset) 
location (also in degrees). Bottom; as above, for target offset location (i.e., last visible location). Dashed line is the identity, 
while solid line is the best linear fit. Individual dots are trials. C. Coefficient (in absolute value) for a multiple regression 
accounting for saccade offset location as a function of target onset and offset location. This analysis was conducted 
both for the no self-motion (black) and self-motion (red) conditions. Thin and transparent error bars denote individual 
subjects and their standard error, while opaque and thicker error bars show the mean and s.e.m. Coefficients were larger 
for the offset than onset target location, both for the no self-motion and self-motion condition.  D. Lateral gaze location at 
saccade offset as a function of target offset. Target offset locations were categorized in 21 bins (every degree, from -10 
to +10 degrees) and gaze offset location was averaged for each subject within these bins. Dots show means across 
subjects, and error bars represent +/- 1 s.e.m. Dashed gray line is the unity-slope diagonal, demonstrating that subjects 
slightly undershot targets, but were largely accurate. E. Baseline-corrected lateral gaze position after saccade offset 
during no self-motion (left) and self-motion (right) conditions. The time-course of gaze (500ms after saccade offset) 
shows modulation as a function of the target velocity (gradient; from warm to cold colors; -40cm/s to +40cm/s) in the no 
self-motion condition, but no modulation during the self-motion condition. Solid lines are averages across all subjects. 
Dashed lines show the evolving location of targets.  F. Smooth pursuit velocity as a function of target velocity and self-
motion condition. During self-motion (red), gaze velocity (y-axis) was not modulated as a function of target velocity (x-
axis). In contrast, gaze velocity did accurately track target velocity in the no self-motion condition (black). Dots show means 
across subjects, and error bars represent +/- 1 s.e.m. Dashed gray lines show y = 0 and y = x. 
 
3.  Discussion 
 
A wide array of studies have argued that human perception is scaffolded on the process of CI: we first 
hypothesize a generative structure (i.e., how “data” is generated by the world), and then use this hypothesis in 
perceiving [2, 5-10, 14-16, 30-37]. As such, some [3] have argued that CI is a unifying theory of brain function. 
Here, our main contribution is the derivation of CI predictions for a naturalistic and continuous-time task, and the 
demonstration of these signatures during closed-loop active sensing. Further, we demonstrate how using 
continuous-time tasks may allow us to index the temporal unfolding of computations that mediate CI. 
 
We take the example of concurrent self- and object-motion where observers have to infer whether flow vectors 
on their retina are generated entirely by self-motion, by object-motion, or by some combination of the two. 
Empirically, we show that, in line with the derived predictions, humans are more likely to report moving targets 
as stationary at high velocities during concurrent self-motion. Similarly, during concurrent self- and object-motion, 
observers navigate to locations closer to the initial target location, as if the target were not moving. This effect is 
most pronounced when targets move at intermediate velocities: those that cannot be easily ascribed to a single 
interpretation, either self- or object-motion. We further support the claim that observers misattribute flow vectors 
caused by object-motion to self-motion by testing and corroborating two additional qualitative predictions. First, 
we note that lateral flow vectors at the focus of expansion are essentially null when moving forward and toward 
the focus of expansion (see inset in Fig. 2A). Thus, in the current setup there should be little to no misattribution 
of flow vectors when targets are presented centrally (i.e., near the focus of expansion), and this prediction was 
confirmed (Fig. 3B). Second, we highlight that our estimates of self-motion are not solely derived from optic-
flow, but also from efference copies of motor commands, among other signals. Thus, we ran a second 
experiment in which the self-motion experienced during object-motion was not under the subjects’ control. We 
argue that passive self-motion, by virtue of lacking efference copies of motor commands that are present during 
active self-motion, should result in a less certain estimate of self-motion and thus result in a greater likelihood of 
misattributions. This prediction was also confirmed (Fig. 3D). Together, these findings strongly suggest that 
observers perform CI when navigating in the presence of objects that may or may not move. 
 
The third and final experimental finding allowed us to gain some insight into the timecourse of the processes 
constituting CI. That is, we show that saccades to hidden targets already incorporate knowledge of the object 
velocity, with target offset position accounting for a larger fraction of variance than target onset position. The fact 
that these saccades to target were largely accurate may suggest that, at the time of saccade onset (~200-300ms 
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from target onset), object-motion was appropriately parsed from self-motion. Prior studies [11] have shown CI 
during saccades, but these studies use saccades as a reporting mechanism, as opposed to allowing observers 
to use saccades in a natural and continuous-time environment. Next, we show that smooth gaze pursuit of the 
target following the initial saccade was strikingly different between the self-motion and no self-motion conditions. 
While in the no self-motion condition gaze velocity showed a gradient consistent with the target velocity, there 
was no modulation of gaze velocity by target velocity in the self-motion condition. This difference cannot be 
attributed to differences in optic flow, as at the time of smooth pursuit (~400-900ms after target onset) participants 
were moving and experiencing optic flow in both conditions. These results suggest that at the time of smooth 
pursuit, flow vectors caused by object- and self-motion were not properly parsed. Speculatively, these findings 
(i.e., parsing at the time of saccades but not at the time of smooth pursuit) are evocative of a cascade of events 
observed in neural data [4, 14-16] wherein primary sensory cortices segregate cues, later “associative” areas 
always integrate cues, and finally “higher-order” regions perform flexible CI. Interestingly, the established neural 
cascade occurs earlier than the herein described behavioral one (see c.f. Fig. 4F in [17]; neurally, segregation 
occurs between 0-100ms post-stimulus onset, forced integration occurs between 100 and 350ms, and CI 
thereafter). 
 
We must mention a number of limitations in the current work. While our aim is to study CI within dynamic action-
perception loops, much of our analysis relied on specific events frozen in time, and particularly at the end of trials 
(e.g., trajectory end-points and explicit reports). This was somewhat mitigated by the eye movement analyses 
and is a reflection of i) challenges associated with jointly modeling CI, path integration, and control dynamics, as 
well as ii) the fact that within the current paradigm inference over object-motion occurs only once, during the 
observation period. Namely, in future work we hope to leverage the full trajectories generated by participants in 
attempting to intercept moving, hidden targets. This, however, will require accounting for both idiosyncrasies 
emanating from path integration (e.g., putatively a slow-speed prior and cost functions that evolve with time and 
distance travelled [21, 23]), as well as derivation of optimal control policies (see [38-40] for recent attempts to 
model continuous behavior as rational, and then invert this model to deduce the dynamics of internal models). 
Similarly, at risk of losing generalizability, the modelling approach could be expanded to explicitly take flow 
vectors as input. More generally, however, these next steps in our modeling approach are designed to account 
for evolving beliefs, and thus require just that, behavior reflecting a protracted unfolding of an evolving belief. 
Examination of steering trajectories (Fig. 2C) did not suggest frequent and abrupt re-routings, as one would 
expect to occur during changing interpretations of the target motion (e.g., from moving to stationary). Instead, it 
appears that within the current paradigm observers made a causal inference once, early in the trial and while 
the target was visible.  
 
Altogether, we derive normative predictions for how observers ought to intercept moving and hidden targets by 
inferring (i) whether objects are independently moving in the world, and (ii) if so, with what velocity. We then 
support the conjecture that humans perform CI in attributing flow vectors on their retina to different elements 
(i.e., self and object) during navigation. Lastly, we show that when allowed to evolve naturally in time, behavior 
may demonstrate a protracted unfolding of the computations characterizing CI. In the past we have shown that 
macaques will intuitively track the ongoing location of moving and hidden targets [24]. Hence, the current results 
demonstrating signatures of CI in attempting to “catch” moving targets opens the avenue for future studies of 
naturalistic and closed-loop CI at the single cell level.  
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4. Methods 
 

4.1. Participants 
 

Eleven participants (age range = 21-35 years old; 5 females) took part in the study. Participants had normal or 
corrected-to-normal vision, normal hearing, and no history of neurological or musculoskeletal disorders. The 
experimental protocol was approved by the University Committee on Activities Involving Human Subjects at New 
York University. 
 

4.2. Experimental Materials and Procedure 
 
Participants were tasked with virtually navigating to and stopping at the location of a briefly presented target (i.e., 
the “firefly”) via an analog joystick with two degrees of freedom (linear and angular velocity; CTI Electronics; 
Ronkonkoma, USA). Visual stimuli were rendered via custom code in Unity (Unity Technologies; San Francisco, 
USA) and displayed on a virtual reality (VR) head-mounted display with a built-in eye tracker (90 Hz; HTC VIVE 
Pro; New Taipei, Taiwan). The subjective vantage point was set to a height of 100cm above the ground, and 
participants had a field of view of 110° of visual angle.  
 
The virtual scene was comprised of ground plane textural elements (isosceles triangles, base × height = 8.5 × 
18.5 cm) that were randomly positioned and reoriented at the end of their lifetime (lifetime = 250 ms; floor density 
= 1.0 elements per 1 m2). On each trial, subjects were re-positioned at the center of the virtual world, and a target 
(a black circle of radius 30cm, luminance and color matched to ground plane triangles) was displayed at a radial 
distance of 300cm, and within a lateral range spanning from -10° to +10° (uniform distribution; 0° being defined 
as straight-ahead). On 10% of trials, the target was visible throughout the duration of the trial. On the rest, targets 
were presented for either 75ms or 150ms (equal probability). On 25% of trials, the target did not move (i.e., 
object velocity = 0cm/s). On the remaining 75% of trials, the target moved laterally at 3, 6, 10, 20, or 40cm/s, 
either leftward or rightward (equal probability). Target presentation time, velocity, and direction were randomly 
interleaved across trials and within blocks. Participants navigated toward the target with a maximum linear 
velocity (𝑣#$%) of 200cm/s, and a maximum angular velocity (𝑤#$%) of 90°/s. On every trial, after participants 
stopped to indicate their perceived location of the (hidden) target, they were asked to explicitly report whether 
the target had moved or not, by deflecting the joystick leftward (target did not move) or rightward (target moved). 
Participants were informed that their responses were logged via an auditory tone. No feedback on performance 
was given. Inter-trial intervals were not defined to participants (i.e., ground plane elements were always visible 
and continuous with the previous frame) and of random duration (uniform) between 300 and 600ms.  
 
Every participant took part in 2 experiments, on separate days (each session lasting ~1 hour). In the first 
experiment, participants performed two blocks of 200 trials, in which they were always under full closed-loop 
conditions (i.e., motor output dictated sensory input). In one block, targets were presented given that participants 
were not moving (linear velocity < 1cm/s; no self-motion condition). In the other block, targets were presented 
given that participants were moving (linear velocity > 20cm/s; self-motion condition). Block order was randomized 
across subjects and participants were informed prior to each block whether they had to move (“self-motion” 
condition) or remain static (“no self-motion” condition) for targets to appear. In the second experiment, 
participants performed 4 blocks of 200 trials. At difference from the first experiment, here linear velocity was set 
(open-loop, under experimental and not subject control) during the target presentation. Linear velocity was either 
null (0cm/s; no self-motion condition), or had a Gaussian profile with peak amplitude equal to 200cm/s (self-
motion condition). When participants were passively displaced, the linear perturbation lasted 1 second, and the 
target was presented during the peak of the perturbation (200cm/s) such that it would be at a distance of 300cm. 
After the perturbation, participants gained full access to the control dynamics (as in Experiment 1). Self-motion 
and no self-motion conditions were interleaved within a single block in Experiment 2. In total each participant 
completed 1200 trials.  
 

4.3. Modeling 
 
We here provide a basic outline of the normative model. A more detailed description is provided in the 
supplementary information. At the beginning of each trial, we assume the target to be visible for some 
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observation time 𝑇 = 𝑁	𝛿𝑡, where 𝛿𝑡 is the duration of individual, discrete time steps in which our model is 
formulated. These time steps can be thought of as the time between individual video frames. While our results 
are independent of the specific choice of 𝛿𝑡, discretization simplifies the model description and derivation of its 
properties. In the 𝑛th time step the target’s true location is 𝑧& = 𝑧' − (𝑁 − 𝑛)𝑣𝛿𝑡, where 𝑧' is the target’s true 
location at the end of the observation period, and where 𝑣 is the target’s velocity. The target’s initial location 𝑧! 
is assumed to be drawn from a uniform distribution over a wide range of 𝑧!’s. Its velocity is 𝑣 = 0 (stationary 
target, 𝛾 = 0) with probability 1 − 𝑝( and otherwise (moving target, 𝛾 = 1) drawn from a normal distribution 
N(𝑣<0, 𝜎)") with mean zero and variance 𝜎)" (a standard slow-velocity prior, [25, 26]). The observer has noisy 
observations, 𝑥&|𝑧& ∼ N(𝑧&, 𝜎"/𝛿𝑡)	whose variance is scaled by 1/𝛿𝑡 to keep the results invariant to the choice 
of 𝛿𝑡 (i.e., choosing a smaller 𝛿𝑡 provides more, but individually less informative observations per unit time). 
Based on all observations, 𝑥!:' ≡ 𝑥!, … , 𝑥', the model estimates the probability of the target being stationary, 
𝑝(𝛾 = 0|𝑥!:'), and the target’s velocity 𝑝(𝑣|𝑥!:' , 𝛾 = 1) in case it is moving. The first probability is used for its 
stationary reports (Fig. 1B). Both are used to decide on the model’s steering trajectory (Fig. 1C). 
 
A lengthy derivation that is provided in the supplementary information yields the required posteriors. The resulting 
expressions are rather lengthy and thus not detailed here. We assume that the model reports that the target is 
stationary if 𝑝(𝛾 = 0|𝑥!:') > 𝑝(𝛾 = 1|𝑥!:'), that is, if 𝑝(𝛾 = 0|𝑥!:') > !

", which is the case if 
 

1
2
log

12𝜎"

12𝜎" + 𝑇+𝜎)"
+

𝑇,𝜎)"𝑣J"

24𝜎"(12𝜎" + 𝑇+𝜎)")
< log

1 − 𝑝(
𝑝(

, 

  
where 𝑣J = 〈𝑣|𝑥!:' , 𝛾 = 1〉 is the mean estimate of the target’s velocity under the assumption that it is moving. 
This decision rule imposes a threshold on this velocity estimate that depends on observation noise magnitude 
𝜎" and observation time 𝑇, and leads to the stationary reports shown in Fig. 1B. 
 
The model chooses the optimal steering angle and distance to maximize the probability of intercepting the target. 
To do so, we assume it uses the self-motion estimation model from Lakshminarasimhan et al. (2018) [19] in 
which the uncertainty (here measured as the variance of a Gaussian posterior over location) grows as 𝑘"𝑑"-, 
where 𝑑 is the distance traveled, and 𝑘 and 𝜆 are model parameters. For a given angle 𝜃 and travel time 𝑡 (at 
fixed velocity 𝑣$) this provides a Gaussian posterior 𝑝(𝒛$|𝑡, 𝜃) over 2D self-location 𝒛$. Furthermore, assuming 
a known initial target distance and a lateral target motion, the model provides a similar posterior 𝑝(𝒛.|𝑥!:' , 𝑡) 
over 2D target location at time 𝑡, given by a weighted mixture of two Gaussians. The model then chooses 𝑡∗ and 
𝜃∗ that maximize 𝑝(𝒛$ = 𝒛.|𝑥!:' , 𝑡, 𝜃), that is, the likelihood of ending up at the target’s location when moving for 
some time 𝑡∗ at angle 𝜃∗ (see supplementary information for respective expressions). Unfortunately, this 
maximization cannot be performed analytically, and thus we find the maximum by discretizing 𝑡 and 𝜃. 
 
The model parameters where hand-tuned to provide a qualitative match to the human data. However, it is worth 
noting that the qualitative model behavior described in the main text is generic (i.e., fine-tuning is not necessary). 
Due to the simple nature of the model, and the simplified steering (i.e., control) model that only moved along a 
straight line, we did not attempt to achieve a quantitative match. The target was assumed to be at a fixed, known 
distance of 4m during the target observation period, and the observer moved at a constant 𝑣$ = 2m/s thereafter. 
A-priori, the target was assumed to be moving with 𝑝( = 0.3 and the standard deviation of its slow-velocity prior 
was 𝜎) = 0.5m/s. Observation times were set to either 𝑇 = 0.075s or 𝑇 = 0.150s, matching those of the 
experiment. Observation noise was set to 𝜎 = 0.0004m (no self-motion) or 𝜎 = 0.001m (self-motion). The path 
integration uncertainty parameters were set to 𝑘 = 0.5 and 𝜆 = 0.5 (Wiener diffusion). 
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CAUSAL INFERENCE WITHIN CLOSE ACTION-PERCEPTION LOOPS
SUPPLEMENTARY INFORMATION

We here describe in detail the normative model that we used in the main text to predict behavioral signatures of
causal inference.

1. TASK SETUP AND GENERATIVE MODEL

A visual target appears on the screen for T = Nδt seconds, or N time steps of size δt. While, for intuition, one can
think of these time steps as individual video frames, our formulation is independent of the choice of δt. The target
appears at location z1 and thereafter moves with velocity v. Therefore, its location in the nth time-step is given by

zn = z1 + (n− 1)vδt = zN + (n−N)vδt. (1)

Across trials, we assume the target to be moving (γ = 1) with probability p(γ = 1) = pγ , and to be stationary (γ = 0)
otherwise. When moving, its velocity is drawn from p(v|γ = 1) = N

(
v|0, σ2

0

)
, a normal distribution with zero mean

and variance σ2
0 . Overall, this leads to the prior over v to be given by

p(v) = p(v|γ = 0)p(γ = 0) + p(v|γ = 1)p(γ = 1) = (1− pγ)δ(v) + pγN
(
v|0, σ2

0

)
, (2)

where δ(·) is the Dirac delta function. This is our causal inference prior as it encapsulates the two different hypotheses
(stationary vs. moving target, γ = 0 vs. γ = 1) for what caused the sensory percepts, together with their associated
priors on the underlying latent target velocity. We assume a uniform prior over the target’s initial location z1 over a
bounded range, whose form we make more precise later.

In each time step, the observer makes a noisy observation xn of the target’s true location zn, distributed indepen-
dently across time as

xn|zn ∼ N
(
xn|zn, σ2/δt

)
. (3)

We here scale the observation’s variance by 1/δt, such that the overall amount of information that the observer
receives per unit time remains invariant to the choice of δt.

Having observed x1:N ≡ x1, . . . , xN , the observer wants to infer whether the target is moving or not, that is
p (γ = 1|x1:N ). Furthermore, they want to infer the target’s final location for a stationary target, p (zN |γ = 0, x1:N ), or
the target’s final location and velocity for a moving target, p (zN , v|γ = 1, x1:N ). In the next section we derive these
quantities. Following this, we turn to the question of how the observer uses these quantities to act upon them by
reporting whether the target is stationary or moving, and how they steer toward the target.

2. INFERRING THE TARGET LOCATION AND VELOCITY

Here, we first start with assuming that the target is stationary to find p (zN |γ = 0, x1:N ). Then, we assume a moving
target and compute p (zN , v|γ = 1, x1:N ). Lastly, we use the found expressions to derive p (γ = 1|x1:N ).

2.1. A stationary target, γ = 0. For the stationary case, we only need to find the posterior over the target’s single
location z as its velocity is fixed to zero. Then, it is easy to show that

p (z|x1:N ) ∝ p(x1:N |z) ∝ N
(
z|x̄, σ

2

T

)
, (4)

where we have implicitly conditioned on γ = 0, have assumed a uniform prior over z over the relevant range of z’s,
and have defined

x̄ =
1

N

N∑
n=1

xn, (5)

that is, the average observed location.
Causal inference also requires the marginal likelihood of x1:N , which is given by

p (x1:N ) =

∫
p (x1:N |z) p (z) dz

= pz0

∫ zmax

zmin

[
N∏
n=1

N
(
xn|z, σ2/δt

)]
dz

= pz0

(
δt

2πσ2

)N/2 ∫ zmax

zmin

e−
δt
∑N
n=1(xn−z)2

2σ2 dz,

| (6)

1
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where we assumed a uniform prior of probability p(z) = pz0 over a wide z-range from zmin to zmax. The integral
evaluates to ∫

e−
δt
∑N
n=1(xn−z)2

2σ2 dz = −
√

πσ2

2Nδt
e−

δt
∑N
n=1(xn−x̄)2

2σ2 erf

(
N (x̄− z)√

2Nσ2/δt

)
, (7)

where the sum in the exponential equals Nvar (x), that is N times the empirical variance of x1:N . Furthermore, the
error function approaches −1 for large zmax and 1 for small zmin, such that its contribution in the definite integral
approaches −2. Therefore, the final marginal likelihood is

p (x1:N ) = pz0

(
δt

2πσ2

)N/2√
2πσ2

T
e−

T var(x)

2σ2 . (8)

We can find the same result by writing down Bayes’ rule for p(z|x1:N ) and solving for p(x1:N ), which appears in the
denominator.

2.2. A moving target, γ = 1. Using the previous identity, zn = zN − (N − n)vδt, leads to the likelihood of each xn to
be given by

p (xn|zN , v) = N
(
xn|zN − (N − n)vδt, σ2/δt

)
. (9)

Our aim is to find the joint posterior over zN and v, which is given by the expression

p (zN , v|x1:N ) ∝ N
(
v|0, σ2

0

) N∏
1:n

N
(
xn|zN − (N − n)vδt, σ2/δt

)
∝ e

− 1
2

((
1

σ2
0
+Tδt2−3T2δt+2T3

6σ2

)
v2+ T

σ2 z
2
N−T2−Tδt

σ2 zNv− 2Tx̄
σ2 zN+ 2

σ2 xaccv

)
,

(10)

where we implicitly conditioned on γ = 1, have used the same definition of x̄ as further above, and have defined

xacc = δt2
N∑
n=1

(N − n)xn (11)

To find the posterior moments we first take δt → 0, removing all the δt-dependent terms. To describe the full
posterior, we denote it by

p (zN , v|x1:N ) = N
((

zN
v

)
|
(
µz
µv

)
,

(
Σzz Σzv
Σzv Σvv

))
. (12)

A lengthy, but unspectacular, derivation reveals

Σzz =
4σ2

(
3σ2 + T 3σ2

0

)
T (12σ2 + T 3σ2

0)
, (13)

Σvv =
12σ2σ2

0

12σ2 + T 3σ2
0

, (14)

Σzv =
6Tσ2σ2

0

12σ2 + T 3σ2
0

, (15)

µz =
12σ2x̄+ 4T 3σ2

0 x̄− 6Txaccσ
2
0

12σ2 + T 3σ2
0

, (16)

µv =
6σ2

0

(
T 2x̄− 2xacc

)
12σ2 + T 3σ2

0

. (17)

Interestingly, in the σ0 → ∞ limit, the posterior variance Σzz scales as 1/T , as before. The posterior variance Σvv ,
in contrast, drops more rapidly with 1/T 3. Therefore, temporal integration of evidence provides qualitatively more
velocity than location information. Intuitively, this is because any (xi, xj) pair can be used to infer velocity, whereas
the location estimate relies on the across-xi average.

Understanding what the posterior means needs more work. In particular, let us define

v̂ =
6

T 3

(
T 2x̄− 2xacc

)
=

6

T

(
1

N

N∑
n=1

(
2n

N
− 1

)
xn

)
. (18)

The term in (outer) parenthesis is a weighted sum of the xn’s. In this sum, x1 is weighted by −1, and xN by 1.
Inbetween these extremes, the weights increase linearly from−1 to 1. Therefore, if we group equally-weighted terms
(modulus the sign of the weight), the sum is a weighted combination of location differences, with the highest weight
on xN − x1, less weight on xN−1 − x2, and so on. To see how this can act as a velocity estimate, assume a noise-free
xn = vnδt. Substituting this in the above expression shows that v̂ = v (this is where the 6/T pre-factor comes from).
This justifies denoting it v̂.

2
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Substituting v̂ into the posterior means results in the new expressions

µz =
12σ2x̄+ T 3σ2

0

(
x̄+ v̂T

2

)
12σ2 + T 3σ2

0

= x̄+
T 3σ2

0

12σ2 + T 3σ2
0

T

2
v̂, (19)

µv =
T 3σ2

0

12σ2 + T 3σ2
0

v̂ (20)

This shows that the posterior mean µz start with x̄ for small T , and then shifts toward x̄+ µvT/2, which is the mean
location plus half the estimated distance that the target moved, which is sensible. The posterior mean µv is initially
biased toward zero, due to the prior, and later approaches v̂. Overall, with σ2

0 → 0, the posterior approaches that for
a stationary target, as desired.

To find the marginal likelihood, we solve Bayes’s rule for the posterior for p(x1:N ), which yields

p (x1:N ) =
p (x1:N |zN , v) p (zN ) p (v)

p (zN , v|x1:n)

= pz0

(
δt

2πσ2

)N/2√
2π|Σ|
σ2
0

e−
T(var(x)+x̄2)

2σ2 + 1
2µ

TΣ−1µ,

(21)

where we have chosen zN = v = 0 for the second equality (as the expression holds for any choice of zN and v), and
µ and Σ denote the posterior mean and covariance. The remaining terms evaluate to

µTΣ−1µ =
T x̄2

σ2
+

T 6σ2
0 v̂

2

12σ2 (12σ2 + T 3σ2
0)
, (22)

|Σ| = 12σ4σ2
0

T (12σ2 + T 3σ2
0)
, (23)

such that the marginal likelihood becomes

p (x1:N ) = pz0

(
δt

2πσ2

)N/2√
24πσ4

T (12σ2 + T 3σ2
0)
e

T6v̂2σ2
0

24σ2(12σ2+T3σ2
0)

−T var(x)

2σ2 (24)

As for the posterior, this marginal likelihood approaches that for a stationary target with σ2
0 → 0.

2.3. Is the target stationary or moving? To find the full posterior over the target’s state, we use the causal inference
target velocity prior, p (v) = (1− pγ)δ (v − 0) + pγN

(
v|0, σ2

0

)
, with which the posterior becomes

p (zN , v|x1:N ) = p (zN |x1:N , γ = 0) δ (v − 0) p (γ = 0|x1:N ) + p (zN , v|x1:N , γ = 1) p (γ = 1|x1:N ) . (25)

In this mixture distribution, the first mixture component is that for the stationary target, and the second that for the
moving one. These two components are weighted by the causal modeling posterior p(γ|x1:N ) which indicates the
probability of the target being stationary or moving given the data. This probability can again be found by Bayes’
rule, and results in

p (γ = 1|x1:N ) =
p (x1:N |γ = 1) p(γ = 1)

p (x1:N |γ = 1) p(γ = 1) + p (x1:N |γ = 0) p(γ = 0)

=

√
12σ2

12σ2+T 3σ2
0
e

T6σ2
0 v̂

2

24σ2(12σ2+T3σ2
0) pγ√

12σ2

12σ2+T 3σ2
0
e

T6σ2
0 v̂

2

24σ2(12σ2+T3σ2
0) pγ + 1− pγ

,

(26)

where the last expression results from substituting the marginal likelihoods for the stationary and moving target, and
cancelling all the shared terms. This expression shows that, for a uniform prior, p(γ = 0) = p(γ = 1) = 1/2, the target
is deemed more likely moving for larger velocity estimates v̂. If this estimate is zero, that is, v̂ = 0, then, the more
time has passed, the less likely is the target considered to be moving.

3. ACTING UPON THE INFERRED TARGET LOCATION AND VELOCITY

3.1. Choosing stationary vs. moving. Decision-makers would choose between a stationary and a moving target
according to p (γ|x1:N ). In particular, they would decide that the target is moving if p(γ = 1|x1:N ) > 1/2, that is, if

1

2
log

12σ2

12σ2 + T 3σ2
0

+
T 6σ2

0 v̂
2

24σ2 (12σ2 + T 3σ2
0)
> log

p(γ = 0)

p(γ = 1)
. (27)

3
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3.1.1. Empirical distribution of stationary reports. As experimenters we cannot directly observe v̂, such that we need to
estimate it. Furthermore, it will fluctuate across trials, even if the same evidence is presented, making the decisions
more noisy.

To build a model for v̂ we note that v̂ is a weighted sum of xn’s, and rely on our generative assumptions of xn for
a stationary and a moving target. For a stationary target, we have xn ∼ N

(
z, σ2/δt

)
. In this case, 〈v̂|γ = 0〉 = 0, and

its variance is given by

var (v̂|γ = 0) =

(
6

TN

)2 N∑
n=1

(
2n

N
− 1

)2
σ2

δt
=

12σ2

T 3
. (28)

This variance decreases rapidly with time, as more and more xn’s are used to estimate v̂. This results in the required
moments 〈

v̂2|γ = 0
〉

=
12σ2

T 3
, var

(
v̂2|γ = 0

)
=
〈
v̂4|γ = 0

〉
−
〈
v̂2|γ = 0

〉2
=

288σ4

T 6
. (29)

If we denote the v̂2-related term in the above decision criterion, Eq. (27), by α, this α has moments

〈α|γ = 0〉 =
T 3σ2

0

2 (12σ2 + T 3σ2
0)
,

√
var (α|γ = 0) =

T 3σ2
0√

2 (12σ2 + T 3σ2
0)
, (30)

leading to the signal-to-noise ratio 〈α|γ = 0〉 /
√

var(α|γ = 0) = 1/
√

2. More relevant, under the assumption that α is
Gaussian whose parameters are fully determined by mean and variance, the probability that the decision criterion is
met becomes

p (choose γ = 1|γ = 0) = Φ

(
1√
2

+

√
2
(
12σ2 + T 3σ2

0

)
T 3σ2

0

(
log

p(γ = 1)

p(γ = 0)
+

1

2
log

12σ2

12σ2 + T 3σ2
0

))
(31)

For T → 0 or σ2
0 → 0 this probability is dominated by the prior and lead to a choice of γ = 1 if p(γ = 1) > p(γ = 0).

It shrinks with increasing T , as more evidence results in higher certainty that the target is not moving. Increasing
the observation noise σ2 has two counteracting effects. First, it increases the pre-factor to the inner-most brackets,
thus boosting the prior. Second it results in a weaker drop of the last term in brackets with time, indicating that more
evidence will be required to discard the possibility that the target is moving.

For a moving target, xn ∼ N
(
zN − (N − n)vδt, σ2/δt

)
. This yields v̂ to be Gaussian, with moments

p (v̂|v) = N
(
v̂|v, 12σ2

T 3

)
, (32)

which only differs in the non-zero mean from the v̂ for the stationary case. With the above, the moments of v̂ are
given by 〈

v̂2|γ = 1
〉

=
12σ2

T 3

(
1 + ṽ2

)
, var

(
v̂2|γ = 1

)
=

288σ4

T 6

(
1 + 2ṽ2

)
, (33)

where we have defined the time-rescaled velocity ṽ2 = T 3v2/(12σ2). The previously defined α then has moments

〈α|γ = 1〉 =
T 3σ2

0

(
1 + ṽ2

)
2 (12σ2 + T 3σ2

0)
,

√
var (α|γ = 1) =

T 3σ2
0

√
1 + 2ṽ2√

2 (12σ2 + T 3σ2
0)
, (34)

leading to the signal-to-noise ratio
(
1 + ṽ2

)
/
√

2 + 4ṽ2 which approaches the linear function |ṽ|/2 for larger ṽ2. Plug-
ging these moments into the decision criteria and assuming Gaussianity leads to the choice probability

p (choose γ = 1|γ = 1) = Φ

(
1 + ṽ2√
2 + 4ṽ2

+

√
2
(
12σ2 + T 3σ2

0

)
T 3σ2

0

√
1 + 2ṽ2

(
log

p(γ = 1)

p(γ = 0)
+

1

2
log

12σ2

12σ2 + T 3σ2
0

))
. (35)

For ṽ2 → 0, this probability becomes equivalent to the one for γ = 0. The larger ṽ2, the stronger the influence of the
first term, and the weaker the influence of the remaining terms. In particular, the larger ṽ2, the higher the probability
of choosing γ = 1.

A non-approximate approach to computing p (choose γ = 1|γ = 1) is to re-write the decision criterion for p (γ = 1|x1:N ) >
1/2 as

|v̂| > β ≡ σ

T 3σ0

√
24 (12σ2 + T 3σ2

0)

(
log

p(γ = 0)

p(γ = 1)
− 1

2
log

12σ2

12σ2 + T 3σ2
0

)
. (36)

This criterion is only valid if the term in square-roots is non-negative, which is guaranteed as long as

p(γ = 0)

p(γ = 1)
>

√
12σ2

12σ2 + T 3σ2
0

. (37)

This is always satisfied if p(γ = 0) > p(γ = 1). In general, it requires little evidence about the target’s motion (i.e.,
small T and σ2

0 and large σ2), and a relatively strong prior toward the target not moving. If the above condition is
4
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violated, the decision criterion becomes |v̂| ≥ 0, which is always satisfied. That is, under these circumstances, the
target will always be considered moving.

Assuming there is a non-zero chance of the target being stationary, then the probability of the decision-maker
reporting a stationary target depends on the perceived v̂ which is Gaussian in the true v (see above). Then, as β ≥ 0,
|v̂| > β is satisfied if either v̂ > β or−v̂ > β. As these two options are mutually exclusive, their joint probability sums
and is given by

p(choose γ = 1|v) = Φ

(
v − β√
12σ2/T 3

)
+ Φ

(
−v − β√
12σ2/T 3

)
. (38)

Simulations confirmed that these expressions match simulated choices.

4. STAGE II: INTERCEPTING THE TARGET

We assume agents travel at constant velocity, such that we only need to determine travel direction and stopping
time for the best target interception. The objective is to minimize the expected cost, 〈c (za(t), zo(t))〉, where za is the
agent’s location, zo is the target’s location, and the expectation is over the uncertainty involving both. We will assume
a simple cost function c (za, zo) = −δ (za − zo), which is minimized if za = zo.

The task itself is two-dimensional: the target appears at a certain distance and can move only laterally. We will
assume that the depth is known and denoted zo,d (o for object, and d for depth). The agent moves at a constant
velocity va at angle θ (θ = 0 is straight-ahead) for some time t. Then, what needs to be determined for optimal
interception is the agent’s stopping time t∗ and the angle θ∗ that minimizes the expected cost,

t∗, θ∗ = argmin
t,θ

〈c (za(t, θ), zo(t))〉 = argmax
t,θ

p (za(t, θ) = zo(t)) , (39)

where the second equality follows from the delta cost-function.

4.1. Agent motion model. We will use the self-motion estimation model from Lakshminarasimhan et al. (2018),
where they assume a Weber-like variance scaling of the self-location estimate,

za(t, θ) =

(
za,l
za,d

)
(t, θ) ∼ N

((
vat sin θ
vat cos θ

)
,

(
k2 (vat sin θ)

2λ
0

0 k2 (vat cos θ)
2λ

))
, (40)

with parameters k (k2 is the variance scaling factor) and λ (determines the sub/supra-linearity of the variance scal-
ing), and where we have assumed za(0, θ) = (0, 0)

T .

4.2. Target motion model. As the target depth is known, we only need to estimate its initial lateral location and
eventual velocity. To do so, we use the target location/velocity estimates derived further above, which provide the
joint estimate

p (zo,l(0), vo,l|X) = p (zo,l(0)|X, γ = 0) p (γ = 0|X) + p (zo,l(0), vo,l|X, γ = 1) p (γ = 1|X) , (41)

where X ≡ x1:N are all target observations up to the target offset, zo,l(0) is the inferred lateral position at target
offset (measured relative to agent), vo,l is the target’s lateral velocity, and γ ∈ {0, 1} denotes the target being station-
ary/moving. To compute the posterior over zo,l(t) for γ = 1, we use zo,l(t) = zo,l(0) + vo,l to get, as before,

µoz,l(t) = 〈zo,l(t)|X, γ = 1〉 = µz + µvt =
12σ2x̄+ T 3σ2

0

(
x̄+

(
T
2 + t

)
v̂
)

12σ2 + T 3σ2
0

, (42)

σ2
oz,l(t) = var (zo,l(t)|X, γ = 1) = Σzz + t2Σvv + 2tΣzv =

4σ2
(
3σ2 + σ2

0

(
T 3 + 3T 2t+ 3Tt2

))
T (12σ2 + T 3σ2

0)
, (43)

where µz , µv , and the Σ’s are the posterior moments of p(zo,l(0), vo,l|X, γ = 1), Eq. (12). Overall, this leads to the
posterior to be given by

p (zo(t)|X) = δ (zo,d(t)− zo,d)
(
N
(
zo,l(t)|x̄,

σ2

T

)
p (γ = 0|X) +N

(
zo,l(t)|µoz,l(t), σ2

oz,l(t)
)
p (γ = 1|X)

)
. (44)

4.3. Optimal steering angle and stopping time. To find the optimal steering angle θ∗ and stopping time t∗, we use
the independence of the components of za(t) and zo(t) to find

za,l(t)− zo,l(t)|X ∼ N
(
vat sin θ − x̄, k2 (vat sin θ)

2λ
+
σ2

T

)
p (γ = 0|X) (45)

+N
(
vat sin θ − µoz,l(t), k2 (vat sin θ)

2λ
+ σ2

oz,l(t)
)
p (γ = 1|X) ,

za,d(t)− zo,l(t)|X ∼ N
(
vat cos θ − zo,d, k2 (vat cos θ)

2λ
)

(46)
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The optimal θ∗ and t∗ maximize the probability of both differences being zero. This leads to the expression

t∗, θ∗ = argmax
t,θ

N
(

0|vat cos θ − zo,d, k2 (vat cos θ)
2λ
)
×

(
N
(

0|vat sin θ − x̄, k2 (vat sin θ)
2λ

+
σ2

T

)
p (γ = 0|X)

+N
(

0|vat sin θ − µoz,l(t), k2 (vat sin θ)
2λ

+ σ2
oz,l(t)

)
p (γ = 1|X)

)
. (47)

This optimization is complex and doesn’t have an analytical solution. Therefore, we need to use numerical optimiza-
tion to find θ∗ and t∗.

For good initial guesses for this optimization, we consider the moving and stationary target case in isolation. For
a stationary target, the Gaussian peaks at vat sin θ = x̄ and vat cos θ = zo,d, which leads to parameters

θ∗γ=0 = tan−1 x̄

zo,d
, t∗γ=0 =

√
x̄2 + z2o,d

va
. (48)

For a moving target, the Gaussian peaks at vat sin θ = µoz,l(t) = µz + µvt and vat cos θ = zo,d, resulting in

θ∗γ=1 = tan−1
µz + µvt

∗
γ=1

zo,d
, t∗γ=1 =

µvµz ±
√
v2az

2
o,d + v2aµ

2
z − µ2

vz
2
o,d

v2a − µ2
v

, (49)

where we provide two solutions to t∗γ=1 which result from solving a quadratic equation, and where µz and µv are
the posterior moments of p (zo,l(0), vo,l|X, γ = 1). To identify a unique t∗γ=1 we assume that v2a > µ2

z , such that the
agent is guaranteed to be able to catch up with the target. Furthermore, we require t∗γ=1 > 0 which is guaranteed

to be violated if µ2
zµ

2
v < v2az

2
o,d + v2aµ

2
z − µ2

vz
2
o,d, or, equally,

(
z2o,d/µ

2
z + 1

) (
v2a − µ2

z

)
> 0. The latter holds if both

v2a − µ2
z > 0 (guaranteed by assumption) and z2o,d/µ

2
z + 1 > 0, or z2o,d > −µ2

z . As the right-hand side of the latter is
always negative, the last inequality is always true, confirming that the only solution to t∗γ=1 is the one with a sum
(rather than difference) in the numerator. Substituting the expressions of µz and µv in terms of x̄ and v̂ does not lead
to any appreciable simplifications.

Together, these two solutions allow us to approximate the optimal heading directions and stopping times by

θ∗ ≈ θ∗γ=0p (γ = 0|X) + θ∗γ=1p (γ = 1|X) , (50)

t∗ ≈ t∗γ=0p (γ = 0|X) + t∗γ=1p (γ = 1|X) . (51)

We use these approximations to initiate a gradient-descent procedure to find the correct t∗ and θ∗.

4.4. Experimentally observable optimal stopping, and perceived velocity estimate. As for the stationarity reports,
the experimenter does not observe x̄ and v̂ and needs to marginalize over them. They are distributed as

x̄|v, zN N
(
zN −

vT

2
,
σ2

T

)
, v̂|v ∼ N

(
v,

12σ2

T 3

)
. (52)

We estimate the associated statistics of θ∗ and t∗, by a Monte Carlo approximation. That is, we draw multiple x̄ and
v̂, compute the associated θ∗ and t∗, and use those to compute the posterior distributions over θ∗ and t∗.

To assess the decision maker’s estimate of the target’s velocity, we will infer the assumed velocity from the deci-
sion maker’s stopping location. The actual stopping location could feature a mismatch between the decision maker’s
depth and that of the target. By our initial assumption that the decision maker knows the target’s depth, this mis-
match arises from the decision maker’s actual location while actively steering, and thus doesn’t refect the decision
maker’s estimate. Thus, instead of using the agent’s final location as a measure for the assumed velocity, we will
instead use the point zo,d tan θ∗ and time t̂ = zo,d/(va cos θ∗) at which the agent crossed the target’s path (i.e. reaches
depth z0,d).

Therefore, we won’t take the depth mismatch into account, and instead only focus on lateral location, using

zo,l(0) + v̂ot̂ ≈ vat̂ sin θ∗, (53)

where the left-hand side is the target’s location at time t̂ (assuming velocity v̂o), and the right-hand side is the decision
maker’s location at the same time. Re-expressing the above in terms of v̂o results in

v̂o ≈ va
(

sin θ∗ − zo,l(0)

zo,d
cos θ∗

)
. (54)
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