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Abstract. Microbial communities usually harbor a mix of bacteria, archaea, plas-
mids, viruses, and microeukaryotes. Within these communities, viruses, plasmids, and
microeukaryotes coexist in relatively low abundance, yet they engage in intricate in-
teractions with bacteria. Moreover, viruses and plasmids, as mobile genetic elements,
play important roles in horizontal gene transfer and the development of antibiotic
resistance within microbial populations. However, due to the difficulty of identifying
viruses, plasmids, and microeukaryotes in microbial communities, our understanding
of these minor classes lags behind that of bacteria and archaea. Recently, several
classifiers have been developed to separate one or two minor classes from bacteria
and archaea in metagenome assemblies, but none can classify all of the four classes
simultaneously. Moreover, existing classifiers have low precision on minor classes.
Here, we developed a classifier called 4CAC that is able to identify viruses, plas-
mids, microeukaryotes, and prokaryotes simultaneously from metagenome assem-
blies. 4CAC generates an initial four-way classification using several sequence length-
adjusted XGBoost models and further improves the classification using the assem-
bly graph. Evaluation on simulated and real metagenome datasets demonstrates that
4CAC substantially outperforms existing classifiers and combinations thereof on short
reads. On long reads, it also shows an advantage unless the abundance of the minor
classes is very low. 4CAC runs 1-2 orders of magnitude faster than the other classifiers.
The 4CAC software is available at https://github.com/Shamir-Lab/4CAC.

1 Introduction

Microbial communities in natural and host-associated environments are often dominated by
bacteria and coinhabited by archaea, fungi, protozoa, plasmids, and viruses [25]. Changes
in microbiome diversity, function, and density have been linked to a variety of disorders
in many organisms [26, 10]. As the dominant group of species in microbial communities,
bacteria have been widely studied. Taxonomic classification tools [43, 42] and metagenome
binning tools [24, 23, 14, 44] were proposed to detect bacterial species present in a microbial
community directly from reads or after assembling reads into contigs. It is known that the
specific composition and abundance of certain bacterial species affect their host’s health
and fitness [6, 20, 27]. In contrast, our understanding of plasmids, viruses, and microbial
eukaryotes largely lags behind, due to their lower abundance and the difficulty of detecting
them in microbial communities [4, 21]. Recent studies revealed that viruses and plasmids
play important roles in horizontal gene transfer events and antibiotic resistance [7, 40, 22,
39], and microbial eukaryotes have complex interaction with their hosts in both plant- and
animal-associated microbiomes [21, 29]. To better understand the species composition and
the function of each species in microbial communities, classifiers that can identify not only
bacteria but also the other members of a microbial community are needed.
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Many binary and three-class classifiers have been developed in recent years for sepa-
rating viruses and plasmids from prokaryotes (bacteria and archaea) in microbial commu-
nities. VirSorter [36], DeepVirFinder [35], VIBRANT [16], and many other classifiers [12,
3] were designed to separate viruses from prokaryotes. Plasmid classifiers, such as Plas-
Flow [18], PlasClass [30], Deeplasmid [1], and Platon [37] were developed to separate plas-
mids from prokaryotes. As both viruses and plasmids are commonly found in microbial
communities, three-class classifiers, such as PPR-Meta [9], viralVerify [2], 3CAC [33], and
geNomad [8] were proposed to simultaneously identify viruses, plasmids, and prokaryotes
from metagenome assemblies. In contrast, microbial eukaryotes, such as fungi and proto-
zoa, are integral components of natural microbial communities but were commonly ignored
or misclassified as prokaryotes in most metagenome analyses. More recently, EukRep [41],
Tiara [15], and Whokaryote [32] were proposed to distinguish microeukaryotes from prokary-
otes. However, even though prokaryotes, microeukaryotes, viruses, and plasmids are present
in most microbial communities, to the best of our knowledge, there are still no four-class
classifiers that can simultaneously identify and distinguish all of them. (A recent preprint
reported a five-way classifier, DeepMicrobeFinder [13], but the code provided on GitHub
was not functional.) Moreover, most classifiers ignore the fact that microbial communities
are dominated by bacteria, and have low precision on the minor classes, such as viruses,
plasmids, and microeukaryotes [35, 33].

In this work, we present 4CAC (4-Class Adjacency-based Classifier), a fast algorithm to
identify viruses, plasmids, microeukaryotes, and prokaryotes simultaneously from metagenome
assemblies. 4CAC generates an initial classification using a set of XGBoost models trained
on known reference genomes. The XGBoost classifier outputs four scores for each contig to
indicate its confidence of being classified as a virus, plasmid, prokaryote, or microeukaryote.
To assure high precision in the classification of minor classes, we set higher score thresh-
olds for classifying minor classes compared to prokaryotes. Subsequently, inspired by 3CAC,
4CAC utilizes the adjacency information in the assembly graph to improve the classification
of short contigs and of contigs with lower confidence by the initial classification. Evalua-
tion of 4CAC against combinations of existing classifiers on simulated and real metagenome
datasets demonstrates that 4CAC has substantially better performance on short reads. On
long reads, it also shows an advantage unless the abundance of the minor classes is very low.

2 Results

2.1 The 4CAC algorithm

To understand the species present in a microbial community, the common practice is to
first assemble the sequencing reads into longer sequences called contigs, and then classify
these contigs into classes. Broadly used metagenome assemblers, such as metaSPAdes [28]
and metaFlye [17], use assembly graphs to combine overlapped reads (or k-mers) into con-
tigs. Nodes in an assembly graph represent contigs and edges represent sequence overlaps
between the corresponding contigs. Most of the existing classifiers take contigs as input and
classify each of them independently based on their sequence. Our recent work on three-class
classification demonstrated that neighboring contigs in an assembly graph are more likely
to come from the same class and thus the adjacency information in the graph can assist the
classification [33]. Therefore, here we introduce 4CAC, a four-class classifier that combines
machine learning methods with assembly graph neighborhood information to classify each
contig as virus, plasmid, prokaryote, microeukaryote, or uncertain.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2023. ; https://doi.org/10.1101/2023.01.20.524935doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.20.524935
http://creativecommons.org/licenses/by-nd/4.0/


4CAC 3

Inspired by previous studies [30, 9, 34], to assure good classification of sequences with
different lengths, we constructed five XGBoost models trained on sequence fragments of
length 0.5k, 1kb, 5kb, 10kb, and 50kb, respectively. The k-mer composition of each fragment
was used as the feature vector to train the XGBoost models. Given a sequence, we calculate
its k-mer composition and classify it with the model that matches its length. More details
on the design and implementation of the XGBoost classifiers can be found under Methods.

The XGBoost classifier outputs four scores between 0 and 1 for each sequence indicating
its confidence of being classified as virus, plasmid, prokaryote, or microeukaryote. Exist-
ing algorithms [9, 30, 34] usually classify a sequence into the class with the highest score
by default. To improve precision, a threshold can be specified, and sequences whose high-
est score is lower than the threshold will be classified as “uncertain”. However, due to the
overwhelming abundance of prokaryotes in the metagenome assemblies (usually ≥ 70%), a
high threshold results in low recall in the classification of prokaryotes, while a low thresh-
old results in low precision in the classification of the minor classes (virus, plasmid, and
microeukaryote). Taking into consideration the class imbalance, we chose to set different
thresholds for different classes. By default, a score threshold of 0.95 was set for viruses
and plasmids, and no score threshold was set for prokaryotes and eukaryotes. See Section
“Length-specific classification” in Methods for more explanation on the choice of the score
thresholds. This results in high precision for the classification of each class while maintaining
high recall for the classification of prokaryotes.

Next, we exploit the assembly graph to improve the initial classification by the following
two steps. (1) Correction of classified contigs. For a classified contig c, if it has at least
two classified neighbors and all of them belong to the same class while c belongs to a
different class, 4CAC corrects the classification of c to be the same as its classified neighbors.
(2) Propagation to unclassified contigs. For an unclassified contig c, if all of its classified
neighbors belong to the same class, 4CAC assigns c to that class. See Section “Refining the
classification using the assembly graph” in Methods for more details.

2.2 Simulated metagenomes

To evaluate the performance of 4CAC and existing classifiers, we simulated two short-read
and two long-read metagenome datasets as follows. Prokaryotes, their co-existing plasmids,
viruses, and microeukaryote genomes were selected from the NCBI GenBank Database to
mimic species in a microbial community. All the genomes selected were released after De-
cember 2021, and thus they were not included in the training set of the classifier. As a
generic metagenome scenario, we simulated reads in proportions mimicking regular metage-
nomic environments. As a filtered metagenome scenario, where reads from large genomes
are filtered, the proportions were adjusted so that plasmids and viruses are enriched. The
relative abundance of genomes within each class was set as in [30]. Short reads were sim-
ulated from the genome sequences using InSilicoSeq [11] and assembled by metaSPAdes.
Long reads were simulated from the genome sequences using NanoSim [46] and assembled
by metaFlye. Full details on the simulation and the assembly are provided in Methods. We
denote by Sim AN the simulation with A=S for short reads and A=L for long reads, N=G
for the generic scenario and N=F for the filtered scenario. For example, Sim SF is the short
read filtered scenario. Table 1 summarizes the properties of the datasets and the assemblies.
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Table 1. Properties of the simulated and the real metagenomic datasets.

Dataset Read type Number of read(M) Number of assembled contigs Short contigs
prokaryote eukaryote plasmid virus prokaryote eukaryote plasmid virus (< 1kb)

Sim SG MiSeq 56 24 10 10 15,460 8,112 1,725 1,275 5,095
Sim SF MiSeq 3.5 1.5 10 10 50,546 44,378 1,650 1,256 56,735
Sim LG Nanopore 0.56 0.24 0.1 0.1 1,575 148 193 202 125
Sim LF Nanopore 0.035 0.015 0.1 0.1 922 343 207 193 33

Sharon HiSeq 106.3 in total 3,097 533 87 21 1,169
Tara HiSeq 190.7 in total 16,156 31 153 1,270 11,643

Oral Nano Nanopore 5.6 in total 9,112 50 11 23 1,888
Gut HiFi Pacbio HiFi 1.9 in total 4,958 0 27 30 203

2.3 4CAC outperforms existing classifiers on simulated metagenomes

To evaluate 4CAC in classifying viruses, plasmids, and eukaryotes from metagenome assem-
blies, we conducted a comprehensive comparison against the start-of-the-art binary classi-
fiers, including the viral classifiers DeepVirFinder and VIBRANT, the plasmid classifiers
PlasClass and Platon, and the eukaryote classifiers EukRep, Whokaryote, and Tiara. Fig-
ure 1 summarizes the results. 4CAC outperforms almost all binary classifiers in each class
classification, except in the classification of eukaryotes, where Tiara achieves a slightly higher
F1 score on the Sim LF dataset (here and throughout, results were evaluated by their F1
score. See Methods for details). In classifying viruses, the XGBoost classifier designed in
this study, without using the graph information, outperforms the start-of-the-art viral clas-
sifiers. In plasmid classification, the XGBoost classifier achieves the second-best performance
in long-read assemblies, while Platon is the second-best in short-read assemblies. In classify-
ing eukaryotes, all classifiers have good performance in long-read assemblies with Tiara and
4CAC achieving the best result. However, in short-read assemblies, 4CAC and the XGBoost
classifier maintain consistently high F1 scores while the performance of the other eukaryote
classifiers is markedly lower. Not surprisingly, by utilizing the graph information, 4CAC im-
proved the XGBoost classification results in 11 out of 12 classifications across all datasets,
and the improvement is dramatic in classifying plasmids from short-read assemblies.

Fig. 1. Performance of binary classifiers and 4CAC on simulated metagenomes. XGBoost
represents the XGBoost classifier designed in this study without using graph information.

In addition, we conducted a comprehensive comparison between 4CAC and a set of three-
way classifiers specifically designed to classify viruses and plasmids simultaneously from
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metagenome assemblies. The evaluated classifiers included PPR-Meta, viralVerify, geNomad,
and 3CAC. Figure 2 summarizes the results. Across the various datasets, 4CAC consistently
achieved the highest F1 scores in classifying both viruses and plasmids, outperforming the
other classifiers. The only exception was observed in the Sim LF dataset, where 3CAC ex-
hibited a slightly higher F1 score than 4CAC. 3CAC performed as the second-best classifier
in most tests as it also utilizes graph information to improve its classification. Note that
3CAC utilizes either PPR-Meta or viralVerify to generate its classification. Thus, hereafter
when using 3CAC, we executed the algorithm using both viralVerify and PPR-Meta solu-
tions, and selected the better result. Among the stand-alone three-way classifiers, geNomad
and PPR-meta had the highest F1 score in classifying viruses while viralVerify was the best
in classifying plasmids in most tests.

It is important to note that, in order to ensure a fair comparison, eukaryotic contigs
were excluded from our benchmark of three-way classifiers. Similarly, only two classes of
contigs were considered when benchmarking binary classifiers. Supplementary Figures S1
and S2 provide a comprehensive overview of the results when all contigs were included. As
expected, the inclusion of all contigs led to a decline in the performance of both binary and
three-way classifiers, as they tend to misclassify contigs that are not modeled. For example,
eukaryotic contigs and plasmid contigs can be misclassified as viruses by viral classifiers, and
eukaryotic contigs can be misclassified as plasmids or viruses by three-way classifiers, etc.
This highlights the need for a four-way classifier that is able to identify viruses, plasmids,
eukaryotes, and prokaryotes simultaneously from metagenome assemblies.

Fig. 2. Performance of three-way classifiers and 4CAC on simulated metagenomes.
XGBoost represents the XGBoost classifier designed in this study without using graph information.

2.4 Combining existing classifiers to generate four-way classifications

There are currently no four-class classifiers that can be compared with 4CAC. (A recent
preprint reported a five-way classifier, DeepMicrobeFinder [13], but we could not run the
code provided on GitHub.) Therefore, we combined existing classifiers to generate a four-
way classification as follows. (1) The most straightforward idea is using VIBRANT and
Platon to identify viruses and plasmids from metagenome assemblies. The remaining con-
tigs are further classified as eukaryotes, prokaryotes, or uncertain by Tiara. We ran either
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VIBRANT or Platon first and selected the solution with a higher F1 score. This result is
denoted by Binary+. Here VIBRANT, Platon, and Tiara were selected because they per-
formed best in binary classifications of viruses, plasmids, and eukaryotes from metagenome
assemblies (shown in Figure 1). (2) Comparing three-way classifiers to binary classifiers
demonstrated that 3CAC outperforms all binary classifiers in classifying viruses and plas-
mids from metagenome assemblies (Figure 1 and 2). Therefore, we further combined 3CAC
with Tiara in the following way. We first classified contigs by 3CAC and set aside these
classified as plasmids and viruses, then used Tiara to classify the rest into eukaryotes,
prokaryotes, or uncertain. We also repeated the process in the reverse order, running first
Tiara and then 3CAC. We then selected the solution with a higher F1 score. This result is
denoted by 3CAC+Tiara.

Figure 3 demonstrates that 4CAC outperformed the combined classifiers in each classi-
fication across almost all datasets. In the long-read assembly Sim LF, 3CAC+Tiara had a
slightly higher F1 score than 4CAC in classifying plasmids and eukaryotes. Compared to the
initial XGBoost classification, 4CAC consistently improved the F1 score across all tests, and
the improvement was more substantial in classifying plasmids from short-read assemblies. A
possible reason is that plasmids often share similar sequences with their hosts, and contigs
assembled from short reads are too short to accurately distinguish them. However, when
considering the classification in the assembly graph, a chromosome contig that was misclas-
sified as a plasmid is often surrounded by chromosome contigs. Thus, the graph refinement
step of 4CAC can efficiently correct such a misclassification. The performance of combined
classifiers exhibits greater variability across diverse datasets. Not surprisingly, 3CAC+Tiara
outperformed Binary+ in almost all the tests. Compared to combined classifiers, 4CAC im-
proved the F1 score remarkably in classifying eukaryotes and prokaryotes from short-read
assembly Sim SF. This may be caused by a larger proportion of short contigs in Sim SF
(58% in Sim SF vs. 19% in Sim SG. See Table 1). Short contigs are commonly unclassi-
fied by existing classifiers while 4CAC is able to classify most of them according to their
neighboring long contigs in the assembly graph.

Figure 4 summarizes the total precision, recall, and F1 score of four-class classifiers.
Consistent with the 3CAC algorithm, we observed that the graph refinement step improved
the recall with little or no loss of precision in all the tests. 4CAC outperformed combined
classifiers in both precision and recall in all the simulated assemblies, while XGBoost was
the second-best. 4CAC improved the recall remarkably in Sim SF, due to a larger proportion
of short contigs in it. Surprisingly, the XGBoost classifier itself, without using the graph
information, had comparable or even better precision and recall than combined classifiers.

2.5 Performance on real metagenome samples

We additionally tested the performance of classifiers on four real complex metagenomic
datasets: (1) Short-read sequencing of 18 preborn infant fecal microbiome samples (NCBI
accession number SRA052203), referred to as Sharon [38]. (2) Short-read sequencing of a
microbiome sample from the Tara Oceans (NCBI accession number ERR868402), referred to
as Tara [15]. Currently, there is no study exploring microeukaryotes in long-read sequencing
of microbiome samples. To test our method on long-read sequencing metagenomic datasets,
we selected two publicly available datasets: (3) Oxford Nanopore sequencing of two human
saliva microbiome samples (NCBI accession number DRR214963 and DRR214965), referred
to as Oral Nano [45]. (4) Pacbio HiFi sequencing of a human gut microbiome sample
(NCBI accession number SRR15275211), referred to as Gut HiFi [31]. Datasets with short
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Fig. 3. Performance of four-class classifiers on each class of simulated metagenomes.
XGBoost represents the XGBoost classifier designed in this study without using graph information.

Fig. 4. Performance of four-class classifiers on simulated metagenomes.
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reads and long reads were assembled by metaSPAdes and metaFlye, respectively. In Sharon
and Oral Nano, the multiple samples in each dataset were co-assembled. To identify the
class of contigs in these real metagenome assemblies, we used all the complete assemblies of
bacteria, archaea, viruses, plasmids, and microeukaryotes from the NCBI GenBank database
as reference genomes and mapped contigs to these reference genomes using minimap2 [19].
A contig was considered matched to a reference sequence if it had ≥ 80% mapping identity
along ≥ 80% of the contig length. Contigs that matched to reference genomes of two or
more classes were excluded to avoid ambiguity. In all assemblies, contigs shorter than 500bp
were not classified and excluded from the performance evaluation. Table 1 summarizes the
properties of the datasets and the assemblies.

Since 3CAC+Tiara consistently outperformed the combination of binary classifiers (Fig-
ure 4), here we only compared 4CAC and its initial XGBoost classification to 3CAC+Tiara.
Similar to the result in simulated assemblies, Figure 5 shows that the graph refinement step
improved both the precision and recall of the XGBoost classification and led to significant
improvement in the F1 score in most tests. In the Gut HiFi dataset, 4CAC slightly improved
the recall of XGBoost classification while sacrificing a few precision, and resulted in a similar
F1 score. On the short read datasets Sharon and Tara, in which microeukaryotes were pre-
viously identified [41, 15], 4CAC achieved moderately better precision than 3CAC+Tiara
but dramatically improved the recall. For example, 4CAC improved the recall from 0.54
to 0.87 in the Tara dataset. As a result, 4CAC had a substantially higher F1 score than
3CAC+Tiara.

Fig. 5. Performance of four-class classifiers on the real datasets. (a) Sharon and (b) Tara
were assembled from short reads, (c) Oral Nano and (d) Gut HiFi were assembled from long reads.

Further analysis of the performance on the Sharon dataset reveals that the graph refine-
ment step of 4CAC improved both the precision and recall of the XGBoost in each class
classification (Figure 6). The improvement is more significant in the classification of plas-
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mids, which is consistent with the observation on simulated assemblies [9]. Compared to
3CAC+Tiara, 4CAC had higher F1 scores in the classification of prokaryotes and eukary-
otes, but a lower F1 score on viruses (Figure 6). A possible reason is that the proportion of
viral contigs in the Sharon dataset is very small (0.6% vs. ≥ 1.3% in simulated assemblies.
See Table 1). In this extreme case, viralVerify, which is used in 3CAC and classifies con-
tigs based on their gene content, achieved higher precision than the machine learning-based
methods, such as PPR-Meta and the XGBoost classifier.

On the two long-read datasets of human saliva and gut microbiome, 3CAC+Tiara out-
performed 4CAC (Figures 5 (c) and (d)). Here too this is likely because each of the minor
classes accounts for less than 0.6% of the contigs (Table 1).

Fig. 6. Performance on each class for real short read dataset Sharon.

3 Software and resource usage

Table 2 presents the runtime of the classifiers. All classifiers were run on contigs at least 500
bp in each dataset since contigs shorter than 500 bp were excluded from our evaluation. To
run DeepVirFinder, we also excluded contigs longer than 2 Mb because DeepVirFinder failed
on these long contigs. For 3CAC we report the runtime of viralVerify and PPR-Meta, since
they required the lion’s share of the time, with the rest of 3CAC always taking less than 3
minutes. Due to the large runtime of viralVerify, geNomad, Platon, and VIBRANT, 4CAC
is much faster than the other classifiers, which often require 1-2 orders of magnitudes more
time. Supplementary Table S2 summarizes the memory usage of the classifiers. Memory
usage was the highest for geNomad in all the tests. All runs were performed on a 44-core,
2.2GHz server with 792GB of RAM.
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4CAC is freely available via https://github.com/Shamir-Lab/4CAC.

Table 2. Runtime of the tested classifiers. Runtime is measured by wall clock time in min-
utes. ViralV, PPR-M, and DeepVF represent classifiers viralVerify, PPR-Meta, and DeepVirFinder
respectively.

4CAC viralV PPR-M geNomad Tiara PlasClass Platon DeepVF VIBRANT

Sim SG 6.9 322 60.4 106.9 2.9 4.2 241.5 91.2 185.2
Sim SF 4.8 175 25.1 154.8 2.8 3.9 643.1 62.1 82.1
Sim LG 3.7 185.4 33.4 92.8 1.3 2.3 22 33.2 139.8
Sim LF 1.4 77.5 14.9 27.1 0.7 1.2 22 14.7 53.1
Sharon 1.4 29.9 7.3 16.4 0.5 1.2 49.4 16.3 25.3
Tara 14.3 221.1 94.7 155.8 4.4 11.2 638.9 92.3 50.6

Oral Nano 8.2 452.5 84.4 140.1 3.5 5.6 301.1 88.6 201.1
Gut HiFi 9.3 677.8 124 252.7 4.8 8.1 444.6 109.8 426.1

4 Discussion and Conclusion

We presented 4CAC, the first classification algorithm for simultaneously identifying viruses,
plasmids, prokaryotes, and microeukaryotes in metagenome assemblies. Evaluation on sim-
ulated and real metagenomic datasets demonstrated that 4CAC substantially outperformed
the combination of state-of-the-art binary and three-class classifiers in most tests. 4CAC
also has a large speed advantage over the combined classifiers, running usually 1-2 orders
of magnitude faster. In contrast to 3CAC, which necessitates the execution of viralVerify or
PPR-meta, 4CAC is a stand-alone algorithm, making it more user-friendly.

Machine learning-based classifiers often assign scores to predictions, indicating their
confidence. However, these scores do not reflect the true probabilities of the predictions.
Indeed, when we attempted training XGBoost classifiers on class-imbalanced datasets using
a default score threshold of 0.5 for all classes, results were unsatisfactory. By setting different
probability thresholds for different classes, we obtained a good trade-off between precision
and recall. Note, however, that when applying the same classifier to samples with varying
class compositions, the results may exhibit significantly different false positive rates, and
this is true for 4CAC as well.

On two real datasets assembled from long reads, where the relative abundance of viruses,
plasmids, and eukaryotes was extremely low (less than 0.6% compared to over 1.3% in other
assemblies), the combined classifier 3CAC+Tiara outperformed 4CAC. This difference in
performance could potentially be attributed to the tendency of classifiers trained on k-mer
compositions to yield a higher false positive rate compared to classifiers trained on the
gene content of contigs. It is important to mention that these results may be biased by
the underrepresentation of these classes in genomic databases. Given the current knowledge
about species in metagenomes, we recommend using 4CAC on short reads and on host-
filtered long read samples. For generic long read samples, where prokaryotes constitute the
majority, we suggest utilizing 3CAC followed by Tiara for optimal results.

The implementation of the correction and propagation steps on the assembly graph
yielded substantial improvements in the classification of short contigs. As anticipated, con-
sidering that 3CAC utilizes similar refinement procedures, the combined classifier 3CAC+Tiara
demonstrated the second-best performance across all tests.
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Our study has several limitations. First, as mentioned above, performance is affected by
the relative abundance of the different classes in the input data. Second, the refinement step
in 4CAC may misclassify some sequences, especially those that underwent horizontal gene
transfer across classes, e.g. proviruses and integrated plasmids. However, as we have shown,
that step improves overall performance. In future work, we aim to incorporate factors such
as contig coverage and length to enhance the identification of proviruses.

Third, 4CAC does not categorize contigs at various taxonomic levels such as genus and
species. Taxonomic classification requires different tools and approaches that are specifically
designed for that goal, such as Kraken2 [42] and MetaPhlAn4 [5].

Finally, there is a chance of leakage occurring between the training and test set in case
very similar sequences reside in both. However, using the yardstick of geNomad [8], where
sequences with similarity > 95% are considered highly similar, we checked our test set and
found that only < 15% of the test sequences share a high similarity with sequences in the
training set. Moreover, the partition into training and test sets by GenBank release date
is a common practice, which was also adopted in most of the classifiers that we evaluated
(e.g. [9, 30, 35]). Furthermore, it also gives a realistic performance estimate, since when a
method is applied to a new sample, some of the sequences encountered are likely to have
highly similar counterparts in the database.

5 Methods

5.1 Training and testing datasets

To train and test the XGBoost classifier, we downloaded all complete assemblies of viruses,
plasmids, prokaryotes (bacteria and archaea), and microeukaryotes (fungi and protozoa)
from the National Center for Biotechnology Information (NCBI) GenBank database (down-
load date April 22, 2022). After filtering out duplicate sequences, this database contained
31,129 prokaryotes, 69,882 viruses, 28,702 plasmids, and 2,486 microeukaryotes. To evalu-
ate the ability of 4CAC to identify novel species, 24,734 prokaryotes, 65,475 viruses, 21,304
plasmids, and 2,315 microeukaryotes released before December 2021 were used to build the
training set, while the remainder was used to build the testing set.

5.2 Training the XGBoost classifier

Inspired by previous studies [9, 30, 34], we trained several XGBoost models for different
sequence lengths to assure the best performance. Specifically, five groups of fragments with
lengths 0.5kb, 1kb, 5kb, 10kb, and 50kb were sampled from the reference genomes as artificial
contigs. The composition information of each fragment is summarized by concatenating the
canonical k-mer frequencies for k from 3 to 7, which results in a feature vector of length
10,952. We sampled 180k, 180k, 90k, 90k, and 50k fragments from each class to train the
XGBoost models for sequence lengths 0.5kb, 1kb, 5kb, 10kb, and 50kb, respectively.

5.3 Length-specific classification

To assure the best classification for sequences of different lengths, we classify a sequence
using the XGBoost model that is trained on fragments with the most similar length. Namely,
the five XGBoost models we trained above are used to classify sequences in the respective
length ranges (0, 0.75kb], (0.75kb, 3kb], (3kb, 7.5kb], (7.5kb, 30kb], and (30kb, ∞]. Given
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a sequence, we calculate its canonical k-mer frequency vector and use it as the feature
vector to classify the sequence with the model that matches its length. The calculation of
k-mer frequency vector can be performed in parallel for different sequences to achieve faster
runtime.

For each sequence in the input, the XGBoost classifier outputs four scores between 0 and
1 indicating its confidence of being classified as a virus, plasmid, prokaryote, or microeukary-
ote. Taking into consideration the class imbalance, we chose to set different thresholds for
classifying different classes. Tests on simulated metagenomes show that increasing score
thresholds for prokaryotes and eukaryotes had little effect on the precision but decreased
the recall a lot (Supplementary Figure S3). Thus we did not set specific score thresholds for
prokaryotes and eukaryotes. In other words, a sequence was classified as prokaryote or eu-
karyote if that class had the highest score, irrespective of its value. For viruses and plasmids,
we tested several score thresholds (0.8, 0.85, 0.9, 0.95) and similar results were observed,
while increasing the score threshold slightly improved the result in both precision and recall
(see Supplementary Table S1). Note that increasing the score threshold did not decrease
the recall of 4CAC, because the graph refinement step can significantly improve the recall
over the initial classification. Therefore, in the 4CAC algorithm, we set the default score
threshold of 0.95 for classifying contigs as viruses and plasmids.

5.4 Refining the classification using the assembly graph

Nodes in an assembly graph represent contigs and edges represent sequence overlaps between
the corresponding contigs. In our description below, the neighbors of a contig are its adjacent
nodes in the undirected assembly graph. In the 4CAC algorithm, we exploit the assembly
graph to improve the initial classification by the following two steps. The description here
follows [33].

(1) Correction of classified contigs. All classified contigs are scanned in decreasing order
of the number of their classified neighbors. For a classified contig c, if it has at least two
classified neighbors and all of them belong to the same class while c belongs to a different
class, 4CAC corrects the classification of c to be the same as its classified neighbors. Note
that once a contig was corrected, the class of this contig and its classified neighbors will not
be corrected anymore.

(2) Propagation to unclassified contigs. For an unclassified contig c, if all of its classified
neighbors belong to the same class, 4CAC assigns c to that class. Unclassified contigs are
scanned and classified in decreasing order of the number of their classified neighbors. We
repeat this step until no propagation is possible.

5.5 Simulated datasets

We randomly selected 100 prokaryotes, 461 co-existing plasmids, 500 viruses, and 6 mi-
croeukaryotes from the NCBI GenBank Database to mimic species in a microbial community.
All the genomes selected were released after December 2021, and thus they were not included
in the training set of the classifier. Two short-read and two long-read metagenome assem-
blies were generated from this microbial community as follows. As a generic metagenome
scenario, we simulated reads from prokaryotes, eukaryotes, viruses, and plasmids in a ra-
tio of 56:24:10:10. As a filtered metagenome scenario, where reads from large genomes are
filtered and thus plasmids and viruses are enriched, we simulated reads from prokaryotes,
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eukaryotes, viruses, and plasmids in a ratio of 14:6:40:40. The abundance profiles of prokary-
otes, eukaryotes, and viruses were modeled by the log-normal distribution as in [30]. The
copy numbers of co-existing plasmids were simulated by the geometric distribution with
parameter p = min(1, log10(L)/7) where L is the plasmid length as in [30]. The abundance
profile of plasmid genomes was calculated from their host abundance profile and the copy
numbers of plasmids. 150bp short reads were simulated from the genome sequences using
InSilicoSeq and assembled by metaSPAdes. Long reads were simulated from the genome se-
quences using NanoSim and assembled by metaFlye. The error rate of long reads was 9.8%
and their average length was 14.9kb. For each assembly, contigs were mapped to the refer-
ence genomes by metaQUAST to define the ground truth. To ensure confident assignment
of contigs, metaQUAST excludes contigs shorter than 500bp by default.

5.6 Evaluation criteria

All the classifiers were evaluated based on precision, recall, and F1 scores calculated as
follows.

– Precision: the fraction of correctly classified contigs among all classified contigs. Note
that uncertain contigs were not included in this calculation.

– Recall: the fraction of correctly classified contigs among all contigs.
– F1 score: the harmonic mean of the precision and recall, or equivalently: F1 score =

(2 ∗ precision ∗ recall)/(precision+ recall).

Following [30, 9], the precision, recall, and F1 scores here were calculated by counting
the number of contigs and did not take into account their length. The precision and recall
were also calculated separately for virus, plasmid, prokaryote, and eukaryote classification.
For example, the precision of virus classification was the fraction of correctly classified virus
contigs among all contigs classified as viruses, and the recall of virus classification was the
fraction of correctly classified virus contigs among all virus contigs.
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