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Abstract

An important question concerning inter-areal communication in the cortex is whether these interactions are synergistic, i.e. brain
signals can either share common information (redundancy) or they can encode complementary information that is only available
when both signals are considered together (synergy). Here, we dissociated cortical interactions sharing common information from
those encoding complementary information during prediction error processing. To this end, we computed co-information, an
information-theoretical measure that distinguishes redundant from synergistic information among brain signals. We analyzed au-
ditory and frontal electrocorticography (ECoG) signals in five common awake marmosets performing two distinct auditory oddball
tasks and investigated to what extent event-related potentials (ERP) and broadband (BB) dynamics encoded redundant and syner-
gistic information during auditory prediction error processing. In both tasks, we observed multiple patterns of synergy across the
entire cortical hierarchy with distinct dynamics. The information conveyed by ERPs and BB signals was highly synergistic even at
lower stages of the hierarchy in the auditory cortex, as well as between auditory and frontal regions. Using a brain-constrained neu-
ral network, we simulated the spatio-temporal patterns of synergy and redundancy observed in the experimental results and further
demonstrated that the emergence of synergy between auditory and frontal regions requires the presence of strong, long-distance,
feedback and feedforward connections. These results indicate that the distributed representations of prediction error signals across
the cortical hierarchy can be highly synergistic.

INTRODUCTION

The traditional modular view of brain function is increas-
ingly challenged by the finding that information about external
stimuli and internal variables is distributed across brain areas
(de Schotten and Forkel, 2022; Urai et al., 2022; Shenoy and
Kao, 2021; Breakspear, 2017; Panzeri et al., 2022). When in-
formation in a complex system is carried by multiple nodes, this
could imply that there is a large degree of redundancy in the in-
formation carried by the different nodes. That is, the whole is
actually less than the sum of the parts. An alternative possi-
bility, however, is that information is carried in a synergistic
manner, i.e. the different nodes might carry extra information
about task variables when they are combined. This can occur
when the relationship between the nodes encodes the stimulus
in a way that is not apparent when observing each node’s activ-
ity alone – in other words, the whole is greater than the sum of

the parts (Luppi et al., 2022).
Both recent large-scale spiking and electrocorticographic

(ECoG) recordings support the notion that information about
task variables is widely distributed rather than highly localized
(Urai et al., 2022; Steinmetz et al., 2019; Parras et al., 2017;
Saleem et al., 2018; Voitov and Mrsic-Flogel, 2022). For exam-
ple, in the visual domain, widespread neuronal patterns across
nearly every brain region are non-selectively activated before
movement onset during a visual choice task (Steinmetz et al.,
2019). Similarly, distributed and reciprocally interconnected
areas of the cortex maintain high-dimensional representations
of working memory (Voitov and Mrsic-Flogel, 2022). In the
case of multisensory integration, sound-evoked activity and its
associated motor correlate can be dissociated from spiking ac-
tivity in the primary visual cortex (V1) (Lohuis et al., 2022;
Bimbard et al., 2023). A last example, and the one used in the
current study, is the case of communication of prediction error
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(PE) signals. Hierarchical predictive coding theory has been
proposed as a general mechanism of processing in the brain
(Rao and Ballard, 1999). The communication of prediction er-
ror (PE) signals using spikes and local field potentials (LFPs)
recorded from subcortical and cortical regions reveal a large-
scale hierarchy of PE potentials (Parras et al., 2017).

A major question is whether such distributed signals exhibit
a high degree of redundancy (i.e. shared information) or a
high degree of synergy (i.e. extra information) about their cor-
responding task variables. Electrophysiological studies have
shown that synergy and redundancy have functional relevance
(Nigam et al., 2019; Ince et al., 2017; Park et al., 2018; Ince
et al., 2016; Giordano et al., 2017; Luppi et al., 2022; Var-
ley et al., 2023). For instance, laminar recordings in V1 sug-
gest that synergistic interactions can efficiently decode visual
stimuli better than redundant interactions, even in the presence
of noise and overlapping receptive fields (Nigam et al., 2019).
In contrast, the information processing of olfactory stimuli ex-
hibits higher levels of redundant information across olfactory
regions (Olivares et al., 2022). Here we investigate this ques-
tion by using co-Information (co-I), an information theoretical
metric capable of decomposing neural signals into what is in-
formationally redundant and what is informationally synergistic
between stimuli (McGill, 1954; Ince et al., 2017). Redundant
information quantifies the shared information between signals,
suggesting a common processing of the stimuli. Synergistic
information quantifies something different: whether there is ex-
tra information only available when signals are combined, in-
dicating that the information about the variable is in the actual
relationship between the signals. Using ECoG recordings, we
investigated synergistic and redundant interactions in five com-
mon marmosets performing two types of auditory tasks. This
allowed us to determine the processing of communication of
prediction error information across the brain during a range of
auditory deviancy effects. Finally, we applied the same oddball
stimulation task used in the experiments to a brain-constrained
neurocomputational model of the relevant cortical areas. We
computed synergy and redundancy in the simulated responses
while manipulating the network’s connectivity structure to un-
ravel a potential/candidate mechanism responsible for generat-
ing the synergistic interactions observed in vivo.

RESULTS

Mutual Information reveals prediction error effects within cor-
tical areas

To characterize the distribution of PE across multiple cortical
areas, we quantified PE in each electrode of the five marmosets
by contrasting deviant and standard tones (Figure 2). For each
electrode, we computed Mutual Information (MI) to quantify
the relationship between tone category (standard vs deviant)
with their corresponding ECoG signal across trials. Within the
framework of information theory, MI is a statistical quantity
that measures the strength of the dependence (linear or non-
linear) between two random variables. It can be also seen as
the effect size, quantified in bits, for a statistical test of inde-
pendence (Ince et al., 2017). Thus, for each electrode and time

point, we considered ECoG signals corresponding to standard
and deviant trials and utilized MI to quantify the effect size of
their difference.

We have recently proposed that a suitable candidate for
broadcasting unpredicted information across the cortex is the
transient, aperiodic activity reflected at the level of the evoked-
related potentials (ERP) and broadband power (Vinck et al.,
2023). A well-studied ERP marker of auditory PE is the mis-
match negativity (MMN), an ERP that peaks around 150–250
ms after the onset of an infrequent acoustic stimulus (Parras
et al., 2017; Blenkmann et al., 2019; Komatsu et al., 2015;
Canales-Johnson et al., 2021). A second neural marker of audi-
tory PE is the broadband response (BB), an increase in spectral
power spanning a wide range of frequencies usually above 100
Hz (Canales-Johnson et al., 2021; Jiang et al., 2022). Whereas
ERPs reflect a mixture of local potentials and volume con-
ducted potentials from distant sites, BB is an electrophysiolog-
ical marker of underlying averaged spiking activity generated
by the thousands of neurons that are in the immediate vicinity
of the recording electrodes (Miller, 2019; Lachaux et al., 2012).
MI was computed separately for the two neural markers of pre-
diction error (i.e. ERP and BB signals).

Electrodes showing significant differences in MI over time
(see METHODS) are depicted in Figure 2. In the Roving odd-
ball task, ERP signals showed PE effects across multiple corti-
cal regions not necessarily restricted to canonical auditory areas
(Figure 2B). In the case of the BB signal, MI analyses revealed
PE effects located predominantly in the auditory cortex of the
three marmosets, as well as in a few electrodes located in the
frontal cortex of marmoset Kr and Go (Figure 2A). These re-
sults agree with previous studies in different sensory modalities
(Miller, 2019) showing that broadband responses are spatially
localized. In the case of the Local/Global Task, although the
dataset for marmoset Nr and Ji contained ECoG recording only
from the temporal and frontal cortices, the overall PE effects in
the ERP signals were observed in a higher number of electrodes
than in the BB signal (Figure 2 and Figure S9)

Co-Information reveals redundant and synergistic cortical in-
teractions

To investigate how auditory PE signals are integrated within
and between the cortical hierarchy, we quantified redundant and
synergistic cortical interactions using an information-theoretic
metric known as co-Information (co-I) (Ince et al., 2017). Co-I
quantifies the type of information that interacting signals en-
code about a stimuli variable: positive co-I indicates redun-
dant interactions between signals; and negative co-I accounts
for synergistic interactions (Figure 1D). Redundancy implies
that the signals convey the same information about PE, indicat-
ing a shared encoding of PE information across time or space
from trial to trial. On the other hand, synergy implies that sig-
nals from different time points or areas convey extra informa-
tion about PE only when considered together, indicating that
the relationship itself contains information about PE that is not
available from either of the signals alone (Figure 1D).

To quantify the dynamics of redundancy and synergy tempo-
rally and spatially, we computed the co-I within and between
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Figure 1: Experimental design, information-theory analyses, and modelling. (A) Using a Roving oddball Task, 20 different single tones were presented in the
trains of 3, 5, or 11 identical stimuli. Any two subsequent trains consisted of different tones. This way, while the adjacent standard (depicted in black) and deviant
(depicted in green) tones deviated in frequency due to the transition between the trains, the two expectancy conditions were physically matched, as the first and the
last tones of the same train were treated as deviant and standard tones in the analysis of the adjacent stimuli pairs. This task was performed by 3 marmosets (Fr,
Kr, and Go). (B) Local/Global Task. On each trial, five tones of 50-ms-duration each were presented with a fixed stimulus onset asynchrony of 150 ms between
sounds. The first 4 tones were identical, either low-pitched (tone A) or high-pitched (tone B), but the fifth tone could be either the same (AAAAA or BBBBB, jointly
denoted by xx) or different (AAAAB or BBBBA, jointly denoted by xY). Each block started with 20 frequent series of sounds to establish global regularity before
delivering the first infrequent global deviant stimulus. This task was performed by 2 different marmosets (Ji and Nr). (C) Neural markers of auditory prediction error.
Deviant (green) and standard (black) epochs are used to compute the broadband and ERP responses. Broadband is computed by extracting by reconstructing the
time series of standard and deviants with the first spectral principal component (SPCA) of the ECoG signal; ERPs are computed by averaging the raw voltage values
for standard and deviant trials (see Methods). (D) Schematic representation of redundancy and synergy analyses computed using co-Information. Each inner oval
(A1 and A2) represents the mutual information between the corresponding ECoG signals and the stimuli category (standard or deviant). The overlap between A1
and A2 represents the redundant information about the stimuli (red; left panel). The outer circle around A1 and A2 represents the synergistic information about the
stimuli (blue; right panel). (E) Brain areas modelled, network architecture, and its connectivity. Top left: Cortical areas modelled. Three cortices in the left temporal
lobe (primary auditory: A1, auditory belt: AB, and parabelt: PB) involved in auditory processing, and three in the frontal lobe (prefrontal: PF; premotor: PM;
primary motor: M1) directly linked to them. Bottom left: Network architecture. All the (sparse and random) connections are based on marmoset neuroanatomy (see
Methods). Right: Schematic of links to/from a single excitatory cell ‘e’. Each model area consists of two layers of excitatory (upper) and inhibitory (lower) graded-
response leaky integrator cells with neuronal fatigue. Dense links between these layers (grey arrows) implement mutual inhibition between e and its neighbors.
Panel E, right and bottom left is adapted from Garagnani and Pulvermüller (2013), their Figure 1E.
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Figure 2: Broadband and ERP markers of PE across the monkey brain. Electrode locations for marmoset Kr (64 electrodes), Go (64 electrodes), and Fr (32
electrodes) in Experiment 1; and Nr (96 electrodes in EcoG-array, 39 used for analyses) and Ji (96 electrodes in EcoG-array, 27 used for analyses) in Experiment
2. Electrodes showing significant PE effect after computing MI between standard and deviant trials for the (A, F) Broadband (dark green circles) and (B, G) ERP
(light green circles) markers of auditory prediction error. Electrodes showing significant MI for both markers are depicted in cyan. (C, H) Histogram of electrodes
showing significant MI between tones for BB (left), ERP (middle), and both markers (right) for each animal. (D, I) Electrodes with the highest MI in the temporal
and frontal cortex showing the BB signal for deviant and standard tones. Deviant tone (green) and standard tone (black), and the corresponding MI values in bits
(effect size of the difference) for the temporal (pink trace) and frontal (orange trace) electrodes. Significant time points after a permutation test are shown as grey
bars over the MI plots. (E, J) Electrodes with the highest MI in the temporal and frontal cortex showing the ERP signal for deviant and standard tones. Error bars
represent standard error of the mean (S.E.M) across trials.

cortical areas (see METHODS). We analyzed ERP and BB
markers of PE separately, focusing our contrasts on the elec-
trodes that showed significant MI effects in the analyses de-

scribed in Figure 2C.
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Figure 3: Temporal synergy and redundancy within ERP and BB signals in the auditory and frontal electrodes with the highest MI for the Roving Task (Experiment
1). Co-information revealed synergistic and redundant temporal patterns within ERP (Panel A) and BB (Panel B) signals in the auditory cortex, and within ERP (C)
and BB (D) signals in the frontal cortex. MI (solid traces) between standard and deviant trials for auditory (pink color) and frontal (orange color) electrodes averaged
across the three monkeys. Error bars represent standard error of the mean (S.E.M) across electrodes. Temporal co-I was computed within the corresponding signal
(ERP, BB) across time points between -100 to 350 ms after tone presentation. The average of the corresponding electrodes across monkeys is shown for the complete
co-I chart (red and blue plots); for positive co-I values (redundancy only; red panel); and for negative co-I values (synergy only; blue plot). The grey-scale plots
show the proportion of monkeys showing significant co-I differences in the single electrodes analysis depicted in Figure S1.

Experiment 1: Roving Oddball Task

Temporal synergy and redundancy

The finding that multiple recording sites encode information
about PE raises the question of whether these signals convey
the same or complementary PE information over time within a
cortical region. Thus, we first characterized synergistic and re-
dundant temporal interactions within ERP and BB signals. In
the Roving Oddball Task, co-I analyses revealed widespread

temporal clusters of synergistic information (in blue) and re-
dundant information (in red) across the three monkeys in the au-
ditory cortex (Figure 3A,B), and frontal cortex (Figure 3C,D).
The ERP signal in the auditory (Figure 3A) and frontal (Figure
3C) electrodes showed characteristic off-diagonal synergistic
patterns, resulting from the interaction between early and late
time points within the same ERP signal (e.g. Figure 3A,C; grey
clusters between ∼140-300 ms after tone presentation), and re-
vealed by the single electrode contrast depicted in Figure S1.
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Figure 4: Spatio-temporal synergy and redundancy between auditory and frontal electrodes in the Roving Task (Experiment 1). Co-information revealed synergistic
and redundant spatio-temporal patterns between auditory and frontal electrodes in the ERP (Panel A) and BB (Panel B) signals for the Roving task. MI (solid
traces) between standard and deviant trials for temporal (pink color) and frontal (orange color) electrodes. Error bars represent standard error of the mean (S.E.M)
across electrodes. Co-I was computed between each pair of electrodes and across time points between -100 to 350 ms after tone presentation. The average of the
temporo-frontal pairs across the three monkeys is shown for the complete co-I chart (red and blue plots); for the positive co-I values (redundancy only; red plot); and
for the negative co-I values (synergy only; blue plot). The proportion of electrode pairs showing significant co-I differences is shown in the corresponding grey-scale
plots. The average co-I charts for the individual monkeys are shown in Figures S3 for the ERP signals, and in Figure S6 for the BB signals.

We observed significant temporal redundancy in the auditory
(Figure 3B) and frontal (Figure 3D) BB signals. For auditory
BB signals, the dynamics of the redundant patterns were ob-
served along the diagonal of the co-I chart, they were sustained
over time and observed between time points around the early
MI peaks (i.e., during the transient period when the effect sizes
are larger between tones) (Figure 3B; grey clusters ∼120-280
ms after tone presentation). In the frontal electrodes, we ob-
served significant clusters of sustained redundant interactions
around later time points (Figure 3D; grey cluster around 300
ms after tone presentation).

Spatio-temporal synergy and redundancy

The finding that multiple recording sites encode informa-
tion about PE raises the question of whether these regions
are dynamically interacting and whether these inter-areal in-
teractions are redundant or synergistic. To test this possibil-
ity, we characterized the redundancy and synergy between au-
ditory and frontal electrodes. Spatio-temporal co-I was com-
puted between the auditory and frontal electrodes over time
(Figure 4) and averaged across monkeys separately in the Rov-
ing Oddball Task (i.e. ERP and BB signals). The dynamics
of spatio-temporal synergy in the ERP and BB signals showed
complex and heterogenous patterns between early time points

of the auditory electrodes and later time points in the frontal
electrodes (Figure 4). For example, while the ERP signals en-
coded both diagonal (Figure 4A; grey clusters ∼100-350 ms af-
ter tone presentation) and off-diagonal synergistic patterns (Fig-
ure 4A; grey clusters ∼150-350 ms after tone presentation), the
BB signals mainly showed off-diagonal synergy between tem-
poral and frontal electrodes (Figure 4B; grey clusters ∼220-350
ms after tone presentation). In Figure 4A, the diagonal stripes
suggest the possibility of oscillatory dynamics, where the rep-
resentation in frontal regions between 50-300 ms is enhanced
by knowledge of the activity of temporal regions ∼50 ms ear-
lier (the upper diagonal line). Note that 50 ms peak-to-peak
timescale corresponds to a frequency of ∼10 Hz, i.e. the alpha
range. In Figure 4B the off-diagonal block suggests that the
frontal representation of the stimulus between 20-120 ms initi-
ates a state change: later temporal activity (200 ms+) enhances
the readout of the stimulus class, even though there is no rep-
resentation of PE in the BB signal of the temporal area at that
time.

Experiment 2: Local/Global Task
Temporal synergy and redundancy

Although PE processing has been widely studied using the
Roving Oddball Task (Canales-Johnson et al., 2021), the con-
tribution of stimulus-specific adaptation (SSA) to the amplitude
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Figure 5: Temporal synergy and redundancy within ERP and BB signals in the auditory and frontal electrodes with the highest MI for the Local/Global Task
(Experiment 2). In the Local and Global contrasts, co-information revealed synergistic and redundant temporal patterns within ERP (Panels A, E) and BB (Panels
B, F) signals in the auditory cortex, and within ERP (Panels C, G) and BB (Panels D, H) signals in the frontal cortex. MI (solid traces) between standard and deviant
trials for auditory (pink color) and frontal (orange color) electrodes averaged across the three monkeys. Error bars represent standard error of the mean (S.E.M)
across electrodes. Temporal co-I was computed within the corresponding signal (ERP, BB) across time points between -100 to 350 ms after tone presentation. The
average of the corresponding electrodes across monkeys is shown for the complete co-I chart (red and blue plots); for positive co-I values (redundancy only; red
panel); and for negative co-I values (synergy only; blue plot). The grey-scale plots show the proportion of monkeys showing significant co-I differences in the single
electrodes analysis depicted in Figure S2.

of the ERP response is usually considered a confounding fac-
tor in the isolation of PE (Parras et al., 2017). For this reason,
we also investigated synergy and redundancy in a separate task
capable of attenuating the effects of SSA (i.e. the Local/Global
Task). In the Local contrast, although we observed temporal
synergy in both ERP and BB signals, the off-diagonal synergy
was primarily observed between early and late time points of
the BB signals in the temporal cortex (Figure 5; grey clusters
∼150-350 ms after tone presentation). The ERP signals, on the
other hand, showed diagonal synergy in both the temporal (Fig-
ure 5; grey clusters ∼40-150 ms after tone presentation) and
frontal cortex (Figure 5; grey clusters ∼150-350 ms after tone
presentation).

Another advantage of the Local/Global Task is the possibil-
ity of exploring a higher-order PE observed as a violation of
the overall sequence of tones (Global contrast; see Figure 1B,
and METHODS). This context-dependent deviancy effect has

been shown to elicit neural activation in frontal regions (Chao
et al., 2018; Jiang et al., 2022). In the case of the Global con-
trast, we observed temporal synergy across early and late time
points but mostly in the BB signals both within the auditory
(Figure 5F; grey clusters ∼0-350 ms after tone presentation) and
frontal electrodes (Figure 5H; grey clusters ∼230-330 ms after
tone presentation). Taken together, these results suggest that the
Local/Global task elicits distributed patterns of PE information
across time that are primarily encoded by firing rates.

Spatio-temporal synergy and redundancy

We investigated whether local and higher-order PE are en-
coded by synergistic information between cortical regions.
Thus, we characterized the synergy (and redundancy) between
auditory and frontal electrodes for the local and global contrast
(Figure 6). Spatio-temporal co-I was computed between the
auditory and frontal electrodes over time and averaged across

7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2023. ; https://doi.org/10.1101/2023.01.12.523735doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523735
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: Spatio-temporal synergy and redundancy between auditory and frontal electrodes in the Local/Global Task (Experiment 2). Co-information revealed
synergistic and redundant spatio-temporal patterns between auditory and frontal electrodes in the ERP (Panels A, C) and BB (Panels B, D) signals. MI (solid
traces) between standard and deviant trials for temporal (pink color) and frontal (orange color) electrodes. Error bars represent standard error of the mean (S.E.M)
across electrodes. Co-I was computed between each pair of electrodes and across time points between -100 to 350 ms after tone presentation. The average of the
temporo-frontal pairs across the three monkeys is shown for the complete co-I chart (red and blue panel); for the positive co-I values (redundancy only; red panel);
and for the negative co-I values (synergy only; blue panel). The proportion of electrode pairs showing significant co-I differences is shown in the corresponding
grey-scale panels. The average co-I charts for the individual monkeys are shown in Figures S4, S5 for ERP signal, and Figures S7, S8 for the BB.

two monkeys separately for each signal (i.e. ERP and BB sig-
nals). Consistent with the effects observed in the Roving Odd-
ball Task, we observed multiple patterns of synergistic and re-
dundant information between temporal and frontal regions. We
also noticed an interesting difference between the two tasks.
While the Roving Oddball Task elicited most of the synergistic
interactions between ERP signals (Figure 4A), the Local/Global
Task elicited most of the synergy between BB signals (Figure
6B,D).

Although the per-electrode and electrode-pair analyses of

synergy and redundancy exploit the optimal spatial resolution
of the recording modality across temporal and frontal regions,
they could also miss information encoded in the spatial pat-
tern both within and between temporal and frontal areas. They
could therefore potentially miss synergy or redundancy that is
only apparent when considering multiple electrodes together,
either due to a low signal-to-noise ratio within each channel
or because of a genuinely distributed informative spatial pat-
tern. This might be particularly relevant for the ERP signals
that showed extensive temporal and frontal PE effects (Figure
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1A,B). Thus, to account for potential informative spatial pat-
terns of redundancy and synergy in ERP signals, and to reduce
any concern about high-order interactions between channels
within each region in the pairwise channel analysis, we com-
plemented our analyses by computing co-information based on
the response across multiple electrodes (MVCo-I: Multi-Variate
Co-information) (Figure S11 and S12). In brief, we have ap-
plied a cross-validated multivariate analysis approach that uses
machine learning to capture the best linear representation of the
prediction error signal across a whole region, and we have re-
peated our co-information analyses within and between the two
brain regions of interest using the classifiers’ outputs (frontal
and temporal) (see METHODS).

The MVCo-I analyses within-region (Figures S13 and S15)
and between-regions (Figures S14 and S16) showed compara-
ble co-I in terms of synergistic and redundant dynamics ob-
served in the per-electrode (Figures 3 and 5) and in the between-
electrodes (Figures 4 and 6) analyses, but with increased statis-
tical power (i.e., increased MI).

To sum up, we observed widespread patterns of synergy
within and between ERP and BB signals across the auditory
cortical hierarchy. The distributed nature of the temporal and
spatio-temporal synergistic interactions across the cortical hier-
archy raises the question of whether the emergence of synergy
is a consequence of the recurrent and feedback connections in
the auditory network.

Explaining the presence of synergy using a brain-constrained
neurocomputational model

To test the validity of our working hypothesis that syn-
ergistic information may be driven mainly by recurrent and
feedback connections, we applied an existing neural network
model closely reproducing structural and functional properties
of relevant areas in the superior-temporal and inferior-frontal
lobes of the primate brain (Figure 7A) to simulate auditory
PE processing (see METHODS). Our approach was to em-
ploy a fully brain-constrained neurocomputational model that
accurately replicates critical neurobiological and neuroanatom-
ical features of the mammalian cortex (Pulvermüller et al.,
2021) and to stimulate this model using the same Roving Odd-
ball Task adopted in Experiment 1. The network simulated
neuronal firing rates, which are the main contributors of the
BB signals; we, therefore, honed our modelling efforts on re-
producing the BB signals observed in Experiment 1 (Figure
3B, D and Figure 4B). The model we used (see Figure 1E)
has been previously applied to successfully simulate and ex-
plain automatic auditory change detection and the Mismatch
Negativity (MMN) response to familiar and unfamiliar sounds
in the human brain (Garagnani and Pulvermüller, 2011) and
several other phenomena in the domains of language acqui-
sition and processing, attention, memory, and decision mak-
ing (Tomasello et al., 2019, 2017; Schomers et al., 2017; Pul-
vermüller and Garagnani, 2014; Garagnani and Pulvermüller,
2013; Garagnani et al., 2008) — see Pulvermüller et al. (2021)
for a recent review.

Here, we recorded the network’s responses (measured in
each area as the sum of all cells’ firing rates) to predefined

random patterns simulating standard and deviant tones; follow-
ing the same procedure used to process the experimental data
(see METHODS), we then analysed the resulting PE signals.
We observed that, before any adjustment of its parameter val-
ues, the network already encoded both redundant and syner-
gistic information, specifically, in the signal from its superior-
temporal region (including areas A1, AB, PB). We then further
constrained the model’s dynamics by fine-tuning three of its pa-
rameters (i.e., the strength of the neuronal adaptation, the local
inhibition, and the between-area links) so that the temporal and
spatial features of synergistic information encoded in the simu-
lated PE responses would closely resemble those we observed
experimentally. This process of parameter tuning did not qual-
itatively change the network’s responses but simply improved
the fit of the responses with the observed data.

To quantify the similarity of the co-I values between the real
and the simulated data, we computed the Structural Similarity
Index (SSIM). The SSIM assesses the structural similarity be-
tween two images, with values ranging from 0 (dissimilar) to
1 (highly similar). Hence, we converted the co-I plots of the
real and simulated data to images and computed SSIM between
them. While the SSIM between simulated and experimental co-
I was 0.74 (Figure 7B versus 3B, the frontal cortex comparison
showed an SSIM of 0.83 between simulated and experimental
co-I (Figure 7C versus Figure 3D). Both values were significant
above chance level (p < 0.05) after comparing them to a dis-
tribution of surrogate SSIM values. The surrogate distribution
was obtained by computing the SSIM between the experimental
co-I image and a shuffled version of the simulated co-I image,
and repeating this procedure 1000 times.

Having attained a good match between experimental and
simulated data (e.g, compare Figure 7 panels B and C, with
Figure 3 panels B and D, respectively), we then moved on to
address the main question, i.e., whether the presence of feed-
back and recurrent links in the underlying neural network has a
direct impact on the emergence of synergy. To investigate this,
we directly manipulated the model’s structural connectivity and
analysed the effects of such manipulation on its responses to
the same stimuli. Specifically, we used two types of architec-
tures: first, a fully-connected model (FC), having connectivity
as shown in Figure 7A, i.e., including both feedforward and
feedback between-area, and recurrent within-area, connections.
It is important to stress that such connectivity reflects the neu-
roanatomical links known to exist between (and within) corre-
sponding superior-temporal and inferior-frontal cortices in the
macaque brain, as well as between the human’s homologue cor-
tical areas (see METHODS for details). Second, we ran a set of
feed-forward-only (FF) model simulations, in which we artifi-
cially cut all the feedback and recurrent links of the FC archi-
tecture, while maintaining all the feedforward ones intact. By
feedback links here we refer to all the links in the model going
from right to left in Figure 7A (i.e., from area PB to A1, from
area PF to AB, from PM to PB, from M1 to PF, and from each
area to its left-hand side next-neighbour). For each of these two
model types, we ran three distinct simulations. In each simu-
lation, the projections linking any two areas (and any area to
itself) were sparse and established at random, with the proba-
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Figure 7: Model architectures and simulation results. A brain-constrained model of temporal and frontal areas of the marmoset brain (see Fig. 1E) was stimulated
with simulated tones as in the Roving Oddball Task used in Experiment 1. (A,D): Different network architectures used for the simulations (see METHODS). Feed-
forward and feedback between-area connections are depicted as black and green arrows; recurrent within-area links (panel A only) are shown in gold. Input stimuli
were repeatedly presented to area A1 of the network (model correlate of primary auditory cortex) and firing rate responses of each excitatory cell within the six areas
were recorded. (B,C): Results obtained with networks having a Fully Connected (FC) architecture (shown in panel A), which included both feedforward/feedback
links and recurrent connections. (E,F): Results obtained using networks having a Feedforward-only (FF) architecture (panel D), in which the feedback and recurrent
connections were absent. MI (solid traces) between standard and deviant trials averaged across three simulation runs (each run modelling a single monkey dataset)
are plotted for the three temporal (A1, AB, PB: pink curves) and three frontal (PF, PM, M1: orange curves) areas’ simulated responses. Error bars represent standard
error of the mean (S.E.M). Co-information analyses were performed on the model temporal and frontal areas’ signals. Temporal co-I was computed within the
simulated firing rates across time points between -100 to 350 ms after stimulus onset. The average of the corresponding electrodes across simulated monkey datasets
is shown for the complete co-I chart (red and blue panel), for positive co-I values (redundancy only; red panel) and for negative co-I values (synergy only; blue
panel). The grey-scale panels show the proportion of simulated monkey datasets with the highest MI within the temporal (A1, AB, PB) and frontal (PF, PM, M1)
regions. Note the similarity (in terms of temporal patterns of synergy and redundancy) between the results obtained from the FC model responses (panels B and C)
and those from the corresponding experimental data (the BB signal shown in Figure 3, panels B and D, respectively).
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Figure 8: Model architectures and simulation results. The firing rate responses of the networks used to produce the results of Figure 7 were subjected to co-
information analyses between the simulated temporal and frontal areas’ signals. (B) Results obtained using Fully Connected (FC) networks (panel A), which
included both feedforward and feedback (black and green arrows) links and recurrent (golden arrows) connections. (D) Results obtained using Feedforward-only
(FF) networks (panel C), in which the feedback and recurrent connections were absent (see METHODS). MI (solid traces) between standard and deviant trials
averaged across three simulation runs (each run modelling a single monkey dataset) are plotted for the three temporal (A1, AB, PB: pink curves) and three frontal
(PF, PM, M1: orange curves) areas’ simulated responses. Error bars represent standard error of the mean (S.E.M). Co-information analyses were performed
between the model temporal and frontal areas’ signals. Temporal co-I was computed from the simulated firing rates across time points between -100 to 350 ms after
stimulus onset. The average of the corresponding electrodes across simulated monkey datasets is shown for the complete co-I chart (red and blue panel), for positive
co-I values (redundancy only; red panel), and for negative co-I values (synergy only; blue panel). The grey-scale panels show the proportion of significant co-I
pairs between superior-temporal (A1, AB, PB) and frontal (PF, PM, M1) areas using areas that showed significant MI between standard and deviant trials. Note the
similarity (in terms of spatio-temporal patterns of synergy and redundancy) between the results obtained from the model responses and those from the corresponding
BB signals in the experimental data of Figure 4: co-I measures of network responses show significant synergy between temporal and frontal regions (see panel B),
as observed in real marmoset data (Figure 4B). Also, note that such synergistic effects disappear after the removal of the network’s feedback and recurrent links
(compare the bottom-right plot of panel B, FC architecture, against that of panel D, FF architecture).

bility of any two cells being connected by a synapse decreasing
with their (modelled) cortical distance. The weights of all the
synapses were also set to a small random value comprised be-
tween 0 and 0.1 (see METHODS for details).

Given this, we treated each simulation run as the model cor-
relate of a single marmoset in Experiment 1 (Fr, Kr, and Go),
as it was produced using a slightly different (random) variation
of the same prototype network architecture (FC or FF). During
each simulation, we generated and recorded 100 trials (50 de-
viants and 50 standards) and analysed the co-information within
and between the resulting network responses in exactly the
same way as in the experimental data. The results showed that
the FC model showed highly synergistic interactions between
temporal and frontal regions (Figure 8A,B). Crucially for our
hypothesis, we observed that the removal of all the between-
area feedback projections and recurrent within-area links of the

network entirely prevented the emergence of synergistic inter-
actions between frontal and temporal model regions (see Figure
8D). Additional simulations obtained with a version of the ar-
chitecture containing just nearest-neighbour between-area feed-
back (and feedforward) links, along with recurrent ones (see
Figure S10) again failed to reproduce such synergistic inter-
actions, indicating that it is not simply the presence of feed-
back projections, but specifically of higher-order, or so-called
“jumping” (Schomers et al., 2017), cortico-cortical links con-
necting non-adjacent areas of the processing hierarchy that is
needed for synergy to emerge in the model.

DISCUSSION

In this study, we focused on computing temporally-resolved
metrics of redundancy and synergy, aiming at investigating the
dynamics of the information interactions within and between

11

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2023. ; https://doi.org/10.1101/2023.01.12.523735doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523735
http://creativecommons.org/licenses/by-nc-nd/4.0/


cortical signals encoding PE. Due to the interplay between tem-
poral and spatial neural dynamics, our approach revealed a rich
repertoire of redundant and synergistic patterns, showing tran-
sient and sustained information dynamics distributed across the
auditory hierarchy.

There are a wide variety of ways of using information-
theoretic, and other measures to study representational inter-
actions in neural coding (Chicharro, 2014). Schneidman et al.
(2003) discuss three types of response independence in the
context of spiking neuron population coding: activity inde-
pendence, conditional independence and information indepen-
dence. Here we focus only on information independence, as
we are interested in relating the information representation be-
tween areas. Deviations from information independence are
best measured with co-information. To date, co-information
has been less frequently applied to aggregate signals as we do
here (Ince et al., 2017, 2016; Zhan et al., 2019)

Interpreting synergistic interactions
Synergistic information was observed mainly off-diagonally,

i.e. between early and late times points after tone presenta-
tion for both within (Figures 3-5) and between cortical areas
(Figure 6). This indicates that late temporal responses carry
information that, in combination with the early one, provides
extra information about the identity of the tone (standard or de-
viant) than when considered in isolation. This raises the ques-
tion about what is the functional relevance of synergistic in-
formation for representing prediction errors. The off-diagonal
synergy between early and late time points could be a signature
of a neural state shift. It is interesting to note that the synergy
remains strong over periods after the PE response is no longer
represented (i.e. no MI at those time points). However, the ini-
tial representation of the PE may have shifted the local network
dynamics into a different state. Then knowing this ongoing state
improves the readout of the encoded information at the earlier
time point. Thus, the off-diagonal synergy might be an echo
of the initial PE representation that is not directly observable in
later time points.

Synergy can also arise from a common source of neural noise
that is non-stimulus specific. For example, the spatio-temporal
synergy between regions could reflect a global change in at-
tention or arousal. In this situation, the readout of one area
provides information about the global neural state even when
it does not convey information about the PE directly, and this
can be used to improve the resolution with which the PE can
be decoded from the other area. Although this might be a pos-
sibility, the tight timing of the synergy bands observed in both
experiments (i.e, diagonal and off-diagonal synergistic patterns)
speak more of a transient dynamics rather than global ongoing
fluctuations underlying the spatio-temporal synergy.

How does synergistic information emerge from local and dis-
tributed neural dynamics? We reason that a plausible neurobi-
ological mechanism for the generation of synergy is through
recurrent and feedback neural interactions within and between
areas, respectively. This hypothesis is corroborated by the
novel neurocomputational results presented here. Specifically,
we adapted a 6-layer-deep, brain-constrained neural network

model reproducing the neuroanatomy and neurophysiology of
language areas in the temporal and frontal cortex of the hu-
man brain (Garagnani and Pulvermüller, 2011; Schomers et al.,
2017; Garagnani et al., 2008) to simulate and explain the corti-
cal mechanisms underlying the generation of the PE responses
that we observed experimentally in the marmoset monkey. In
response to oddball stimulation with simulated auditory tones,
the model was found to produce responses containing both syn-
ergistic and redundant information (here we looked at the net-
work’s per-area sum of all cells’ firing rates; this measure can be
related directly to the experimentally recorded BB signal). By
tuning the model parameters, we were able to get the network’s
spatio-temporal patterns of synergy and redundancy encoding
the PE response to closely replicate those found experimentally
across the auditory cortical hierarchy; furthermore, manipula-
tion of the model’s connectivity revealed that synergistic inter-
actions emerged in it only when strong, higher-order (“jump-
ing”) forward and backward links (green arrows in Figure 1E)
connecting frontal and temporal regions were present.

Based on this computational result, we conjecture that the
cortical homologues of such jumping links (known to exist
between corresponding regions of the marmoset brain, see
METHODS) may play a similarly crucial role in the emergence
of the temporo-frontal synergistic interactions observed in the
ECoG data. This prediction awaits further validation through
experimental testing.

Interpreting redundant interactions
A different type of dynamics was observed in the case of the

redundant information across the cortex. Redundant patterns of
information were observed mainly at time points close to the
diagonal of the co-I chart, both within signals (Figures 3-5) and
between signals (Figure 6). The advantage of computing redun-
dancy is that it reveals to which extent local and inter-areal sig-
nals represent the same information about the stimuli category
on a trial-by-trial basis. Redundant interactions about tone cat-
egory (i.e., deviant or standard) were observed in the ERP and
BB signals and represented the outcome of the shared informa-
tion across time points (temporal redundancy) and between ar-
eas (spatio-temporal redundancy). These observed redundancy
patterns raise the question of what is the functional relevance of
redundant information for processing PE across the cortex.

A neurobiological interpretation of redundancy is that the
neural populations encoding this type of information share a
common mechanism (Ince et al., 2017). From the perspective
of cortical dynamics, redundancy then could provide cortical
interactions with robustness (Luppi et al., 2022; Olivares et al.,
2022), as redundant interdependencies convey information that
is not exclusive to any single cortical region. Robustness, un-
derstood as the ability to tolerate perturbations that might affect
network functionality (Luppi et al., 2022), is a desirable charac-
teristic of cortical networks processing predictions to preserve
stimuli separability in the presence of highly variable stimuli
features, environmental noise, or endogenous sources of noise
such as background neural activity. Thus, our results suggest
that redundancy quantifies the robustness of the information
processing in the cortex, enabling multiple areas to process
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common information about prediction errors. One way this
could arise is from multiple regions receiving the same input
evidence for processing in different parallel pathways.

Differences in redundancy and synergy between tasks

The employed tasks all showed distinct patterns of synergis-
tic and redundant dynamics. The Roving Oddball Task elicited
synergistic information mostly within the ERP signal, while the
local deviant in the Local/Global Task displayed temporally dis-
tributed synergy within both ERP and BB signals. A possible
explanation for this is that the MMN-response for the Roving
Oddball Task could primarily reflect stimulus-specific adapta-
tion at the level of the auditory cortex (O’Reilly, 2021), while
the Local/Global Task shows smaller effects relating to SSA due
to the 20-sequence adaptation period at the start of each testing
run (Chao et al., 2018; Jiang et al., 2022).

While the local deviant in the Local/Global Task showed
highly distributed synergistic information across brain areas
and for both monkeys, the patterns observed for the global de-
viant were more monkey-dependent. Strong effects were ob-
served within signals (ERP and BB) and between brain areas
(temporo-frontal) for monkey Ji, but monkey Nr exhibited min-
imal effects within and between all cortical regions (See Figure
S2). A speculative explanation for the lack of a global effect is
that higher-order deviants can be driven by top-down attention
(Chennu et al., 2013; Bekinschtein et al., 2009). In this case,
the lack of effects in Nr could be simply explained by a lack of
interest in the experimental stimuli.

Distributed processing across cortical areas: Implications for
predictive coding

Our findings might have ramifications for predictive coding
theories. For example, the information encoding PEs was not
merely redundant but also highly synergistic across areas. In
principle, the lack of redundancy between PEs is in consistent
with hierarchical predictive coding (HPC) because HPC entails
that prediction errors are independently generated in different
levels of the hierarchy (Friston and Kiebel, 2009; Rao and Bal-
lard, 1999). However, synergy corresponds to the extra infor-
mation obtained when signals are considered together, suggest-
ing that there is a more holistic or complementary represen-
tation of PE rather than just ”independently” generated PEs,
with the correlational structure of the signals conveying addi-
tional information. Possibly, this synergy results from the re-
current (including long-distance feedback) interactions across
many nodes, as suggested by the results of the simulations ob-
tained with a brain-constrained neurocomputational model.

Conclusion

Our results support the notion that PE information is broad-
casted by transient, aperiodic neural activity across the cortex
(i.e. ERPs and BB signals) (Vinck et al., 2023). By distin-
guishing the type of information encoded by these inter-real
interactions, we have shown that PEs not only share informa-
tion across regions but also encode complementary information
between distributed signals. Thus, our results demonstrate that

distributed representations of prediction error signals across the
cortical hierarchy are highly synergistic.
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ACJ, LR and JÄ. Visualization: FG, ACJ, and JÄ. Mar-
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METHODS

Data acquisition

This study used ECoG recordings from five adult male com-
mon marmosets (Callithrix jacchus). The details of the datasets
for three of the monkeys (Kr, Go and Fr) have been described
previously in Canales-Johnson et al. (2021); Komatsu et al.
(2015), and Jiang et al. (2022) for two of the monkeys (Ji and
Nr).

For marmosets Kr, Go and Fr, (i.e., animals that performed
the Roving Oddball Task) the ECoG recordings were acquired
in a passive listening condition while the monkeys were awake.
During the recording sessions, the monkeys Go and Kr sat on
a primate chair in a dimly lit room, while monkey Fr was held
in a drawstring pouch, which was stabilized in a dark room.
Every session lasted for about 15 minutes of which the first
3 minutes of data were used for various standard stimuli and
the remaining 12 minutes of data acquisition were dedicated to
the Roving oddball sequences. For the data analysis, we ac-
quired a total of three sessions for monkey Fr, which resulted
in 720 (240 × 3) standard and deviant trials, and six sessions
for monkeys Go and Kr, resulting in 1440 (240 × 6) standard
and deviant trials. For the recordings, a multi-electrode data ac-
quisition system was used (Cerebus Blackrock Microsystems,
Salt Lake City, UT, USA) with a band-pass filter of 0.3–500 Hz
and then digitized at 1 kHz. In the signal pre-processing, those
signals were re-referenced using an average reference montage,
and high-pass filtered above 0.5 Hz, using a 6th-order Butter-
worth filter.

The recording was done with chronically implanted, cus-
tomized multielectrode ECoG electrode arrays (Cir-Tech Inc.,
Japan). Before implantation with the ECoG electrode arrays,
the monkeys were anesthetized and further suffering was min-
imized. All electrodes were implanted in epidural space; 28 in
the left hemisphere and an additional 4 in the frontal cortex of
the right hemisphere of monkey Fr, 64 in the right hemisphere
of monkey Go, and 64 in the right hemisphere of monkey Kr.
In the 32-electrode array, each electrode contact was 1 mm in
diameter and had an inter-electrode distance of 2.5 - 5.0 mm
(Komatsu et al., 2015). In the 64-electrode array, each electrode
contact was 0.6 mm in diameter and had an inter-electrode dis-
tance of 1.4 mm in a bipolar pair (Komatsu et al., 2019). The
electrode arrays covered the temporal, parietal, frontal, and oc-
cipital lobes.

For marmosets Ji and Nr, (i.e., the animals that performed
the Local/Global Task) the EcoG recordings were also acquired
in a passive listening condition while the monkeys were fully
awake. The monkeys were seated in sphinx position with their
head fixed in a sound-attenuated and electrically shielded room.
The recording was done with chronically implanted, multielec-
trode (96) ECoG electrode arrays (Cir-Tech Inc., Japan). For
data analysis, electrodes in the temporal and frontal cortices
of the marmosets were used. This was done due to the pub-
lic availability of the data from these electrodes (Jiang et al.,
2022). Monkey Ji had a total of 27 electrodes (16 temporal, 11
frontal), and monkey Nr had a total of 39 electrodes (25 tem-
poral, 14 frontal). The data was recorded with a Grapevine NIP

system (Ripple Neuro, Salt Lake City, UT) with a sampling rate
of 1khz.

All surgical and experimental procedures were performed
following the National Institutes of Health Guidelines for the
Care and Use of Laboratory Animals and approved by the
RIKEN Ethical Committee (No. H26-2-202, for monkeys Kr,
Go, and Fr and No. W2020-2-008(2) for monkeys Ji and Nr).
The locations of the implanted electrodes of each monkey are
found in Figure 2.

Experimental tasks
For the Roving Oddball Task, monkeys Kr, Go and Fr

were subjected to a Roving oddball paradigm (Canales-Johnson
et al., 2021). Trains of 3, 5, or 11 repetitive single-tones of
twenty different frequencies (250-6727 Hz with intervals of 1/4
octave) were presented in a pseudo-random order. Within each
tone train the presented tones had the same frequency, but be-
tween tone trains the frequency was different. As the tone trains
followed each other continuously, the first tone of a train was
considered an unexpected deviant tone, because the preceding
tones were of a different frequency, while the expected stan-
dard tone was defined as the final tone in a train because the
preceding tones were of the same frequency (Figure 1A). The
presented tones were pure sinusoidal tones that lasted for 64
ms (7 ms rise/fall) and the time between stimulus onsets was
503 ms. Stimulus presentation was controlled by MATLAB
(MathWorks Inc., Natick, MA, USA) using the Psychophysics
Toolbox extensions (Brainard and Vision, 1997). Two audio
speakers (Fostex, Japan) were used to present the tones with an
average intensity of 60 dB SPL around the animal’s ear.

For the local/global task, monkeys Ji and Nr were subjected
to a standard local/global auditory oddball paradigm (Jiang
et al., 2022). The monkeys heard tone trains with either a local
regularity (five identical tones played in a sequence; xxxxx) or
global regularity (five tones, the first four of which were iden-
tical, and where the fifth was of a different frequency; xxxxY).
To create a local deviant, the last tone of the local tone train
(xxxxx) was sometimes played at a different frequency as the
earlier tones in the train (local deviant; xxxxY). To create a
global deviant, the last tone of the global tone train (xxxxY)
was sometimes played with the same frequency as the earlier
tones in the train (global deviant; xxxxx). The frequencies for
the tones x or Y were either 707 or 4000 Hz. The presented
tones were pure sinusoidal tones that lasted for 50 ms with an
intertone interval of 150 ms, and they were presented to the
monkeys bilaterally with two speakers (Fostex, Japan) from the
distance of approximately 20 cm from the head with the average
intensity of 70 DB.

Each testing period started with a 14-second resting phase,
which was followed by a habitation period during which the
specified standard (local or global) was presented 20 times to
ensure that the monkey learns the regularity of the tone trains.
For a testing run, three blocks of 25-tone trains were played,
with a 14s resting phase in between. Out of the 25 trials, 20
(80 percent) were of the specified standard (local or global) and
five (20 percent) were deviants. For the global deviants, more
than one local standard was always played after to ensure global
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consistency. Each run lasted for 6 minutes and 46 seconds, and
each session consisted of 3-4 local standard and 3-4 global stan-
dard runs, depending on the marmoset’s performance during the
day. The order of the tasks was randomised, and the frequencies
for tones x and Y were balanced. For the analysis, the number
of trials for standard and deviant trials had to be equal. This
resulted in 330 (local deviant) and 243 (global deviant) trials
for Monkey Ji, 251 (local deviant), and 212 (global deviant) for
Monkey Nr.

ERP and BB analyses

For further analysis, the raw ECoG voltage responses have
been transformed into ERP and BB as described in Canales-
Johnson et al. (2021). In brief, common average referencing
was used to re-reference the ECoG recordings across all elec-
trodes, and the data was downsampled to 500 Hz. For obtaining
ERPs, a low-pass filter of 1-40 Hz was applied for the ERP anal-
ysis. Standard and deviant tones were categorized as described
before. Epochs of -100 ms to 350 ms around the onset of the
tones were taken, and a baseline correction was applied by sub-
tracting the mean voltage during the 100 ms period before the
stimulus onset from the total epoch.

To obtain the BB, spectral decoupling of the raw ECoG was
carried out (Canales-Johnson et al., 2021; Miller, 2019). To
extract the course of broadband spectral activity, the spectral
decoupling of the raw ECoG signal was carried out. As for
the ERP analysis, common average referencing was used to re-
reference the ECoG potentials of all the electrodes. Epochs
of -100 ms to 350 ms around the onset of the tones were
used to calculate discrete samples of power spectral density
(PSD). Trials from both conditions were grouped and individ-
ual PSDs were normalized with an element-wise division by
the average power at each frequency, and the obtained values
were log-transformed. To identify components of stimulus-
related changes in the PSD, a principal component method is
applied. This consists of calculating the covariance matrix be-
tween the frequencies. The eigenvectors of this decomposition
are called Principal Spectral Components (PSCs), and reveal
distinct components of neural processing, hence enabling us to
identify stimulus-related changes in the PSD. Afterward, the
time series were z-scored per trial to get intuitive units, then
exponentiated and subtracted by 1. Finally, a baseline correc-
tion was performed by subtracting the mean value of the pre-
stimulus period of -100 to 0 ms.

Both for the ERP and BB signals some electrodes were ex-
cluded from further analysis. This was done because the signal
was absent or clearly erroneous. Electrode 18 in Fr was ex-
cluded from the ERP analysis, while electrodes 18 in Fr, 30,
44, 45 in Go, and 30 in Kr were excluded from the BB analysis.

Mutual Information analyses

To quantify the MI between the stimulus class and the ECoG
signal (both ERP and BB), the GCMI toolbox (Gaussian Copula
Mutual Information) (Ince et al., 2017) was used. This toolbox
calculates the MI based on the Gaussian copula the raw ERP or
BB data transforms to. The approach combined a permutation

test with 1000 permutations with a method of maximum statis-
tics to correct for multiple comparisons. Using all available
trials, the signal at every time point was permuted 1000 times
for each electrode, randomly assigning the stimulus class labels
each time. The maximum value at each time point was taken,
and the 95th percentile of this value was used as the thresh-
old for significance. This method corrects for multiple com-
parisons and provides a Family-Wise Error Rate (FWER) of
0.05. Electrodes with significant mutual information between
standard and deviant trials were selected as electrodes of inter-
est, and the co-information between them was estimated for the
ERP and broadband signals separately.

Co-information analyses

We quantified co-information (co-I) within signals (single
electrodes) and between signals (between pairs of electrodes)
using the GCMI toolbox (Ince et al., 2017). The co-I was cal-
culated by comparing signals on a trial-by-trial basis. This re-
sulted in a quantification of the information content, redundant
or synergistic, between the two signals. The co-information
(co-I) was calculated in the following way:

coI(X; Y; S ) = I(X; S ) + I(Y; S ) − I(X,Y; S )

For each time point, I(X; S ) corresponds to the mutual infor-
mation (MI) between the signal at recording site X and stim-
uli class S. I(Y; S ) corresponds to the MI between the signal
at recording site Y and stimuli class S. Finally, I(X,Y; S ) cor-
responds to the MI between stimuli class S combining signals
from recording sites X and Y.

For each neural marker of auditory PE (i.e., ERP and BB),
co-information was computed for each pair of tones (stan-
dard and deviants) within recording sites in A1 and frontal re-
gions (Figures 3, 5 and Figures S1-S2), and between A1 and
frontal regions (Figures 4, 6 and Figures S3-S8,). Positive co-
information shows that signals between recording sites contain
redundant, or overlapping, information about the stimuli. Nega-
tive co-information corresponds to the synergy between the two
variables: the information when considering the two variables
jointly is larger than when considering the variables separately.

Figure 1C shows a schematic representation of co-I between
two signals. It shows the independent information that response
1 and response 2 (both in white) contain. If there is an overlap
in the information that is being represented by the two signals,
there is a redundancy (red color) in the information that the
two responses contain. If the two signals considered together
contain more information than could be expected based on the
information present in the individual signals, there is synergy
(blue color). Statistical analyses of co-I charts were performed
by using a permutation test with 1000 permutations and using
the same maximum statistics method described for the MI anal-
yses, resulting in an FWER of 0.05.

Note that MI and co-I values are reported in units of bits.
A value of 1 bit corresponds to a halving of uncertainty of the
trial state when observing the neural response. It is important
to keep in mind though that these information values are the
average per sample. Here we use a sampling rate of 500 Hz,
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so a value of 0.01 bits/sample corresponds to an approximate
information rate of 5 bits/second.

Neurocomputational experiments

Model architecture and function

To investigate the neural mechanisms underlying the gen-
eration of the PE responses observed experimentally in the
marmoset brain during oddball presentation of auditory tones
we took an existing six-layer-deep, neural network architec-
ture (Garagnani and Pulvermüller, 2013; Garagnani et al., 2008;
Schomers et al., 2017) closely mimicking neuroanatomy and
neurophysiology of six perisylvian areas in the left hemisphere
of the human brain involved in spoken language and auditory
processing, and adapted it for the present study’s needs.

This choice was motivated by the observation that, like other
non-human primates, marmosets are known to be highly vo-
cal and exhibit active vocal communication among conspecifics
(Fukushima et al., 2019; Miller et al., 2009; Takahashi et al.,
2013); furthermore, the existing architecture has been previ-
ously used to simulate and explain well-documented neuro-
physiological patterns of event-related potentials observed dur-
ing language processing and oddball stimulation with famil-
iar and unfamiliar sounds (Garagnani et al., 2008; Garagnani
and Pulvermüller, 2011). The model closely reflects functional
and structural features of the mammalian cortex, and incor-
porates the following neurobiological and neurophysiological
constraints:

1) Six cortical areas are modelled, three in the superior tem-
poral and three in the inferior frontal lobes, constituting the
marmoset homologues of Brodmann Areas (BAs) 41 (labelled
A1 in Fig. 1E), 42 (labelled AB), and 22 (PB) in the superior
temporal gyrus, and of BAs 44 and 45 (labelled PF), 6V (PM),
and 4 (M1) in the inferior frontal gyrus in humans;

2) Between-area links in the model (green, purple, and black
arrows in Figure 1E) reflect known neuroanatomical links be-
tween corresponding brain areas in the marmoset (see next
section below); recurrent (within-area) connections (golden ar-
rows) are also modelled, in line with known properties of the
mammalian cortex (Douglas and Martin, 2004; Braitenberg and
Schüz, 1998);

3) Between- and within-area links do not implement all-to-
all connectivity between cells, but sparse, patchy, and topo-
graphic projections, with synaptic links established probabilis-
tically (the probability of two cells being connected decreasing
with the distance; see (Kaas, 1997; Amir et al., 1993; Brait-
enberg and Schüz, 1998) and initialised to weak and random
efficacy values;

4) Local lateral inhibition (Eysel et al., 1987; Yuille and
Geiger, 1998) and area-specific global regulation mechanisms
(referred to as local and global inhibition, respectively) (Yuille
and Geiger, 1998; Palm et al., 2014; Braitenberg and Schüz,
1998);

5) Single cells’ neurophysiological dynamics, including sig-
moid transformation of membrane potentials into neuronal out-
puts, as well as adaptation and temporal summation of inputs
(Matthews, 2000);

6) Constant presence of uniform uncorrelated white noise
(simulating spontaneous baseline neuronal firing) in all model
neurons (Rolls and Deco, 2010).

A first difference from the human language cortex is that
the location of the marmoset homologue of BA 44 – one of
the major components of Broca’s area (Petrides, 2013) – still
has not been definitively agreed upon (Fukushima et al., 2019).
However, area 6Vb in the marmoset – which, like in man and
macaque, is just caudal to 45 – exhibits cytoarchitectonic fea-
tures (a scattered, agranular layer 4) that make it a potential can-
didate for the BA 44 homologue (Fukushima et al., 2019). In
addition, area 6Vb shows a pattern of neuroanatomical connec-
tivity different from that of its dorsal (and more caudal) coun-
terpart 6Va, a premotor area (Burman et al., 2015). In previ-
ous “human” versions of the architecture, area PF (modelling
prefrontal cortex) was defined as including mainly BA45 (and
46v), whereas BA 44 was subsumed by model area PM. Given
the above, and the fact that BA 44 is generally considered a pre-
frontal cortex area, here we decided to treat Marmoset’s area
6Vb as the homologue of the insofar missing BA 44, and to la-
bel both 45 and 6Vb as model area PF (hence limiting PM to
include just area 6Va, homologue of BA 6V).

Structurally, each model area consists of two neuronal layers,
one of excitatory and one of inhibitory cells, each containing
625 (25x25) cells (see Figure 1E, schematic on the right). Func-
tionally, model cells are graded-response units, each represent-
ing a cluster of excitatory pyramidal cells or inhibitory interneu-
rons. The specifics of the computational implementation (in-
cluding the within-area structure and single-cell functional fea-
tures) are analogous to those implemented in previously pub-
lished versions of the architecture (for details, see e.g., Garag-
nani and Pulvermüller (2011, 2013) and can be found in the
Supplementary Text for completeness.

A second crucial aspect that distinguishes human, macaque,
and marmoset brains is the structural connectivity between
the relevant homologue areas. Our present approach, which
builds upon and is in line with several previous studies carried
out with this neurocomputational architecture (Garagnani and
Pulvermüller, 2011, 2013; Pulvermüller and Garagnani, 2014;
Schomers et al., 2017; Garagnani et al., 2008; Henningsen-
Schomers and Pulvermüller, 2022; Tomasello et al., 2019; Pul-
vermüller et al., 2021), is to implement a fully brain constrained
model. More precisely, we impose that, for any two model ar-
eas, synaptic projections between them are realised only if ex-
perimental evidence indicates the presence of neuroanatomical
links between the two corresponding cortical areas in the mar-
moset brain. In the following section, we provide such evidence
and the rationale based on which the present network architec-
ture (shown in Figure 1E) was adopted.

Connectivity of the simulated brain areas

The implemented model areas can be thought of as grouped
into two sub-systems (frontal and temporal), each simulating
a hierarchy of three cortical areas consisting of a primary cor-
tex (motor and auditory, respectively), the adjacent higher sec-
ondary, and associative multimodal regions. Neuroanatomical
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studies in the mammalian brain indicate that adjacent corti-
cal areas tend to be reciprocally connected (Pandya and Yete-
rian, 1985; Young et al., 1994). We implemented such next-
neighbor connections (black arrows in the network architec-
ture shown in Fig. 1E) in each of the two subsystems based
on known evidence from nonhuman primates (including mar-
mosets): within the frontal / motor (PF–PM–M1) (Pandya and
Yeterian, 1985; Burman et al., 2015) and within the temporal /
auditory (A1–AB–PB) (Kaas and Hackett, 2000; Pandya, 1995;
Rauschecker and Tian, 2000; de la Mothe et al., 2006, 2012;
Reser et al., 2009). The links connecting the parabelt (area
PB) with prefrontal cortex (PF), shown in purple in Figure 1E,
are also realised in line with evidence on known long-distance
cortico-cortical white matter fibres in the monkey (arcuate fas-
cicle and extreme capsule) connecting posterior-lateral parts of
the temporal cortex (area PB) and inferior prefrontal cortex
(area PF) (Petrides and Pandya, 2002; Petrides et al., 2012a;
Rilling, 2014; Rilling et al., 2008; Romanski et al., 1999b;
Petrides et al., 2012b; Burman et al., 2015). Finally, although
less strong and richly developed than in humans (Rilling et al.,
2012; Thiebaut de Schotten et al., 2012), the presence of higher-
order “jumping” connections between non-adjacent areas in the
model (green arrows in Figure 1E) has been documented also in
monkeys (including in marmosets). Specifically, neuroanatom-
ical studies indicate that A1 is directly connected to PB (Pandya
and Yeterian, 1985; Scott et al., 2017; de la Mothe et al., 2006,
2012; Reser et al., 2009), that AB is connected to PF (Roman-
ski et al., 1999a; Kaas and Hackett, 2000; Petrides and Pandya,
2009; Rauschecker and Scott, 2009; Smiley et al., 2007), that
PB and PM are linked (Rilling et al., 2008; Suzuki et al., 2015)
and that PF – here including areas 45 and 6Vb – is also directly
connected to M1 (Deacon, 1992; Schmahmann et al., 2009).

A previous modelling study using a neurocomputational ar-
chitecture analogous to the present one looked at the effects
of qualitative and quantitative differences between monkey’s
and human’s perisylvian areas connectivity on verbal working
memory (Schomers et al., 2017). In that study, the architec-
ture used to simulate the monkey brain did not implement any
of the jumping links that we included in the present model of
the marmoset’s cortex. Schomers et al. (2017), however, did
acknowledge that the extant evidence does not imply a “com-
plete absence of jumping links in nonhuman primates”. In ad-
dition, none of the neuroanatomical studies used to constrain
that modelling work included data from marmoset monkeys
(the evidence about non-human primate connectivity used re-
lied on macaques or chimpanzees). Finally, as Schomers and
colleagues clarified, their work focused on modelling the major
structural connectivity differences between monkeys and hu-
mans rather than on modelling the full complexity of the neu-
roanatomical connections of either species (Schomers et al.,
2017). Hence, given that – albeit weaker and less developed
than in humans – jumping links in non-human primates (in-
cluding in the marmoset) do appear to exist, the Schomers et al.
(2017) study and the present one should not be considered as in
conflict, but simply as using the same network architecture to
address different computational questions.

Procedures

To simulate the Roving Task of Experiment 1, the network
was repeatedly presented with stimulus patterns to its auditory
cortex (area A1). A stimulus pattern (simulating an auditory
tone) consisted of a pre-determined set of 31 cells chosen at ran-
dom amongst the 25-by-25 cells of area A1 (5% of cells). We
used 12 different randomly generated stimulus patterns; pre-
senting a stimulus involved activating the 31 cells of the chosen
pattern in A1. A single trial consisted of a baseline (ten simu-
lation time-steps long) with no input, followed by 20 timesteps
of stimulus presentation, and 20 timesteps of inter-trial interval
(no input); stimulus onset asynchronicity was therefore 50 sim-
ulation time-steps. A roving paradigm was used, in which 89%
of standard (STD) trials were intermixed with 11% of deviant
(DEV) trials. A new DEV trial was always preceded by 6-to-
10 identical STD stimuli; the new DEV stimulus was chosen at
random. The network’s output (firing rates of all cells of the six
areas) was recorded from the start of the last STD trial to the
end of the critical (DEV) trial following it. For each simulation
run (a model correlate of a monkey recording) we collected a
total of 50 STD and 50 DEV trials. MI and co-I analyses on
the simulated data, as well as the statistical contrasts between
STD and DEV tones, were performed exactly as described for
the in-vivo data.

Multivariate Co-Information Method (MVCo-I)

Mutual information quantifies statistical dependence on the
meaningful effect size of bits. Crucially, these values are ad-
ditive when combining independent representations. This al-
lows us to quantify representational interactions between elec-
trodes as synergistic or redundant using co-I as described in
the manuscript. However, estimating mutual information on
high-dimensional responses is challenging. Multi-Variate Pat-
tern Analysis (MVPA) is an approach that has been widely
adopted in neuroimaging and neuroscience to deal with high-
dimensional signals (King and Dehaene, 2014). MVPA uses
techniques from the field of machine learning: namely, su-
pervised learning algorithms and cross-validation, to learn in-
formative patterns in high-dimensional data, and evaluate their
generalisation performance (i.e. how well the model could pre-
dict in new data). Here we use linear-discriminant analysis to
learn the most informative linear combination of channel activ-
ity in each region to predict the binary class of the stimulus (i.e.
deviant vs standard). There are various metrics for evaluating
the cross-validated predictive performance of classification al-
gorithms, for example, overall accuracy, or measures like Area
under the ROC curve (Poldrack et al., 2020). These metrics can
be used to rank models based on different features (i.e. compare
the amount of information in temporal vs frontal regions).

Here, we combine MVPA with information-theoretic co-
information to quantify the representational interactions in pre-
dictions made from cross-validated multivariate models. To
do this, we first apply MVPA in the typical way (here us-
ing MVPALight toolbox; (Treder, 2020)) using 10-fold cross-
validation (CV). In a 10-fold CV, the overall dataset is randomly
separated into 10 disjoint subsets. Then, a model is fit on 9
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of those subsets and tested on the 10th, and this is repeated
for each of the 10 subsets. Here, we take the decision value
of the learned classifier (the value of the linear combination of
the weights and the data, which would then be thresholded to
make the classification) for each test set trial. This quantifies
how strongly the informative pattern the classifier had learned
was present in the data on that trial. We combine the test-set
decision values from all 10 different CV repetitions and calcu-
late the mutual information between these out-of-sample deci-
sion values and the true stimulus value on each trial (Yan et al.,
2023b,a). We have used MVPA to reduce the activity of the
multi-channel region into a single scalar value: the decision
value (d-val).

We can repeat the MVPA analysis for each time point of
the stimulus-locked epochs. Often, temporal cross-decoding
(King and Dehaene, 2014) is employed with MVPA to com-
pare the consistency of the informative patterns over time. For
this method, a classifier is trained at time t, and then tested (in
the hold-out test folds) at other times. If it can decode, it shows
the same pattern that was learned at time t, which is informa-
tion at other times. However, this can only compare between
data sets or conditions that are in the same physical space: i.e.
we can cross-decode across time within one brain region, but
we cannot compare between two different brain regions, be-
cause there is no way to apply the linear weights learned in the
frontal region to the completely different temporal electrodes.
Combining MVPA with co-Information (MVCo-I) overcomes
this limitation. We compute co-information between the cross-
validated decision values of different classifiers. This admits
the same interpretation as for the channel-wise analysis. Re-
dundancy shows that there is common information accessed by
the two decoding models. Synergy means that there is a super-
additive boost in the information available when considering
the pattern activation from both models together. When esti-
mating the joint information for the co-information calculation
we take the maximum of the individual region MI (because the
data processing inequality tells us this is a lower bound on the
information that can be extracted from the joint response), the
MI from the combined d-vals (2D signal; this has the advantage
of being a low dimensional response for MI calculation, and
being the optimal informative signal from each region) and the
MI from a joint MVPA model fit to the combination of channels
from both regions (1D d-vals, but which has the possibility to
include synergistic information between the regions which we
want to capture with this measure) (Figure S11).

We apply this methodology here in two ways. First, we look
at within-area MVCo-I. For this, we train CV classifier mod-
els separately at each time point. We then calculate the co-
information between two-time points using the cross-validated
decision values of the two models. Note, that a crucial differ-
ence between this and the temporal cross-decoding method is
that we always use the model that is learned to optimally de-
code information at that time point. Cross-decoding can tell if
the same pattern is informative, but we can see redundant in-
formation even when the informative pattern changes. We can
then compute MVCo-I between regions in the same way.
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Figure S1: Synergy and redundancy within ERP and within BB signals in temporal and frontal electrodes with the highest MI for the roving task for monkeys Kr,
Go and Fr. Co-information within auditory (A, C, E), and frontal (G, I, K) electrodes in the ERP signal. Co-information within auditory (B, D, F), and frontal (H,
J, L) electrodes in the BB signal. MI (solid traces) between standard and deviant trials for temporal (pink color) and frontal (orange color) electrodes. Co-I was
computed between each pair of electrodes and across time points between -100 to 350 ms after tone presentation. Significant temporal clusters after a permutation
test (see Methods) are depicted in black contours.

19

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2023. ; https://doi.org/10.1101/2023.01.12.523735doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523735
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S2: Synergy and redundancy within ERP and within BB signals in temporal and frontal electrodes with the highest MI for the local and global deviants of
the local-global task Co-information within auditory (A, C), and frontal (E,G) electrodes in the ERP signal for the local task. Co-information within auditory (B,D),
and frontal (F,H) electrodes in the BB signal for the local task. Co-information within auditory (H, J), and frontal (L,N) electrodes in the ERP signal for the global
task. Co-information within auditory (I,K), and frontal (M,O) electrodes in the BB signal for the global task. MI (solid traces) between standard and deviant trials
for temporal (pink color) and frontal (orange color) electrodes. Co-I was computed between each pair of electrodes and across time points between -100 to 350 ms
after tone presentation. Significant temporal clusters after a permutation test (see Methods) are depicted in black contours.
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Figure S3: Synergy and redundancy between ERP signals and across cortical areas in marmosets Kr, Go and Fr. Co-information revealed synergistic and redundant
PE patterns across temporal (A, D, G), temporo-frontal (B, E, H), and frontal (C, F) electrodes. MI (solid traces) between standard and deviant trials for temporal
(pink color) and frontal (orange color) electrodes. Error bars represent standard error of the mean (S.E.M) across electrodes. Co-I was computed between each
pair of electrodes and across time points between -100 to 350 ms after tone presentation. The average of the corresponding electrode pairs per (i.e. temporal,
temporo-frontal, and frontal) is shown for the complete co-I values (red and blue panel), for positive co-I values (redundancy only; red panel), and negative co-I
values (synergy only; blue panel).
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Figure S4: Synergy and redundancy between ERP signals and across cortical areas for marmosets Ji and Nr for the local deviant of the Local-Global task. Co-
information revealed synergistic and redundant PE patterns across temporal (A, D), temporo-frontal (B, E), and frontal (C, F) electrodes. MI (solid traces) between
standard and deviant trials for temporal (pink color) and frontal (orange color) electrodes. Error bars represent standard error of the mean (S.E.M) across electrodes.
Co-I was computed between each pair of electrodes and across time points between -100 to 350 ms after tone presentation. The average of the corresponding
electrode pairs per (i.e. temporal, temporo-frontal, and frontal) is shown for the complete co-I values (red and blue panel), for positive co-I values (redundancy only;
red panel), and negative co-I values (synergy only; blue panel).
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Figure S5: Synergy and redundancy between ERP signals and across cortical areas for marmosets Ji and Nr for the Global deviant of the Local-Global task. Co-
information revealed synergistic and redundant PE patterns across temporal (A, D), temporo-frontal (B, E), and frontal (C, F) electrodes mostly for marmoset Ji,
while Nr only showed relatively weak synergetic patterns between frontal electrodes. MI (solid traces) between standard and deviant trials for temporal (pink color)
and frontal (orange color) electrodes. Error bars represent standard error of the mean (S.E.M) across electrodes. Co-I was computed between each pair of electrodes
and across time points between -100 to 350 ms after tone presentation. The average of the corresponding electrode pairs per (i.e. temporal, temporo-frontal, and
frontal) is shown for the complete co-I values (red and blue panel), for positive co-I values (redundancy only; red panel), and negative co-I values (synergy only;
blue panel).
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Figure S6: Synergy and redundancy between BB signals and across cortical areas in marmosets Kr, Go and Fr in the Roving task. Co-information revealed
synergistic and redundant PE patterns across temporal (A, D), temporo-frontal (B, E, H), and frontal (C, I) electrodes. MI (solid traces) between standard and
deviant trials for temporal (pink color) and frontal (orange color) electrodes. Error bars represent standard error of the mean (S.E.M) across electrodes. Co-I was
computed between each pair of electrodes and across time points between -100 to 350 ms after tone presentation. The average of the corresponding electrode pairs
per (i.e. temporal, temporo-frontal, and frontal) is shown for the complete co-I values (red and blue panel), for positive co-I values (redundancy only; red panel),
and negative co-I values (synergy only; blue panel).
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Figure S7: Synergy and redundancy between BB signals and across cortical areas for marmosets Ji and Nr for the local deviant of the Local-Global task. Co-
information revealed synergistic and redundant PE patterns across temporal (A, D), temporo-frontal (B, E), and frontal (C, F) electrodes. MI (solid traces) between
standard and deviant trials for temporal (pink color) and frontal (orange color) electrodes. Error bars represent standard error of the mean (S.E.M) across electrodes.
Co-I was computed between each pair of electrodes and across time points between -100 to 350 ms after tone presentation. The average of the corresponding
electrode pairs per (i.e. temporal, temporo-frontal, and frontal) is shown for the complete co-I values (red and blue panel), for positive co-I values (redundancy only;
red panel), and negative co-I values (synergy only; blue panel).
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Figure S8: Synergy and redundancy between ERP signals and across cortical areas in marmosets Ji and Nr for the global deviant of the Local-Global task. Co-
information revealed synergistic and redundant PE patterns across temporal (A, D), temporo-frontal (B, E), and frontal (C, F) electrodes. MI (solid traces) between
standard and deviant trials for temporal (pink color) and frontal (orange color) electrodes. Error bars represent standard error of the mean (S.E.M) across electrodes.
Co-I was computed between each pair of electrodes and across time points between -100 to 350 ms after tone presentation. The average of the corresponding
electrode pairs per (i.e. temporal, temporo-frontal, and frontal) is shown for the complete co-I values (red and blue panel), for positive co-I values (redundancy only;
red panel), and negative co-I values (synergy only; blue panel).
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Figure S9: Broadband and ERP markers of PE across the monkey brain for monkeys Ji and Nr for the global task. Electrode locations for marmoset Nr (96
electrodes; upper panel) and Ji (96 electrodes; lower panel). Electrodes showing significant PE effect after computing MI between standard and deviant trials for the
(A) Broadband (dark green circles) and (B) ERP (light green circles) markers of auditory prediction error in both monkeys. Electrodes showing significant MI for
both markers are depicted in cyan. (C) Histogram of electrodes showing significant MI between tones for BB (left), ERP (middle), and both markers (right) for each
animal. (D) Electrodes with the highest MI in the temporal and frontal cortex showing the BB signal for deviant and standard tones. Error bars represent standard
error of the mean (S.E.M) across trials. Deviant tone (green) and standard tone (black), and the corresponding MI values in bits (effect size of the difference) for the
temporal (pink trace) and frontal (orange trace) electrodes. Significant time points after a permutation test are shown as grey bars over the MI plots. (E) Electrodes
with the highest MI in the temporal and frontal cortex showing the ERP signal for deviant and standard tones. Color codes are the same as in C.
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Figure S10: Results of network simulations. (A) Model architecture: fully connected (FC) with “serial” connectivity structure (i.e., only next-neighbour between-
area links). Connections included both feedforward and feedback (black and green arrows) and recurrent (golden arrows) links, but, unlike in previous simulations,
no higher-order “jumping” links (simulating cortico-cortical projections between non-adjacent areas A1-PB, AB-PF, PB-PM, and PB-M1). (B, C, D) Results
obtained by stimulating the network of Panel A using a simulated Roving Task paradigm (as in Experiment 1). MI (solid traces) between standard and deviant trials
are plotted for the three temporal (A1, AB, PB: pink curves) and three frontal (PF, PM, M1: orange curves) areas’ simulated responses. Co-information analyses
were performed between the simulated temporal and frontal areas’ signals. Temporal co-I was computed from the simulated firing rates across time points between
-100 to 350 ms after stimulus onset. The average of the corresponding electrodes for the simulated responses is shown for the complete co-I chart (red and blue
panel), for positive co-I values (redundancy only; red panel), and for negative co-I values (synergy only; blue panel). The grey-scale panels show significant clusters
of co-I for areas with the highest MI. Note the almost entire absence of synergistic (or redundant) information between temporal and frontal regions (see panel D).
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Figure S11: Schematic of the MVCo-I method. To calculate co-information between multivariate responses we use 10-fold cross-validation (CV) with Linear
Discriminant Analysis (LDA). For each of the 10 hold-out folds, we train an LDA classifier to discriminate the stimulus category of a trial (i.e. deviant vs standard
tone). We then compute the classifier decision values (d-vals; i.e. the linear combination of the learned pattern weights and the raw data) on each trial for the
hold-out fold. We then concatenate the CV d-vals from all folds. We have used LDA as a cross-validated supervised dimensionality reduction method to obtain
a one-dimensional representation of the region’s activity at that time point, which is maximally discriminative between conditions. We can then compute the co-
information between the ground-truth stimulus class of each trial, and the CV d-vals from two different classifiers (i.e. either from the same region at different time
points, within-area coI, or from different regions, between-areas co-I). This calculation is the same as for channel-wise analysis (see Methods).
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Figure S12: Anatomy-based electrode selection for the MVCo-I Method per marmoset. Roving Oddball Task (3 marmosets: Kr, Go and Fr) and Local/Global Task
(2 marmosets: Ji and Nr).

Figure S13: Temporal synergy and redundancy within ERP signals in the auditory and frontal electrodes using the MVCo-I Method (Experiment 1: Roving
Oddball Task). MVCo-I revealed synergistic and redundant temporal patterns within Temporal ERP (Panel A) and Frontal ERP (Panel B) signals in the auditory
cortex. MI (solid traces) between standard and deviant trials for auditory (pink color) and frontal (orange color) responses averaged across the three monkeys. The
corresponding electrodes used for the MVCo-I method are depicted in 1B. Error bars represent standard error of the mean (S.E.M). Temporal co-I was computed
within the corresponding signal (ERP) across time points between -100 to 350 ms after tone presentation. The average of the corresponding electrodes across
monkeys is shown for the complete co-I chart (red and blue plots); for positive co-I values (redundancy only; red panel); and for negative co-I values (synergy only;
blue plot).
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Figure S14: Spatio-temporal synergy and redundancy between auditory and frontal ERP signals using the MVCo-I Method (Experiment 1: Roving Oddball Task).
(A) MVCo-I revealed synergistic and redundant temporal patterns between temporal and frontal signals. MI (solid traces) between standard and deviant trials for
auditory (pink color) and frontal (orange color) responses averaged across the three monkeys. The corresponding electrodes used for the MVCo-I method are
depicted in 1B. Error bars represent standard error of the mean (S.E.M). Temporal co-I was computed within the corresponding signal (ERP) across time points
between -100 to 350 ms after tone presentation. The average of the corresponding electrodes across monkeys is shown for the complete co-I chart (red and blue
plots); for positive co-I values (redundancy only; red panel); and for negative co-I values (synergy only; blue plot).
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Figure S15: Temporal synergy and redundancy within ERP signals in the auditory and frontal electrodes using the MVCo-I Method (Experiment 2: Local/Global
Task). MVCo-I revealed synergistic and redundant temporal patterns within auditory ERP signals in the Local (Panel A) and Global (Panel B) contrasts; and
within frontal ERP signals in the Local (Panel C) and Global (Panel D) contrasts. MI (solid traces) between standard and deviant trials for auditory (pink color)
and frontal (orange color) responses averaged across the two monkeys. The corresponding electrodes used for the MVCo-I method are depicted in 1B. Error bars
represent standard error of the mean (S.E.M). Temporal co-I was computed within the corresponding signal (ERP) across time points between -100 to 350 ms after
tone presentation. The average of the corresponding electrodes across monkeys is shown for the complete co-I chart (red and blue plots); for positive co-I values
(redundancy only; red panel); and for negative co-I values (synergy only; blue plot).
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Figure S16: Spatio-temporal synergy and redundancy between temporal and frontal ERP signals using the MVCo-I Method (Experiment 2: Local/Global Task).
MVCo-I revealed synergistic and redundant temporal patterns between auditory and frontal ERP signals in the Local (Panel A) and Global (Panel B) contrasts. MI
(solid traces) between standard and deviant trials for auditory (pink color) and frontal (orange color) responses averaged across the two monkeys. The corresponding
electrodes used for the MVCo-I method are depicted in 1B. Error bars represent standard error of the mean (S.E.M). Temporal co-I was computed within the
corresponding signal (ERP) across time points between -100 to 350 ms after tone presentation. The average of the corresponding electrodes across monkeys is
shown for the complete co-I chart (red and blue plots); for positive co-I values (redundancy only; red panel); and for negative co-I values (synergy only; blue plot).
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cerebral cortex. Biol. Cybern. 108, 559–572.

Pandya, D.N., 1995. Anatomy of the auditory cortex. Revue neurologique 151,
486–494.

Pandya, D.N., Yeterian, E.H., 1985. Architecture and connections of cortical
association areas. Association and auditory cortices , 3–61.

Panzeri, S., Moroni, M., Safaai, H., Harvey, C.D., 2022. The structures and
functions of correlations in neural population codes. Nat. Rev. Neurosci. 23,
551–567.

Park, H., Ince, R.A.A., Schyns, P.G., Thut, G., Gross, J., 2018. Represen-
tational interactions during audiovisual speech entrainment: Redundancy
in left posterior superior temporal gyrus and synergy in left motor cortex.
PLOS Biology 16, 1–26.

Parras, G.G., Nieto-Diego, J., Carbajal, G.V., Valdés-Baizabal, C., Escera, C.,
Malmierca, M.S., 2017. Neurons along the auditory pathway exhibit a hier-
archical organization of prediction error. Nat. Commun. 8, 2148.

Petrides, M., 2013. Neuroanatomy of language regions of the human brain.

34

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2023. ; https://doi.org/10.1101/2023.01.12.523735doi: bioRxiv preprint 

http://dx.doi.org/10.1101/2022.04.15.488302
http://dx.doi.org/10.1101/2022.04.15.488302
https://doi.org/10.1101/2023.01.12.523735
http://creativecommons.org/licenses/by-nc-nd/4.0/


Academic Press.
Petrides, M., Pandya, D., 2002. Comparative cytoarchitectonic analysis of the

human and the macaque ventrolateral prefrontal cortex and corticocortical
connection patterns in the monkey. European Journal of Neuroscience 16,
291–310.

Petrides, M., Pandya, D.N., 2009. Distinct parietal and temporal pathways to
the homologues of broca’s area in the monkey. PLoS biology 7, e1000170.

Petrides, M., Tomaiuolo, F., Yeterian, E.H., Pandya, D.N., 2012a. The pre-
frontal cortex: comparative architectonic organization in the human and the
macaque monkey brains. cortex 48, 46–57.

Petrides, M., Tomaiuolo, F., Yeterian, E.H., Pandya, D.N., 2012b. The pre-
frontal cortex: Comparative architectonic organization in the human and the
macaque monkey brains. Cortex 48, 46–57.

Poldrack, R.A., Huckins, G., Varoquaux, G., 2020. Establishment of best prac-
tices for evidence for prediction: A review. JAMA Psychiatry 77, 534–540.

Pulvermüller, F., Garagnani, M., 2014. From sensorimotor learning to memory
cells in prefrontal and temporal association cortex: a neurocomputational
study of disembodiment. Cortex 57, 1–21.

Pulvermüller, F., Tomasello, R., Henningsen-Schomers, M.R., Wennekers, T.,
2021. Biological constraints on neural network models of cognitive func-
tion. Nat. Rev. Neurosci. 22, 488–502.

Rao, R.P., Ballard, D.H., 1999. Predictive coding in the visual cortex: a func-
tional interpretation of some extra-classical receptive-field effects. Nat. Neu-
rosci. 2, 79–87.

Rauschecker, J.P., Scott, S.K., 2009. Maps and streams in the auditory cortex:
nonhuman primates illuminate human speech processing. Nature neuro-
science 12, 718–724.

Rauschecker, J.P., Tian, B., 2000. Mechanisms and streams for processing
of “what” and “where” in auditory cortex. Proceedings of the National
Academy of Sciences 97, 11800–11806.

Reser, D.H., Burman, K.J., Richardson, K.E., Spitzer, M.W., Rosa, M.G., 2009.
Connections of the marmoset rostrotemporal auditory area: Express path-
ways for analysis of affective content in hearing. European Journal of Neu-
roscience 30, 578–592.

Rilling, J.K., 2014. Comparative primate neuroimaging: insights into human
brain evolution. Trends in cognitive sciences 18, 46–55.

Rilling, J.K., Glasser, M.F., Jbabdi, S., Andersson, J., Preuss, T.M., 2012. Con-
tinuity, divergence, and the evolution of brain language pathways. Frontiers
in Evolutionary Neuroscience 3, 11.

Rilling, J.K., Glasser, M.F., Preuss, T.M., Ma, X., Zhao, T., Hu, X., Behrens,
T.E., 2008. The evolution of the arcuate fasciculus revealed with compara-
tive dti. Nature neuroscience 11, 426–428.

Rolls, E.T., Deco, G., 2010. The Noisy Brain: Stochastic Dynamics as a Prin-
ciple of Brain Function. Oxford University Press.

Romanski, L.M., Bates, J.F., Goldman-Rakic, P.S., 1999a. Auditory belt and
parabelt projections to the prefrontal cortex in the rhesus monkey. Journal
of Comparative Neurology 403, 141–157.

Romanski, L.M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P.S.,
Rauschecker, J.P., 1999b. Dual streams of auditory afferents target multi-
ple domains in the primate prefrontal cortex. Nature neuroscience 2, 1131–
1136.

Saleem, A.B., Diamanti, E.M., Fournier, J., Harris, K.D., Carandini, M., 2018.
Coherent encoding of subjective spatial position in visual cortex and hip-
pocampus. Nature 562, 124–127.

Schmahmann, J.D., Schmahmann, J., Pandya, D., 2009. Fiber pathways of the
brain. OUP USA.

Schneidman, E., Bialek, W., Berry, 2nd, M.J., 2003. Synergy, redundancy, and
independence in population codes. J. Neurosci. 23, 11539–11553.

Schomers, M.R., Garagnani, M., Pulvermüller, F., 2017. Neurocomputational
consequences of evolutionary connectivity changes in perisylvian language
cortex. J. Neurosci. 37, 3045–3055.

de Schotten, M.T., Forkel, S.J., 2022. The emergent properties of the connected
brain. Science 378, 505–510.

Scott, B.H., Leccese, P.A., Saleem, K.S., Kikuchi, Y., Mullarkey, M.P.,
Fukushima, M., Mishkin, M., Saunders, R.C., 2017. Intrinsic connections
of the core auditory cortical regions and rostral supratemporal plane in the
macaque monkey. Cerebral cortex 27, 809–840.

Shenoy, K.V., Kao, J.C., 2021. Measurement, manipulation and modeling of
brain-wide neural population dynamics. Nat. Commun. 12, 633.

Smiley, J.F., Hackett, T.A., Ulbert, I., Karmas, G., Lakatos, P., Javitt, D.C.,
Schroeder, C.E., 2007. Multisensory convergence in auditory cortex, i. cor-

tical connections of the caudal superior temporal plane in macaque monkeys.
Journal of Comparative Neurology 502, 894–923.

Steinmetz, N.A., Zatka-Haas, P., Carandini, M., Harris, K.D., 2019. Distributed
coding of choice, action and engagement across the mouse brain. Nature
576, 266–273.

Suzuki, W., Banno, T., Miyakawa, N., Abe, H., Goda, N., Ichinohe, N., 2015.
Mirror neurons in a new world monkey, common marmoset. Frontiers in
neuroscience 9, 459.

Takahashi, D., Narayanan, D., Ghazanfar, A., 2013. Coupled oscillator dynam-
ics of vocal turn-taking in monkeys. Current Biology 23, 2162–2168.

Thiebaut de Schotten, M., Dell’Acqua, F., Valabregue, R., Catani, M., 2012.
Monkey to human comparative anatomy of the frontal lobe association
tracts. Cortex 48, 82–96. Frontal lobes.

Tomasello, R., Garagnani, M., Wennekers, T., Pulvermüller, F., 2017. Brain
connections of words, perceptions and actions: A neurobiological model of
spatio-temporal semantic activation in the human cortex. Neuropsychologia
98, 111–129.

Tomasello, R., Wennekers, T., Garagnani, M., Pulvermüller, F., 2019. Visual
cortex recruitment during language processing in blind individuals is ex-
plained by hebbian learning. Sci. Rep. 9, 3579.

Treder, M.S., 2020. MVPA-Light: A classification and regression toolbox for
multi-dimensional data. Front. Neurosci. 14, 289.

Urai, A.E., Doiron, B., Leifer, A.M., Churchland, A.K., 2022. Large-scale neu-
ral recordings call for new insights to link brain and behavior. Nat. Neurosci.
25, 11–19.

Varley, T.F., Sporns, O., Schaffelhofer, S., Scherberger, H., Dann, B., 2023.
Information-processing dynamics in neural networks of macaque cerebral
cortex reflect cognitive state and behavior. Proc. Natl. Acad. Sci. U. S. A.
120, e2207677120.

Vinck, M., Uran, C., Spyropoulos, G., Onorato, I., Broggini, A.C., Schneider,
M., Canales-Johnson, A., 2023. Principles of large-scale neural interactions.
Neuron 111, 987–1002.

Voitov, I., Mrsic-Flogel, T.D., 2022. Cortical feedback loops bind distributed
representations of working memory. Nature 608, 381–389.

Yan, Y., Zhan, J., Garrod, O., Cui, X., Ince, R.A.A., Schyns, P.G., 2023a. Neu-
ral representation strength of predicted category features biases decision be-
havior. Current Biology (In Press) .

Yan, Y., Zhan, J., Ince, R.A.A., Schyns, P.G., 2023b. Network communications
flexibly predict visual contents that enhance representations for faster visual
categorization. J. Neurosci. 43, 5391–5405.

Young, M.P., Scanneil, J.W., Burns, G.A., Blakemore, C., 1994. Analysis of
connectivity: neural systems in the cerebral cortex. Reviews in the Neuro-
sciences 5, 227–250.

Yuille, A.L., Geiger, D., 1998. Winner-Take-All Mechanisms. MIT Press, Cam-
bridge, MA, USA. p. 1056–1060.

Zhan, J., Ince, R.A.A., van Rijsbergen, N., Schyns, P.G., 2019. Dynamic con-
struction of reduced representations in the brain for perceptual decision be-
havior. Current Biology. 29, 319–326.e4.

35

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2023. ; https://doi.org/10.1101/2023.01.12.523735doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.12.523735
http://creativecommons.org/licenses/by-nc-nd/4.0/

