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Abstract15

Inter-species comparisons are key to deriving an understanding of the behavioral16

and neural correlates of human cognition from animal models. We perform a17

detailed comparison of macaque monkey and human strategies on an analogue of18

the Wisconsin Card Sort Test, a widely studied and applied multi-attribute measure19

of cognitive function, wherein performance requires the inference of a changing20

rule given ambiguous feedback. We found that well-trained monkeys rapidly infer21

rules but are three times slower than humans. Model fits to their choices revealed22

hidden states akin to feature-based attention in both species, and decision processes23

that resembled a Win-stay lose-shift strategy with key differences. Monkeys and24

humans test multiple rule hypotheses over a series of rule-search trials and perform25

inference-like computations to exclude candidates. An attention-set based learning26

stage categorization revealed that perseveration, random exploration and poor27

sensitivity to negative feedback explain the under-performance in monkeys.28
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Introduction29

Animal models are essential for mechanistic investigations of the circuit underpinnings of30

complex computation. New frontiers in the training of non-human animals to perform31

computationally challenging tasks while simultaneously recording from large neural32

populations across several brain regions promise rapid advances in our understanding of33

the neural substrates of cognition. However, our ability to extrapolate any findings to an34

understanding of human cognition relies on an overlap between the computational and35

neurocognitive means used to carry out complex tasks across species [1, 2]. The prefrontal36

cortex, which plays an essential role in higher cognitive functions [3], is disproportionately37

enlarged in humans compared to macaque monkeys [4, 5]. It has been argued that38

the resulting increase in the number of neurons may underlie superior human cognitive39

abilities [6, 7]. Thus, interpretation of findings from animals demands systematic and40

rigorous comparisons between cognitive computations in humans and non-human animals.41

Towards this end, we compared the behavioral strategies employed by macaque42

monkey and humans on the same task: a variant of the Wisconsin Card Sorting Test43

(WCST), widely used to evaluate the cognitive functions involved in abstract thinking,44

rule search, cognitive set shifting and the effective use of feedback [8, 9]. The WCST and45

its variants have long been employed in the study of prefrontal function and dysfunction46

[10, 11, 12, 13, 14], lending support to the presence of abstract thinking and computation47

in the monkey brain [15]. In the task, subjects must match or select items composed of48

multiple visual features based on an uncued or hidden rule. Feedback at the end of each49

trial indicates whether the response was correct, but does not unambiguously reveal the50

rule identity. Instead it helps narrow down the rule identity, which must then be inferred51

from the collective outcome of multiple trials. Critically, the hidden rule changes in an52

uncued manner across trial blocks, requiring detection of and adaptation to these uncued53

rule switches based solely on positive or negative feedback.54

We implemented a version of the task in which each card has three feature dimensions55

(color, shape and texture), each of which can take one of four values, defining twelve56
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possible “rules” (Fig. 1a). What strategy might one use to identify the current rule57

from the outcome of choosing an object in each trial? It is clearly extremely inefficient58

to simply learn the value of 64 individual object-reward associations; each object is a59

conjunction of multiple visual features, and learning the value of one object does not60

generalize to any of the other objects. Learning the value of features to identify the rule61

is far more efficient as it allows generalization. In reinforcement learning, the problem of62

attributing binary feedback in situations when there are many features (high-dimensional63

environments), referred to as the “curse-of-dimensionality”, is effectively resolved through64

such abstract reasoning [16, 17, 18]. However, a rule-based strategy still poses challenges65

of cognitive capacity. Simultaneously tracking and updating the value of twelve features66

can impose prohibitive working-memory demands and be computationally daunting. On67

the other hand, selectively attending to and evaluating a single feature at a time is68

inefficient as it discards relevant feedback regarding other features. The strategy that69

humans or monkeys use to address this tradeoff between computational complexity and70

information efficiency remains to be elucidated.71

To analyze how individuals handle the cognitive complexity and demands of this task,72

we developed a detailed behavioral model that allowed us to compare the strategy and73

performance of humans and trained macaque monkeys on the same WCST analogue.74

This allowed us to identify differences in the types of errors in the two species, revealing75

the underlying cognitive differences between them. Indeed, differences in the types and76

prevalence of errors on the WCST, demonstrated via similar comparisons between healthy77

and patient populations, has played an essential role in establishing behavioral markers78

of various forms of cognitive dysfunction [10, 19, 20, 21]. We found that while monkeys79

rapidly identified new rules and learned several rules over an individual session, the rule80

learning in monkeys was 3-4 times slower than humans. To understand this difference,81

we fit a behavioral model that predicts upcoming choices based on choices and their82

outcomes on previous trials. We modeled the transformation of the trial history to an83

upcoming choice through inferred hidden behavioral states. While the model is not84

constrained to do so, the best-fit models for all subjects of both species developed hidden85

states that aligned with a feature-based attention strategy wherein some visual features86
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are selectively examined over others while making a choice and attributing feedback.87

The decision process governing each species’ rule search strategy is characterized by the88

statistics of the inferred transitions between these states. This strategy bore a striking89

resemblance to the Win-Stay Lose-Shift strategy but with a few important differences.90

First, our model revealed that both species often explore more than one features at a time.91

Second, both species perform inference-like computations – the model reported changes92

in the attentional state towards one feature based on the outcome of choosing another.93

We developed a novel approach to identify distinct stages of rule-learning. Analysis of94

these stages revealed three key reasons for slower monkey rule-learning performance: (i)95

following a rule switch, monkeys perseverate on the previous rule more than humans; (ii)96

monkeys often make seemingly random choices that do not involve any of the features97

under exploration, even after finding the rule, which delays the expression of the learnt98

rule; and (iii) poorer attention to negative feedback in monkeys particularly when they99

simultaneously explore the rule and non-rule features poses a credit-assignment challenge100

which delays rule learning.101
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Results102

Monkeys are slower rule learners than humans103

We compared the ability of monkeys and humans to rapidly adapt to changes in task104

contingencies and learn new rules in a modified version of the WCST. On each trial,105

subjects were presented with 4 objects and received feedback upon selecting one of them106

(Fig. 1a, middle). Each object was composed of one unique feature from each of three107

dimensions - visual pattern, shape and color (Fig. 1a, top). Every feature appeared in108

one of the objects on each trial, but object compositions changed across trials. On a109

given block of trials, subjects received positive feedback (monkeys: food reward; humans:110

the word “CORRECT” displayed on screen) for selecting the object with one of the111

twelve features (e.g. red) — the current hidden rule — and negative feedback (monkeys:112

timeout; humans: the word “INCORRECT” displayed on screen) otherwise. After113

subjects demonstrated that they had learned the current rule by reaching criterion114

performance on the current block, a new block was initiated through an uncued switch115

to a randomly chosen new rule (Fig. 1a, bottom). Parameter differences in the task116

implementation for the two species, including the response type, trial epoch durations117

and learning criteria, are outlined in Supplementary tables 1 and 2.118

Remarkably, well-trained monkeys learned new rules within only tens of trials. Yet,119

they were over three times slower than humans (Fig. 1b; monkeys: 27.84 ± 2.92 trials120

(mean± SEM); humans: 5.98± 0.52 trials), a learning deficit that was significant following121

a correction for the inter-species difference in the learning criterion (Supplementary Fig.122

1; monkeys: 20.61 ± 1.52 trials; humans: 5.98 ± 0.52 trials; bootstrap test with t-statistic,123

p < 0.005). We then sought to explain the inter-species computational differences that124

produce this rule learning slowing in monkeys. Specifically, we focused on inferring125

individuals’ rule-learning strategies from behavior, and identifying the species differences126

that contribute to the learning speed difference. One possible strategy, Win-Stay Lose-127

Shift (WSLS), is widely-reported during rule learning in many species, particularly in128

the two-armed bandit problem where the identity of the more rewarding arm must be129
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learned and can change over trials. Here, one of the arms is repeatedly chosen as long130

as this produces positive feedback (win-stay). When negative feedback is received the131

other arm is chosen on the next trial (lose-shift). This strategy can be cast as a decision132

process comprised of two behavioral states — persist and avoid — where the choice of133

the currently rewarded arm is in the persist state and it transitions to the persist or134

avoid states subject to positive or negative feedback, respectively, while the choice of the135

other arm is in the avoid state and transitions to the persist state when that arm was136

not chosen on the previous trial and negative feedback was received (Fig. 1c).137

The WSLS strategy is computationally efficient, and requires that the subject attend138

to and maintain only a single arm’s identity in working memory. By replacing arm iden-139

tity with feature identity, the approach is readily adapted to solve WCST problems and140

always finds the rule. However, feedback is equally informative about all three features141

in the chosen object, not just the attended one. Due to this neglect of information about142

unattended features, a simulated WSLS agent learns rules much slower than optimal:143

indeed humans learn more rapidly (Supplementary Fig. 1; WSLS agent mean: 13.31144

trials, std. dev.: 12.85 trials; humans: 5.98 ± 0.52 trials). This underscores a tradeoff145

between computational and information efficiency in multi-dimensional environments.146

Simultaneously maintaining and updating beliefs about multiple features is more informa-147

tion efficient, but increases computational complexity and working memory demands. In148

contrast, attending to a single feature at a time is computationally simpler but inefficient149

in its integration of trial outcomes. In the following sections, we address how the two150

species solve this tradeoff.151

Dynamic model uncovers hidden states during rule learning152

Prior cognitive model comparisons of human behavior in WCST variants provide evi-153

dence for rule-learning strategies wherein subjects selectively attend to and learn about154

individual features or dimensions, rather than feature configurations (i.e. objects) [17,155

18, 20]. It is argued that such a mental representation of stimuli in terms of features156

resolves the curse-of-dimensionality which impairs learning efficiency in high-dimensional157
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environments. For example, it is far more efficient to learn the value of 12 features than158

the dozens of objects they can be combined into. Drawing on these findings, we developed159

a behavioral model to predict the probability of choosing individual features given their160

choices and outcomes on previous trials. However, in contrast to earlier work, our model161

does not postulate a specific internal belief structure and update rule, thus making fewer162

assumptions regarding the learning algorithm underlying a subject’s behavior. Instead,163

it aims to discover in an unbiased manner how the decision making process evolves as a164

function of feedback. Recently, this approach has been successful at revealing previously165

unobserved behavioral states underlying human, rodent and fruit-fly decision making [22,166

23, 24].167

For each feature, we model whether the feature is chosen or not (denoted as c) as a168

function of past choices and their outcomes (h) via a Bernoulli Generalized Linear Model169

(GLM) (Fig. 2a; see Methods). The choice outcome on an earlier trial is represented170

by a one-hot four dimensional vector where the dimensions represent whether positive171

feedback was received after choosing the feature on the trial (C+), negative feedback172

was received after choosing the feature (C−), positive feedback was received after not173

choosing the feature on the trial (NC+), or negative feedback was received after not174

choosing the feature (NC−). This allows us to assess separately how the present choice175

depends on past choice outcomes both when that feature was chosen (direct) and when it176

was not (indirect). Furthermore, the model permits dynamic changes in how past choices177

and outcomes are transformed into a present choice via hidden states (s). A feature’s178

associated hidden-state also undergoes a transition at the end of each trial depending179

on past choices and outcomes, which may reflect updates to the feature’s value based180

on past choice outcomes, or a change in the level of attention to the feature, or even a181

shift in strategy (i.e. how a feature’s history is weighted in determining its choice). Note182

that while the model permits these possibilities and others, it does not prescribe the183

nature and function of the states. Rather, the states and their dynamics emerge upon184

fitting the model to behavioral data. These hidden state dynamics are modeled as an185

input-dependent or Input-Output Hidden Markov Model (IOHMM) [25].186

The IOHMM-GLM’s goodness of fit to behavior depends both on the number of187
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previous trials determining a subject’s choice (lag), and on the number of possible hidden188

states. Accordingly, we fit IOHMM-GLMs to each subject’s behavior while systematically189

varying these two parameters (Fig. 2b). Across subjects in both species, model accuracy190

showed a stronger dependence on the number of states than lag. Crucially, accuracy191

plateaued as the number of states increased, and exhibited over-fitting at higher lags.192

In this task, subjects choose objects rather than individual features. Therefore, we193

extended our model to compute the probability of choosing each object in a trial, based194

on the model’s predicted probability of choosing individual features on that trial (see195

Methods). Fits of this model extension to each subject’s behavior based on each of the196

IOHMM-GLMs in Figure 2b revealed a qualitatively similar relationship between model197

accuracy and the underlying parameters (Supplementary Fig. 2a). For each subject,198

the best-fit model comprised of 4 states and lag 1 (history from the previous trial only)199

does not overfit the data while producing prediction accuracies at or very close to the200

performance plateau. Therefore, we selected these models (dashed-blue box, Fig. 2b,201

Supplementary Fig. 2a) for further analysis.202

Figure 2c (left) shows the choice probability predicted by these 4 state lag 1 models203

for the chosen object at each trial after a rule switch, averaged over rule blocks; averaging204

across blocks is achieved by normalizing the trial number by the block length. The205

results show that the model’s prediction of the chosen object is significantly above chance206

(0.25) in both species (monkeys: 0.47 ± 0.02; humans: 0.63 ± 0.02). Also, prediction207

accuracy improves as the rule is learned over the block’s time course. Our primary208

goal, however, is to find the most accurate explanation for each subject’s rule learning209

behavior, rather than predict their future choices. For this, we consider the most likely210

sequence of states across trials inferred by the model for each feature. Rather than211

predict the most likely state on each upcoming trial given only past choice outcomes, the212

most likely sequence of states is the maximum a posteriori probability (MAP) estimate213

of the sequence of states across all trials in an experimental session — each estimated or214

inferred state best explains not only the present choice but also past and future choices215

subject to the model’s choice probabilities in the inferred past/future states and its216

state transition probabilities between the inferred present and past/future states (see217
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Methods; Figure 2d). The model is generally quite confident in its MAP estimates of218

the most likely sequence of states, as evidenced by the the cumulative density of their219

posterior probabilities (Supplementary Fig. 2b). Moreover, since the inferred states220

for each feature are estimated from past, present and future choices, they yield more221

accurate estimates of the choice probabilities for chosen objects (Fig. 2c, right). For this222

reason, we rely on the inferred states to identify the rule learning strategy in each species223

and to interpret the inter-species differences therein.224

To gain insight into the interpretation of our model fits, we similarly analyzed225

the choices of a simulated Win-Stay Lose-Shift agent (Supplementary Fig. 1). By226

construction, we know that the model’s choices only rely on the previous trial. As227

expected, higher lag models tend to overfit the agent’s choices (Supplementary Fig. 3a).228

While the agent’s true behavior has only two states (Fig. 1c), we find that a three-state229

model provides a better fit. Our model splits the avoid state into two states — random230

and avoid. This is due to a combination of the task’s structure and our model setup. By231

picking one feature consistently across trials, the agent necessarily avoids other features232

in the same dimension. However, the agent’s choices of features in other dimensions233

appear random, since an object is composed of one feature from each dimension and234

objects compositions are generated randomly on each trial. Thus, the appearance of235

this additional state results from our model’s treatment of each feature independent236

of its relationship to other intra-dimensional features, a simplifying assumption that237

allows for tractable fitting. Nevertheless, the model largely recovers the hidden states238

and state-transitions that drive the agent’s behavior — it correctly identifies when a239

feature is associated with the persist state 57.6% of the time and accurately determines240

the underlying decision process (Supplementary Fig. 3c-d). Collectively, these results241

show the reliability of this modeling approach to explain rule-learning in both species.242
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Hidden states reflect feature-based attention and reveal qualita-243

tively similar strategies in the two species244

Learning is often conceptualized as updates to a decision-making schema based on245

past decisions and their outcomes [18, 26]. We sought to identify hidden states that246

capture this decision-making process and to explore what they reveal about the dynamics247

of human and monkey rule learning in the WCST. In both humans and monkeys, a248

comparison of the choice probability of features associated with each state — calculated249

by marginalizing the model’s predicted choice probability under each state and history250

(Supplementary Fig. 4a) over the choice outcome histories (Supplementary Fig. 4b) —251

revealed that the model determines states based on distinct probabilities of choosing252

the associated feature, ranging from below chance (avoid) to chance (random) to above253

chance (preferred) to very high (persist) (Fig. 3a). That is, the model states correspond254

to levels of attention paid to each feature. Moreover, this result was consistently observed255

in the majority of the models fit to the behavior in both species, as well as in a simulated256

WSLS agent (Supplementary Fig. 3). Since features associated with the preferred or257

persist state are favored during rule-learning, we refer to them as being under exploration.258

We will show that the estimation of the attentional state towards each feature at each259

trial permits a systematic analysis of when features are selected for or withdrawn from260

exploration, and how the choice outcome history informs these decisions. This exercise261

fosters an exposition of the decision-making process that describes the rule learning262

strategy in both species, the resulting learning dynamics between rule switch and rule263

learning, and the identification of those differences in the decision-making process that264

most prominently explain the learning performance difference between the two species.265

Since these analyses rely heavily on the most-likely state estimates, we validated266

the consistency of these estimates with the model’s parameters. First, we compared267

the feature choice probability per history and state computed directly from the fit268

parameters (model) and measured based on the state estimate for each feature on each269

trial (empirical). The two measurements yield consistent results demonstrating that the270

most-likely states are estimated not only to best explain the sequence of choices but also271
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to conform with the model’s parameters. Next, we similarly compared state transition272

probabilities per history computed directly from the fit parameters (model) and measured273

based on the state estimate for each feature on each trial (empirical)(Supplementary Fig.274

5). Here again, we find that the transition probabilities computed from the fit parameters275

(model) are consistent with empirical measurements of the transition statistics based276

on the most-likely state estimates. Figure 3b schematizes the decision process in the277

two species derived from their state transition probabilities. The thickness of an arrow278

indicates the probability of the respective transition; extremely rare transitions have been279

pruned. Similar to the WSLS agent, we find that a feature is most often associated with280

the avoid state while an intra-dimensional feature is simultaneously under exploration281

(Supplementary Fig. 4c). Since the avoid state likely emerges due to this interdependence282

between the choices of inter-dimensional features, which our model forgoes for tractability,283

we do not treat it as distinct from the random state.284

We would like to compare observed behavior in the WCST with a WSLS strategy. To285

do so, we must take into account task structure differences between the WCST and the286

2-armed bandit task (Fig. 1c).The composition of a chosen object by three features forces287

the choice of features in the avoid state of the WSLS strategy. Thus a WSLS decision288

process for the WCST must define transitions for such features when they are chosen.289

Moreover, the multi-dimensional environment of the WCST offers multiple alternatives290

for a subject to shift attention to during lose-shift, compared to the 2-armed bandit task.291

An updated WSLS strategy that accounts for these differences is depicted in Figure 3b292

(right). We can now compare the decision process inferred by the model for the two293

species (Fig. 3b, left-middle) to this WSLS decision process, revealing salient differences294

that are delineated by dashed lines. Key among these is the existence of a preferred state295

where items are not chosen with certainty (or near-certainty) as in the persist state, but296

above chance. The effect of direct feedback (as a result of choosing the feature) on these297

states and the random/avoid states is similar to those in the WSLS decision process.298

For example, both species select a feature in the random/avoid state for exploration299

(by promoting it to the preferred state) seemingly at random after receiving negative300

feedback for choosing other features. However, an interesting exception is that humans301
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sometimes choose to explore such a feature upon receiving positive feedback for choosing302

it.303

Larger differences emerge with regards to indirect effects of feedback. A feature may304

not be chosen on a trial when it is associated with the preferred state (feature choice305

probability in preferred state < 1, Fig. 3a). However, its state may still transition subject306

to the feedback received at the end of the trial — an indirect effect. For example, humans307

and, to a lesser extent, monkeys demote features from the preferred to the random/avoid308

state upon receiving positive feedback for choosing a different feature. Consequently,309

their probability of subsequently choosing an unchosen feature that was associated with310

the preferred state decreases (Fig. 3d, right). They also promote features from the311

preferred to the persist state upon receiving negative feedback for choosing a different312

feature. Consequently, their probability of subsequently choosing an unchosen feature313

that was associated with the preferred state increases (Fig. 3d, left). This is striking314

because it is the only way a feature can transition into the persist state, which appears315

to be reserved mainly for a feature that the subject determines to be the rule (Fig.316

2d). Receiving positive feedback for choosing a feature in the preferred state does not317

definitively confirm that it is the rule, since the rule may be among the other two features318

in the chosen object. Confidence in the rule’s identity may be increased based on the319

consistency of receiving such direct positive feedback across many trials. Alternatively, it320

may be done by ruling out other candidates, that is, after receiving negative feedback for321

choosing an object with a different candidate feature. Consistent with this interpretation,322

measurements show that when a feature under exploration is not chosen, the object that323

is chosen often contains a different feature that is also under exploration (Fig. 4d).324

This approach of promoting a feature to the persist state as an inferred consequence of325

ruling out an alternative candidate, rather than integrate direct positive feedback across326

trials in favor of the feature, may be favored by both species due to its computational327

simplicity — it relies on the outcome of just the previous trial rather than multiple328

trials and thereby reduces working memory demands. It is possible that these inference-329

like computations are not deliberate but an inadvertent consequence of demoting or330

promoting an intra-dimensional chosen feature. For example, given that the probability331
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of choosing all shapes must sum to 1, when one shape is demoted after its choice produces332

negative feedback, the probability of choosing another shape that was associated with333

the preferred state may automatically increase, forcibly promoting it to the persist334

state. Measurements of the probability of demoting (promoting) the chosen feature335

while promoting (demoting) an unchosen intra-dimensional feature in the preferred state336

are mixed: monkeys do so at chance levels; humans always (seldom) demote (promote)337

the chosen feature (Fig. 3c). Nevertheless, these indirect-effect transitions directly and338

significantly alter the subsequent choice probability of the unchosen feature (Fig. 3d). In339

summary, the best-fit models discover feature-based attentional states whose dynamics340

show marked deviations from a Win-Stay Lose-Shift strategy.341

Both species simultaneously evaluate multiple features over sev-342

eral trials during rule-learning343

The explore-exploit dilemma pits the benefit of continuing to select a recently rewarded344

option (exploit) against the benefit of selecting a different and potentially more rewarding345

(but possibly less rewarding) option (explore). While much work has been done to346

determine how humans and other animals navigate this dilemma [27, 28, 29], how they347

deal with it in a multi-dimensional environment with transiently overlapping options348

remains unclear. Which of the three features of a chosen and rewarded object should349

be exploited on the next trial, given that they are unlikely to appear co-located in the350

same object on the following trial? How should the tradeoff between the computational351

complexity and information efficiency of exploring several features at once be resolved?352

The model finds that both species continuously explore one or more features (Fig.353

4a). In the process, they explore multiple features over the course of a block before354

ultimately identifying the rule (Fig. 4b). Moreover, each feature is often explored for355

a series of several trials in both species (Fig. 4c). But the number of these trials is356

substantially larger in monkeys, a finding we analyze more closely in the following sections.357

The model also indicates that both species often explore multiple, but not all, features358
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at a time (Fig. 4e). This is consistent with the theory of selective attention [30, 31]359

wherein objects are selectively attended to (or filtered for higher processing) subject to360

an internally-maintained set of relevant perceptual features (or attentional filters). It also361

underscores the solution of both species to the computational complexity-information362

efficiency tradeoff. Since it is computationally challenging to simultaneously attend to363

and evaluate all twelve features over several trials but inefficient to attend to one feature364

at a time, both species evaluate a small subset of all features at a time. Indeed, during365

exploration it is uncommon for either species to select an object where none of the366

features is in the preferred or persist states (Fig. 4d). However, monkeys do engage in367

such random exploration much more frequently than humans.368

From these results, we conclude that both species exhibit a deliberate form of369

exploration to address the challenges inherent in the task environment. Features, often370

more than one at a time, are selected for exploration via promotion to the preferred371

state after choices of other features produce negative feedback (Fig. 3b). They are372

then continuously explored so long as they produce positive feedback, until alternatives373

are ruled out at which point they are then promoted to the persist state, or they are374

themselves ruled out after choosing them produces negative feedback (or, in the case of375

humans, choosing other features produces positive feedback).376

Categorization of feature attentional states characterizes learning377

dynamics378

Rule learning proceeds through a sequential process that progressively reduces ambiguity379

regarding the rule’s identity until it is ultimately determined. Our model reveals elemen-380

tary feature-specific computations that individuals in each species apply to maintain and381

update a small subset of candidate features, one of which may determine the rule. In382

order to elucidate the resulting over-arching learning dynamics that governs the sequential383

rule learning process, we developed a simple approach to categorize individual trials384

based on the features under exploration and the true rule (Fig. 5a). The categories are385
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mutually exclusive and exhaustive – each trial falls into one and only one category. These386

are:387

• “perseveration”: a continuous series of trials following a rule switch when the feature388

governing the previous rule is associated with the persist state,389

• “random search”: trials when none of the features are under exploration (i.e.390

associated with the preferred or persist states),391

• “non-rule exploration”: trials when one or more features are under exploration not392

including the rule feature,393

• ““rule-favored exploration”: trials when one or more features including the rule are394

under exploration,395

• “rule preferred”: trials when only the rule is associated with the preferred state,396

• “rule exploitation”: trials when only the rule is associated with the persist state.397

We compare the distribution of categories for trials across the course of a rule block398

between species (Fig. 5b). Humans show a progression from perseveration to non-399

rule exploration, where non-rule features are explored and ruled out, to rule-favored400

exploration, where the rule feature is simultaneously explored with non-rule features, to401

rule exploitation, once other candidates are ruled out and the rule is identified. Monkey402

rule learning is described by similar dynamics except for a much higher incidence of403

the rule preferred category for most of the block and a larger (smaller) proportion of404

the blocks ending in the rule-favored exploration (rule exploitation) category. That405

is, a significant subset of blocks end with the model indicating that the monkey is406

simultaneously exploring the rule and at least one other non-rule feature, even if the407

monkey has met a learning criterion. These results show that our categorization approach408

expresses human and monkey rule learning dynamics in terms of behaviorally interpretable409

learning stages; for example, an increase in the reward rate following a rule switch in410

both species is marked by the onset of rule exploration with the rule-favored exploration411

category (Fig. 5c, bottom).412

Examining the number of trials spent in each category determined bottleneck cate-413

gories that produce the rule learning performance deficit in monkeys (Fig. 5c). Specifically,414
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monkeys spend much longer perseverating on the previous rule, in disambiguating the415

rule feature from non-rule features (rule-favored exploration) and demonstrating that416

they have learned the rule (rule preferred or exploitation). The latter two sources of the417

learning performance deficit in monkeys also explain a majority of the variance in their418

performance across blocks (Supplementary Fig. 7, bottom). In contrast, the number419

of trials humans spend exploring non-rule features before selecting the rule feature for420

exploration (non-rule exploration) largely determines the variance in their rule-learning421

performance.422

Random exploration prolongs the expression of learning in mon-423

keys424

A key difference between the two species identified via this trial categorization is that425

monkeys spend many more trials than humans in the rule preferred or exploitation426

categories. These extra trials spent demonstrating or expressing that the rule has427

been learned significantly increases both the block length mean and variance (Fig. 5c,428

Supplementary Fig. 7). The inter-species difference in learning criteria explains a portion429

of the difference in the mean length of the rule exploitation category. However, the430

remaining difference in the mean length as well as the difference in the variance of the431

category’s length is unexplained. We hypothesized that the larger mean and variance432

of the rule exploitation category’s length in monkeys compared to humans (Fig. 6a)433

may result from their random exploration of other features when a feature is already434

associated with the persist state (Fig. 3a). This behavior is unique to monkeys and is435

prevalent even during rule exploitation trials (Fig. 6b) — after they have identified the436

rule, monkeys occasionally choose objects that do not include the rule feature.437

To test our hypothesis, we simulated agents that select the rule feature with the438

same probability as monkeys and humans do during the rule exploitation category and439

asked how many trials it would take these agents to reach a learning criterion. The440

results revealed that the trial count distributions of the simulated agents were nearly441
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identical to the corresponding subjects (Fig. 6c), thus confirming our hypothesis. Similar442

“random errors” have been observed in humans with focal lateral prefrontal lesions on the443

WCST [19], where they were attributed to distraction, or a failure to maintain the rule in444

working memory. However, it remains unclear whether the monkeys in our experiments445

were more distractable than their healthy human counterparts, or deliberately adopted446

occasional random exploration as part of their strategy — for example to prolong a447

highly rewarded state.448

Reduced sensitivity to negative feedback increases perseverative449

errors in monkeys450

Perseverative errors occur when the feature that governed the rule on the previous block451

continues to be chosen following the rule switch despite receiving negative feedback452

for the choice. These errors are characteristic of frontal lobe damage and dysfunction453

[10, 21] and are believed to reflect a cognitive deficit in adapting to changes in task454

contingencies. Pronounced perseveration error rates are also observed in patients with455

neuropsychiatric [32, 33, 34] and substance abuse disorders [20, 33]. Interestingly, our456

model’s association of the persist state with the previous rule feature during consecutive457

trials immediately following a rule switch suggests that monkeys persevere on the previous458

rule for several more trials than humans (Fig. 6d). Indeed, direct measurements showed459

that the probability of of choosing the previous rule after a rule switch is consistent with460

such a state estimate in both species (Fig. 6e).461

In order to determine the cause underlying the elevated perseveration in monkeys, we462

asked which choice outcome(s) most explained the difference in continued persistence463

with the previous rule between the two species. The analysis showed that humans were far464

more likely to demote the chosen previous rule feature from the persist state in response465

to negative feedback compared to monkeys (Fig. 6f). Monkeys’ weaker sensitivity to466

negative feedback parallels that of humans with substance abuse disorders and prefrontal467

lesions, who also persevere more than healthy controls [20, 21].468
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Reduced negative feedback sensitivity compromises efficient469

credit assignment and prolongs rule learning in monkeys470

The largest contribution to the inter-species difference in rule learning performance is471

from trials in the rule-favored exploration category where the rule feature is concurrently472

explored with one or more non-rule features (Fig. 7a - Fig. 7b, left). While it is reasonable473

to explore the rule for several consecutive trials as it produces rewards, what must be474

explained is why non-rule features are concurrently explored for many more trials by475

monkeys. Indeed, monkeys continuously explore individual non-rule features for many476

more trials during the rule-favored exploration category (Fig. 7b, right). This explains477

the lengthier duration of the category in monkeys, and is caused by a higher probability478

of a non-rule feature transitioning back into an exploration state during rule-favored479

exploration trials (Fig. 7c). Analysis further showed that this inter-species difference in480

transition probability is explained by a lower sensitivity of monkeys to either form of481

negative feedback – direct, when the non-rule feature is chosen and negative feedback is482

received, and indirect, when it is not chosen and positive feedback is received (Fig. 7d).483

While both species also explore non-rule features during non-rule exploration trials,484

this category is relatively short in both humans and monkeys (Fig. 5c). So what explains485

the difference in duration between the two categories in monkeys? Since the non-rule486

exploration category is followed by rule-favored exploration trials, one possibility is that487

it is cut short by the onset of exploration of the rule feature as the non-rule feature488

continues to be concurrently explored for many more trials. However, measurements489

in monkeys showed that non-rule feature exploration only occasionally spans the two490

categories (probability = 0.27% ± 0.04%). Therefore, the number of trials during which491

a non-rule feature is explored by monkeys is usually much smaller when it happens in492

the non-rule exploration category than in the rule-favored exploration category.493

This difference in duration is reflected in a higher probability of a non-rule feature494

transitioning back into an exploration state during rule-favored exploration trials (Fig.495

7e). Since the probability of transitioning back into the explore state is a marginalization496
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of its joint probability with the choice outcome it follows, we asked what choice outcome497

history best explains the transition probability difference between the two categories.498

Measurements showed that receiving positive feedback for choosing the non-rule feature499

(C+) is the key differentiator between the joint probabilities for the two categories (Fig.500

7f, left). This could either be because the transition probability in response to this501

history is different under the two categories, or because the frequency of the history502

is different under them. We found that while the transition probabilities are similar503

(Fig. 7f, left), monkeys are more likely to have received positive feedback for choosing a504

non-rule feature under exploration during the rule favored, exploration category (Fig.505

7f, middle). When the rule feature is concurrently explored with a non-rule feature506

(rule favored, exploration) the probability of selecting them both when they co-locate507

in an object is higher. This increases the probability of receiving positive feedback for508

choosing the non-rule feature, which makes appropriately assigning credit to the rule509

feature challenging. This underscores the importance of negative feedback sensitivity in510

demoting non-rule features from exploration states, in the absence of which the duration511

of concurrent exploration of the rule and non-rule feature(s) is prolonged.512
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Discussion513

Methodological and technological advances in training and recording from animal models514

now allow for the study of increasingly complex behaviors in non-humans. However,515

before interpreting their brain activity as a human-like model of neural computation, it516

is important to ascertain whether their computational algorithms are human-like. Indeed517

macaque monkeys and humans learn the structure of tasks in different ways (monkeys518

via impoverished reward-based feedback, and humans via rich verbal instruction plus519

feedback), raising the possibility that while they both learn the same tasks, they may520

enlist different abstractions, cognitive operations and neural mechanisms [2]. Our study521

aims to assess whether macaques and humans employ similar mental representations and522

operations to perform a cognitively complex task that relies on several interdependent523

cognitive processes, such as the Wisconsin Card Sorting Test. The results of such studies524

can play a crucial role in interpreting inter-species comparisons of the neural correlates of525

these representations and operations. Our findings demonstrate that both species employ526

similar overall strategies to perform the task (Fig. 3a-b). However, key differences in the527

decision criteria of these strategies explain monkey performance deficits on the task.528

The Wisconsin Card Sorting Test was originally developed to test cognitive flexibility,529

i.e. the ability to rapidly adapt to a change in the task contingency, in the context of530

abstract reasoning [8]. Early studies utilizing and developing scoring conventions for the531

test [35] focused on perseverative errors. However, it has since become clear that the test532

does not engage just a single cognitive process for task set switching; rather, it relies on533

a variety of cognitive functions throughout the test including working memory, attention,534

decision making, inhibitory control and reasoning [21, 36, 37, 38, 39]. For example, the535

“failure to maintain set” error occurs when a subject applies an incorrect rule after they536

have learned the correct rule and is associated with an error in working memory.537

This has inspired systematic studies on WCST performance with two related goals.538

First, research has focused on an accurate characterization of rule-learning strategies539

and/or the cognitive processes that support their underlying computations [17, 20, 21].540
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Here we developed a relatively hypothesis-free approach to identify the rule-learning541

strategy in humans and monkeys based on hidden behavioral states. The best-fit models542

for both species ascribe these hidden states to varying levels of attention to individual543

task-relevant visual features (Fig. 3a). These results are consistent with the conclusions of544

earlier studies that humans contend with the “curse-of-dimensionality” which is inherent545

in the WCST with selective attention towards individual features during exploration546

[17, 20, 21]. Our findings clarify these results by showing that in the high-dimensional547

version of the task (twelve instead of three possible rules) both humans and monkeys548

must further contend with a tradeoff between computational complexity and information549

efficiency while exploring for the rule, and they do so by selectively attending to a few,550

but not all, features at a time (Fig. 4e).551

Our approach differs from these earlier studies in that it does not postulate a specific552

learning algorithm [17, 20]. Rather, it discovers the decision process that determines553

the rule-learning strategy. In doing so, it illustrates important differences between554

human/monkey rule learning strategies on the WCST and the commonly observed win-555

stay lose-shift learning strategy (Fig. 3b). For example, a key function of the preferred556

state, which is not part of the win-stay lose-shift strategy, is to support the simultaneous557

exploration of multiple features at a time over many trials. Moreover, this state is also558

associated with inference-like computations that support a computationally efficient559

strategy of narrowing down the rule by eliminating other candidates using unambiguous560

negative feedback. Indeed, a reinforcement-learning inspired description of rule learning561

in the WCST by Bishara et al. [20] was parameterized to update the value of unchosen562

options facilitating inference-like computations. However, the prevalence of the behavior563

itself was not reported by the authors.564

The second goal, with stronger clinical implications, is a comparison of error types in565

healthy and diseased populations towards identifying more accurate behavioral markers566

for different types of neuropsychiatric disorders and for dysfunction or lesions of different567

brain regions [12, 19, 20, 21, 38, 39, 40, 41, 42, 43]. For example, a detailed analysis568

of non-perseverative errors led to the differentiation between “efficient” errors that are569

expected to occur during hypothesis testing from “random” errors that reflect a failure in570
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maintaining the cognitive set, and demonstrated a prevalence of the latter in patients with571

frontal lobe pathology [19]. In support of this goal, we have developed a learning-stage572

categorization method that delineates learning stages by the features under exploration573

and their relationship to the rule (Fig. 5a). Intuitively, this approach tracks how far574

along a subject is from learning the rule and reflects this in the reward rates across575

categories (Fig. 5c, bottom). Furthermore, the categories are mutually exclusive and576

exhaustive, allowing us to precisely ascribe differences in learning performance between577

subjects or even between rule-blocks for the same subject to differences in individual578

categories (Fig. 5a; Supplementary Fig. 7).579

Importantly, the approach identifies various known classes and sub-classes of error580

types, but also newer ones that may prove useful in future investigations of behavioral581

markers for neuropsychiatric disorder and cognitive impairment. It distinguishes perse-582

verative errors (made during the perseveration category) from non-perseverative ones.583

Consistent with earlier work [19], it further sub-categorizes the latter into random and584

efficient errors. It identifies two forms of random errors: one occurs during rule search585

(before the rule preferred or exploitation categories) when subjects occasionally choose586

none of the features they are currently exploring (Fig. 4d); the other occurs after they587

have found the rule and while they are demonstrating this (Fig. 6b). However, it remains588

unclear if either of these random errors are a feature of cognitive flexibility and result589

from random exploration, or a bug caused by the failure to maintain the attention set590

in working memory. Indirect evidence in humans has been found in favor of the latter591

interpretation [44]. If in fact it is a result of higher distractability in monkeys, monkey592

performance may be improved by imposing stronger controls on potential environmental593

distractors [45]. Efficient errors arise instead when subjects test hypotheses regarding594

rule identity and occur during the random search and non-rule exploration categories.595

However, most errors during the rule-favored exploration category are repeated despite596

unambiguous (direct or indirect) negative feedback (Fig. 7). These “disambiguation”597

errors are neither random nor efficient but arise from a deficit in disambiguating the rule598

feature that is under exploration from a simultaneously explored non-rule feature. This599

newly identified error type bears further exploration in patient populations.600
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The higher incidence of these error types in monkeys may have more to do with601

how they learn rather than some fundamental cognitive constrains — since they cannot602

receive a rich verbal description of the task’s structure as humans do and must learn603

about it via trial-and-error, it is possible that monkeys misinterpret uncued rule switches604

as stochasticity in the environment resulting in a maladaptive strategy. Nevetheless, it605

is noteworthy that many of the errors we have identified as contributing to deficits in606

monkey rule-learning performance have also been implicated in the poor performance607

of humans with cognitive impairment. A higher incidence of perseverative errors in608

patients with prefrontal cortex pathology was first reported in a landmark study by609

Milner [10]. Random errors, while rare in healthy humans, are more frequently observed610

in patients with frontal lobe dysfunction [19]), similar to the present study finding in611

monkeys. Moreover, poor sensitivity to negative feedback, which underlies perseverative612

and disambiguation errors in monkeys, is more pervasive in patients with schizophrenia613

and substance abuse as well [20, 21].614

Ultimately, these questions can be resolved by inter-species comparisons of neural data.615

For example, perseverative and random errors have distinct neural signatures in humans616

[46]; are similar signatures observed in monkeys? More generally, our work produces617

several testable neural hypotheses in both species. First, does the neural representation618

of the current rule persist during and across rule exploitation trials (i.e. after its identity619

has been learned) [47, 48, 49, 50]? Second, since the set of explored features must be620

maintained across several trials, are they represented by neural activity during and across621

trials? Our model indicates that this attention set is typically small (Fig. 4e) and longer622

bouts of exploring multiple features simultaneously (Fig. 7b) requires a choice alternation623

between these features. This drives the need to maintain the explored features in working624

memory, particularly to support recall of one of them after it is not chosen on one or625

more previous trials. Third, are the distinct error types (perseverative, random, efficient,626

disambiguation) differentially represented in the brain? Error coding neurons have been627

reported in the prefrontal cortex of monkeys performing a WCST analogue [50, 51].628

Moreover, perseverative, random and disambiguation errors signal the need to disengage629

from the previous rule, address a working memory error and remove a non-rule feature630
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from the attention set, respectively. This difference in their function raises the possibility631

that they are represented differently, either eliciting stronger responses in different brain632

regions or eliciting differential responses in the same region [46]. Fourth, is the strength633

of these error signals or their modulation of the attention set representation [50] larger634

on trials when they serve their function? For example, are perseverative error signals635

stronger on trials after which perserveration halts compared to those that are followed636

by continued perseveration? A potential reason for inter-species performance differences637

may be found in these analyses: what inter-species neurocognitive differences explain638

the relative prevalence of perseverative, random and disambiguation errors in monkeys639

compared to humans, and are they also observed in humans with cognitive impairment?640

There exist several avenues to clarify and improve upon our modeling approach. A641

key difference between earlier models and ours is our assumption that each feature is642

associated with discrete states, which our model relates to feature-based attentional643

states. In contrast, Bayesian and reinforcement learning approaches posit that subjects644

reason about features by assigning continuous-valued functions such as belief [17] and645

value [18, 20] to them, respectively. In future work, we will test whether a model with646

continuous-value states provide a better fit to the behavior of the two species, which647

may offer a different interpretation of the latent variable used by them to reason about648

features. Our model has also been simplified to keep subsequent analysis tractable — it649

does not explicitly account for interactions between features. This had the unintended650

consequence of discovering the “phantom” avoid state. Future improvements to our model651

will carefully incorporate such interactions explicitly, while retaining high interpretability.652

In conclusion, we have applied a hypothesis-free state-characterization method to653

identify and compare the rule-learning strategy on the Wisconsin Card Sorting Test in654

humans and monkeys. The hidden attentional states and state transitions inferred by the655

model facilitated the determination of the decision process underlying this strategy as well656

as the various stages of rapid rule learning. The inferred states perfectly (substantively)657

explain human (monkey) choice behavior (Fig. 2c). Our overall approach reveals658

differences in cognitive strategy between the two species and isolates the identity and659

relative contribution of various error types to the performance difference between the660
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two species. It shows that random exploration or distraction and poorer sensitivity661

to negative feedback underlies a higher incidence of these error types in monkeys thus662

leading to their under-performance. The high fidelity demonstrated by the model in663

inferring hidden attentional and decision states holds promise in advancing the search664

for more accurate behavioral markers of various types of cognitive dysfunction and in665

motivating targeted analyses to determine and compare the neural correlates of the666

various cognitive processes engaged by the WCST.667
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Methods803

Task Description804

Human and monkey subjects were tested on an analogue of the Wisconsin Card Sorting805

Test (WCST). On each trial, they were simultaneously presented with an array of four806

objects on a computer screen. Each object was comprised of a stimulus feature from807

each of three stimulus dimensions: color, pattern, and shape (Fig. 1a), e.g., a blue808

polka-dotted triangle. For each trial, these four objects were chosen from a pool of 64809

unique objects, each containing a possible combination of individual features from each of810

the three dimensions, such that there was no feature overlap between them. Accordingly,811

for each possible array, all four features of each dimension appeared on the screen, but812

the combination of features represented by each individual object varied across trials.813

Within a single rule-learning block of trials, one color, texture, or shape was designated as814

the target, resulting in 12 possible rules. The identity of this rule was not cued, but had815

to be learned by trial and error, based on the feedback received at the end of each trial.816

Upon meeting a rule-learning criteria for the current rule, the rule feature changed on the817

next trial in an uncued manner, initiating a new rule-learning block. This rule shift could818

be either intradimensional, where the dimension of the new rule feature matched that of819

the previous rule feature (e.g., changing from triangle to square), or extradimensional,820

where the dimensions of the old and new rule features did not match (e.g., changing from821

triangle to yellow);822

Monkeys823

All procedures were carried out in accordance with the National Institutes of Health824

guidelines and were approved by the University of Washington Institutional Animal825

Care and Use Committee. Subjects were four adult female rhesus monkeys (Macaca826

mulatta) with mean age 12.5 ± 2.5 years and mean weight 7.5 ± 0.6 kg at the start of the827

experiment. Prior to testing, a titanium post for holding the head was surgically affixed828
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to each monkey. During testing, each monkey was head-fixed in a dimly illuminated829

room and positioned 60 cm away from a 19-inch CRT monitor with a screen refresh rate830

of 120 Hz noninterlaced. The monitor had a resolution of 800 × 600 pixels, subtending831

33 degrees by 25 degrees of visual angle (dva). Eye movements were recorded using a832

noninvasive infrared eye-tracking system (EyeLink 1000 Plus, SR Research). Stimuli were833

presented using experimental control software (NIMH Cortex or NIMH MonkeyLogic).834

Calibration of the infrared eye tracking system was accomplished using a nine-point835

manual calibration task.836

Following the calibration task, the monkey was tested on the WCST analogue. The837

monkey initiated each trial by fixating a white cross (0.5◦) at the center of the computer838

screen. Following 500 ms of successful fixation, the cross disappeared and was replaced by839

an array of four objects. During the self-paced decision epoch that followed, the monkey840

was free to explore the array of objects; her response was defined as maintaining her gaze841

within a 9◦ × 9◦ window centered on the object for 800 ms. The monkey received a food842

slurry reward over a 1.4-second duration for selecting the object that contained the rule843

feature. A time-out period (either 1-second or 5-seconds) occurred on trials where the844

monkey did not choose the object containing the rule feature or where she did not make845

a choice within 4 seconds. The feedback period was immediately followed by a 400 ms or846

1 s inter-trial interval. We classified a rule as learned either when the monkey made eight847

consecutive correct responses or when she made 16 correct responses in 20 trials or fewer.848

The type of rule shift that followed (intradimensional or extradimensional) was849

determined pseudo-randomly to occur with equal probability. A block consisted of all the850

trials from the initial rule shift to the final trial of criterion performance. We analyzed a851

total of 1305 blocks in 81 recording sessions from monkey B, 872 blocks in 29 recording852

sessions from monkey C, 805 blocks in 29 recording sessions from monkey S, and 224853

blocks in 13 recording sessions from monkey T. Only completed blocks were included in854

the analysis.855
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Humans856

The studies involving human participants were reviewed and approved by the Institutional857

Review Boards of University of California, Berkeley. All participants provided their858

written informed consent to participate in this study and received a small compensation.859

These subjects were four adult males and one adult female with mean age 26.4 ± 4.1 years.860

Subjects were brought into a room where they sat and completed a computer-adapted861

version of WCST analogue on a recording laptop after receiving the following instructions:862

“In this experiment, you will see 4 cards on each trial. Each card has 3 unique features863

(color, shape and texture). No feature is shown on more than one card, so you will see 12864

different features on each trial (4 colors, 4 shapes, 4 textures). The card containing the865

correct feature (1 out of 12 possible) will be correct choice. The correct feature might866

change during the task. The answer is given by pressing one of the four arrow keys that867

corresponds with the selected card position on the screen (up, down, left or right). You868

have 4 sec to provide the answer, or the trial times out. The task goes on for 200 trials869

or about 15 minutes.”870

Individual trials consisted of the following epochs: cross fixation (black cross displayed871

in the center of the screen on a gray background for 300 ms), choice (four objects displayed872

on the screen at locations corresponding toup, down, left or right positions, for up to873

4000 ms), feedback (‘correct’ or ‘incorrect’ feedback message displayed for 1500 ms) and874

inter-trial interval (ITI, gray screen for 1000 ms). Subjects indicated their choice by875

pressing the arrow key on the laptop keyboard, corresponding to the chosen object’s876

position on the screen. If the choice was not indicated within the 4000 ms, the trial877

was considered timed-out. After reaching the learning criteria, defined as 5 consecutive878

correct trials or 8 correct out of the last 10 trials, the rule was switched and a new879

rule-learning block began. The new rule was randomly determined. Each participant880

completed five task sessions (300 trials/sessions for a total of 1500 trials). This spanned881

between 107 and 138 blocks across the five subjects.882
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Win-Stay Lose-Shift (WSLS) Agent883

The task structure (rule selection, learning criteria) for the WSLS agent was identical to884

that of the humans, except for the trial structure – the agent’s algorithm determined its885

choice immediately upon stimulus presentation. The algorithm (Supplementary Fig. 3d,886

left) always maintained a single feature in the persist state and deterministically chose887

the object with that feature at each trial. Positive feedback maintained the feature in the888

persist state. Negative feedback demoted it to the avoid state and promoted, a randomly889

selected feature from among the 11 others that were in the avoid state, to the persist890

state. The agent completed 500 rule blocks.891

Input-Output Hidden Markov Model - Generalized Linear Model892

(IOHMM-GLM) for the prediction of feature choices893

Model Design894

The four objects presented during a trial consist of twelve visual features, f ∈ {1, . . . , 12}.895

In support of feature-based mental representations, the model predicts the choice of896

each feature f at the next trial t. This choice is represented by cft ∈ {0, 1}, where897

cft = 1 indicates the f was part of the chosen object, and cft = 0 indicates it was not.898

Either choice can result in a reward or timeout for the trial, given by rt ∈ {0, 1}. The899

choice-outcome history of f given the past ℓ trials is denoted hf ∈ {1, . . . , 22ℓ}. We refer900

to ℓ as the lag and it is a hyperparameter of the model. The value of hf at trial t is901

given by the binary vector (rt−1, ct−1, . . . , rt−ℓ, ct−ℓ) of size 2ℓ. Therefore, it can take902

on 22ℓ possible values. In all our analyses, we choose a lag 1 (ℓ = 1) model for further903

analysis. Such a model depends on a choice-outcome history that takes on one of four904

possible values at trial t: (rt−1 = 0, ct−1 = 0), (rt−1 = 1, ct−1 = 0), (rt−1 = 0, ct−1 = 1) or905

(rt−1 = 1, ct−1 = 1) which we refer to as NC−, NC+, C− and C+ respectively.906

The transformation of the choice-outcome history into a choice at trial t is mediated by907
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discrete hidden states sf ∈ {1, ..., K} that determine the parameters of the transformation.908

The maximum number of statesK is a second model hyperparameter. The transformation909

is modeled as a Bernoulli GLM:910

p (ct = 1 | st = k, ht) =
1

1 + exp (−wT
k ht)

(1)

where the parameters wk ∈ R1×22ℓ are determined by the state st = k. We denote the911

set of parameters across all K states as w ∈ RK×22ℓ .912

Transitions between states also depend on the choice-outcome history and are modeled913

by multinomial logistic regression:914

p(st+1 = k | st = j, ht+1) =
exp

(
log (Pjk) + uT

jkht+1

)∑K
k′=1 exp

(
log (Pjk′) + uT

jk′ht+1

) (2)

where the parameters P ∈ RK×K
+ and u ∈ RK×K×22ℓ represent the bias or baseline915

transition probability and history weights. This model design is schematized in Figure916

2a.917

Finally, the probability distribution of initial states π, is a model parameter that918

specifies the state at the first trial of a session.919

Model Fitting920

We fit the parameter values for the choice GLM weights w, the baseline transition

probability P , the transition GLM weights u and the initial state distribution π to the

choices of each subject. To avoid over-fitting, the parameter values were shared across

all features. In other words, all parameter values were the same for all 12 features. The

likelihood of the data under a model is its probability subject to the model’s parameters

and inputs p(c1..T | w,P, u, π, h1..T ), where T is the number of trials in the session. It is

expressed in terms of these parameters as:

p(c1..T | w,P, u, π, h1..T ) =
∑
s1..T

p(c1..T , s1..T | w,P, u, π, h1..T )
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=
∑
s1..T

p(s1 | π)

[
T∏
t=2

p(st | P, u, ht)

][
T∏
t=1

p(ct | w, st, ht)

]
where the last two terms are given by equations 2 and 1 respectively.921

The model parameters were fit by minimizing −log [p(c1..T | w,P, u, π, h1..T )], i.e. the922

negative log-likelihood of the data, via gradient descent with the ADAM optimizer.923

The choice GLM weights for all k states were initialized to a single 22ℓ-dimensional924

vector drawn from a standard normal distribution. The baseline transition probability925

was initialized to the sum of a diagonal matrix with value 0.9I where I is the identity926

matrix, and a random matrix with elements drawn from a uniform distribution in the927

interval [0, 0.05). The larger diagonal values enforce “stickiness” that bias transitions928

back into a state. The transition GLM weights were initialized to zero, and the initial929

state distribution was initialized to 1/K for each state k. For each subject and each pair930

of hyperparameters (ℓ,K), the parameters were optimized over 10000 iterations with931

5-fold cross validation (Fig. 2b).932

The best fit model was sought for each human (monkey) subject and hyperparameter933

setting across 10 (5) independent parameter initializations. Figure 2b shows the mean934

negative log-likelihood taken over all initializations and cross-validation folds. The best-fit935

model for each human (monkey) subject was selected for further analysis from these936

50 (25) models at hyperparameter values ℓ = 1 and K = 4. Although, we found that937

a majority of these models produced very similar choice and transition probabilities.938

However, fits to the WSLS agent varied much more. Since negative feedback immediately939

demoted features from the persist to avoid state, exploration of non-rule features typically940

lasted 1-2 trials. This likely makes it harder for the model to identify exploration and941

introduces more variability across fits.942

Once the best-fit model is identified, the most likely sequence of states, s∗, for each943

subject, session and feature in determined by the Viterbi algorithm [1] (Fig. 2d). For944

each trial t and feature f , the algorithm performs a forward pass across all past trials945

and a backward pass across all future trials to determine the most likely state of f at946

trial t that best explains past, present and future history-dependent choices under the947

38

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2023. ; https://doi.org/10.1101/2023.01.10.523416doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523416
http://creativecommons.org/licenses/by-nd/4.0/


constraints of the model’s parameters and the choice and transition probabilities they948

yield. Supplementary Figure 2b) shows the cumulative distribution of the posterior949

probabilities (p(st = s∗t | c1..T , h1..T )) of these state estimates calculated for the Viterbi950

algorithm.951

All model fits and the most-likely state determination was performed with the State952

Space Model (SSM) python package [2].953

Model Extension for the Prediction of Object Choices954

We extended the feature choice prediction model described in the previous section to955

predict object choices at each trial t. Given the predicted choice probability (p(c
fi,j
t |956

w,P, u, π, h
fi,j
1..t )) for each feature fi,j, i ∈ {1, . . . , 3} in an object oj, j ∈ {1, . . . , 4} pre-957

sented at trial t, the model predicts the object chosen at t. This transformation of958

predicted feature choice probabilities p(fi,j) into object choice probabilities p(oj | p(f))959

is modeled by multinomial logistic regression:960

p(oj | p(f)) =
exp

[∑3
i=1 vij log(p(fi,j)) + bj

]∑4
j′=1 exp

[∑3
i=1 vij′ log(p(fi,j′)) + b′j

] (3)

where the parameters v ∈ R3×4 and b ∈ R1×4 represents the feature choice probability961

weights and biases in selecting each object, respectively. These values were fit to the962

choices of each subject by minimizing the cross-entropy loss −
∑T

t=1

∑4
j=1 yj,t log(p(oj,t |963

p(f)t)) where yj,t ∈ {0, 1} indicates whether object oj,t was chosen on trial t. Model fitting964

was performed via stochastic gradient descent with the ADAM optimizer implemented by965

the Pytorch python package [3]. The parameter values for v and b were initialized from966

a uniform distribution in the interval [− 1√
12
, 1√

12
] and optimized until convergence with a967

maximum of 100000 iterations. Cross validation was performed with the same training968

and test sets used while training the feature choice prediction models (Supplementary969

Fig. 2a).970

The accuracy of the object choice prediction model based on the best-fit feature choice971

prediction model with 4 states and lag 1 is shown in Figure 2c, left. We also fit a model972
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to determine the chosen object in a similar fashion using the feature choice probabilities973

based on their most-likely state estimates (p(c
fi,j
t | sfi,jt = s

∗,fi,j
t , h

fi,j
t )) instead. The974

accuracy of this model is shown in Figure 2c, right.975

Model Analysis976

The probability distribution of histories in each state (Supplementary Fig. 4b) is:977

p (h = i | s∗ = j) =

∑
f,t 1

(
hf
t = i, s∗,ft = j

)
∑

f,t 1
(
s∗,ft = j

) (4)

where 1 is the indicator function and
∑

f,t is a sum over features and trials. The978

state and history dependent choice probability (Supplementary Fig. 4a) can be directly979

calculated from the model’s parameters (Eqn. 1) or empirically as:980

p (c = 1 | s∗ = j, h = i) =

∑
f,t 1

(
cft = 1, s∗,ft = j, hf

t = i
)

∑
f,t 1

(
s∗,ft = j, hf

t = i
) (5)

The choice probability of a feature in each state (Fig. 3a) can be computed by utilizing981

equations (4) and (5) or 1.982

p (c = 1 | s∗ = j) =
∑

i∈{1,...,4}

p (c = 1 | s∗ = j, h = i) · p (h = i | s∗ = j) (6)

983

Similarly, the state transition probabilities (Supplementary Fig. 5) can be directly984

calculated from the model’s parameters (Eqn. 2) or empirically as:985

p
(
s∗t+1 = k | s∗t = j, ht+1 = i

)
=

∑
f,t 1

(
s∗,ft+1 = k, s∗,ft = j, hf

t+1 = i
)

∑
f,t 1

(
s∗,ft = j, hf

t+1 = i
) (7)

We approximated the decision process in each species (Fig. 3b) from the state transition986

probability, and the “reverse” state transition probability (p
(
s∗t = j | s∗t+1 = k, ht+1 = i

)
).987
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The latter helps in conditions where transitions into a state are typically rare, such988

as transitions from the random/avoid state into the preferred state. This quantity989

(Supplementary Fig. 6) is calculated empirically as:990

p
(
s∗t = j | s∗t+1 = k, ht+1 = i

)
=

∑
f,t 1

(
s∗,ft = j, s∗,ft+1 = k, hf

t+1 = i
)

∑
f,t 1

(
s∗,ft+1 = k, hf

t+1 = i
) (8)

991

Trial Categorization992

Trials were categorized based on the identity of the rule feature and the most-likely state

estimates for all 12 features as in Figure. 5a. Since each trial is always designated to

one and only one category, the trial categories are mutually-exclusive and exhaustive.

This facilitates a precise decomposition of the length of each rule block into the number

of trials spent in each category (Fig. 5c). Moreover, since the categories are mutually

exclusive, we can explain summary statistics (mean and variance) of the block length for

each subject in terms of statistics of their category lengths (Supplementary Fig. 7):

E[block length] =
∑

category c

E[no. trials in category c]

Var[block length] =
∑

category c

cov[no. trials in category c, block length]

Inter-species Comparison of Category Lengths993

In Figure 7, the higher probability of continued exploration of non-rule features by994

monkeys during the rule-favored exploration category is attributed to poor (direct and995

indirect) negative feedback sensitivity (Fig. 7c-d). In addition, we attribute the higher996

probability of continued exploration in monkeys during rule-favored exploration trials997

compared to non-rule exploration trials, to a higher prevalence of direct positive feedback998

during rule-favored exploration trials (Fig. 7f).999
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These determinations were made based on the following decomposition:

p(s∗t+1 ∈ explore | s∗t ∈ explore, (t, t+ 1) ⊆ category c)

=
∑

i∈{1,...,4}

p(s∗t+1 ∈ explore, h = i | s∗t ∈ explore, (t, t+ 1) ⊆ category c)

=
∑

i∈{1,...,4}

[
p(s∗t+1 ∈ explore | h = i, s∗t ∈ explore, (t, t+ 1) ⊆ category c)

×p(h = i | s∗t ∈ explore, (t, t+ 1) ⊆ category c)]

The joint probability above is shown in Figure 7f, left and in Supplementary Fig. 8), and1000

quantities resulting from its decomposition below are shown in Figure 7f, middle-right.1001
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Figure 1: Monkeys rapidly learn rules in the WCST but are slower than humans. a.

WCST task structure. Each trial is composed of fixation, decision, response, feedback and ITI

epochs. After fixation, the subject is presented with 4 objects that are pseudo-randomly composed

of 3 features - a pattern, shape and color. The features composing each object are mutually

exclusive with respect to other objects. Each block of continuous trials is governed by a rule

(one of the 12 features). The subject receives positive feedback only for choosing the object with

that feature. The identity of the rule is hidden and must be discovered. An uncued rule switch

to a random new feature occurs when the subject demonstrates they have learned the current

rule. b. Distribution of trials-to-learning-criteria in 4 monkey (brown) and 5 human (green)

subjects. All subjects rapidly learn the rule, but on average, monkeys are over 4 times slower

than humans. c. Decision process for the Win-Stay Lose-Shift learning strategy in two-armed

bandit problems. The decision to choose an arm can be in one of 2 states: persist when it is

chosen and avoid when it is not. The decision to choose an arm stays in the persist state as

long as positive feedback is received (win-stay) and switches to the avoid state otherwise. It then

stays in the avoid state as long as positive feedback is received, and switches to the persist state

when negative feedback is received (lose-shift).
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Figure 2: IOHMM-GLM model fits uncover dynamic changes in choice behavior

during rule learning. a. IOHMM-GLM model architecture fit to data. The model predicts

the choice of a feature c at each trial t from the choice-outcome trial history h via a GLM.

Hidden states s determine the GLM’s parameters. These states can transition at each trial

also based on the choice outcome trial history via a separate state transition GLM. b. Model fit

log-likelihoods on training and test datasets for each human (green) and monkey (brown) subject

in models with varying numbers of states and that use choice outcomes from varying numbers

of previous trials (lag) to determine the feature choice and state-transition probabilities. Each

point represents a single subject’s mean over a 5-fold cross-validation and over 5 (monkey) or

10 (human) different model initializations. Each subject’s best-fit model with 4 states and lag 1

(dashed blued box) was chosen for further analysis. c. Probability of selecting the chosen object

produced by a model extension based on feature choice probabilities predicted only from choice
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outcomes on earlier trials (left), and on feature choice probabilities computed from most-likely

state estimates derived from past, present and future choice outcomes (right). The probability

on each trial was binned according to the trial’s relative position in the rule block and averaged

across blocks. Line and shading represent the mean and standard deviation across subjects for

each species. Dots represent block percentiles at which the average object selection probability

is significantly above chance (bootstrap test with t-statistic, p < 0.05). d. Most-likely states

estimated by the model for 300 trials in an example human (top) and monkey (bottom) subject.

The rule on each block is outlined in black.
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Figure 3: Model describes rule-learning dynamics in terms of changes in feature-

attentional states. a. Choice probability of features associated with each state in human

(green) and monkey (brown) subjects computed directly from model parameters and measured

empirically based on most-likely state estimates. Choice probabilities order feature states akin to

levels of attention. b. Decision process describing how humans, monkeys and the WSLS agent

start, continue and stop exploring a feature, derived from their history-dependent state transition

probabilities. Process is decomposed based on outcome-dependent transitions when the feature is

chosen (direct effect) or not chosen (indirect effect). Arrow thickness indicates probability of

the transition. Dashed lines highlight deviations from the WSLS strategy. c. Probabilities of

demoting (left; promoting, right) the state of a chosen feature to a state with higher (lower)

choice probability when an unchosen intra-dimensional feature is promoted (demoted) from the

preferred to persist (random/avoid) state. Measurements test to what extent indirect effects

of promoting or demoting features in the preferred state result from changing the state, and

therefore the choice probability, of a chosen intra-dimensional feature. Perfect causality would
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coincide with a probability of 1.0. d. Change in the choice probability of a feature in the preferred

state after after receiving negative (left; positive, right) feedback for choosing a different feature.

The indirect effect significantly increases (decreases) the feature choice probability.
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Figure 4: Monkeys and humans explore multiple features for several trials in a

row to evaluate them. a. Percent of all trials where at least one feature is under exploration

by humans (green) and monkeys (brown). b. Distribution of the number of features explored by

each monkey and human subject in a block. c. Distribution of number of continuous trials with

a feature in an exploration state. d. Probability of choosing an object with all features in the

random or avoid state, while at least one other feature is in the preferred or persist state. e.

Distribution of number of features simultaneously explored by each monkey and human subject

in trials where at least one feature is under exploration.
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Figure 5: Exploration-based trial categories reveal learning dynamics and identify

causes for monkey learning performance deficit. a. Definition of the six trial categories

based on whether the features under exploration during the trial include the rule feature. b.

Distribution of trial categories at each percentile of rule block. Lines (shaded areas) reflect mean

values (standard errors of the mean) across subjects. c. Trial category summary statistics (top:

mean number of trials; middle: variance of number of trials; bottom: reward probability) across

rule blocks for human (green) and monkey (brown) subjects. Inter-species comparisons of the

mean number of trials per category reveal significant differences in the perseveration, random

search, rule-favored exploration, rule preferred and rule exploitation categories (bootstrap test

with t-statistic); n.s. - not significant; * p < 0.1; ** p < 0.01; *** p < 0.001.
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Figure 6: Random exploration and perseverative errors prolong monkey rule

learning. a. Mean number of trials spent by human (green) and monkey (brown) subjects in

the rule exploitation category per rule block. b. Probability of selecting an object with the rule

feature across trials in the rule exploitation category. Monkeys occasionally explore other objects

compared to humans. c. Distribution of the number of trials spent by human and monkey

subjects in the rule exploitation category per rule block (left), and by simulated agents that select

the rule feature with probabilities in (b) until they reach a learning criterion (right). d. Mean

number of trials spent by human and monkey subjects in the perseveration category per rule

block. e. The probability of humans and monkeys choosing the previous rule feature at each

trial after a rule switch (left) is commensurate with the probability of the previous rule feature

being associated with the persist state (right). f. The probability of the previous rule feature

transitioning back into the persist state after its selection produces negative feedback is higher in

monkeys (bootstrap test with t-statistic); * p < 0.1.
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Figure 7: Diminished negative feedback sensitivity prolongs concurrent exploration

of rule and non-rule features. a. Mean number of trials spent by human (green) and

monkey (brown) subjects in the rule-favored exploration category per rule block. b. Distribution

across rule blocks of the number of trials spent in the rule-favored exploration category by

each subject (left), and of the number of consecutive trials spent by them exploring individual

non-rule features during this category (right). c. Probability of a non-rule feature transitioning

back into an exploration state during rule-favored exploration trials. d. The probability of a

non-rule feature transitioning back into an exploration state upon receiving negative feedback

for choosing it (direct negative feedback) or positive feedback for choosing a different feature

(indirect negative feedback) during rule-favored exploration trials is higher in monkeys (bootstrap

test with t-statistic). e. Probability of a non-rule feature transitioning back into an exploration

state during rule-favored exploration trials and non-rule exploration trials in monkeys. f.

Joint probability of a non-rule feature transitioning back into an exploration state and each

choice outcome history occurring during rule-favored exploration trials and non-rule exploration

trials in monkeys (left); Probability of each choice outcome history occurring during either

category (middle); Probability of a non-rule feature transitioning back into an exploration state

in response to each choice outcome history during either category (right). The higher probability

of a non-rule feature transitioning back into an exploration state during rule-favored exploration

trials compared to non-rule exploration trials is explained by a higher incidence of direct positive

feedback for choosing the non-rule feature in the former category (bootstrap test with t-statistic);
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** p < 0.01.
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Supplementary Tables and Figures1018

Fixation Decision Response Feedback ITI

Monkeys 500 ms ≤ 4 s Fixate 1.4 s (reward) 400 ms /

(800 ms) 1 s / 5 s (timeout) 1 s

Humans 300 ms ≤ 4 s Manual 1.5 s 1 s
(text on screen)

Supplementary Table 1: Inter-species trial structure differences

Learning Criteria: Learning Criteria:
Continuous Proportion

Monkeys 8 correct trials 16/20 correct trials

Humans 5 correct trials 8/10 correct trials

Supplementary Table 2: Inter-species learning criteria differences

53

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2023. ; https://doi.org/10.1101/2023.01.10.523416doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523416
http://creativecommons.org/licenses/by-nd/4.0/


Monkeys

Humans

P
ro

b
a

b
ili

ty

0.0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120

# Trials to learn rule

WSLS Agent

1019

Supplementary Figure 1: Monkey learning is slower than humans after correcting

for learning criteria differences. Distribution of trials-to-learning-criteria in 4 monkey

(brown) and 5 human (green) subjects. The less stringent learning criteria used in human

subjects was applied to the monkey choices and outcomes to revise their trials-to-learning-criteria

on each rule block. Yet, monkeys are over 3 times slower than humans on average. Humans

are also faster than a simulated agent using the Win-Stay Lose-Shift strategy to learn WCST

rules (black).
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Supplementary Figure 2: Goodness of fit of a model extension to predict chosen

objects is consistent with the underlying feature prediction model. a. Log-likelihood of

a model extension that predicts the chosen object from feature choice probabilities. Log-likelihoods

are show separately on training and test datasets for each human (green) and monkey (brown)

subject for extensions of feature choice models with varying numbers of states and that use choice

outcomes from varying numbers of previous trials (lag). Each point represents the mean results

over a 5-fold cross-validation and over 5 (monkey) or 10 (human) different initializations. b.

Cumulative density of the posterior probabilities for most-likely state estimates by the model.

Densities are presented separately for the 4 states and for each monkey (top) and human

(bottom) subject.
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Supplementary Figure 3: Model recovers strategy of a simulated Win-Stay Lose-

Shift agent. a. Model fit log-likelihoods for training and test datasets generated by a simulated

agent using the Win-Stay Lose-Shift strategy on the WCST. The lag and number of states

were parametrically varied across models. Each point represents the mean over a 5-fold cross-

validation and over 10 different model initializations. b. Probability of choosing a feature

associated with each state of the best-fit 3-state, lag-1 model. Plot shows probabilities generated

by model parameters (gray) and measured empirically based on the most-likely state estimates

(black). c. Most-likely states estimated by the model for 300 example trials. The rule on each

block is outlined in black, and the ground-truth feature under agent exploration on each trial

is outlined light brown. 57.6% of all ground-truth features under exploration are accurately

assigned the persist state (choice probability = 1) by the model. d. Decision process for the

Win-Stay Lose-Shift learning strategy employed by the agent (ground-truth; left) and fit to the

agent’s choices (right). The ground-truth process is modified from the one in Figure 1c to

account for the composition of the chosen object by 3 features - the feature under exploration

and two features that are extra-dimensional to it. Features in these other two dimensions are

chosen even though they are not under exploration. The model differentiates these randomly
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chosen features from those that are intra-dimensional to the explored feature and completely

avoided. The fit recovers the underlying decision process.
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Supplementary Figure 4: State- and history-dependent statistics. a. Feature choice

probability given the feature’s state and history in human (green) and monkey (brown) subjects.

Values computed directly from model’s parameters (above) are consistent with empirical mea-

surements based on best-fit state estimates (below). b. Probability distribution of histories given

the state estimate on the subsequent trial. c. Probability that a feature is associated with the

preferred or persist state given one of its intra-dimensional counterparts is associated with the

avoid state.
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Supplementary Figure 5: State transition probabilities. a-b. Probability of a feature’s

state transitions given the state it was associated with on the previous trial and its choice-

outcome history in human (green) and monkey (brown) subjects. Values computed directly

from model’s parameters (a) are consistent with empirical measurements based on best-fit state

estimates (b).
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Supplementary Figure 6: ‘Reverse’ state transition probabilities. Empirically measured

probability of a feature’s state transitions given the state it is associated with on the next trial

and its choice-outcome history in human (green) and monkey (brown) subjects.
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Supplementary Figure 7: Trial categories fully determine block length statistics.

Mean category length as a fraction of mean block length (top) for human (green) and monkey

(brown) subjects. Covariance of category length with block length as a fraction of the variance

in block length (bottom). Since the categories are mutually exclusive and span all trials in a

block, the sum over categories of each of these two fractions is 1. This allows an assessment of

each category’s contribution to the mean (top) and variance (bottom) of the block length.
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Supplementary Figure 8: Joint probability of a non-rule feature transitioning

back into an exploration state and receiving direct/indirect positive (C+/NC−) or

negative (C−/NC+) feedback during rule-favored exploration trials in human (green)

and monkey (brown) subjects.
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