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ABSTRACT

Efficient methodologies to fully extract and analyse large datasets remain the Achilles heels of 3D tissue imaging. Here we

present PACESS, a pipeline for large-scale data extraction and spatial statistical analysis from 3D biological images. First,

using 3D object detection neural networks trained on annotated 2D data, we identify and classify the location of hundreds of

thousands of cells contained in large biological images. Then, we introduce a series of statistical techniques tailored to work

with spatial data, resulting in a 3D statistical map of the tissue from which multi-cellular interactions can be clearly understood.

As illustration of the power of this new approach, we apply this analysis pipeline to an organ known to have a complex and

still poorly understood cellular structure: the bone marrow. The analysis reveals coherent, useful biological information on

multiple cell population interactions. This novel and powerful spatial analysis pipeline can be broadly used to unravel complex

multi-cellular interaction towards unlocking tissue complexity.

Main

A central tenet of biology and medicine is that within the observed spatial organisation of cells within tissues and organs there
exists a set of functional relationships which underpins tissue function. As researchers look to understand more subtle spatially
defined phenomena, such as the tumour microenvironment or the stem cell niche, multidimensional imaging (3D or greater) has
proven to be invaluable1–5. That is because such images provide a single cell resolution view of the spatial organisation of
populations in situ, resulting in extensive, information-dense data-sets from which researchers can make inferences1, 3–5.

Despite their promise, the extraction and analysis of data from these multidimensional images remains a significant challenge.
Imaging tissues at depth almost inevitably results in greater amounts of background noise2, 5, 6. This makes image segmentation
by intensity thresholding, which is, historically, the most widely used method for identifying cells-of-interest, much more
difficult7. That issue is compounded in scenarios where cells are compressed or tightly packed together, such as seen with
malignant processes, as boundaries between cells become more difficult to distinguish. Once data are extracted, inferences have
typically been made using pairwise hypothesis testing8, 9. That approach is highly restrictive as it does not facilitate the direct
examination of the relationships between cells, making it challenging to formulate definitive conclusions from the underlying
data.

To bridge this gap we present a pipeline for extracting and analysing cells from multidemensional data: PACESS (‘Practical
AI-based Cell-Extraction and Spatial Statistics’) (Fig. 1). This pipeline makes use of convolutional neural-network based object-
detection to classify and identify the locations of cells in 3D. Neural networks are the gold-standard in image classification,
and object-detection neural networks combine this classification property with an AI-based searching algorithm to enable
the accurate identification and localisation of objects within images10–13. Although widely used for 2D image analysis, 3D
object-detection algorithms have had limited traction within 3D bio-image analysis because of the need to generate sufficiently
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large sets of manually annotated 3D samples to train and test models on. To circumvent that difficulty, we introduce an
augmented object detection deep neural network trained using 2D data alone, for which images can be rapidly annotated.
Annotations are created for each image-layer in the 3D data and the output from multiple layers are automatically combined
to identify each cell’s location, size and type within the 3D space. Once this spatial data is extracted, we apply a step-wise
analytical approach that was originally developed for geographical data14, but which we have adapted to 3D cellular data. The
steps in this process include: generating exploratory statistics that quantitatively assess spatial heterogeneity; identifying regions
of abnormally high cellular density; performing hypothesis tests to determine the locality-dependent influence of one cell type’s
density on another; and, finally, formulating a spatial regression model that quantifies the location-dependent relationships
between cell types. The advantage of this approach is that it makes full use of spatial information to provide intuitive and
meaningful statistics whose output can be presented as a holistic ’statistical map’ of the tissue.

To demonstrate the utility of our approach we have applied it to a series of samples of bone marrow. Bone marrow is a
uniquely challenging tissue for histological imaging and quantification4, 5, 7. It has an amorphous structure consisting of a
wide-range of different cell types which are tightly packed within a confined cavity15. It has a high mineral content, primarily
in the form of iron in haem, which creates substantial amounts of background autofluorescence5, 6. To highlight how robust
our extraction method is to background flourescence we demonstrate its use within both optical cleared thick sections of bone
marrow and non-cleared intravital microscopy (IVM) images, which have higher levels of background auto-fluorescence16.

Methods

Experimental animals

For this work we used two types of transgenic reporter mice: mTmG-reporter mice that expressed dTomato within the surface
membranes of all cells and a second line that expressed dTomato exclusively within von Willebrand factor (vWF) expressing
cells17, which include megakaryocytes and endothelial cells. The latter transgenic line was used for our intra-vital microscopy
(IVM) studies, whilst the former was used to generate the acute myeloid leukemia (AML) cells included in some of the sampls
presented. All animal work was performed in accordance with the animal ethics committee (AWERB) at Imperial College
London and UK Home Office regulations (ASPA, 1986).

To generate an example of leukaemic infiltrated bone marrow, AML cells were generated from purified granulocyte/monocyte
progenitors (GMPs) from the mTmG-reporter mice. These GMPs were transduced with pMSCV-MLL-AF9-GFP-based
retroviruses as described in18, 19 and then transplanted into sub-lethally irradiated (conditioned) mice. Approximately ⇠ 8 weeks
post transplantation, these conditioned recipient mice develop highly infiltrated leukaemia. Tomato+, GFP+ cells from these
mice are then harvested from bone marrow and spleen and pooled. 100,000 viable AML cells were transplanted through tail
vein injection into the secondary, non-conditioned recipient mice20. Progressive expansion was observed from day 8-10. Tissues
from these mice where harvested once the leukaemic infiltrate approached 15-20% in bone marrow. The percentage of AML
infiltration was determined using flow cytometry in which a sample of bone from each mouse was crushed in PBS with 2% fetal
bovine serum and then filtered through a 40 µm strainer. Viable cells were distinguished using 4,6-diamidino-2-phenylindole
(DAPI, Invitrogen) and AML cells were identified based on dTomato and GFP expression. Of note, GFP expression is low and
is lost upon tissue processing for ex vivo analyses.

Tissue processing and imaging

The clearing procedure we use was developed to suit our specific microscope system whilst incorporating various advances
made in this field4–6. The complete steps were: (1) Harvested tissues are fixed in 4% PFA for 1-2hrs, then (2) placed in 10%
EDTA during 15 days for decalcification3. After decalcification, (3) the bones are embedded in low melting point agarose
(sigma A0169) and cut using a Leica T1000 Vibratome at depths of 250µm. After sectioning, (4) samples are incubated for
48hrs in a solution made up of 20% CUBIC-1 reagent (urea 25 wt% by weight, Quadrol 25 wt% by weight, Triton X-100
15% by weight) in dH2O) diluted in 80% dH20 at a pH 106. (5) Non-specific binding of antibodies is blocked for 24 hours in
1.5% TBS 1% Triton, 20% DMSO, and 10% donkey serum3. (6) Tissues are then incubated with primary and then secondary
antibodies for 48 hours in a solution of 1% TBS, 1% Triton, 200mM sodium sulfide. Nuclei are stained with DAPI for 24 hours.
(7) Samples are then mounted onto 20x20x0.9mm silicone spacers using an optical clearing solution made up of 1.455g/ml
histodenz (sigma) and 40% Methlyacetamide (sigma) diluted in 1% TBS with 4% DABCO (sigma)4 (SFig.1).

In addition to optically cleared samples, we applied our data extraction process to images generated from intravital microscopy
(IVM). In this technique, images of the bone marrow are taken whilst the animal is still alive. This technique allows real-time
visualisation of the bone marrow but is subject to higher levels of background auto-fluorescence. The IVM process is fully
described in the following references16, 21 and only a brief overview of the procedure is provided here. The calvarium of
the animal is exposed whilst the animal is under isoflurane anaesethesia. The position of the animal is then secured using
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a headpiece mounting under a confocal microscope. To visualise vasculature, 8mg/ml FITC-dextran was injected prior to
imaging.

Imaging was performed using a Zeiss LSM 980 upright confocal microscope equipped with 5 Argon lasers (405, 488, 561,
594 and 639nm), and an Insight (Newport Spectraphysics) 2-photon laser with two excitation lines of which one is fixed and
one tunable (1045nm and 680-1300nm respectively). The microscope was equipped with 6 non-descanned external detectors
including 2 nose-piece detectors (GaASP). Images were acquired using a 20x, 1.0N.A., water immersion lens with 1.4mm
working distance.

Object detection and clustering

A YOLO-V5X model (https://github.com/ultralytics/yolov5) was used as the backbone of the 2D object-
detection neural network. More details on this model, and on convolutional neural networks more generally, can be found in
the literature10, 22–24. In this section we provide only a brief overview of the model with a focus on: the manner in which the
algorithm identifies objects; and how it was adapted to generate 3D estimates.

The YOLO algorithm works by placing a multitude of boxes within the space of a 2D image and then filtering these boxes
based on probability estimates from the model. It is a fully connected neural network which divides a 2D image into S⇥S
grid of cells into which B bounding boxes are detected. The model identifies a set of box sizes for each class a priori using a
k-means clustering algorithm run on box sizes observed within the training data. Each bounding box is defined by 5 parameters:
the x,y central position, width (w), height (h) and a confidence score, C. This last value, C, is the confidence estimate over the
presence, or absence, of an object being within the grid cell. This makes use of the intersection-over-union (IOU) between
a predicted bounding box and a ground truth (manually annotated) bounding box. The greater the overlap between the two,
the higher the IOU, and greater the confidence in the box. If any object is absent from the grid cell, the probability of the
object (Pr(Object)) is set to 0. Otherwise it is 1. For the ith bounding box in the jth grid cell, the confidence score, Ci j is thus
calculated as24:

Ci j = P(Objecti j)⇥ IOU

In addition to these five parameters a set of conditional class probabilities is calculated. Given K possible classes, this is the
probability of the object belonging to any specific kth class: Pr(Classk|Object). A class-specific confidence score (CSki j) is then
calculated as a product of Ci j and the conditional class probability24:

CSi jk = P(Objecti j)⇥ IOU⇥Pr(Classki j|Objecti j)

= P(Classi jk)⇥ IOU

The class-specific confidence scores and IOU results are used to select bounding boxes through non-maximum suppression
(NMS)24, 25. YOLOv5 makes use of soft-NMS which is better adapted to overlapping objects25.

To aggregate the final set of 2D bounding boxes into 3D bounding ‘cubes’ we ordered the bounding boxes for each class
by maximum diameter and mean fluorescence intensity (mFI). For each box within the set of boxes (B) within the kth class,
starting from the largest and brightest boxes, a central x,y,z location is calculated, which we call q. We can also determine a
maximum diameter for this box, d. From this point q the surrounding cluster of boxes in the z dimension which have a distance
from q which is < d/2. We call this set of clustered bounding boxes Bc. Within this context Bc ⇢ B but all the 2D bounding
boxes within Bc are assumed to belong to a single cell (cube) surrounding an individual cell. Once identified, Bc is removed
from the B. The process is repeated until every 2D box is allocated to a 3D cube.

To apply this model, an x⇥ y⇥ z⇥ c dimensional image, where c = 3 for RGB, was divided into a set of 416⇥416⇥1⇥3
(RGB) tiles. Test/validate/train subsets were selected from random sampling of this tile set. Manual annotation was performed
to identify cells of interest within these selected images with a minimum of 500 cells annotated within each cell class. Once
trained, the final object detection was performed on the full-set of tiles.

Spatial analysis and modelling

Cells outside the bone marrow were excluded from the object detection dataset. Then, the bone marrow was divided into
q(µm)3 cubes. The midpoint of the lowest plane in the cube (u,v,z) was used as the three-dimensional geographic coordinates,
and the number of cells of each type in the cube was recorded. The data in each of these cubes was used as input to the analysis
and model.
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Moran’s I index was used to measure spatial autocorrelation for each cell type26. The formula for Moran’s I index is

I =
nÂÂi6= j ji j(ai � ā)(a j � ā)
(Ân

i=1(ai � ā)2)(ÂÂi 6= j ji j)
,

where n is the total number of cubes, ai is the number of cells in a particular type at the ith cube, a j is the number of cells at the
jth cube, ā is the mean of the number of cells at each cube, and ji j is a spatial weight. The formula for ji j is

ji j =

⇢
1 if di j  q
0 if di j > q ,

where di j be the Euclidean distance between the centroids of cube i and cube j.

The density-based spatial clustering of applications with noise (DBSCAN) algorithm was the algorithm used to cluster the
cells27. For cube (ui,vi,zi), Ni =

�
(u j,v j,z j)|di j  q

 
is a set of all neighbouring cubes that are q µm or less away from the ith

cube. The number of cells in Ni is recorded as kNik. When the faces of cubes are connected to each other, they are neighbours,
so each cube in this case has six neighbours. If the total number of cells in cube (ui,vi,zi) and its neighbours is greater than
7, the number of cubes being considered, times g , such as the third quartile of counts, then the ith cube and its neighbours
are marked as high-density cubes. Let W =

�
(u j,v j,z j)|kNik � 7g,di j  q

 
is the set which includes all high-density cubes.

For any cube (ui,vi,zi) 2 W, ∂1 =
�
(u j,v j,z j)|d((ui,vi,zi),W) q

 
where ∂1 includes all high-density cubes close to ith

cube, and d(A,B) represents Euclidean distance between the set A and the set B. Then, ∂2 =
�
(u j,v j,z j)|d(∂1,W) q

 
, · · · ,

∂n+1 =
�
(u j,v j,z j)|d(∂n,W) q

 
. When |∂n+1|� |∂n|= 0 where |∂n| is the number of cubes in the ∂n, iteration ends and ∂n is

the first cluster which is records as C1. If W1 = W�C1 =?, then there is one cluster. Conversely, any cube (ul ,vl ,zl) 2 W1 are
selected. The second cluster C2 and W2 can be obtained using the same step. When Wp+1 =?, p 2 N⇤, the data has p clusters.
In addition, for any cube that does not belong to any cluster, these cubes are in the set C0.

After cell clustering, the information on all clusters can also be obtained. For the tth cluster (t 2 N⇤ and t  p), Ut =
{(ut ,vt ,zt)|0 < d((ut ,vt ,zt),Ct) q} is a set which contains the cubes in the tth cluster and the cubes q µm away from
the tth cluster, and these cubes do not belong to any other clusters. Hence, the cubes around the tth cluster are Cc

t =
{(ui,vi,zi)|(ui,vi,zi) 2Ut ,(ui,vi,zi) /2Ct}, that Cc

t .

Permutation tests were used to detect changes in the number of cells in the cluster as well as the number of cells around the
cluster28. The null hypothesis for the permutation test is that the mean number of cells in the cubes is independent of whether
the cubes in Ct or Cc

t . Here, A = (at1 ,at2 , · · · ,at|Ct |
,at|Ct |+1 ,at|Ct |+2 , · · · ,at|Ct |+|Cct |

) is an ordered observations set, where ati is
the number of cells in the ith cube in the Ct . In the set A, the first |Ct | elements are the number of cells in the t th cluster, and the
last |Cc

t | elements are the number of cells around the cluster. Hence, the real-valued statistic is used under this null hypothesis.

M(A) =
Â|Ct |

i=1 ai

|Ct |
�

Â|Ct |+|Cc
t |

j=|Ct |+1 a j

|Cc
t |

.

Then, a permutation p is created, that can reassign labels to individual datum. A reordered observation set is obtained:

Ap = (ap(1),ap(2), · · · ,ap(|Ct |),ap(|Ct |+1),ap(|Ct |+2), · · · ,ap(|Ct |+|Cc
t |)).

Similarly, a new reordered set also generates statistics M(Ap). A collection of permutations Q can be characterised so that
reorderings {Ap}p2Q are equally likely under the null hypothesis. Then, the empirical distribution of M(Ap)p2Q is used to
compare with M(A). Therefore, the corresponding p-value can be calculated. At a significance level of 0.05, when the p-value
is smaller than 0.05, the null hypothesis is rejected.

A geographically weighted regression model (GWR) was used to examine the spatial relationship between explanatory
variables and the response variable14. The standard GWR model defined for two-dimensional (2D) plane, and this study extends
it to three-dimensional (3D) space. The natural extension of the 2D GWR approach to 3D is

r(ui,vi,zi) = b0(ui,vi,zi)+
m

Â
k=1

bk(ui,vi,zi)ek(ui,vi,zi)+ e(ui,vi,zi) ,

where r(ui,vi,zi) is the response variable at the ith cube, b0(ui,vi,zi) is the intercept in the model, m is the number of explanatory
variables, bk(ui,vi,zi) is the coefficient for the kth input variable at the ith cube and ek(ui,vi,zi) is the kth explanatory variable
at the ith cube. In addition, e(ui,vi,zi) is the error term at the ith cube.

4/21

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 28, 2023. ; https://doi.org/10.1101/2022.12.29.521787doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.29.521787


A weighted least squares method is used to get the coefficients b̂ (ui,vi,zi) = (b0(ui,vi,zi),b1(ui,vi,zi), · · · ,bm(ui,vi,zi))T .
The formula for the coefficients is

b̂ (ui,vi,zi) = (ETW (ui,vi,zi)E)�1ETW (ui,vi,zi)r ,

where E is a Rn⇥(m+1) matrix that includes 1s for intercept and explanatory variables, r is a Rn⇥1 response vector, W (ui,vi,zi) =
diag(wi1,wi2, . . . ,win) is the diagonal weighted matrix at position (ui,vi,zi), and it is determined by a kernel function. In this
study, the bi-square kernel function is used:

wi j =

8
<

:

✓
1�

⇣
di j
b

⌘2
◆2

if
��di j

��< b

0 otherwise
,

where b is the bandwidth. The bi-square kernel function reflects that neighbouring points have more influence on the ith cube
than distant ones. Its scaling is determined by a bandwidth b that is selected by minimising a corrected version of Akaike
Information Criterion (AICc)29:

AICc(b) = 2n ln(ŝ)+n ln(2p)+n
n+ tr(S)

n�2� tr(S)
,

where, ŝ is the standard deviation of the residuals, and tr(S) is the trace of the matrix S, which is called the hat matrix in
standard GWR.

Adapting principles from 2D GWR diagnostics, for the 3D GWR the following diagnostic statistic was adopted, the local R2.
Local R2 can reflect the quality of local models to explain local data. Local R2 is defined as14

R2(ui,vi,zi) = 1�
Ân

j=1 wi j(r(u j,v j,z j)� r̂(u j,v j,z j))2

Ân
j=1 wi j(r(u j,v j,z j)� r̄)2 ,

where, r̄ is the mean of response variable, and r̂(ui,vi,zi) is the fitted r(ui,vi,zi). In addition, wi j is from the weighted matrix.

Software and computational resources

Neural network model training was performed using 4⇥ RTX6000 Nvidia GPUs and 8 CPUs with 96GB RAM available
through the high-performance computer cluster available at Imperial College London. Trained neural network models and the
spatial models were run on a Dell precision 5560 laptop with 32GB RAM and a NVIDIA T550 4G DDR6 GPU.

Results

Data extraction using deep neural networks

To demonstrate the effectiveness of the methodology introduced here (Fig. 1), two types of 3D biological images were
generated: optically cleared ’thick’ sections, and images from intravital microscopy (IVM). The latter technique does not
require the tissue to cleared or cut, and takes advantage of the natural thinness of the calvarium bone such that the marrow can
be visualised in situ. The disadvantage of IVM is that it generates images that lack the crispness of clarified samples and is
subject to higher levels of auto-fluorescence. The difference between these two types of images can be seen in Fig. 2a, which
shows an image of bone marrow calvarium from a dTomato:vWF transgenic animal that has first been visualised with IVM
(left part of the image), before being harvested and re-imaged after clarification (right part of the image). Image segmentation
using thresholding was performed on both the cleared and IVM image (bottom part of the image) to illustrate the shortcomings
of that approach in the presence of overlapping cells where the boundaries of overlapping cells merge, making it difficult to
discern individual cells.

IVM performed on vWF:dTomato transgenic mice generated a series of 3D images of the mouse calvarium in which two cell
classes, megakaryocytes (MGK) and endothelial cells are both identified using the same fluorophore (Fig. 2b). A 2D YOLO
neural network model was trained on a subsample of those data using 7581 manually annotated cells, of which 5409 were
used for training, 1284 for validation and 888 for testing. To check the model, we first assessed whether the network was
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classifying appropriately by determining which features within the image elicited a response by the neural network using a
class activation, or saliency, map30, 31. The output of this map illustrates how the activation within lower layers of the network
respond to the image provided and thus the features that the model has learnt to recognise (example in Fig. 2c). This is an
important initial assessment to ensure the model is not being trained on a non-biological variable within the image. We then
assessed model accuracy. For both MGK and endothelial cells, the neural network achieves approximately 90% accuracy on the
set of labelled test images that were not used during training, Fig. 2d (mean AUC 0.904, MGK AUC 0.894, endothelial cells
AUC 0.913). Once satisfied with the interim (2D) model a set of 2D predictions were generated for each layer in the image.
These predictions where then used to generate estimates of the 3D locations of cells by identifying neighbouring boxes across
different image layers using our extended 3D prediction algorithm (Fig. 2e, orthogonal view panels). Crucially, this extension
means that these 3D predictions could be generated without the need for 3D labelled images.

To demonstrate how this procedure performs in the presence of occluding cells, it was used on a sample of clarified bone
marrow sternum from a vWF:dTomato transgenic mouse that exhibits densely packed MGK cells, Fig. 3. MGKs are large
cells with complex morphology localised adjacent to dense vasculature structure of the sternum bone7. Fig. 3a shows a
maximum projection image of a clarified sternum from a vWF:dTomato transgenic mouse that was stained for endomucin
(green) to visualise blood vessels. This served as an aid for human inspection and was not used as input to the neural network.
Such images are a particular challenge for any data-extraction procedure as the large number of overlapping cells confounds
segmentation by thresholding and induces difficulties in 3D annotation for training of 3D neural networks. To train and test our
network, a total of 6898 cells in 415 2D sub-images of the full image were annotated for the training, validation and testing
process (Supplementary Table 1). The network first identifies MGK cells at each individual z depth within the image (Fig.
3b). MGKs are then aggregated across depths (Fig. 3c) to create a 3D prediction as bounding cubes. The cubes approximately
surround each identified cell within the sample. Fig. 3d shows a maximum intensity projection (MIP) of the vWF+ cells within
the tissue and the estimated location of each cell (white dots) based on the location of the bounding boxes.

Data-extraction in an AML mouse model

The essential promise of dense, 3D data sources is that they will enable understanding of spatial composition of organs.
Having established that our neural network approach can automatically identify the location of cells as well as accurately classify
their type based on morphology or fluorescence using exclusively 2D training data, we used a more complex set of images with
multiple cell types to elucidate the pipeline for spatial analysis. For that illustration, we captured data from a leukaemic mouse
model where densely packed acute myeloid leukaemia (AML) cells have been posing a substantial identification challenge, for
example making it impossible to identify and track single AML cells found within malignant patches. Moreover, based on
published results, AML would be expected to influence the localisation of bone marrow resident cells, making it a suitable
model to test the ability to identify spatial relationships between cell types19, 32, 33.

Within the images, AML cells and CD8+ T cells were identified by dTomato and AF488 fluorescence respectively. Instead of
using a fluorescent reporter, MGK cells were identified based on characteristic morphological features (large size, multilobulated
nucleus).

The tissue sample imaged for this experiment had a 15% AML infiltration, as estimated by flow cytometry analysis of other
bones from the same animal (Supplementary Fig. S1a and S1b). The neural network model was trained using 18,240 manually
annotated cell examples (Supplementary Table 1). The data-extraction procedure identified an order of magnitude more cells
than the training set for a total of 163,953 AML cells, 8,362 CD8+ T cells and 2,219 MGK cells. Fig. 4a shows a single
cross-section image of the sample on which the cell positions identified from the cell extraction procedure are mapped. Each
box represents the transverse plane through bounding cubes. In this sample, although AML cells are present throughout the
tissue, there is an area of dense infiltration on either side of the growth plate, extending into both metaphysis and epiphysis.
Even in areas of dense infiltration the neural network was capable of distinguishing individual AML cells (Fig. 4a, i.-vi.). The
model only failed to identify a small number of cells in areas of particularly dense infiltration (Fig. 4a c., iii.).

Next, we completed 3D reconstructions of these data within bone marrow cavity space. Fig. 4b shows the locations of the
bounding cubes for each extracted cell type of interest (AML cells, CD8+ T cells, and MGK cells) in cross-sectional planes. In
Fig. 4c, the central position of each cell within the bone marrow cavity space is shown. These figures quantitatively demonstrate
the extent of the AML infiltrate and that CD8+ T cells are largely excluded from the larger dense region of AML. MGK cells,
in contrast, are not excluded to the same extent and remain more homogeneously distributed. As there is a substantial increase
in the scale of information when moving from a 2D cross-section to a 3D ’thick’ section and further interpretation of the data is
not possible without a well-developed quantitative framework.
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Spatial heterogeneity and automatic identification of areas of high cellular density

In order to visualise and analyse the spatial distribution and relationships between cell types, space was discretised into
non-overlapping, adjacent cubes that cover the entire 3D area. The number of cells of each type in each cube was recorded.
For meaningful visualisation, the discretisation needs to be sufficiently coarse that some aggregation of cell counts occurs. A
cube size of 45(µm)3 was selected to be sufficiently fine that geographic resolution was retained, but sufficiently coarse that
the resulting data could still be computationally assessed without undue burden. With that discretisation, we could report the
density of AML cells, T cells and MGKs as a function of their position for a selection of z-depths (Fig. 5a, 5b and 5c).

AML cells were observed to be more prevalent than the other two types of cells, with most of them appearing to be located
in a single mass, as previously seen in Fig. 4. This observation highlighted the importance of being able to quantitatively assess
the homogeneity of each cell type’s spatial distribution, which we achieved through the calculation of a statistic called Moran’s
I. If Moran’s I is positive, cells tend to be aggregated in common areas. If Moran’s I is close to zero, cells are distributed
randomly in space. When its value is less than zero, cells are more homogeneously dispersed than one would expect from
a random process. Moran’s I for the AML cells was 0.81, quantitatively substantiating the observation that AML cells were
largely concentrated in relatively few patches.

While Moran’s I can indicate that cells of a given type are largely co-located, a distinct methodology is needed to identify
the regions of high density. One approach is the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm27. For these data, when the distance between the cubes was 45µm or less they were considered to be neighbours,
resulting in each cube having seven neighbouring cubes that have a face in common (Supplemental Fig. S2a). If the average
number of cells in a cube and its neighbours was more than the third quartile for a single cube, where only a quarter of cubes
have more cells than this value, it was considered a dense neighbourhood. Dense neighbourhoods were agglomerated using the
DBSCAN algorithm to form contiguous spatial clusters (Supplemental Fig. S2b).

For the AML data, DBSCAN identified 43 distinct clusters, four of which accounted for 58.8%, 3.6%, 1.9% and 1.8% of all
AML cells. These clusters are shown Fig. 6a, where the ten largest by cell count are marked in decreasing order. The three
largest clusters of AML cells, 1, 2 and 3, were seen to be located close to each other at the edge of the bone marrow. The fourth
largest cluster was at the bottom left. In the lower part of Fig. 6a, the AML clusters were much smaller, and most of were
located at the boundary of the bone marrow.

For T cells and MGKs, respectively, approximately 70% and 90% of cubes recorded a zero cell count, consistent with
these cells being less abundant than AML cells. Moran’s I of 0.05 for MGKs indicated these cells had a weak geographical
dependency resembling random locations. Moran’s I for T cells was 0.34, suggesting some positive spatial clustering but less
than found for AML cells.

Spatial density dependencies

Visual inspection of Fig. 5b showed that there were few T cells in areas with high AML cell counts. To statistically assess if
the distribution of T cell counts was influenced by areas of high AML density, permutation tests were used to challenge the null
hypothesis that the mean number of T cells within each cube is independent of whether the cube is within an AML cluster or in
the boundary of cubes surrounding it (Supplemental Fig. S2b).

Clusters for which the hypothesis test was rejected are marked in Fig. 6b. For the four largest clusters, Clusters 1 and 3
showed statistically significant differences with p-values of < 2.2⇥10�26 and 2⇥10�5, respectively. Of the remaining 39
smaller AML clusters, four p-values were less than 0.05. Cluster 10, which contained 0.5% AML cells, had a p-value of
0.017, while Clusters 9 and 5, which contained 0.05% and 0.9% of all AML cells, respectively, had p-values of 0.021 and 0.03.
Finally, Cluster 6, which was found close to Cluster 1 and included 0.6% AML cells, had a marginal p-value of 0.0485. This
analysis indicated that areas of high AML cells density influenced the mean number of T cells. In order to quantify the strength
of relationships between cell counts of cells of different types, however, a statistical model is needed.

To quantify the spatial relationship between T cell, MGK and AML cell counts, we employed the 3D geographically weighted
regression (GWR) model. The objective of a regression model is to determine to what extent the value of response variables,
such as counts of one cell type, can be explained in terms of explanatory variables, such as the cell counts of potentially
related cell types, elucidating the relationship between the two. In GWR, the additional element is that the relationship
can have a geographically varying dependence. Here, the T cell count per cube was treated as the response variable, while
location-dependent AML and MGK counts were used as explanatory variables. GWR models are parameterised by a spatial
scale, called the optimal bandwidth, that is algorithmically determined by the data and corresponds to the maximum extent of
geographic influence. For these data, that value was 453 µm, which corresponds to the width of a little over ten cubes. For
models with no spatial component, such as linear regression, the R2 statistic is a common measure of the quality of the model
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description of the data. For the spatial model GWR, the equivalent location-dependent statistic is called the local R2. In linear
regression, the coefficient of an explanatory variable is the best-fit linear multiplier that predicts the response variable given
the best offset. Similarly, the GWR coefficients of location-dependent AML and MGK counts informed the multiplicative
relationship between the number of T cells in a cube, and the number AML and MGK cells contained in cubes within a 453µm
range. The sign and magnitude of those coefficients captured the nature and strength of the relationship between T cell counts,
and AML and MGK counts nearby. By observing how the coefficients change in a spatial context, information was extracted
about geographically dependence in those relationships.

For four z-levels, Fig. 7 (a)-(d) plot the GWR coefficient of the AML cell count as a function of spatial location. Compared
with the representation in Fig. 6a, locations with zero or negative coefficient largely coincided with the four largest AML
clusters. his provided quantitative evidence that areas with high AML density were devoid of T cells, while areas with small
AML cluster did not have such a strong effect on T cell density.Most variation occurred in the x-y plane, with little spatial
variation in the z direction, which, for this bone, has the smallest extent and almost complete coverage by the large AML
clusters. Fig. 7 (e)-(h) indicated a strong positive relationship between MGK and T cells in peripheral areas of the bone marrow.
Coefficients in middle areas of the bone marrow cavity were negative, which can be explained by the apparently greater ability
of MGKs to resist exclusion by AML cells. Fig. 7 (i)-(m) report the local R2 values, providing a spatial understanding of how
well GWR explains the data. Matching with intuition, the model identified areas of increased AML density where the influence
on T cell became prominent.

Taken together, the analysis of these data illustrates how methods from spatial statistics can be adapted to a 3D framework
to enable the quantitative evaluation of clustering, the automatic identification of regions of high density, and the statistical
assessment of dependencies between cell types.

Discussion

In this study we have described a novel and effective pipeline, PACESS, for extracting meaning and drawing inferences
from complex biological images. The method builds on established techniques from machine learning and geospatial statistics
and has a number of advantages over current approaches. From the perspective of data-extraction, the technique is robust
even in cases with compacted, adjacent cells, which is a major benefit of using neural networks over segmentation based
methods10, 34, 35. The technique is also scalable, can reliably identify cells with weak fluorescence intensities, and, once trained,
the model can be shared or updated as needed10. The approach avoids the need for extensive image processing as images are
provided to the model in their raw form. Image transformations, such rotation or artificial introduction of additional noise, are
only used in the training phase13 to improve the neural network’s performance when applied to unaltered experimental sample
images35.

As an innovation that makes 3D data extraction practical, we use a neural network on each 2D sample to make predictions
that are then grouped into 3D predictions, obviating the need for labelled 3D data. By mapping our final predictions against the
baseline image, we can visually observe that estimates are a faithful representation of the underlying cellular data. What is
more, the segmentation-based approaches have no quantitative measures of accuracy, interim or not, and rely solely on visual
cross-checking1, 4, 5.

A known drawback of AI-based approaches is the need to generate manually annotated training data. In this study, models
were trained on hundreds of images with thousands of annotated cells. Once trained, however, neural network models can
quickly and efficiently identify any number of cells in any number of similar images, unlike manual annotation8. Moreover,
pre-trained models can be updated with less extensive data-sets through a process called transfer learning34, 35. This, along with
the increasing availability of imaging data, has the potential to greatly expand the availability of ‘pre-trained’ models to the
wider scientific community, thus reducing the burden on researchers to establish extensive training datasets for their particular
setting36. The dataset presented here is already a pre-trained model and can constitute the starting point for identifying cell
types in virtually any tissue.

In previous studies, researchers have assessed whether the distribution of individual cell populations differs significantly
from that of randomly distributed dots using hypothesis testing5, 7, 9. In a spatial analysis context, the simulated null must be
conditioned to take values only within the observable, imaged, space. Although this method is intuitive, there is no guarantee
that the simulated null is physiologically viable. That issue arises as we typically cannot observe all features within the tissue
with current technology, which introduces a risk of bias in the findings. In our spatial statistical pipeline, no simulated data is
used, and the question of how cells within the bone marrow are related is addressed directly by comparisons between multiple
different cell populations.
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Our spatial statistics approach provides a reproducible method for quantifying properties of individual cell types, as well
as interactions between them. Simple measures quantify the extent of spatial clustering of individual cell types, while
geographically-aware clustering methods can then identify regions of high density. Permutation tests provide statistical
measures for assessing the relatedness of cell densities in reasons of interest. Geographically Weighted Regression can then
quantify the relationships between multiple cells types simultaneously. At its core, it is a form of regression and the output is a
series of 3D maps which describe how cellular coefficients vary between different cell populations across space. It identifies
areas in which spatial effects, such as those generated by an expanding malignant infiltrate, have the most influence on the
presence of other cell types. It adjusts coefficients to take account the presence of cellular interactions. Finally it enables
predictions to be made that can be used to provide a measure of confidence in the estimates. In our worked example, we
regressed the location-dependent number of CD8+ T cells against the number of AML cells and MGK cells. The interaction
between CD8+ T cells and leukaemia has been described previously37, 38. We observed a largely positive association between
these two classes, except in the areas where the dense AML infiltrate generates such a significant spatial effect that it displaces
almost all cells, consistent again with previous observations39. MGK cells are largely immobile cells and in this model they act
as a surrogate for tissue cellularity7. For MGK cells there is a markedly different coefficient pattern, with a largely negative
coefficient running up the central axis of the bone marrow cavity. This is likely to reflect the increased number of MGK cells in
this central ’endothelial’ niche7, and illustrates a single model’s ability to characterise multiple interaction types.

The ultimate goal of quantitative 3D imaging is to informatively summarise, in a numerical form, the vast amount of spatial
and cellular information present within an image. The methods used for this type of work have been evolving over the course
of the last few years1, 4, 5, 40. The work presented here provides a framework for the data extraction and analysis of complex
3D biological images. This pipeline builds upon the work that has gone before but expands its utility to include those images
which would have proved more challenging to standard methodologies. We also introduced an analytical paradigm to aid in the
interpretation of spatial cellular data which is reproducible, scalable, and capable of providing a comprehensive insight of the
relationships which exist within the tissue.

Usage Notes

All code used for this study is available at https://github.com/ga402/PACESS.
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Figures

Figure 1. Summary of the PACESS pipeline.

The method consists of three steps: 1) tissue processing and imaging (in-vivo or ex-vivo), 2) 3D data extraction using object
detection neural network trained on 2D data and scale to 3D, and 3) spatial statistical analysis consisting in spatial
inhomogemeity quantification, automatic identification of areas of high cellular density and geographical weighted regression.
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(a)

(d)

(b)

(c)

(e)

Figure 2. 3D data extraction using a deep neural network trained on 2D image-layer.

(a) Comparison of IVM/cleared images and thresholding segmentation. Mouse calvarium imaged using intravital microscopy
(left) then cleared and re-imaged ex-vivo (right). Magenta arrows : megakaryocyte (MGK) cells, yellow arrows: endothelial
cells, blue arrows: overlapping cells. The white circles highlight the difference in size between the two cell types. Both cell
types are labelled by vWF:dTomato (red). The results of thresholded binary segmentation are shown in the bottom 1/3rd of the
image. Within the cleared image, the contours of individual MGK cells are clearly visible (top right colour image, magenta
arrows). In the IVM image, the boundaries of the cells are less distinct (top left). In the thresholded (segmented) image it is not
always possible to reliably distinguish individual cells: in both images when cells overlap, or are in close proximity, the cell
contours merge (blue arrows). (b-e) The use of 2D output to generate 3D reconstructions from an IVM image of the calvarium
of a VWF:dTomato transgenic mouse. (b) The original image is shown as a maximum projection in the z dimension. A 2D
object detection neural network was applied to each layer of the 3D original image. An example saliency map and the
precision-recall curve from this interim 2D model are shown in (c) and (d), respectively. The final step was to generate a set of
3D predictions, shown in (e). A collection of 3D bounding ’cubes’ are shown from each image plane (x,y,z). The red boxes
display the 3D results predicting MGK cells, while the smaller blue boxes are predictions of endothelial cells. Cross-sectional
lines represent the position of each corresponding plane within each image.
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(a)

(b)

(c)

(d)

Figure 3. Illustration of the steps in the data extraction.

Example of optically cleared sternum from a vWF:dTomato transgenic mouse. (a) Maximum projection of densely packed
tissue showing the overlapping nature of cells. Scale bar 400µm. The predictions from the 2D objection detection neural
network are then shown in (b), with the final 3D predictions shown in (c). Both (b) and (c) demonstrate that even overlapping
cells are accurately distinguished. (d) presents a maximum intensity projection upon which the cell locations are shown as
white dotes. The inset to (d) shows a smaller (50⇥50⇥225µm) sections presented in frontal and auxiliary perspectives. These
show the close association between the estimates and true positions of cells within the 3D space.
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(a)

(b)

(c)

Figure 4. Final prediction of the data-extraction process and 3D reconstruction of leukaemic bone marrow.

(a). AML cells (red), CD8+ cells (green) and MGK cells are identified by the model using red, green and blue boxes
respectively. MGK cells are identified by their characteristic morphological features. Within each panel, predictions are shown
at increasing magnification projected against the original image (far left). The results demonstrate the model accurately
identifies cells, even in areas of high density (iii., vi.). (b) 3D bounding boxes for AML cells (red), CD8+ T cells (green) and
MGK cells (blue), respectively. The locations of the boxes in a set of x,y and z planes is shown. (c) The central location of each
cell is shown within the 3D contours of the bone marrow cavity space.
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Figure 5. Quantitative 2D projection visualisation.

Quantitative Data are aggregated into 45µm3 cubes, at a range of z-depths heat maps showing the coordinates and the number
of (a) AML cells, (b) T cells and (c) MGK cells. The colour scale indicates the density of cells.
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Figure 6. Cluster identification and cell density dependence hypothesis tests.

(a) 2D projection visualizations at different z-depths showing AML clusters identified using DBSCAN. The ten largest clusters
are numbered in decreasing order of total AML cell numbers, with lighter colours indicating fewer AML cells in the cluster. (b)

2D projection visualizations showing hypothesis test results at different z-depths. The pink areas indicate AML clusters where
the mean number of T cells within and around the cluster are different with statistical significance (p  0.05), with the value
reported for each in the text. Grey areas mark clusters where there is no statistical significance (p > 0.05). White areas indicate
area where AML cells are not clustered.
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Figure 7. 3D statistical map of leukemic bone.

Projection visualisation for 3D spatial model results of coefficient of acute myeloid leukemia cells (a-d) and MGK cells (e-h)

in different vertical layers. The summary statistic (i-m), local R2, describes the model quality in each 45µm3 cube. Note that
the coefficient scale of AML cell counts is smaller than the MGK cells one because the maximum number of AML cells in a
cube is about 15 times the one of MGK cells, resulting in different coefficient scales.
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