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Abstract 
 
Predictive coding is a theoretical framework that has received much attention for its 
ability to generate testable hypotheses on how multiple brain regions integrate 
information during cognitive functions. Given relatively large sensorimotor delays, during 
social interactions, predicting the behavior of others is crucial to enable joint actions or 
provide competitive advantages. The action observation network (AON) has been 
extensively studied, but how information is integrated across its main nodes remains 
poorly understood. Here we leverage the high spatial and temporal resolution of 
intracranial Electrocorticography (ECoG), to characterize how the key nodes of the AON 
- including precentral, supramarginal and visual areas - exchange information. We 
found more top-down beta oscillation from precentral to supramarginal contacts during 
the observation of predictable actions while more bottom-up gamma oscillation from 
visual to supramarginal contacts were measured for unpredictable actions. These 
results, in line with predictive coding, provide critical evidence towards an understanding 
of how nodes of the AON integrate information to process the actions of others. 
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Introduction 
 
The idea that the brain is a predictive coding machine has received increasing 
interest(Bastos et al., 2012; Friston, 2005). It has been proposed that the brain operates 
by generating predictions about upcoming events that are sent in feedback fashion from 
hierarchically higher to lower regions in the beta-band. These predictions are compared 
against sensory input, and the difference - the so called prediction error - is then sent in 
a feedforward fashion from hierarchically lower to higher  regions in higher-frequency 
bands, in particular in the gamma band(Bastos et al., 2012; Fries, 2015; Friston et al., 
2015).  
A particular domain in which predictive coding merits attention is the domain of action 
observation. The network of brain regions involved in action observation (AON) is 
increasingly well mapped. It includes nodes around the medial occipital, supramarginal 
and precentral gyri that are activated during the execution of similar actions (Caspers et 
al., 2010; Gazzola and Keysers, 2009; Rizzolatti and Sinigaglia, 2016). However, 
despite two decades of intense investigation, it remains poorly understood how these 
nodes interact and integrate information while witnessing sequences of actions. Several 
papers have suggested that the predictive coding framework may help structure the way 
we think of the information flow within this system (Friston et al., 2011; Keysers and 
Gazzola, 2014; Keysers and Perrett, 2004; Kilner and Frith, 2008). Indirect evidence 
that predictions might be computed within this AON comes from single cell recording in 
monkeys, in which the response to a particular action can depend on what action can 
be predicted to come next (Bonini et al., 2010; Umiltà et al., 2001), and from fMRI 
studies showing that action representations in the parietal and premotor nodes depend 
on the sequence in which acts are presented(Thomas et al., 2018). Importantly, 
predictive coding makes a simple, testable prediction: if we observe sequences of 
actions that allow us to predict what act will come next (e.g. that after grasping a glass 
and bringing it to your mouth, you are likely to drink from it), we should observe 
increased feedback predictions and reduced feedforward prediction errors compared to 
the same actions shown in random - and hence unpredictable - order. More traditional 
accounts of action observation that simply posit the presence of a hierarchy of brain 
regions that classify observed actions through feedforward processing alone, do not 
predict such increased feedback and reduced feedforward information flow for 
predictable over unpredictable sequences of actions.  

Recently, we used depth-resolved 7T fMRI in combination with intersubject 
correlation analysis to test this account by using the fact that feedback connections 
have a specific spatial profile(Cerliani et al., 2021): feedback from premotor to inferior 
parietal regions are known to terminate in layers 3, 5 and 6 in the monkey, and we 
showed that indeed, intersubject correlation was increased at depths aligning with these 
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layers for predictable actions, and intersubject functional connectivity confirmed that this 
effect could originate from premotor feedback.  

As attributing BOLD activity at certain depths to feedback or feedforward 
information remains tentative, particularly outside of the visual cortices(Finn et al., 2020), 
here we aim to leverage the temporal resolution of electrocorticography to shed new 
light on this conceptually important issue. In particular, there is mounting evidence that 
the signaling of feedback predictions, and feedforward prediction errors, respectively, 
are associated with directed information transfer in distinguishable frequency bands, 
namely the beta and gamma band, respectively(Andre M. Bastos et al., 2015; Bastos et 
al., 2012; Fries, 2015). Between the premotor and parietal lobes, the high-beta (20-
30Hz) and gamma (60-90Hz) frequency bands seem particularly involved in the 
integration of information (Mooshagian et al., 2021; Tia et al., 2017). If we use the 
stimuli from our fMRI studies (Table 1), in which participants viewed the same acts in 
either predictable (intact) sequences or in unpredictable (temporally scrambled) 
sequences, matched for low-level features using camera changes for both sequences 
(Figure 1 and Supplementary Figure S1), the predictive coding account makes two 
testable predictions: the supramarginal gyrus (SMG) should receive more precentral 
(PreCG) feedback in the high-beta range for intact sequences, and more feedforward 
prediction errors from the middle occipital gyrus (MOG) for the scrambled sequences 
(Fig. 1A-B). We thus selected ECoG electrodes in the precentral, supramarginal cortex 
and middle occipital gyrus across 10 patients implanted with ECoG grids(Fig.1 C). We 
selected those three regions, because they encompass key nodes of the action 
observation network, and because we had a sufficient number of patients with ECoG 
strips that encompassed pairs of these regions to calculate measures of directed 
information transfer: 7 patients had electrodes in the PreCG and SMG and 6 had 
electrodes in the SMG and MOG (Fig. 1D).  
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Figure 1: Stimuli and hypotheses.  
(A) We presented participants with movies of everyday hand actions lasting ~1 min in length, filmed simultaneously with two
cameras 45° apart, that were cut into ~30 individual motor acts lasting ~2 s (Table 1). In the intact condition, the motor acts were
presented in their original order, but switching from one camera-view to the other at the transition between acts. In the scrambled
condition, the acts were presented in randomized order. The change between camera-views were introduced in both conditions,
because randomizing would otherwise have introduced visual transients in the Scrambled but not in the Intact movie. With these
camera changes, intact and scrambled sequences are matched for motion-energy (Supplementary Figure S1). (B) Based on
predictive coding, we hypothesize that for Intact sequences (top arrows), the parietal node of the action observation network in
the supramarginal gyrus (SMG) would receive comparatively more feedback (blue) from the premotor nodes in the precentral
gyrus (PreCG) but less feedforward (red) prediction errors from high-level visual cortices in the middle occipital gyrus (MOG),
compared to the scrambled condition. We expect feedforward prediction errors to be mainly in the gamma range (60-90Hz), and
feedback signals to be mainly in the high-beta range (20-30Hz), the size and direction of the arrows represents the relative
strength of coherence and PSI respectively. (C) The spatial distribution of electrodes in the three regions on a glass brain in MNI
space, the colored circles depict the rough boundaries of these regions. (D) The numbers outside the parentheses represent the
number of patients who have electrodes in this region or across two regions. The numbers inside  the parentheses represent the
total number of recording electrodes in this region. The numbers inside the square brackets represent the total number of
recording electrode pairs across two regions. 

 

Table 1: Stimuli. List of sequences used as stimuli with total duration in seconds and number of motor 
acts shown. The first 12 were rated as familiar to Japanese individuals based on an informal evaluation by 
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experimenter YO. The remaining 8 (labeled with letters a-h) from the original study by Thomas et al. 

(2018) were not used, because they were considered less familiar to Japanese individuals.  

 Action Seconds Acts 

1 Inflating and tying a balloon 51 27 

2 Preparing bread with butter and jam 79 40 

3 Sewing a button 66 42 

4 Writing a gift card 83 39 

5 Arranging flowers in a vase 82 39 

6 Framing a picture 112 39 

7 Cleaning spectacles 69 38 

8 Cleaning a laptop screen 46 28 

9 Sending a letter 42 34 

10 Replacing battery in a torch 51 27 

11 Replacing a pillow cover 44 35 

12 Folding a shirt 38 20 

a Toasting bread 65 30 

b Making a paper boat 94 32 

c Rolling a cigarette 72 30 

d Applying nail polish 49 23 

e Squeezing oranges 62 40 

f Sharpening a pencil. 83 44 

g Removing nail polish 64 32 

h Preparing a sandwich 77 27 
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Results 

Increased high-beta power in precentral and supramarginal channels for 
predictable actions 

To investigate whether  beta oscillations were indeed increased for predictable action 
sequences, as an increase in feedback information may suggest, we calculated the 
power spectral density (PSD) for all movies in each condition and used a linear mixed 
effect model (LME) to compare power across conditions. We found that in the high-beta 
range, precentral and supramarginal regions showed the hypothesized increase in 
power for the more predictable intact compared to the less predictable scrambled 
condition (p<0.05, corrected) (Fig. 2A and 2B). When we averaged the power at the 
hypothesized high-beta frequency range (20-30Hz) in each person across all electrodes, 
we saw that the majority of subjects had higher beta power in the intact condition, in 
both the precentral (t(116) = 3.09, p = 0.002) (Fig. 2A inset left) and the supramarginal 
region (t(110) = 2.29, p = 0.02) (Fig. 2B inset left). 
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Figure 2: Power spectral density.  
The power spectral density functions estimated separately for the low and high frequency range across the whole movie viewing
period, the insets show the average power of high-beta (20–30Hz) and gamma (60–90Hz) in both Intact (I) and Scrambled (S)
conditions for each subject. (A) Precentral channels showed significantly higher power in Intact conditions from 23 to 25 Hz
(FDR corrected p < 0.05) and a similar trend was observed in beta power averaged from 20 to 30Hz (Inset on the left). (B)
Supramarginal channels showed significantly higher power in Intact condition from 24 to 26, 29 to 30, 58 to 80 and 112 to 120
Hz (FDR corrected p < 0.05), and a similar effect was also observed in beta power averaged from  20 to 30 Hz (inset on the left)
as well as gamma power averaged from 60 to 90 Hz (inset on the right). (C) Middle-occipital channels showed significantly
higher power in Scrambled conditions from 64 to 120 Hz (uncorrected p < 0.05), and the same effect was observed in gamma
power averaged from 60 to 90 Hz (inset on the right). 
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Increased gamma power in middle-occipital channels for unpredictable 
actions 

To investigate the notion that unpredictable actions show increased feedforward signals 
in the gamma range in earlier visual cortices, we quantified the power in the gamma 
range. We observed opposite effects in earlier visual cortices and supramarginal 
cortices, with significantly higher gamma power in intact compared to scrambled 
condition over supramarginal cortices (p<0.05, Fig. 2B) and the hypothesized increase 
of gamma power for the scrambled movies compared to the intact movies in channels 
over the middle occipital cortices (p<0.05, Fig. 2C). Examining the averaged power in 
the gamma band(60-90Hz), we found that most of the participants had higher gamma 
power in the Intact condition in the supramarginal (t(110) = 3.12, p = 0.002) (Fig. 2B inset 
right), but higher gamma power in the Scrambled condition in the middle-occipital 
cortices (t(78) = -2.64, p = 0.01) (Fig. 2C inset right). 

  

Temporal dynamics of beta and gamma power relative to camera change 

We next investigated the temporal dynamics of both high-beta and gamma power in 
these regions just before and after the camera changes. The camera changes represent 
a challenging event for the brain. From a low-level visual point of view, camera changes 
lead to a sudden change in the visual input, similar to  those occurring during saccades 
though not self-initiated like saccades. During saccades, predictions from higher-visual 
areas are thought to maintain a sense of continuity in the visual scene. We may thus 
expect an interplay between putatively predictive signals in the high-beta range 
preparing the system for a camera change ramping up around the likely time of a 
camera-change, followed by a high-gamma signal starting in the occipital regions 
caused by the strong change in visual input following the camera change. The former 
might be more pronounced for intact sequences, and the latter for scrambled 
sequences.  
In the high-beta range, all regions showed a pattern in which power was higher around 
the time of the camera change than in the middle of a segment. As expected, for 
precentral and supramarginal channels, the power was higher for the intact sequences, 
which encourage predictions, at several time-points (p < 0.05, Fig. 3A-C), with 
significantly higher beta power in the precentral area from 140 ms before the camera 
change until 220ms after the camera change and in the supramarginal area from 380 
until 740 ms after the camera change (Fig. 3A,B). The middle occipital cortex however 
showed a different pattern, with higher high-beta for intact movies only appearing late in 
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the segment, with early segments showing the opposite pattern (albeing only at 
uncorrected levels; Figure 3C).  
 
With regard to high-gamma power, the middle occipital cortex showed the expected 
increase in high-gamma after typical visual latencies, with the power being higher for 
the scrambled sequences that should generate the highest feedforward prediction 
errors (Fig. 3F). The supramarginal and precentral cortices failed to show such a high-
gamma peak following the sudden change in visual input, and instead showed a dip in 
high-gamma power, which in the supramarginal cortex was more pronounced for the 
scrambled sequences (Fig. 3E). Precentral channels, on the other hand, showed no 
such changes in gamma power (Fig. 3D). 
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Figure 3: Temporal dynamics of beta and gamma power.  

Time courses  of averaged beta (20–30Hz, left column) and gamma (60–90Hz, right column) power in Intact (red lines) and
Scrambled (blue lines) conditions in each region. (A) Precentral showed significantly higher beta power in Intact condition even
140 ms before camera change, which lasted till 220 ms after the camera change. (B) Supramarginal showed significantly higher
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beta power in Intact condition from 380 ms after the camera change. (C) Middleoccipital showed significantly higher beta power 
in Intact condition from 680 ms after the camera change. (D) Precentral showed no gamma power difference  between conditions. 
(E) Supramarginal showed significantly higher gamma power in Intact condition from 410 ms before and 160 ms after the 
camera change. (F) Middleoccipital showed significantly higher gamma power in Scrambled condition from 220 ms after the 
camera change. 

Beta synchronization and information transfer between precentral and 
supramarginal 

The increased high-beta activities in precentral channels for intact sequences preceded 
that in supramarginal channels. This would be in line with a model in which predictions 
in premotor regions would be transferred backwards to the parietal nodes of the action 
observation network. To test this notion, we computed the interregional connectivity 
across precentral and supramarginal channels using spectral coherence.  
First, we measured imaginary coherence (see Methods) using all electrode pairs within 
the first second after the camera change, and found significantly higher beta coherence 
between precentral and supramarginal channels in the intact compared to the 
scrambled condition. This effect was restricted to the high-beta range (23-30Hz, 
pcorr<0.05) (Fig. 4A). Interestingly, the low-beta range showed a difference in the 
opposite direction, confirming the functional dissociation between low- and high-beta. 
Frequencies around 50Hz were masked out due to line noise contaminating the 
coherence estimates. Furthermore, using a sliding window method to characterize the 
timing of the differential high-beta coherence, we find that it emerges 300ms after the 
camera change (p<0.05) (Fig. 4C). 
To further investigate the directionality of information transfer between the precentral 
and supramarginal, we calculated the non-parametric Granger Causality (GC) using all 
electrode pairs within the first second after the camera change. In the intact compared 
to the scrambled condition, the GC spectrum exhibited higher feedback information from 
precentral to supramarginal in the high-beta band (p<0.05; Fig. 5A), but there was no 
difference between conditions in the opposite (feedforward) direction (Fig. 5B). Both GC 
and coherence exhibited frequencies that were in the high beta range (20-30Hz). We 
estimated the Phase Slope Index (PSI) in 20-30 Hz using a sliding window method to 
further validate the information flow between precentral and supramarginal in this high-
beta range. Starting 400ms before the camera change, the PSI exhibited opposing 
information directions, with feedforward information from supramarginal to precentral in 
scrambled state and feedback information from precentral to supramarginal in intact 
condition (Fig. 6A). 
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Figure 4: Spectral Coherence and temporal dynamics of coherence. 

(A) Precentral and supramarginal showed significantly higher coherence in intact condition in beta frequency from 23 to 30 Hz
(FDR corrected p < 0.05). (B) Middleoccipital and supramarginal showed significantly higher coherence in scrambled condition
in gamma frequency from 68 to 73 Hz (FDR corrected p < 0.05). (C) Precentral and supramarginal showed significantly higher
coherence in intact condition from 300ms after camera change (FDR corrected p < 0.05). (D) Middleoccipital and supramarginal
showed significantly higher coherence in scrambled condition from 400ms after camera change (FDR corrected p < 0.05). 

 

Gamma synchronization and information transfer between 
supramarginal and middle occipital cortices 

We also looked at the interregional relationships between the supramarginal and middle
occipital channels. In both the high gamma (60-90Hz) and low gamma (30-40Hz)
ranges, the computed imaginary coherence during the first second following the camera
change indicated significantly stronger gamma coherence between supramarginal and
middle occipital channels in the scrambled condition (p < 0.05, Fig. 4B). Furthermore,
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the time-resolved coherence increased 400ms after the camera changed in scrambled
condition (p < 0.05, Fig. 4D). 
 

Figure 5: Non-parametric Granger Causality.  

(A) Stronger granger causality was found from precentral towards supramarginal in intact condition in beta frequency from 26 to
29 Hz. (B) No difference in the evidence was found from supramarginal to precentral between conditions. (CD) No difference in
the evidence was found between middle occipital and supramarginal between conditions. 

Comparing the two conditions using Granger Causality did not demonstrate a preferential 
information direction between supramarginal and middle occipital channels in the gamma band 
(at p<0.05, Fig. 5C and D). However, the PSI derived at a high gamma frequency (60-90Hz) 
suggested the expected direction of effect, with greater feedforward information from the middle 
occipital to the supramarginal channel, beginning 200ms after the camera change (p<0.05), 
compared to the intact condition. (Fig. 6B).  
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Figure 6: Phase Slope Index.  

(A) Phase slope index revealed more beta information (20-30Hz) from precentral to supramarginal in intact condition but from
supramarginal to precentral in scrambled condition. (B) On the other hand, gamma information (60-90Hz) was observed  to
transfer more from middleoccipital to supramarginal in scrambled condition but from supramarginal to middleoccipital in intact
condition. 
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Discussion 
 
How information is integrated and exchanged across the nodes of the action 
observation network remains poorly understood, but it has been suggested that a 
predictive coding framework may account for the dominant directions of information flow 
subserving action observation across this system(Friston et al., 2011; Keysers and 
Gazzola, 2014; Keysers and Perrett, 2004; Kilner and Frith, 2008). Our findings support 
this proposal by showing that signals in the high-beta and high-gamma range across the 
precentral, supramarginal, and middle occipital regions of the AON are differentially 
modulated by the nature of the action sequences we observe. In what follows, we will 
discuss changes in these two frequency bands separately, together with some 
background on how changes in these frequency bands have been associated with 
feedback and feedforward information flow in the literature. 
  
Beta oscillations in high-level brain regions have been associated with top-down 
processing and sensori-motor integration via feedback information flow across distal 
brain regions (Barone and Rossiter, 2021; Andre M. Bastos et al., 2015; André Moraes 
Bastos et al., 2015; Engel and Fries, 2010; Fries, 2015). Several studies have shown 
that the power in the beta range, particularly in the high-beta range from 20-30Hz, is 
modulated by action observation confirming that it may be important for feedback 
processes also during action observation (Babiloni et al., 2016; Moreno et al., 2013; 
Muthukumaraswamy and Johnson, 2004; Simon and Mukamel, 2016). Here we found 
that observation of actions in predictable order caused higher high-beta power in, and 
higher high-beta coherence between, precentral and supramarginal cortices. While the 
fact that this power and coherence increase occurs in the beta range is indicative of a 
feedback direction of information flow, the high temporal resolution of ECoG, and its 
relatively higher spatial resolution compared to scalp recordings, allows us to directly 
test the prevalent direction of information flow using phase-slope indices and Granger 
causality. Both methods confirmed that intact sequences lead to more information flow 
in the high-beta range in the feedback direction from precentral to supramarginal 
cortices. This provides what is to our understanding the most direct evidence that 
predictability of action sequences indeed increases feedback information, in line with 
the influential but largely untested notion of predictive coding during action 
observation(Friston et al., 2011; Keysers and Gazzola, 2014; Keysers and Perrett, 2004; 
Kilner and Frith, 2008), and in line with our findings of increased action-observation 
related activity for predictable actions in layers of the supramarginal gyrus known to 
receive premotor feedback(Cerliani et al., 2021). These effects were observed in the 
high-beta range (above 20Hz), and not in the lower beta range (15-20Hz). The specific 
role of subbands in the beta range remains poorly understood, but a small number of 
studies point towards a particular relevance of high-beta for integration of motor signals 
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(Mooshagian et al., 2021; Tia et al., 2017), with the high-beta range selectively altered 
during the observation of other people’s actions(Simon and Mukamel, 2016). 
  
Gamma power, in contrast, has been associated with local processing (Khanna and 
Carmena, 2015) and feedforward information flow (Aggarwal et al., 2022; Babiloni et al., 
2016; Fries, 2015; van Kerkoerle et al., 2014). In the visual system, gamma is triggered 
particularly by sudden changes in the visual input (Bartoli et al., 2020; Brunet et al., 
2015). In accordance with that literature, the camera changes, which trigger a sudden 
change in visual input, triggered a transient in high-gamma power in our more 
classically visual channels in the MOG, and, perhaps unsurprisingly, such camera-
change-locked increases were not observed in the SMG and PreCG, where single cell 
recordings in monkeys have shown many neurons to generalize their responses over 
changes in low level features and viewpoint(Caggiano et al., 2016; Maranesi et al., 2017) 
and continue to respond even when critical aspects of the action are occluded(Umiltà et 
al., 2001). More interestingly, with regard to our predictive coding hypothesis, in the 
scrambled condition, occipital channels had increased high-gamma power compared to 
the intact condition, while the supramarginal channels had the reverse tendency. 
Considering the above mentioned association of high-gamma activity with 
feedforward(Aggarwal et al., 2022; Richter et al., 2017; van Kerkoerle et al., 2014) and 
local information(Kopell et al., 2000; Ray and Maunsell, 2011), this increased high-
gamma power in the middle occipital cortices could reflect the prediction error that 
predictive coding models would expect to be generated at a camera change when the 
visual input does not match what the preceding action would suggest to happen next, as 
would be the case in our scrambled movies. Importantly, we also found the coherence 
to be increased in the scrambled condition across the middle occipital cortex and the 
supramarginal gyrus, and the phase-slope index confirms that this information in the 
high-gamma band indeed flowed from the middle-occipital to the supramarginal gyrus, 
in accordance with a predictive coding model. Interestingly, high-gamma activity in the 
supramarginal gyrus was increased in the intact, compared to the scrambled condition. 
Given that broadband high-gamma power is known to be tightly linked to neural spiking 
and thereby reflects local processing(Ray and Maunsell, 2011), this increased high-
gamma power in the supramarginal cortex during intact sequences, together with the 
increased intersubject correlation for intact sequences in the supramarginal gyrus in 
fMRI BOLD signals(Thomas et al., 2018), suggest that the parietal node indeed 
represents more than the individual motor acts that are identical across the intact and 
scrambled movies, and preferentially encodes actions when they integrate into larger, 
meaningful sequences. Such preferential encoding of longer chains of actions in the 
parietal node contrasts with the prediction errors that appear to dominate the occipital 
node, in line with the notion that there is an progressive increase in the ‘temporal 
receptive field’ of cortical regions along a hierarchy from earlier sensory regions, with 
activity that integrates information over short intervals to more anterior parietal and 
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frontal regions that can integrate information over minutes(Lerner et al., 2011; Thomas 
et al., 2018).  
 
After decades of mapping the action observation network using neuroimaging 
techniques, our electrocorticography data provide unique insights into the poorly 
understood question of how information is integrated around the well-mapped nodes 
recruited during action observation. Leveraging the temporal resolution of electrical 
recordings, and the spatial specificity afforded by recording so close from the cortex, our 
data shows that when we observe actions in larger, meaningful sequences, when 
predictions are possible (in our intact sequences), feedback information is transmitted in 
high-beta oscillation from precentral to supramarginal cortices, and local processing in 
the high-gamma band is increased in the supramarginal cortices and reduced in 
occipital visual cortices. This finding is in line with the findings in monkeys, in which 
neural activity while witnessing predictable actions has shorter latencies in premotor 
than parietal nodes of the mirror neuron system (Ferroni et al., 2021). When 
expectations are violated, as following a camera change in our scrambled sequences, a 
transient increase in high-gamma activity in the visual cortices is triggered, and 
information flows from these visual cortices to the supramarginal gyrus in the gamma 
band. Zooming in on the moment of a camera change, our data suggests a particular 
succession of events. For intact sequences, precentral cortices generate high-beta 
activity thought to reflect predictions just before the camera change, and this increased 
high-beta activity continues after the camera change. This pattern is reminiscent of the 
predictive activity around a saccade-onset in frontal eye fields that is thought to provide 
the brain with a continuity of perception despite the low-level discontinuity that a 
saccade causes  (Rao et al., 2016; Zirnsak and Moore, 2014). In contrast, when 
predictions are violated, after a camera change in the scrambled sequences, a high-
gamma transient, occurring around the typical response latency of visual areas after the 
camera change, appears to produce an error signal that is forwarded to the parietal 
node, where it disrupts local processing (i.e. causes a relative reduction of gamma 
activity).    
       
Our study has a number of limitations that should be considered. First, here, we focused 
on three key regions within the AON, while the action observation process is known to 
be more complex, also involving for instance somatosensory, cerebellar, and other 
subcortical regions(Abdelgabar et al., 2019; Caspers et al., 2010; Gazzola and Keysers, 
2009; Thomas et al., 2018). Future studies involving patients with a wider coverage may 
be ideally suited to investigate how information from these other nodes may integrate 
with those of the network we focus on. Second, to increase the statistical power of our 
analyses, we pooled electrodes over relatively large regions of the cortex within our 
three regions of interest. Future studies may wish to explore whether specific 
subregions show different patterns. Indeed, some studies mentioned a specific 
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topological organization of the premotor cortex and its connectivity with the parietal lobe 
in action observation (Stadler et al., 2012; Urgen and Saygin, 2020). A preliminary 
analysis of our data however failed to reveal a specific topography of connectivity (Fig 
S2). Thirdly, while for the high-beta analysis, two methods estimating the direction of 
information flow (phase-slope index and Granger causality) agree, for the high-gamma 
frequency range across the occipital and parietal channels, the phase slope index 
analysis revealed a significant difference between conditions, while the Granger 
causality did not. The exact source of this discrepancy is difficult to assess,it is 
suggested that PSI shows relatively more robust performance than Granger causality 
but such discrepancy temper the confidence we can have in the directionality of the 
information transfer in the gamma-band across these regions(Bastos and Schoffelen, 
2016; Brovelli et al., 2004; Young et al., 2017; Ziehe et al., 2010). 
 
 

Methods 

Patients 

Ten subjects with refractory epilepsy participated in this study (five males and five 
females, aged 18-39 years, mean = 27.3 years, standard deviation = 7.3; see Table S1 
for the demographic features of patients). Subdural electrodes were placed to localize 
epileptic foci and examine the cognitive and motor functions of areas under the 
electrodes. Written informed consent was obtained from all patients. This study was 
approved by the ethics committee at Jichi Medical University Hospital and registered in 
the UMIN Clinical Trial Registry (number UMIN000040073).  

Stimuli and experiment procedure 

The stimuli used here were a subset of those used in (Thomas et al., 2018). Briefly, 
twenty movies containing different daily actions (e.g. preparing sandwiches with butter 
and jam; see Table 1 for the full list) were simultaneously recorded by two video 
cameras (Sony MC50, 29 frames/s) at an angle of 45 degrees. The videos were edited 
using Adobe Premiere ProCS5 running on Windows. Each movie was subdivided into 
shots containing one meaningful motor act each (e.g. taking bread, opening the butter 
dish, scooping butter with a knife, etc.). This was done on recordings from both camera 
angles. These motor acts (mean/standard deviation duration 2s ± 1s) were then 
assembled to build two types of ~1 minute long stimuli (average 67s, Fig. 1). For the 
Intact (I) presentation, the natural temporal sequence in which the acts were recorded 
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was maintained, but a camera angle change was introduced between every two 
consecutive acts by alternate sampling from the recordings of the two cameras. In the 
Scrambled (S) versions, the acts remained the same, but the order of the acts was 
randomly re-arranged, and a camera angle change was introduced between every two 
consecutive acts. Camera angle changes were imposed at each act transition in both 
types of movies to compensate for the visual transients that would otherwise be present 
only in the scrambled movies. Because that stimulus set depicted actions typical for 
western europeans, but the experiment was performed in Japan, author YO examined 
all twenty movies and selected 12 actions that should be familiar to Japanese 
participants (Table 1). This resulted in 12 intact and 12 scrambled movies. Each movie 
was presented twice. The experiment was conducted in 6 sessions. They were 
composed of 3 unique sessions presented twice, with each of the sessions including 4 
intact and 4 scrambled movies presented in pseudorandom order, with an inter-movie 
interval between 8 and 12 s. No behavioral response was required during the 
experiment, but participants were to carefully observe the videos. Among the included 
participants, one completed only 3 sessions and one completed only 2 sessions. 

Electrophysiological Recordings and Signal Preprocessing 

  

Intracranial EEG signals were recorded using a Nihon-Kohden system with 1000Hz 
sampling rate in Jichi Medical University Hospital, Japan. All signals were online 
referenced to two electrodes in the first head stage. All data analysis was conducted in 
MATLAB using the fieldtrip toolbox (www.fieldtriptoolbox.org/) and customized scripts. 
The recorded signals were first low-pass filtered  using a 4th order Butterworth filter with 
a cutoff frequency at 200 Hz. The 50Hz power line noise and its harmonics were 
removed using bandstop filters with variable bandwidth according to individual power 
spectra. Channels with obvious artifacts were excluded from further analysis. Each 
electrode was then locally re-referenced to the average of its neighboring electrodes 
within 12mm spatial distance. This procedure removes the common recording reference, 
which otherwise leads to spurious correlations and coherence. Coherence, imaginary 
coherence, phase-slope index and Granger causality were exclusively calculated 
between electrodes, for which the neighboring electrodes used for re-referencing had 
no overlap. Data were down-sampled to 500 Hz for subsequent analyses.  
  

Electrode Locations and Region Definition 

  

The spatial locations were derived from each patient’s pre-implantation MR images and 
post-implantation CT images. For each patient, the post-implantation CT was co-
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registered to the pre-implantation MRI using a six-parameter rigid body transformation, 
implemented in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The 
registration was visually verified and manually adjusted if necessary. ECoG electrodes 
were identified semi automatically according to anatomical landmarks in native space 
(Qin et al., 2017). For visualization of all subjects’ electrodes on an average surface, 
individual electrode coordinates were transformed to MNI152 space using the 
Freesurfer CVS function(v6.0.0, surfer.nmr.mgh.harvard.edu/). The regions of interest 
including precentral gyrus (PreCG), supramarginal gyrus (SMG) and middle occipital 
gyrus (MOG) were extracted from the Anatomy toolbox(Amunts et al., 2007)(Fig. 1C). 
  

Trial Separation 

  

In the connectivity analysis including coherence, phase slope index and granger 
causality, data was first separated into trials based on the time of the camera change. 
The actions used in our stimuli were composed of a sequence of different shorter acts 
(e.g. the action of buttering bread included the acts of e.g. taking bread, opening the 
butter dish, scooping butter with a knife, etc.). These acts were used as “action 
primitives” and determined the location of the camera changes. The intervals between 
two camera changes therefore depended by the duration of each act, and varied from 
0.4 -- 6.76s. In our analyses, to minimize the overlap between trials as well as 
preserving the temporal dynamics during action perception, we thus chose a time 
window from -0.5s to 1s relative to the camera change  
  

Power Spectral Density  

  

Power spectral density was estimated separately for low(2-30Hz) and high frequencies 
(30-120Hz). For the low frequencies, the power spectrum was estimated by a short-time 
fourier transform with Hann tapers of 1s, sliding over the whole experimental session in 
steps of 0.1s and averaged over all windows in a given condition. For the high-
frequency part, we used a multi-taper spectral estimation with 5 tapers in 0.5s windows 
sliding in steps of 0.1s, and results were also averaged overall time windows in a given 
condition. Power differences between conditions were then compared using all the 
electrodes in each selected region of interest. 
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Coherence 

For the selected time window, all trial data in each electrode within this window were 
Fourier transformed using multi-tapering with 6Hz frequency smoothing in frequencies 
ranging from 2 to 120Hz with 1Hz step.The coherence between two signals was then 
calculated in each electrode pair and each region pair in both conditions, the imaginary 
part of coherence was taken as the metric to measure the synchronization between 
regions. The time-resolved coherence was calculated in a sliding-window manner with 
window length of 1 s and steps of 0.1s and averaged across the frequency points in 
each frequency band of interest.  
 
 

Phase Slope Index 
The phase slope index (PSI) was calculated in a similar manner as coherence across 
regions (Nolte et al., 2008). All trial data for each electrode were Fourier transformed 
using multi-tapering with 4Hz frequency smoothing and 1Hz frequency resolution. The 
phase slope index was then calculated across frequencies ranging from 20 to 30Hz and 
60 to 90Hz with the same bandwidth of 4Hz for each frequency; the PSI values were 
then averaged, separately for each of the two frequency bands, to get the temporal 
dynamics, this was done in each electrode pair for each region pair in both conditions 
as well. 

Granger Causality 

 
Granger causality (GC) was calculated in a time window from 0–1s relative to the 
camera change using the nonparametric estimation (Brovelli et al., 2004; Dhamala et al., 
2008). The Fourier spectrum was estimated using the same parameters as the PSI 
mentioned above and entered into a nonparametric spectral matrix factorization as 
implemented in the FieldTrip toolbox (Oostenveld et al., 2011). 

Statistical Assessment 

  

Statistical assessments were performed to compare the difference between conditions 
using the LME model implemented in MATLAB. We implemented the LME model with 
patient and electrode (or electrode pairs) as two random effects and used the restricted 
maximum likelihood method to optimize. In the model, fixed and random effects were 
considered together. Post hoc tests of p values were performed using FDR correction to 
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correct for multiple comparisons. Statistical inferences were under a significance 
threshold of p < 0.05 if not specified otherwise. 
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