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Abstract: The inability to scalably and precisely measure the activity of developmental 
enhancers in multicellular systems is a bottleneck in genomics. Here, we develop a dual RNA 
cassette that decouples the detection and quantification tasks inherent to multiplex single-cell 
reporter assays, resulting in accurate measurement of reporter expression over a >10,000-fold 
range of activity with a precision approaching the limit set by Poisson counting noise. Together 
with RNA barcode circularization, these single-cell quantitative expression reporters (scQers) 
provide high-contrast readouts analogous to classic in situ assays, but entirely from sequencing. 
Screening >200 enhancers in a multicellular in vitro model of early mammalian development, we 
identified numerous autonomous and cell-type-specific elements, including constituents of the 
Sox2 control region exclusively active in pluripotent cells, endoderm-specific enhancers, 
including near Foxa2 and Gata4, and a compact pleiotropic enhancer at the Lamc1 locus. scQers 
can be mobilized in developmental systems to quantitatively characterize native, perturbed, and 
synthetic enhancers at scale, with high sensitivity and at single-cell resolution.  
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Main Text:  
Developmental enhancers direct programs of gene expression that unfold with remarkable cell 

type and spatiotemporal specificity. This tight control underlies the robust emergence of form and 
function from a one-cell zygote. Fine regulatory changes of target genes, caused by even single 
nucleotide changes to individual enhancers, can both give rise to disease (1–3) as well as drive 
novelty across evolution (1, 4). Genetic methods have identified an extensive list of 
developmentally important genes in model systems (5, 6), yet how the transcription of these genes 
is regulated by enhancers, and specifically how DNA sequence encodes the requisite functional 
information, remains incompletely understood even for the best-studied examples (7–10). More 
broadly, biochemical marks correlated with enhancer status have now nominated over one million 
putative cis-regulatory elements (CREs) in the mouse and human genomes (11). However, 
functional profiling of these elements (and variants thereof) across diverse cellular states, 
particularly in developmental contexts, is lagging due to the lack of scalable approaches.  

 In mammalian systems, most high-throughput functional studies of CREs have been 
performed in static contexts, typically cancer cell lines (12–15). The scalability of these biotypes, 
in conjunction with massively parallel reporter assays (MPRAs) (16–18) and related techniques 
(19), have enabled the functional characterization of complex CRE libraries leading to accurate 
sequence-to-function models (13, 20). Extending beyond the unidimensional activity in cell lines, 
the function of CREs throughout development is inherently about specificity, namely the 
multidimensional cell-type to cell-type differences in function across trans-environments, the 
study of which requires new experimental and modeling approaches. Reporter assays have been 
applied to mammalian differentiation models (e.g., neuronal (21), naive to epiblast (22)), but these 
remain essentially simple trajectories. Single-cell chromatin accessibility data from systems 
containing extensive cell type heterogeneity can be used to train models predicting differential 
accessibility from DNA sequence (23–25), with promise to also correlatively predict cell-type-
specific expression (26). However, these models remain one step removed from the functional 
outcome and are inherently limited given that differentially accessible genomic regions commonly 
lack autonomous expression-enhancing activity (27).   

Until now, work on enhancers in multicellular systems has predominantly been carried out 
with transgenic reporters assayed via in situs (28–30), approaches which remain semi-quantitative 
and of limited throughput even with automation (31). Nonetheless, even at limited scales, these 
studies reveal the rich phenomenology of metazoan developmental enhancers, namely that 
kilobase-sized elements can autonomously recapitulate the complex expression patterns of their 
target genes even when taken out of context. However, particularly as applied in mammalian 
models such as the mouse, these assays do not afford the scale or turnaround times required for 
“perturb-test-learn” loops necessary to construct mechanistic sequence-to-function maps. 
Compendia documenting enhancer activity in development exist (30, 32), but moving from 
catalogs to principles remains a challenge.  

Two recent innovations are poised to improve the throughput of mammalian developmental 
enhancer biology. First, stem-cell-derived models of increasing complexity and fidelity to in vivo 
development, including organoids, gastruloids, and synthetic embryoids (33), enable the scalable 
delivery of genomically integrating reporters (34) prior to differentiation. Second, single-cell 
genomics can finely map cellular states and in principle be combined with multiplex reporter 
assays to increase the throughput at which enhancers are profiled in multicellular models (Fig. 
1A). However, in practice, multiplex reporter measurements in a single-cell context pose a 
fundamentally new challenge compared to bulk modalities: in order to measure the activity of any 
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given candidate CRE, one must first determine which reporters are present in which profiled cells. 
As such, porting the one-RNA reporter strategy of bulk MPRAs directly to single-cell platforms 
(Fig. 1B), one relies on the barcoded mRNA for both: 1) per-cell reporter detection; and 2) 
quantification of expression driven by the candidate CRE. The detection task is challenging for 
lowly expressed reporter transcripts due to chimeric amplicons (i.e., spurious amplification 
products erroneously swapping barcodes originally from different molecules), which increase the 
noise floor of sequencing counts in single-cell libraries (35, 36). To put it another way, in the 
simplest adaptation of MPRAs to the single cell context, one cannot distinguish between cells in 
which a given reporter is not expressed vs. cells in which a given reporter is not present (Fig. 1B). 
This inherently confounds the accurate quantification of enhancer activity. 

To resolve this problem, we developed a dual RNA reporter cassette which separates the 
detection and quantification tasks (Fig. 1C). For reporter detection, we introduce circularized (37) 
Pol III transcribed barcodes which enable near-complete recovery of the identity of the reporter(s) 
present in any given cell from single-cell RNA-seq data (scRNA-seq). Benchmarking this strategy 
in cell lines, we demonstrated accurate quantification of reporter mRNA levels over four orders of 
magnitude with a precision approaching the limit set by Poisson (shot) noise. We then  profiled 
204 candidate CREs drawn from 23 developmental loci in a stem-cell model of early mammalian 
development, mouse embryoid bodies. We confirm the specificity of previously characterized 
canonical elements controlling expression of Sox2 in pluripotent cells, and discover numerous 
autonomously active constitutive and lineage-specific regulatory elements. Looking forward, we 
anticipate that this strategy will enable the scalable, quantitative characterization and dissection of 
enhancers in multicellular models of development.  

 
RESULTS 

A dual RNA cassette decouples the detection and quantification tasks in single-cell reporters 
We reasoned that detection and quantification can be decoupled via two separate barcoded 

RNAs linked on individual reporters (Fig. 1C). In such a dual RNA cassette, one barcoded RNA, 
highly and constitutively expressed, serves as the marker for presence/absence of the integrated 
reporter within any given cell. The second RNA, a Pol II expressed mRNA barcoded (hereafter 
mBC) in its 3’ UTR, serves to quantify CRE activity and is equivalent to the reporter of bulk 
MPRAs. Provided that the two barcodes are a priori matched to one another, as well as to distinct 
CREs, reporter expression can be deconvoluted in single-cell assays with a dynamic range 
extending beyond the noise floor inherent to one-RNA approaches. 

Dual RNA reporters require the contiguous production of two separate RNAs, which could 
interfere with CRE function. Given that Pol II promoters can act as enhancers (38), we expressed 
the detection barcode from a Pol III promoter. Interactions are expected to be minimal as a result 
of the largely orthogonal Pol III and Pol II machineries (the TATA-binding protein being the only 
shared factor across the two pathways (39)) (Methods). Our reporter architecture (Fig. 1C, S1A) 
places the hU6-driven detection barcode co-directionally upstream of the quantification cassette 
to avoid head-on collision (40, 41). 

To mitigate the instability of short ectopic Pol III RNAs (42) and boost capture, we embedded 
the barcode and single-cell capture sequence within the ‘Tornado’ circularization system (37) (Fig. 
S2A-B), which requires no exogenous protein for function. The resulting circular RNA barcodes, 
referred to as Tornado barcodes (oBC), were expressed at >150-fold higher steady-state levels 
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compared to linear barcodes (Fig. S2C) driven by the same Pol III promoter (Fig. S2D-E, 
comparison performed via genome-integrated bulk MPRA, Methods), reaching an estimated 
>75,000 oBC RNA per cell per integrated cassette (Methods), in line with previous quantification 
(37). The impact of random barcode sequence on expression was minimal (≤2.6-fold interquartile 
range, Fig. S2E), confirming the robustness of the Tornado system. 

The resulting single-cell quantitative expression reporters (scQers), each defined by three 
elements delivered to cells as a single unit – a detection oBC, a CRE, and a quantification mBC – 
enabled characterization of enhancer activity in multicellular systems.  

 
Benchmarking with a promoter library in human cell lines 

We first established that scQers report transcriptional activity in single-cells with ≈2% dropout, 
high accuracy over a large dynamic range (<10-1 to >103 UMI/cell), and high precision (coefficient 
of variation <1). To do so, we constructed a minimal library of five Pol II promoters spanning a 
wide activity range (45) (Fig. 2A, Data S2), and integrated the payloads by piggyBac (46) 
transposition at high multiplicity of integration (Methods) in three human cell lines (HEK293T, 
HepG2, K562). Cells were bottlenecked to a few hundred clones, expanded, and then both: 1) hand 
mixed at 1:1:1 ratios and profiled via scRNA-seq (10x Genomics 3’ feature barcoding with custom 
libraries optimized to increase reporter capture, Fig. S1B-F, Methods); and 2) harvested separately 
for bulk MPRA (Fig. 2A, Methods). Thousands of single cells per replicate passed standard 
quality filters, with cell line identity unambiguously mapped from gene expression (Fig. 2B, S3A, 
Methods).  

 

oBCs are near-deterministically retrievable in scRNA-seq  
oBCs were robustly captured on a per-cell basis. In particular, the distribution of oBC unique 

molecular identifier (UMI) counts displayed bimodality (Fig. 2C, S3B) with a large signal to noise 
ratio (>30× between minimum and high-count mode). The near-exponential low count mode 
corresponds to chimeric amplicons, and the approximately log-normal high-count mode to 
expression from bona fide integration events (≈2500 UMI/cell per barcode, zero-truncated Poisson 
estimator, Methods). To assess oBC dropout, we leveraged redundant measurements across clones 
(Fig. 2F). Consensus integration clonotypes were identified in the bottlenecked population by 
relying on oBC co-detections (47, 48) (Methods, Fig. 2G, S4C-E, Data S7). Clonotypes served 
as ground-truth for precision-recall analysis of detected oBCs in clone-assigned cells, revealing a 
false negative rate (dropout) of <2% at a false discovery rate of 1% (Fig. 2H, S4A-B, S4D, S4F, 
Methods). This represents a >10-fold improvement vis-a-vis capture of sgRNAs in single-cell 
CRISPR screens (48). In sum, oBCs are transcribed tags which effectively eliminate dropout in 
single-cell assays.  

 
Accurate reporter mRNA quantification over four orders of magnitude 

Comparing reporter expression from single-cell and bulk quantification confirmed the 
accuracy of scQers. Following detection of reporter integration using oBCs (probability of multiple 
integrations per cell from the same oBC-promoter-mBC triplet <5%, Methods), activity of the 
associated promoters can be quantified in each cell as the transcriptome-normalized average UMI 
counts from the matched mBC (Fig. 2D, S3C, Methods). Single-cell averaged UMI counts across 
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the different mBCs associated with a given promoter constituted independent measures of activity 
and spanned over four orders in magnitude for the five promoters (Fig. 2E, S3D). Bulk MPRA 
measurements performed on the same cell populations were quantitatively concordant across the 
full range of expression (R2 of log-transformed expression ≥0.87, Fig. 2E, S3D). Single-cell 
measurements of each mBC from as few as 5-10 cells sufficed for accurate quantification (Fig. 
S3F).  

Without filtering, spurious read counts can alter reporter quantification. Indeed, library 
preparation requires a number of amplification steps that can generate ‘chimeric’ amplicons and 
lead to spurious cell-to-barcode connections. In saturated libraries, the signature for these 
molecular products is a rising frequency of counts below ≈10 UMI/cell (e.g., oBC:Fig. 2C, mBC: 
Fig. S3E) which can result in a limit of detection substantially higher than 1 UMI/cell. A dual 
RNA approach does not abrogate chimeras, but it filters mBC reads based on detection of a 
matched oBC in the same cell, leading to an average decrease in the tallying of chimeric counts by 
the proportion of cells harboring any given oBC-mBC combination. Consequently, lowly 
expressed mRNAs driven by the minimal and no promoter basal controls (median expression of 
≈0.2 UMI/cell below the 1 UMI/cell regime inaccessible from pooled one-RNA reporters, Fig. 
2E) remained accurately quantified by scQers, suggesting limited zero-inflation (49) in our system. 
Leveraging our a priori matched oBC-mBC pairs, we found that chimeric counts (mBC UMI 
found in cells without matched oBC detected) constituted a substantial proportion of the signal 
(chimeric fraction: 90% EEF1A1p, 60% Pgk1p, 51% UBCp, 36% no promoter, 52% minimal 
promoter). As a result, quantifying activity based on Pol II mBC alone (no conditioning on oBC 
detection) led to biases and increased variability (Fig. S3G, R2=0.39 for log-transformed single-
cell vs. bulk; 1.5 to 25-fold increased variability, Fig. S3H), highlighting the quantitative 
advantage of dual RNA reporters. 

 
Measurement precision approaching Poisson counting noise  

In addition to assessing oBC dropout, our clonal pool of cells allowed us to quantify variability 
in mBC capture. Multiply represented clones provide internal replicate measurements of the same 
set of reporters integrated at fixed genomic locations, controlling for an important source of 
variation for randomly integrated cassettes (50–52) (Fig. 2F). To assess precision of mBC 
quantification, we determined the variance in normalized UMI counts for each mBC across all 
cells assigned to a given clonotype (bottom rows of Fig. S4G-H for examples of the mBC UMI 
clonal distributions). Across all reporters and clones, we find variability consistent with Poisson 
counting noise at low expression, and a coefficient of variation (standard deviation/mean) 
substantially below one, at least for two of the three expressed promoters (UBCp and EEF1A1p, 
Fig. 2I, S4I). Variability was not strictly correlated with average expression. Promoter Pgk1p in 
particular, while expressed more highly than UBCp, exhibited substantially higher cell-to-cell 
variability (Fig. S4I). scQers thus precisely measure reporter mRNA levels. 

 
Systematic assessment of integration positional effects 

 Clonal analysis also informed on reporter expression variation driven by positional effects 
(assuming distinct clones harbor reporters integrated at different genomic locations). We observed 
promoter and cell line-specific effects, with EEF1A1p and UBCp showing remarkably little clone-
to-clone variation (interquartile range across clones, UBCp: <2.4 for all cell lines; EEF1A1p: <1.5 
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in K562 and HEK293T, 4.1 in HepG2). In contrast, promoter Pgk1p showed both cell line 
differences in expression (e.g., median 12 normalized mBC UMI in HEK293T vs. 76 in K562) 
and higher variability across clones (IQR 4.8 in HEK293T, 5.9 in K562, 7.2 in HepG2). 
Decomposing the mBC UMI variability into positional effects (via clone assignment) vs. the sum 
of remaining biological and technical noise showed that precision was limited by genomic context, 
underscoring the low variability of our capture and the importance to average over multiple 
independent integration positions (fraction mBC UMI variance attributable to clone identity: 
EEF1Ap=0.60, Pgk1p=0.41, and UBCp=0.57, Methods). Still, for the three active promoters 
considered here, clone-to-clone variability was substantially lower than that of uninsulated 
reporters (50), suggesting that insulators included in our design (Fig. S1A) partially mitigated 
positional variegation. 
 

Locus-level screen of putative developmental enhancers 
Following extensive optimization in cell lines, we sought to apply scQers to discover cell-type-

specific enhancers in an in vitro model of early mammalian development, mouse embryoid bodies 
(53, 54) (mEBs). We drew putative CREs for testing from the neighborhood of empirically 
prioritized developmental loci (Fig. 3A-B). First, by profiling 21-day differentiated mEBs with 
scRNA-seq and single-cell ATAC-seq (55, 56) (scATAC-seq), we established the transcriptional 
and chromatin accessibility states of various cell types (Fig. S5, Methods). Of note, scATAC-seq 
data from mEB was highly correlated to in vivo data from matched cell types in E7.5-E8.5 embryos 
(57) (R2 of log-transformed accessibility across top 65k mEB peaks: e.g., parietal endoderm=0.77, 
neuroectoderm=0.78, mesoderm=0.76), supporting mEBs as a model of gene regulation in early 
development. Leveraging these data, we nominated 22 developmental genes with germ-layer 
specific expression and cell-type-specific chromatin accessibility landscapes (Data S3, Methods) 
such as endoderm regulator Gata4 (58), other lineage-defining transcription factors (Klf4, Foxa2, 
Sox17), and structural genes (laminins, collagens, tubulin). As a comprehensive set (59) of CREs 
to profile from these genes, we selected all regions within ±100 kb of their TSS that were 
reproducibly and highly accessible in the expression-cognate cell type (e.g., 13 putative CREs near 
Gata4 in Fig. 3A, other examples: Fig. S6, 4A). As controls, we additionally included the four 
constituents of the core Sox2 control region (60, 61), accessible exclusively in pluripotent cells 
(Fig. 3E). In total, 209 elements were included for profiling (145/209 promoter-distal, i.e., >1 kb 
from promoters (62), median element size: 937 bp, Data S3). The five exogenous promoters (same 
as Fig. 2A) were also spiked-in as standards (10% of the transfection). Following library 
construction and sequential subassemblies (Fig. S7, 204/209 CREs represented with >20 oBC-
mBC pairs, 88/145/242 10th/50th/90th percentile number of valid oBC-mBC pairs per CRE), scQers 
were integrated in mESCs at high MOI using piggyBac (63, 64). Reporter-integrated cells were 
induced to form mEBs, sampled every 2 days for bulk MPRA quantification across differentiation, 
and scQer-ed at three weeks end-point (Fig. 3B, Methods).  

 
High performance of scQers in a stem-cell derived developmental system 

mEBs reproducibly comprised diverse cell-types unambiguously mappable to in vivo germ-
layers (65) (Methods, Fig. 3C-S5A, S5C, n=43799 pass-filter cells across three biological 
replicates [replicates 1 and 2: separate transfections; replicate 2B: ~500-clone bottleneck of 
replicate 2 with 12% identified clonotypes overlap to replicate 2, and thus largely orthogonal; all 
replicates separate mEB inductions], Methods, Fig. S8C), confirming successful differentiation 
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despite the presence of reporters at high MOI (Fig. S8D-E, median MOI = 23, probability of any 
oBC-CRE-mBC triplet integrated more than once per cell=1%).  

scQers displayed high performance in mEBs. First, oBC were robustly captured (median 
library complexity=836 UMI/oBC/cell), with a bimodal distribution of oBC UMI/cell (Fig. S8F). 
oBC expression was cell-type independent (Fig. S8G), enabling uniformly high recovery (<4% 
oBC dropout at FDR=1% from precision-recall analysis of clonal cells, Fig. S8I-K, Methods). 
Second, comparison of end-point bulk and single-cell quantification across profiled CREs 
confirmed accuracy of reporter expression measurement over the full dynamic range (R2 log-
transformed activity=0.81, Fig. S8A) and per-cell-type quantification was reproducible (R2 log-
transformed across replicates=0.72, Fig. S8B). Representation was reasonably uniform across 
tested CREs (Fig. S8H, captured integration events per element 1597/3153/6197 10th/50th/90th 
percentiles, and n=17971 to 34745 for exogenous promoters).  

 
Single-cell maps of activity for the core Sox2 control region enhancers 

scQer generated high-contrast single-cell maps of CRE activity (Fig. S9A). As a case study, 
we considered gene expression control of the pleiotropic regulator Sox2 (Fig. 3D). Sox2 is a key 
factor in pluripotency maintenance whose dysregulation leads to aberrant differentiation (61). 
Central to Sox2 control is a distal (≈135 kb from TSS) cluster of CREs necessary for driving high 
expression in pluripotent cells (60, 61), and previously shown to function autonomously (61, 67). 
Of the four differentially accessible elements in pluripotent cells from this core Sox2 control region 
(Fig. 3E inset), two displayed robust activity (red Fig. 3F, 10 to 30-fold higher expression vs. 
minimal and no promoter basal controls), in agreement with previous characterizations (8, 61) 
(Fig. S9D, Data S4). Activity was circumscribed to the pluripotent population (>50-fold higher 
expression vs. other cell types, e.g., Fig. S9B for Sox2:chr3_2007). While Sox2 was expressed in 
the pluripotent and ectoderm lineages in mEBs (Fig. 3D), CREs from the Sox2 control regions 
were exclusively active in the pluripotent population (Essrb/Dppa3-positive cells (66), Fig. S5B). 
Sox2 expression in other cell types thus likely arises from other regulatory elements, such as 
promoter proximal neural-specific enhancers (68). Our results on a previously characterized 
enhancer cluster confirm that scQers can report cell-type specific expression in a multicellular 
system with high sensitivity and contrast.  

 
Systematic identification of active CREs  

Beyond the Sox2 control region, we quantified both activity and cell-type specificity of other 
tested CREs (n=200), identifying multiple active elements (Fig. 4A, S10). For each CRE, average 
reporter expression was determined across cells with detections, stratified by cell-types. CRE 
activity was defined as the maximum per-cell-type reporter expression, while CRE specificity was 
taken as the maximum per-cell-type mBC expression divided by the mean expression in all other 
cells (Fig. 4A). We identified 58/204 endogenous CREs with activity in significant excess of the 
basal controls in all three replicates (Methods, Data S5). The elements with the highest expression 
were the active exogenous promoters (UBCp, Pgk1p, EEF1A1p) with levels ≈300× to ≈2500× 
above the basal controls (≈30 to 250 mBC UMI/cell, Fig. 4A, S10A). Active endogenous CREs 
spanned a wide range at lower expressions (maximum per-cell-type expression: ≈0.3 to 20 mBC 
UMI/cell, Fig. 4A). Notably, a sizable fraction (19/58) of the active CREs had expression under 1 
mBC UMI/cell, and almost all were below the chimeric read threshold of 10 UMI/mBC/cell.  
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Active CREs displayed distinct expression patterns across mEB cell types. Categorizing active 
CREs as cell-type-specific vs. non-specific via a permutation test (Methods), we found 10/58 
developmental CREs with reproducible cell-type-specific activity (single-cell activity maps, red 
in Fig. 4A-C, S11A-B). Of the remaining 48 non-specific active elements, 41 (85%) were 
promoter-proximal (e.g., orange Fig. 4E, S11D) compared to 0/10 of cell-type-specific CREs. 
Conversely, 41/62 tested promoter-proximal elements were found to be active and non-specific 
(while 0/62 were cell-type-specific). Consistent with their function and distance from TSS, all cell-
type-specific enhancers showed >10 fold-change in chromatin accessibility in their cognate cell 
types, whereas promoters were constitutively open (<3 fold-change, Fig. 4F) Single-cell activity 
maps thus delineated two broad patterns of autonomous function exhibited by accessible regions 
at developmental loci (Fig. 4E, S11D): constitutively active elements (overwhelmingly TSS-
proximal) and cell-type-specific elements (overwhelmingly TSS-distal). 

Our assay relies on high MOI random integration of reporters for scalable multiplexing, raising 
concerns that genomic positional effects might dominate the signal (50, 51). To assess positional 
effects, we bottlenecked reporter-integrated mESCs to a few hundred clones in one of the replicate 
(replicate 2B, Methods) prior to mEB induction. Quantifying activity of the 10 cell-type specific 
enhancers across clones (assuming different integration positions), we found that for most CREs 
(9/10) retained specificity (>5-fold) across the super-majority (over two-thirds) of well-
represented clones (Fig. S12, Data S8, Methods), suggesting that positional effects can be 
averaged over. 

 
Characterization of lineage-specific, autonomous enhancers 

Of the 10 autonomous cell-type-specific enhancers identified, two belonged to the core Sox2 
control region (Fig. 3F), while the remaining 8, all from distinct parietal endoderm-expressed loci 
(red Fig. 4E, S11D), included a Gata4 intronic enhancer 10 kb downstream of the first exon 
(chr14_5729, Fig. 4E second row) and an enhancer 70 kb upstream of Foxa2 (chr2_13858, Fig. 
4E third row). One active element at the Lamc1 locus (chr1_12189, Fig. 4E fourth row) was found 
to be bi-functionally active in two cell types, with concordant chromatin bi-accessibility (inset Fig. 
4B fourth row). Of note, that we mostly identified endoderm-specific CREs was not unexpected 
given the uneven sampling of tested elements, in part a result of the high proportion of endoderm 
cells in the scATAC data restricting power in other cell-types.  

Reporter expression driven by developmental CREs mirrored the predominant pattern of 
expression of their nearby putatively associated gene (Fig. 3D vs. 3F, 4D vs. 4E, S11C vs. S11D, 
systematic per cell type quantification: Fig. S13), except for the bi-functional putative Lamc1 
enhancer (Fig. 4D fourth row, black caret), which drove expression in both parietal endoderm and 
pluripotent cells, in contrast with endogenous Lamc1 whose expression was restricted to parietal 
endoderm. For parietal endoderm-specific enhancers, the magnitude of induction was on par with 
endogenous gene induction (Fig. 4G). What proportion of endogenous regulation do the identified 
autonomous enhancers recapitulate? This question is difficult to directly address because absolute 
reporter UMI counts cannot be uniformly compared to gene expression UMI counts (i.e. due to 
gene-to-gene differences in conversion between endogenous mRNA levels and captured UMI 
counts). Taking activity of the active promoter putatively associated with the induced gene (orange 
in Fig. 4E, S11D, S13) as baseline (with the caveat that mRNA levels driven by promoters in our 
reporter system might not be perfectly reflective of endogenous activity), we found that the activity 
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of the autonomous enhancers captured a substantial proportion of the expression fold-change, but 
in 6/7 cases less than a half (shaded Fig. S11E), as perhaps expected for multi-CRE landscapes.  

Leveraging our time-resolved bulk MPRA (Fig. S14, Data S6) on the same samples (scQers 
with bulk readout on mBC), we found a consistent set of active CREs (53/54 bulk active elements 
identified as active from scQers, 53/58 scQers identified elements found as bulk active, Methods). 
Importantly, elements found to be cell-type-specific with scQers displayed either temporal 
increase (red Fig. S14D), decrease (core Sox2 control region, Fig. S9C), or non-monotonic 
behavior (bifunctional CRE, Lamc1:chr1_12189 Fig. S14D), supporting their classification as 
developmental enhancers. In contrast, active but non-specific elements displayed little temporal 
variation across differentiation (e.g., exogenous promoters Fig. S14C; endogenous elements, 
orange Fig. S14D), as expected for constitutive promoter-like CREs (Fig. S14B). 

A number of features were enriched in the 8 active cell-type specific enhancers within all 
103 tested distal parietal endoderm elements tested. Active CREs displayed higher chromatin 
accessibility (1.8-fold more accessible, 2.2-fold more differentially accessible, both p<0.03 B-H 
corrected one-sided t-test), but showed no difference in evolutionary conservation (average phyloP 
score (69)), nor were they significantly closer to the TSS of their putative target gene. Indeed, at 
all loci, the autonomously active CRE was not the closest element from the TSS (Fig. 4B, S11A). 
Active elements also showed no evidence of opening earlier than other elements in a pseudotime 
analysis (70) (Methods), arguing against them being ‘seed enhancers’ (71, 72). With regards to 
finer-level sequence features, active CREs contained a higher density of endodermal regulator 
Gata4 binding sites, but only if considering binding sites of intermediate-to-high affinities 
(between 1.3 and 2.2-fold more binding sites for relative affinity lower thresholds between 0.2 and 
0.45, p<0.03 B-H corrected one-sided t-test, 8-mer affinities from Uniprobe (73–75), Methods, 
binding sites also elevated in neighboring 500 bp windows ±100 kb from TSSs, Fig. S15C). While 
additional examples are needed to draw general conclusions, this suggests clusters of intermediate 
affinity binding sites of key regulators might be important for mammalian developmental enhancer 
function, in line with the suboptimization hypothesis (29, 76). Two other endodermal regulators, 
Foxa2 and Sox17, did not show a higher number of binding sites in active CREs. In short, active 
parietal endoderm CREs displayed significantly elevated ATAC accessibility and Gata4 
transcription factor binding sites (Fig. S15A), with a logistic classifier using these two properties 
accurately classifying active/inactive elements (auROC=0.94, Fig. S15B, precision=0.6 at 
recall=0.75). 

Overall, scQers enabled the scaled high-sensitivity characterization of both constitutive 
promoter-like and lineage-specific autonomously active regulatory elements across diverse cell 
types of 21-day mouse EBs, with enhancer activity profiles matching expression of their putatively 
associated genes.  

 
DISCUSSION 

Enhancers are believed to orchestrate the precise unfolding of development in metazoans, 
enabling the emergence of a species’ form and function from a genomic blueprint. However, at 
least to date, our ability to study developmental enhancers at scale has been constrained, 
particularly in mammalian systems. On one hand, in situ transgenics (28–30) demonstrate that 
even 1 kb noncoding sequences can encode patterns of remarkable cell-type and spatiotemporal 
specificity, but these assays are not readily scalable to the vast numbers of enhancers involved in 
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development (11). On the other hand, MPRAs, which are readily scalable, are largely limited to 
static, homogenous cell lines.  

We and others (77) have recognized that a simple path forward is to intersect MPRAs with an 
increasingly sophisticated landscape of single-cell resolution technologies, e.g. scRNA-seq. Here 
we overcome the technical challenges of combining these two modalities, resulting in scQers, a 
new class of MPRA that decouples the detection and quantification of reporters via a dual RNA 
system and circularization-based enhancement of barcode recovery. scQers extend measurements 
into a regime fundamentally inaccessible with traditional multiplex reporters, yielding an accurate, 
precise and high-contrast readout of reporter mRNA levels. In mouse embryoid bodies, scQers 
permitted the pooled profiling of 204 ≈1 kb-long elements taken from 23 developmental loci, 
identifying 10 cell-type specific enhancers, several of which autonomously drove a >100-fold 
increase in activity in their cognate cell types, relative to a rigorously measured baseline. While 
most of the autonomous enhancer elements identified here displayed expression domains mirroring 
that of their putatively associated gene, in-genome perturbations will be necessary to confirm their 
role, if any, in endogenous regulation.  

The relatively low enhancer hit rate of our screen suggests that genome integration followed 
by differentiation prior to measurement provides a strong filter for elements autonomously 
competent to reconfigure chromatinized landscapes. Indeed, episomal assays as applied in other 
model systems can report a greater proportion of active elements (78) (e.g., Lama1:chr17_7791 
contains a parietal endoderm enhancer as identified by episomal reporters (79) that was not 
reproducibly functional in our genome-integrated assay). Beyond these technical differences, 
given the complex multi-enhancer landscapes considered here, some tested CREs might contribute 
to regulation, but only in the presence of (or by directly serving as) cooperating elements, in line 
with recently described facilitators (9) or chromatin-dependent enhancers (13) (e.g., tested but 
inactive Sox2:chr3_2005, which overlaps with facilitator DHS23 (8)). 

What is the advantage of a single-cell assay over multiple bulk assays performed in a variety 
of cell lines? Developmental systems display a continuum of states, contrasting with 
discontiguous, terminal states. Constructing maps of enhancer activity along developmental 
manifolds has the potential to reveal the effects of subtle changes in the milieu of trans-acting 
factors, enabling finer assessment of function and dysregulation. As predictive models of enhancer 
activity become more refined (13, 20, 24, 26), quantitative experimental approaches are needed to 
efficiently iterate through design-test-learn loops to validate underlying mechanistic hypotheses. 
Benchmarks in cell lines and a proof-of-principle screen in a multicellular stem-cell model 
establish scQers as a scalable platform for enhancer biology and should be portable to numerous 
other developmental systems (e.g., zebrafish (80), C. intestinalis (29), the chicken neural crest 
(78), sophisticated stem-cell models like synthetic embryoids (81, 82), or in vivo neuronal subtypes 
with AAV derivatives (83)).  
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MAIN FIGURES 

 
Figure 1: High-contrast single-cell enhancer activity maps with single-cell quantitative expression 
reporters (scQers)  

(A) Multiplex single-cell reporter assays. Introduction of complex libraries of integrating reporters to 
multicellular systems followed by scRNA-seq and computational deconvolution of reporter expression. (B) 
Traditional multiplex reporters harbor a single barcoded Pol II mRNA (BC, purple) driven by a library of 
enhancers whose activity is to be profiled. In a multiplex single-cell assay, having a single transcript to both 
detect presence of any given reporter in a profiled cell and measure expression level is biased. In the limiting 
case where no mRNA is produced from an enhancer in a given cell type, direct detection of the reporter is 
not possible (left group vs. middle cell). (C) To resolve this dropout problem, a constitutively and highly 
expressed Pol III-derived circularized barcoded RNA (37) (Tornado barcodes, oBC, blue), a priori matched 
with the mBC (red) and enhancer, is appended co-directionally upstream in a dual RNA cassette. The oBC 
enables robust detection of reporters in single cells, independent of reporter activity, enabling unbiased 
measurement of mBCs from the enhancer-driven reporter mRNA. See also Fig. S1-S2.  
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Figure 2: Benchmarking scQers for accuracy, precision, and capture in human cell lines 

(A) Benchmarking experiment: A library of five promoters (n=1122 uniquely mappable oBC-promoter-
mBC triplets, median 205 mBC-oBC pairs per promoter) was integrated in three human cell lines (HepG2, 
K562, HEK293T) at high multiplicity with the piggyBac transposase. Following integration, bottlenecking 
and expansion, clonal cells were: 1) separately bulk processed via MPRA; and 2) mixed at 1:1:1 ratio and 
single-cell profiled (Fig. S1B) to generate three libraries: gene expression (GEx), oBC, and mBC, from 
which the per-cell activity of each promoter can be quantified. (B) UMAP projection of quality filtered 
single-cell transcriptomes from the hand-mixed single-cell assay. The three well-separated clusters 
correspond to the three cell lines (replicate A; pass-filter cell count: K562 n=2184, HEK293T n=2090, 
HepG2 n=1231). (C) Distribution of the UMI counts per oBC per cell, stratified by cell line. The count 
distribution is bimodal, with a low-count mode (truncated, gray shading) corresponding to chimeric 
amplicons, and a high-count mode corresponding to bona fide integrations. (D) Layering reporter 
expression on transcriptomic state: UMAP projection cells colored by activity of each promoter (average 
normalized mBC UMI count for all reporters from the same promoter in each cell). Cell line identity marked 
in the first panel. Each panel corresponds to a different promoter. A pseudocount of 1 was added to display 
expression on a logarithmic scale. (E) Comparison between the single-cell mBC quantification (y-axis: 
average normalized mBC UMI over all cells with detected matched oBC, on average n=32 cells/mBC) and 
bulk MPRA quantification (x-axis, RNA over DNA normalized UMI counts). Each point corresponds to 
an individual mBC, coloured by its associated promoter. Symbols denote different cell lines. Well-
represented mBC are included (>100 bulk DNA UMI, >0 measured mBC UMI in single cells, and ≥5 
single-cell integrations detected). The diagonal dashed line follows a 1:1 slope. The chimeric (10 UMI/cell, 
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Fig. S3E) and 1 UMI/cell thresholds are highlighted. R2 is computed from the log-transformed values. (F) 
Clonally derived cells with a high multiplicity of reporter integrations provide internally controlled 
replicates of the same measurement for assessing capture of oBC and precision of mBC quantification. (G) 
UMAP projection (oBC expression space) for high-confidence-assignment cells to clonotypes (Methods) 
for K562 (replicate A; n=1430 cells, n=105 clones). (H) Precision-recall curves for retrieval of oBC from 
cells assigned to clones across the cell lines, with consensus clonotypes taken as ground truth (aggregate 
over all clones with >2 cells assigned across two replicates; K562: 195 clones, 2168 cells; HEK293T: 173 
clones, 2019 cells; HepG2: 38 clones, 1453 cells; Methods). Cell assignment to clones follows loose cutoffs 
(allowing for 50% oBC dropout), ensuring an unbiased assessment. Dashed lines: 99% precision (1% FDR), 
and 98% recall (2% false negative rate, or dropout). (I ) Distribution of the coefficient of variation (CV; 
mean over standard deviation) for the normalized mBC UMI counts captured, measured across replicate 
clonal cells profiled, illustrating that reporter mRNAs driven by active promoters can be captured with low 
variability (CV<1). Each count corresponds to a reporter-clone pair (n=946 reporters from n=290 clones, 
across two biological replicates). See also Fig. S3-S4.  
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Figure 3. Locus-level screen of developmental enhancers in mouse embryoid bodies  

(A) Pseudo-bulk pileup of scATAC-seq data at Gata4 (±100 kb from TSS) as a representative selected 
developmental locus (carets: differentially accessible peaks). Gata4 is expressed predominantly in parietal 
endoderm cells (expression Fig. 4D, top row). All reproducibly and highly accessible ATAC peaks (in 
expression-cognate cell-type) within the 200 kb window were included (n=13 for Gata4, gray shading). (B) 
scQers containing 204 putative developmental CREs taken from 23 developmental loci (22 plus Sox2 
control region) were integrated at high MOI in mESC using piggyBac. Transfected libraries included 89% 
CRE series, 10% exogenous promoters (same as in Fig. 2A), and 1% constitutive EEF1A1p-mCherry (co-
transfected to increase MOI (63, 64), Methods). Reporter-integrated cells were differentiated to embryoid 
bodies for 21-days, with bulk sampling every 2 days, and single-cell profiling at three weeks. (C) UMAP 
projection of scRNA-seq (n=43799 quality-filtered cells) from three biological replicates of scQer-
integrated 21-day mEB cells, with annotation from integration with in vivo data (65) (finer cluster resolution 
Fig. S5A), confirming diversity of cell types. (D) Endogenous expression (normalized UMI counts) for 
Sox2 displayed on UMAP projection, highlighting pleiotropic expression in pluripotent (caret) and 
ectodermal lineages. (E) scATAC pseudobulk pileup for Sox2 locus. Caret points to the Sox2 control region 
(60, 61), inset zooms in the core. Regions profiled and differentially accessible in the pluripotent population 
are shaded in gray. Red carets mark the two cell-type-specific enhancers. (F) Single-cell maps of enhancer 
activity derived from scQers for four CREs (separate panels). Each point represents a single cell. Gray 
indicates cells with no reporter detected for the specified CRE. Color marks reporter expression (average 
normalized mBC UMI per cell) from none (black) to high (red) for cells with detected reporters (oBC 
UMI>10). Color axis truncated to 4 UMI to highlight low mBC UMI counts. Elements chr3_2007 and 
chr3_2009 have significant expression specific to pluripotent cells (caret) (Methods, Fig. 4A, marginal 
activity from chr3_2005 significant in only 1 of 3 biological replicates), mirroring Sox2 expression in that 
cell type (c.f., panel D). Number of cells with detected reporter integrations indicated on each panel. See 
also Fig. S5-S9.   
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Figure 4. Multiplexed identification of constitutive and autonomous lineage-specific CREs 

(A) Two-dimensional coarse-grained space of CRE function. Activity: reporter expression (average 
normalized mBC UMI count) in the maximum-expression cell-type (defined from fine clusters of Fig. S5A, 
illustrated left). Specificity: maximum-expression cell-type reporter level over expression in all other cells 
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(fold-change). Graph shows median quantification across three replicates. Active elements (black: non-
specific, distal; orange: non-specific, <1 kb TSS; red: cell-type specific) are identified as having excess 
expression (bootstrap resampling, Methods) in all replicates compared to basal controls (no and minimal 
promoter, blue) in contrast to inactive elements (gray). Active elements found to have cell-type-specific 
expression (specificity >5 and significantly higher than cell-type permuted sets, Methods) are highlighted 
(red). CRE Lamc1:chr1_1218, found to be active in two cell types, is marked with a star.  Exogenous 
promoters (same as Fig. 2A) serving as internal standards are shown as colored squares. Elements shown 
in panels B and E are indicated. Panels (B-E) are reproduced across rows for the different loci (top to 
bottom:Gata4, Foxa2, Lamc1). (B) Pseudobulk pileup of scATAC (pluripotent and parietal endoderm: 
Gata4, Foxa2, also neuroectoderm and mesoderm for Lamc1) for 200 kb region centered on gene 
transcription start site. Gray shading of peaks indicate regions tested in the multiplexed assay (red shaded 
peak near Foxa2 TSS: peak not present in the library due to inability to identify specific cloning primers). 
Carets point to elements identified as active with scQers (same coloring as panel A). Inset for Lamc1 locus 
highlights differential accessibility in both pluripotent/epiblast and parietal endoderm cells (white carets), 
matching the activity profile of the element.  (C) Single-cell reporter activity maps for all tested elements 
in the locus. Outline indicates activity of element in assay (same coloring as panel A). Red asterisk mark 
elements with activity identified in less than 3/3 replicates. (D) Endogenous expression (scRNA-seq, 
normalized UMI counts projected on UMAP) for genes corresponding to loci shown. Caret points to the 
parietal endoderm cells, displaying differential expression. (E) Single-cell reporter expression (normalized 
mBC UMI, projected on UMAP) for putative promoter (orange) and distal enhancer (red) associated with 
the gene in the locus. Panels have the same color scale (truncated at 5 mBC UMI to highlight contrast). 
Shown elements correspond to those labeled in panels A-B. Number of cells with detected reporters per 
element is indicated. White carets point to parietal endoderm. Black caret (Lamc1:chr1_12189 element) 
marks reporter expression in pluripotent cells, which does not match endogenous expression of the 
putatively associated gene Lamc1. (F) Fold-change in ATAC (cognate cluster vs. rest of cells) vs. single-
cell reporter expression specificity (definition and color scheme, panel A) for all active elements identified. 
(G) Fold-change in gene expression (y-axis, ratio normalized UMI in parietal endoderm to pluripotent) vs. 
enhancer induction (x-axis, fold-change reporter levels, average normalized mBC UMI in parietal 
endoderm over pluripotent) for parietal-endoderm-specific distal enhancers. Dashed line is 1:1. Geometric 
mean over biological replicates is shown (errorbar: standard deviation of geometric mean). See also Fig. 
S10-S15.   
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SUPPLEMENTARY FIGURES 

 

 
Figure S1: Dual RNA reporter cassette, single-cell assay, and barcode capture optimization 

A At-scale schematic of the dual RNA reporter cassette in piggyBac transposon (between terminal repeats: PB TR). 
Flanked by convergent insulators (core chicken hypersensitive site-4 from beta-globin locus, cHS4 (43)), the human 
U6 (hU6) driven Tornado barcode cassette (oBC-CS1, details shown in Fig. S2A-B) is co-directionally placed 
upstream of the CRE library driving an open reading frame-containing reporter transcript (puromycin-P2A-GFP in 
the case of the promoter series in cell lines, Fig. 2A, and GFP alone for mEB experiment, Fig. 3B), barcoded in its 
3’ untranslated region upstream of an inserted capture sequence 2 (CS2), and of the SV40 polyadenylation sequence 
(SV40 pA). 

B Schematic of the single-cell reporter assay. After 10x Genomics (V3.1, 3’ gene expression with feature barcode) 
GEM reverse transcription, primers (specific to oBC and mBC RNAs) are spiked-in the cDNA amplification mix 
(44). Post-cDNA amplification, in addition to standard gene expression (GEx) library generation, nested PCRs from 
bead fraction (mBC) and supernatant (oBC) are performed to obtain custom single-cell reporter libraries. 
Amplification of barcodes proceed from different fractions as reporter mRNAs harboring the mBC are long (>800 
bp), purifying with the beads, whereas oBC are short (134 bp), remaining in the supernatant. Representative 
tapestation traces of resulting libraries are shown (showing laddering products from oBC libraries).  

C Experiment to assess improvement in UMI capture by spiking in primers in initial cDNA amplification. For the 
experiment with promoter series in cell lines (Fig. 2A), replicate B’s cDNA was split in two prior to cDNA 
amplification. One half, replicate B1, received spike-in primers to the oBC and mBC reporters, and the other half, 
replicate B2, did not. An additional round of PCR downstream of the first cDNA amplification was performed to 
obtain libraries in  replicate B2 (Methods). 

D and E Comparison of number of UMIs captured for the same cell barcode and reporter barcodes between 
replicates B1 (with spike-in primers) and B2 (without spike-in primers) for mBC (panel D: 2.0× median increase in 
UMIs captured, orange arrow. n=8395 mBC-cell barcode pairs with >3 UMI) and oBC (panel E: 45× median 
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increase in UMIs captured, orange arrow. n=19323 oBC-cell barcode pairs with >3 UMI), respectively. The higher 
boost in capture resulting from spike-in primers for the oBC vs. mBC was likely due to the circular nature of the 
barcode: given the absence of 5’ end from which template switching can occur from oBC RNAs, the initial cDNA 
amplification (primed from the template switching oligo) effectively cannot happen except from the linear 
intermediates towards oBC formation, presumed to be at much lower abundance; in contrast, the spike-in primers 
directly target sequences flanking the barcode in the circular oBC.   

F Comparison of captured mBC UMI from poly-dT vs. capture sequence 2 (CS2) on-bead reverse transcription 
primers (for the same mBC-cell barcode pairs). As expected from primer stoichiometry on beads, >15× increase 
(orange arrow) in captured mBC UMI is seen from the poly-dT vs. CS2 primers (n=21492 mBC-cell barcode pairs 
with poly-dT and CS2 mBC >0 across both replicate A and B1). CS2 thus adds marginal value for capture of the 
Pol II-derived polyA-tailed mBC transcripts. 
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Figure S2: Tornado barcodes are highly expressed Pol III driven RNAs 

A Sequence of the Tornado system (37) with 16 bp barcode (5’ VNNNVNNNVNNNVNNN, light blue) and 
downstream capture sequence 1 (CS1; burgundy) inserted in the loop of Broccoli. 5’ and 3’ (pre-racRNA) ends 
cleaved by ribozymes prior to circularization are highlighted (black carets). The circular product is 134 nt long. 

B and C Schematic of the human U6 promoter driven cassettes tested in a head-to-head MPRA experiments 
(integrated via piggyBac; Methods) to compare expression of the circular version of the barcode (Tornado barcode, 
or oBC, B) to the linear barcode (linear barcode, linBC, C), which is the same construct but with ‘Twister’ ribozymes 
removed (red highlight in B). 

D Representative tapestation traces of genomic DNA-derived vs. RNA-derived amplicon libraries prepared from 
the oBC vs. linBC MPRA experiment. RNA-derived libraries show clear rolling circle reverse transcription  
products laddering of the expected periodicity (+134 bp) expected from circular RNAs. 

E Distribution of MPRA-derived activity estimates (RNA/DNA normalized UMI) for the thousands of different, 
well-represented (>50 DNA UMI) barcodes of both types (hU6-driven oBC [blue] vs. hU6-driven linBC [gray]) as 
assessed by bulk MPRA, highlighting both the large difference in steady-state expression (>150× difference in 
median between linBC and oBC), and tight distribution (interquartile range <3×) for the oBC. Sub-panels 
correspond to two independent biological replicates.  
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Figure S3. Assessment of accuracy of single-cell dual RNA reporters 

A-D Same as Fig. 2A-C, but with data from replicate B1. A: Gene expression, B: oBC UMI count distribution, C: 
single-cell measure of reporter expression in single-cells (GEx UMAP projected), D: comparison of bulk vs. single-
cell quantification of mBC quantification.  

E Raw distribution of UMI counts per mBC per cell barcode (for valid mBC and cell barcodes pairs, not 
conditioning on oBC detection) stratified by associated promoter. The 10 mBC UMI/cell threshold (“chimeric 
threshold”) reflects that even for highly expressed promoters, mBC UMI counts rise below that point, as a result of 
chimeric amplicons generated during library preparation. Without conditioning on oBC detection, these molecular 
species limit the dynamic range of reliable measurements with one-RNA reporters (see panel G).  

F Assessment of reporter mRNA measurement accuracy vs. number of integration events captured (both replicates). 
Single-cell vs. bulk quantification (same as Fig. 2E and S3D), but stratified by the number of cells per mBC over 
which the single-cell measurement is averaged (split in equal number of mBC bins). Even with as few as 5 to 10 
cells captured per mBC, the correspondence with bulk measurement is on par with estimates from more highly 
represented mBCs ( R2 on log-transformed values ≥ 0.85).  

G Single-cell vs. bulk quantification of mBC expression without conditioning on oBC detection (assuming all mBC 
capture events are valid, both replicates). In contrast to oBC conditioned measurements, quantification has a hard 
floor at 1 UMI/cell (slight variation around 1 from gene expression normalization) and a limited dynamic range (y-
axis spans ≈200× compared to >104× with oBC conditioning, c.f., Fig. 2E and panel D). Only well-represented 
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mBC are included (same criterion as Fig. 2E: >100 DNA UMI bulk, ≥5 cells with mBC detected). Dashed line 
marks the 1:1 slope, highlighting systematic biases. 

H Cumulative distribution of fold-change between single-cell and bulk mBC quantification (median normalized), 
for both replicates, with (left) and without (right) conditional oBC detection. While the quantification conditioning 
on oBC is largely unbiased (centered and close to 1), quantification is biased at the high (underestimation for highly 
expressed EEF1A1 promoter, red arrow) and low (overestimation for low expression minimal/no promoters, blue 
arrow) ends of the expression spectrum. In addition to removing systematic biases, conditioning on oBC also 
reduces variability (quantified as the spread in fold-change, with the range spanned from 10th to 90th percentile for 
each promoter displayed on plot).  
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Figure S4. (legend on next page) 
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Figure S4. Benchmarking oBC detection and mBC capture precision with clonal analysis 

A-B Systematic analysis of oBC dropout across all high-confidence clones. False discovery rate (left, false 
positives/[true positives + false positives]), and false negative rate (right panels, false negatives/[false negatives + 
true positives]) as function of the oBC UMI threshold used for detection. Analyses are performed on high-
confidence clones represented by at least 3 cells. Consensus reconstructed clonotypes (Methods) are taken as 
ground truth and cells are assigned to these clonotypes with stringent threshold to remove doublets, but loose 
threshold to allow for up to 50% oBC dropouts per clone. At an FDR of 1% (gray shading), there are about 2% 
dropout (false negative rate) observed (slightly reduced performance from replicate B1 likely from halved 
complexity, see Fig. S1C). Panel A: replicate A, Panel B: replicate B1. 

C and E oBC expression space UMAP from cells assigned to high-confidence clones (colored by mapped clone 
identity) with at least three cells assigned, separated by cell lines. Panel C: replicate A (K562: 105 clones, 1430 
cells; HEK293T: 92 clones, 1330 cells; HepG2: 17 clones, 916 cells), Panel E: replicate B1 (K562: 90 clones, 738 
cells; HEK293T: 81 clones, 689 cells; HepG2: 21 clones, 537 cells). 

D and F Example of raw (error corrected) UMI counts (table truncated) per cell barcode and oBC across assigned 
cells in clones highlighted respectively in panels C and E (oBC ordered from high to low counts). Panel D: clone 
repA_K562_clone57 with 38 cells assigned. Panel F: clone repB1_HEK293T_clone_125 with 16 cells assigned. 
Grey shading delineates oBCs not assigned to the clones, highlighting the sharp distinction in UMI counts.  

G and H Example of mBC (top) and oBC (bottom) UMI count distributions across all cells assigned to specific 
clones (highlighted in panels C and E). Each sub-panel corresponds to a reporter integrated in the clone. Panel G: 
clone repA_K562_clone57, with 8 integrated reporters. Panel H: clone repB1_HEK293T_clone_125, with 7 
integrated reporters. Panels in respective positions within the oBC and mBC set are matched (e.g., in 
repA_K562_clone57, EEF1A1 promoter with oBC:ATCAACCTCACTACTC and mBC: 
TAACAAACGTTGATA).  

I Coefficient of variation analysis of mBC UMI count measurements across all reporter-clone pairs stratified by cell 
line (left: HEK293T, middle: HepG2, right: K562). Mean over standard deviation (see panel G bottom: Pgk1 
promoter with mBC:CACACTGTTCCTACA as schematic of both quantities) of normalized mBC UMI counts for 
reporters in clones as a function of mean normalized mBC UMI (reporters with >0.05 mBC UMI mean expression 
in clones with >4 cells assigned; replicate A: K562: 392 reporters from 83 clones, HEK293T: 198 reporters from 
70 clones, HepG2: 58 reporters from 12 clones; replicate B1: K562: 213 reporters from 58 clones, HEK293T: 123 
reporters from 51 clones, HepG2: 95 reporters from 14 clones). Dashed line indicates the Poisson counting scaling 
CV=√(UMI count)-1. Each point represents the quantification for a specific reporter within a clone, with point shape 
marking replicates and color promoter type. As examples, reporters shown in panels G (clone repA_K562_clone57) 
and H (clone repB1_HEK293T_clone_125) are highlighted in black (no and minimal promoter reporters from 
repB1_HEK293T_clone_125 have 0 mBC UMI and therefore do not appear).   

J Assessment of position-dependent variability of integrated reporters. Panels show the distribution in mean 
normalized mBC UMI (expression) across reporters integrated over different clones, stratified by cell line (left: 
HEK293T, middle: HepG2, right: K562) and promoter type (color). Same clone/reporter pairs as panel I. To account 
for halved library complexity in replicate B1 (see Fig. S1C description), reporter expression values from those 
clones were multiplied by two (most of the variability from some promoters otherwise coming from this technical 
factor).   
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Figure S5. Molecular profiling and integration of single-cell data from 21-day mouse embryoid bodies  

A UMAP of scRNA-seq data from quality-filtered cells from scQer-integrated, day 21 mEBs (same as Fig. 3C) 
annotated with fine cell types derived from label transfer of in vivo dataset (65), as shown in panel C. These cluster 
definitions are used to quantify CRE activity over cell types (e.g., Fig. 4A, S9B, S13).  
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B Example of naive and primed pluripotent stem cell marker gene expression (normalized UMI counts) displayed 
on UMAP, used to annotate the respective cells as pluripotent and epiblast/primitive streak.   

C Heatmap displaying fraction of mEB-derived cells (from each cluster in panel A) with label transferred (Methods) 
to cell-types from in vivo data from Pijuan-Sala et al (65). Cell types with no associated cells in mEBs (with 
maximum fraction < 5%) are not shown for brevity. Clusters coarse-grained for representation (Fig. 3C) are boxed. 
Uncertain column corresponds to cells that had ambiguous label transfer. The mEB cluster marked as pluripotent 
was manually annotated from specific expression of canonical marker genes (66) in those cells (panel B) as a result 
of a lack of naive mESC in the integration dataset. 

D Integration of scATAC-seq and scRNA-seq for cluster annotation. Heatmap showing fraction of nuclei from 
scATAC-seq-derived clusters predicted to be from cell-type identified in scRNA-seq data (Methods), displaying 
unambiguous matches. Cell types not found to be major clusters in scATAC-seq data are not shown.  

E UMAP of scATAC-seq data from quality filtered cells (n=46408, two biological replicates) from day 21 mEBs. 
Clusters are labeled based on integration with scRNA-seq data (panel A, panel E).  
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Figure S6. Additional examples of developmental loci with putative CREs selected for profiling  

A and C Example of differentially expressed genes (carets, Col1a1 expressed in mesoderm, and Tubb2b expressed 
in neuroectoderm respectively) selected as part of the 22 developmental loci for CRE selection. Gene expression 
normalized UMI counts for respective genes are shown on UMAPs. 

B and D scATAC-seq pseudobulk pile up (±100 kb from TSS) for genes shown on the left. Elements selected for 
screening are shaded in gray (c.f., Fig. 3A). Differentially accessible peaks are marked by carets.  
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Figure S7. scQer library construction and oBC-CRE-mBC subassemblies 

A Schematic of procedure to construct doubly barcoded dual RNA reporters. First, a high-complexity (~1 M) library 
of doubly barcoded (oBC and mBC, separated by multiple cloning site dock) piggyBac transposons is constructed. 
At this step, oBC and mBC matches are determined (PCR-based library construction, Methods). The minimal 
promoter with GFP cassette is then inserted, and complexity maintained as much as possible. >200 CREs were 
PCR-cloned (Methods), pooled at 1:1 ratios by mass, and inserted in the doubly barcoded minP-GFP backbone by 
isothermal assembly. The resulting library was bottlenecked to ~50k clones. CRE and oBC matches were then 
determined on the bottlenecked library (tagmentation with semi-specific PCR, Methods). In combination with the 
initial oBC-mBC pairs, this completes the determination of oBC-CRE-mBC triplets needed to deconvolute single-
cell data for reporter activity. Plasmid names (p025, p043, p055) are indicated.  

B Compilation of statistics from scQers library used to screen putative CREs in mEBs. 

C Distribution of number of unique oBC-mBC pairs per CRE following the subassembly and quality filters, 
displaying largely uniform representation of the >200 putative regulatory elements tested (experiment Fig. 3B).  
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Figure S8. Quality metrics of single-cell reporter assay in mEBs 

A Comparison between single-cell (average gene expression normalized mBC UMI count across all cells with 
detected reporter) and bulk quantification (day 21 samples, RNA/DNA ratio of summed, 1% winsorized, UMI 
counts across all barcodes) for well-represented CREs (>100 integrations and >30 total mBC UMI in single-cell 
assay and >35 mBC with at least 20 DNA UMI in bulk assay). CREs (gray) and promoters coloured according to 
Fig. 2A, dashed marks a 1:1 slope. R2 on log-transformed values across all replicates. 
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B Comparison of per-cell type reporter quantification (average normalized mBC UMI over cells in clusters of 
Fig. S5A) across biological replicates for CREs with >0 activity. Each point corresponds to a CRE in a cell-type 
(10 points per CRE). Symbols mark different replicate pairs compared (e.g., squares for x-axis replicate A vs. y-
axis replicate B).  

C scRNA-seq UMAP (same as Fig. 3C, S5A) stratified by biological replicate (no batch correction) showing 
reproducibility of cell-types obtained in embryoid bodies derived from reporter-containing mESC. Number of 
cells for each replicate indicated in each panel.    

D Distribution of multiplicity of integrations (a number of oBC with >10 UMI per cell) across individual cells 
and stratified by replicate (median: repA=20, repB=19, rep2B=31). High MOI in rep2B likely results from further 
selecting mCherry+ cells (1% co-transfection), not performed for replicates A and B.   

E Distribution (box plot) of multiplicity of integration stratified by cell types (see Fig. S5A). Cell type annotations 
same as in panel G.  

F Distribution of oBC UMI counts per cell (similar to Fig. 2C) highlighting robust circular barcode RNA capture 
in differentiated cells. Sharp bimodality and high signal-to-noise enables high-recovery reporter integration 
detection.  

G Box plot of estimated total UMI complexity (zero-truncated Poisson) for each captured oBC (>10 UMI) in all 
cells stratified by cell type, displaying similar levels irrespective of cell type.  

H Distribution of number of captured integration events per CRE (not including exogenous promoter series, 
determined from oBC UMI >10 from oBC-associated CRE) stratified by replicates, showing reasonably uniform 
coverage across profiled elements. 

I-K Precision-recall analysis of oBC detection (similar to Fig. 2H, S4A-B) for mEB-derived cells. Despite only 
replicate 2B being directly bottlenecked, replicates A and B also displayed (modest) clonal expansion (Methods), 
which enabled analysis of oBC dropout in these samples as well. High-confidence clones with at least two 
assigned cells are included (repA: 600 clones, 3977 cells; repB: 635 clones, 6465 cells; rep2B: 325 clones, 8518 
cells), with results unchanged if restricting to more highly represented clones. Consensus clonotypes served as 
ground truth for analysis. Panels H and I respectively show the false discovery rate (FP/[FP+TP]) and false 
negative rate (FN/[FN+TP]) as a function of the UMI threshold used to assign barcodes to cells. At 1% FDR, 
false negative (dropout) is less than 4%. oBC libraries from replicate 2B were not sequenced as deeply (average 
saturation 6.0% vs. 18.7%), suggesting that part of the dropout is due to incomplete sequencing coverage and that 
dropout is below 4%.  
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Figure S9. Details on activity of constituent elements of the Sox2 control region  

A Illustration of the steps to construct a single-cell map of enhancer activity for a given regulatory element. Left: 
All cells passing quality filters are initially considered. Middle: Reporter detection. The list of oBCs associated 
with the CRE of interest (here Sox2:chr3_2007, see Fig. 3F) from the predetermined oBC-CRE-mBC triplets are 
identified. Cell barcodes with one (or more) CRE-associated oBC with >10 UMI are retained (n=5679), shown 
in blue on the UMAP (gray corresponding to cells with no detected reporters to the CRE of interest). Right: 
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Expression quantification. From the oBC-CRE-mBC triplet table, the UMI counts to CRE-associated mBC are 
collected. In cases where multiple reporters to the same CRE (but different oBC-mBC pairs) are detected in the 
same cell, the average mBC UMI is taken. To correct for the fact that some cell types have more RNA (or other 
technical factors), we normalize the mBC expression by the total UMI to the transcriptome for each considered 
cell (Methods). The resulting single-cell reporter expression can then be layered on the low dimensional 
projection (black low to high red), enabling visualization of enhancer activity across the manifold of cell states in 
the system.  

B Quantification of the average reporter expression (average normalized mBC UMI, see panel A) across cells 
from different cell types (defined as clusters in Fig. S5A). Each dot corresponds to a biological replicate. Crosses 
correspond to cell types/replicates with average expression below 0.01 mBC UMI/cell. Arrow marks the fold 
change in expression between the maximum cluster (pluripotent) and the rest of cells (defined as specificity in 
Fig. 4A). Gray shading marks the noise floor determined from variability from the basal expression controls 
(minimal and no promoter).  

C Bulk MPRA quantification of the four constituents of the core Sox2 control region (see Fig. S14 for all CREs), 
showing consistent results with single-cell quantification (inactive: Sox2:chr3_2005, Sox2:chr3_2008; active: 
Sox2:chr3_2007, Sox2:chr3_2009). Small gray points mark individual replicates and time points. Large points are 
the average over replicates from consecutive time points, and are filled if significantly above the basal expression 
controls (ranksum test, B-H corrected, <1% FDR). Error bars show the standard error of the mean. Dashed line 
indicates the mean of basal expression control (minimal and no promoters). The observed decrease in activity 
over time for Sox2:chr3_2007 and Sox2:chr3_2009 is consistent with pluripotent cells being progressively 
depleted from the population, thereby leading to decreased activity when averaged over all cells in bulk.  

D Sox2 control region scATAC pseudobulk pileup in pluripotent/epiblast cluster (reproducing Fig. 3E). Under 
pileup, elements tested (in the same genomic position reference frame as the pileup, Data S4 for positions) are 
indicated both from this study (top: 500 bp regions peak from ArchR pipeline; bottom: PCR-amplified tested 
sequences, Methods), and two previous studies quantifying reporter activity, Zhou et al (61), and Brosh et al (8). 
Gray regions were not found to be significantly active. Red regions were found to have activity in pluripotent 
cells (measured activity is indicated). Sox2:chr3_2007 from this study was not entirely nested in previously tested 
elements (SRR107 and DHS24), suggesting that even higher activity than measured might be achievable with a 
more inclusive element. The slight misalignment from the ATAC peak for Sox2:chr3_2007 resulted from lack of 
identifiable specific PCR cloning primers in the immediate 3’ region.  
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Figure S10. Systematic characterization of 204 putative CREs in mouse embryoid bodies 

A Single-cell reporter expression (average normalized mBC UMI per cell) for the five exogenous promoters used 
as internal controls. Color scale is logarithmic (with a pseudocount of 1).   

B Single-cell reporter expression maps for the 204 profiled CREs. Elements are organized by locus (horizontally). 
Map outlines indicate the element class as classified in the two-dimensional phenotypic space from Fig. 4A. 
Elements marked with # are found to be active (non-specific) in 2/3 replicates. Elements marked with * are found 
to be active and specific in at least one replicate with our thresholds. Each map is shown to the same color scale 
(normalized mBC UMI from 0 and truncated to 5).   
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Figure S11. (legend on next page) 
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Figure S11. Additional loci with lineage specific distal enhancers 

A-D Same as Fig. 4B-E, but for the additional five loci for which cell-type specific enhancers were identified. Each 
panel A-D is reproduced across rows for the different loci (top to bottom: Lama1, Lamb1, Bend5, Sparc, Epas1). 
The pink shaded element at the Sparc locus (chr11_7186) could not be cloned by PCR due to inability to identify 
specific primers in the vicinity.  

E Assessing recapitulation of endogenous expression from identified autonomous enhancers. Each point 
corresponds to one of 7 parietal endoderm genes with putatively associated identified active enhancer and promoter 
shown in Fig. 4 and panels A-D above (e.g., Lamb1: enhancer chr12_2183, promoter chr12_2210; enhancer 
associations to genes are putative). Endogenous gene induction (y-axis): Fold-change in endogenous gene 
expression (average in  normalized UMI counts) from pluripotent to parietal endoderm. Enhancer induction over 
promoter baseline (x-axis): enhancer activity in parietal endoderm (reporter level, average normalized mBC UMI 
parietal endoderm) over mean activity of associated promoter in all cells (reporter level, average normalized mBC 
UMI). Dashed line is 1:1. Shaded area corresponds to  enhancer induction < 0.5⨉(gene expression). Geometric 
mean over biological replicates is shown (errorbar: standard deviation of geometric mean).  
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Figure S12. Cell-type specific CRE expression across clones to assess positional integration effects 

A Example of single-cell map of enhancer activity for cells assigned to high-confidence clones for four CREs (two 
representative clones per element shown, marked in panel B). Carets indicate the cluster in which expression is 
expected based on quantification over all cells. Gray points in the background are all other cells not assigned to the 
clone. 

B Systematic quantification of specificity (activity in expected maximum-expression cluster vs. rest of cells, Fig. 
4A) across all well-represented clones (5 cells in expected maximum expression cluster(s) and 5 cells in other 
clusters) for the 10 CREs identified as active and specific. Each clone is represented by a circle, whose area 
corresponds to the number of cells assigned to it. Clones shown in panel A are indicated. Red shading delineates 
the region where specificity is in excess of 5-fold. Fractions of clones meeting this criterion for distinct CRE are 
indicated on each panel. 9/10 CREs have ≥⅔ of their clones with >5-fold specificity.  
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Figure S13. Comparison of per-cell-type gene expression and CRE activity for parietal endoderm loci hits 

Quantification of data shown in Fig. 4D-E and S11C-D. CRE activity (y-axis, mean normalized mBC UMI) 
compared to putatively associated gene expression (x-axis, mean normalize UMI) stratified per cell type (each point 
corresponds to average across all cells from fine clusters of Fig. S5A, shown is the geometric mean across biological 
replicates). Each panel corresponds to a locus shown in Fig. 4, S11 with orange and red points corresponding to 
activity of the promoter (TSS-proximal) and cell-type specific distal enhancers, respectively. Gray shading marks 
the limit of detection based on variability of basal controls (no and minimal promoter). Promoters have largely 
constant expression across cell types, whereas developmental enhancers in some cases have >103 induction in the 
cognate cell-type (parietal endoderm).  Error bars: standard deviation of geometric mean across biological replicates.   

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2022. ; https://doi.org/10.1101/2022.12.10.519236doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.10.519236
http://creativecommons.org/licenses/by/4.0/


 

45 
 

 
Figure S14. Cell-type-specific CREs are temporally dynamic along mEB differentiation 

A Reproducibility of bulk MPRA measurement. Comparison of bulk MPRA activity (RNA/DNA ratio of summed 
1% winsorized normalized UMI counts) for all CREs in two biological replicates (>10 measured barcodes in both 
replicates, including exogenous promoters) at all time points (n=2508 comparisons, R2 from log-transformed 
activity).  

B Differentiating EBs were sampled every two days at passage from all replicates, and bulk RNA/DNA MPRA 
libraries were generated. Fold-change in bulk MPRA activity across time course (mean activity day 20.5 over mean 
day 1) was compared to the observed specificity of elements as quantified from the scQer end-point quantification 
(Fig. 4A).  Elements shown found to be active in either bulk or single-cell assays are shown and coloured according 
to class (red: cell-type specific, orange: non-specific, <1 kb from TSS, black: non-specific, distal ≥1 kb TSS). The 
one gray point corresponds to the single element found to be active in bulk but not single-cell assay. Active 
exogenous promoters (UBCp, Pgk1p, EEF1A1p, panel B) are shown as squares. There is a correspondence between 
cell-type specificity and temporal change from the bulk assay. Bulk temporal fold-change is 5-10x smaller compared 
to single cell quantification likely due to bulk assay averaging activity from all cell-types.  

C Activity traces of bulk MPRA time quantification for the exogenous promoters included as internal controls. 
Small gray points correspond to activity (RNA/DNA ratio of summed 1% winsorized normalized UMI counts) from 
different replicates/time points. Large black points are the average of two replicates from adjacent time points. Error 
bars correspond to standard deviation of the mean. Average of basal expression controls (no and minimal promoters) 
is shown as the dashed line, and the dotted line corresponds to the mean UBC promoter activity (reproduced in 
panel D for scale).  

D Same as panel B, but for active cell-type-specific enhancers (red) and promoters (shown) from the loci shown in 
Fig. 4 and Fig. S11. Points are filled when significantly above basal expression controls (ranksum test, B-H 
corrected, FDR<1%, Methods). Promoters (orange) show largely constant expression over time. Enhancers (red) 
show substantial induction over the time course. Bifunctional enhancer Lamc1:chr1_12189 displays initial decrease 
followed by and increase consistent with its activity in both undifferentiated and differentiated cells (*:p<0.05 
Bonferoni corrected ranksum test between day 1 and day 5, and between day 5 and day 20.5).  
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Figure S15. CRE features correlated to cell-type-specific activity  

A Plot of two features highly enriched for autonomous cell-type specific enhancers: cognate (cell-type 
corresponding to differential expression of putatively associated gene) ATAC accessibility (x-axis): average in peak 
reads normalized by reads TSS (in each cell). y-axis: Density of Gata4 transcription factor binding sites per 100 bp 
(TFBS with affinity relative to the maximum affinity 8-mer >0.4, Methods). Red points mark cell-type specific 
enhancers. Distal (>1 kb TSS) CREs selected from parietal endoderm loci are shown (n=103). 

B Receiver operating characteristic (ROC) curves for the classification task (specific vs. non-specific/inactive) from 
different features. Density of Gata4 TFBS, cognate ATAC accessibility, and fold-change in ATAC signal have good 
predictive value to discriminate functional elements (auROC >0.7). A logistic regression classifier (Methods) 
including only cognate ATAC accessibility and Gata4 TFBS improves performance to auROC=0.94 (precision=0.6 
at recall=0.75, not shown). Categories are unbalanced (active=8, inactive=95).   

C Sequence analysis of all 500 bp windows (sliding step 250 bp, excluding any window overlapping with CREs 
with buffer flank position 500 bp on either sides) for the 13 endoderm-specific developmental loci (±100 kb from 
TSS of indicated gene). For each genomic sequence window, the number of transcription factor binding sites to 
Gata4 and Sox17 (affinity relative to the maximum affinity 8-mer >0.4, Methods) is recorded. Panels show the two-
dimensional distribution of binding sites numbers across all windows, stratified by loci (parietal endoderm 
elements). The number of binding sites is also determined for tested CREs (coloured points; red: cell-type specific, 
orange: non-specific, <1 kb from TSS, black: non-specific, distal ≥1 kb TSS; gray: inactive) and overlaid on the 
distributions for comparisons. Cell-type specific CREs (red points) have an elevated number of Gata4 binding sites 
compared to other inactive CREs as well as neighboring regions in the loci. Dashed lines mark the 95th and 99th 
percentile in Gata4 binding site numbers at each locus. 7/8 autonomously active CREs in top 5%, 5/8 in top 1% of 
number of Gata4 binding sites.  
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