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Abstract 35 

In this study, we evaluated the impact of viral variant, in addition to other variables, on 36 
within-host viral burdens, by analysing cycle threshold (Ct) values derived from nose and 37 
throat swabs, collected as part of the UK COVID-19 Infection Survey. Because viral burden 38 
distributions determined from community survey data can be biased due to the impact of 39 
variant epidemiology on the time-since-infection of samples, we developed a method to 40 
explicitly adjust observed Ct value distributions to account for the expected bias. Analysing 41 
the adjusted Ct values using partial least squares regression, we found that among 42 
unvaccinated individuals with no known prior infection, the average Ct value was 0.94 lower 43 
among Alpha variant infections, compared those with the predecessor strain, B.1.177. 44 
However, among vaccinated individuals, it was 0.34 lower among Delta variant infections, 45 
compared to those with the Alpha variant. In addition, the average Ct value decreased by 0.20 46 
for every 10 year age increment of the infected individual. In summary, within-host viral 47 
burdens are associated with age, in addition to the interplay of vaccination status and viral 48 
variant. 49 

Introduction 50 

The SARS-CoV-2 epidemic in the United Kingdom (UK) has been characterised by the 51 
appearance of a series of distinct viral variants that, in order of emergence, include the 52 
B.1.177 lineage, and the Alpha (B.1.1.7 lineage), Delta (B.1.617.2 lineage) and Omicron 53 
(BA.1, BA.2, BA.4 and BA.5 lineages) variants. Explaining their successive abilities to 54 
spread, the Alpha, Delta and Omicron variants have been estimated to have a transmission 55 
advantage of 43-100% [1-3], 60-70% [4] and 52% [5] compared to their preceding variant. 56 
The underlying causes of these differences are unclear, but could include differences in 57 
within-host viral burdens [6], infectious periods, or the per-virion probability of between-host 58 
transmission. In turn, these could be influenced by many factors [7], including changes in 59 
virus attachment to human cells and the continuous interplay of population acquisition of 60 
immunity and the emergence of immune escape variants [8, 9]. In this study, we compare 61 
within-host viral burdens of different viral variants by analysing nose and throat swabs 62 
collected as part of the UK’s nationally representative SARS-CoV-2 surveillance study [10, 63 
11]. 64 
  65 
A number of studies have compared viral burdens between the Alpha variant and predecessor 66 
variants (Supplementary Table 1)[12-18] with mixed findings. For example, two detailed 67 
longitudinal surveys of a small number of infected individuals have suggested that viral 68 
burdens are similar among the variants [16, 17]. However, a much larger, but less intensive 69 
study of viral burdens at symptom onset has identified higher viral burdens among 70 
individuals infected with the Alpha variant, compared to those with a predecessor lineage 71 
[15]. The impact of later variants on viral burdens has also been studied [11, 15, 16, 19], 72 
indicating higher viral burdens associated with the Delta variant compared to the Alpha 73 
variant, among vaccinated individuals [11] in one survey, but no difference in viral burdens 74 
among these variants in another [16]. The study design and cohorts used to investigate viral 75 
burdens have varied and this may explain the different findings. In addition to the differences 76 
in sample sizes and sampling frequency, the study populations have varied. Some have been 77 
based upon testing symptomatic individuals or their close contacts [12, 14, 15] and have 78 
thereby excluded some asymptomatically infected individuals, who make up an estimated 79 
40% [20] of infections. Others have focussed on a specific group of people, with examples 80 
being hospitalized individuals [12] and persons associated with a professional sporting league 81 
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[16]. Methods to identify variants have also varied, with some surveys using Spike gene 82 
target failure (SGTF) [12, 14, 15] during PCR testing or sample date [11] to classify the viral 83 
variants, whereas other have used whole genome sequencing [13, 16, 17].  84 
 85 
The Office for National Statistics (ONS) COVID-19 Infection Survey (CIS) is a large 86 
household-based surveillance study based in the United Kingdom [10, 11]. We analysed data 87 
from the CIS to investigate the impact of viral variant on viral burdens. The survey randomly 88 
selects private households on a continuous basis from address lists and previous surveys to 89 
provide a representative UK sample. Individuals were asked to provide information that 90 
included demographics, symptoms, and vaccination details. As part of the survey, nose and 91 
throat swabs were collected and tested for SARS-CoV-2 using RT-PCR, and, if positive, 92 
individuals with a cycle threshold (Ct) less than 30 were sequenced using whole genome 93 
sequencing. Since the Ct value of a sample is inversely correlated with log10(viral burden) of 94 
that sample [21], this study design enables viral burdens to be investigated. Although the 95 
accuracy with which sampled viral burdens from nose and throat swabs informs viral burdens 96 
occurring throughout the body is unclear [22], this study does allow for investigation into 97 
viral burdens in a manner that avoids biases associated with samples from symptomatic 98 
individuals or small studies of particular demographic groups.  99 
 100 
The survey is simultaneously a cross sectional survey of the population through time and a 101 
longitudinal survey of individuals, with individuals sampled approximately weekly during the 102 
first month following enrolment and then monthly thereafter. This weekly or monthly 103 
sampling leads to uncertainty in the time-since-infection of positive samples. In addition, the 104 
different epidemiological trajectories of the variants mean that the distribution of time-since-105 
infection for each variant at any given time can be skewed depending on when the samples 106 
were collected. For example, if a variant is increasing in prevalence, a cross sectional sample 107 
will contain more individuals with that variant who are earlier on in their infection compared 108 
those who are later on in their infection[23]. Because within-host viral burden trajectories are 109 
asymmetric, with the peak in viral load closer to the start of infection than to the end [16], 110 
this can affect the sampled distribution of viral burdens and complicate comparisons between 111 
viral variants. The impact of SARS-CoV-2 epidemiology on sampled Ct values is sufficiently 112 
strong for its shifts to be inferred from changes in Ct values measured over time [23, 24].  113 
 114 
We are unaware of any published studies comparing viral burdens associated with viral 115 
variants from a large population-representative surveillance survey that directly estimates the 116 
impact of variant-specific epidemiological trajectories. Here, we address this gap by 117 
developing a methodology that directly estimates the combined impact of variant-specific 118 
within-host viral burden and epidemiological trajectories on randomly sampled viral burdens. 119 
We apply this methodology to data from the CIS to investigate the impact of a range of 120 
factors, including variant, vaccination status, and age, on viral burdens, as measured by Ct 121 
values. As many countries move towards implementing SARS-CoV-2 surveillance surveys, 122 
the concepts and methodologies described here will be valuable for informing public health 123 
decisions. 124 
  125 

Results 126 

We analysed RT-qPCR SARS-CoV-2 positive samples from the CIS that were sequenced at 127 
Oxford (sampled between 27/09/20 and 17/06/21) or Northumbria (sampled between 128 
20/09/21 and 19/01/22) and had a Ct≤30. These samples cover the period of the epidemic that 129 
includes part of the B.1.177 wave, the full Alpha wave, part of the Delta wave, and part of the 130 
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BA.1 Omicron wave. The lineages of sampled sequences were identified from sequence data 131 
(see methods for details) and only the samples that could be classified as either B.1.177, or 132 
the Alpha, Delta or BA.1 (Omicron) variants of concern (VoCs) were analysed. Of a total 133 
10586 and 24232 sequences obtained from samples sent to Oxford and Northumbria in which 134 
a lineage could be assigned, 3256 (31%) and 477(2%) respectively were not from these 135 
lineages and were excluded from further analysis. 136 
 137 
A framework to infer epidemiologically adjusted Ct values 138 
 139 
To enable us to compare viral burdens between different viral variants, we developed a 140 
framework that adjusts observed Ct values to account for the different epidemiological 141 
trajectories of different viral variants (see methods). In brief, variant-specific incidence rates 142 
for each of the major variants in the sample data (B.1.177, Alpha, Delta and BA.1 Omicron) 143 
(Figure 1a) were inferred by combining estimates of total SARS-CoV-2 incidence rates in 144 
England 145 
(www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddisease146 
s/datasets/coronaviruscovid19infectionsurveydata) with estimates of the proportion of 147 
incident infections with each variant, as inferred from the COVID-19 infection consortium 148 
data repository (www.cogconsortium.uk/). These data were used rather than the equivalent 149 
estimates available directly from CIS to prevent the introduction of a time lag between 150 
incidence and prevalence into our study. The variant-specific incidence rates were combined 151 
with normally distributed infection periods to estimate how the expected distribution of time 152 
since infection from randomly sampled individuals changes over calendar time for each of 153 
the variants. For each PCR positive sequenced sample in our analysis, the expected 154 
distribution of the time since infection corresponding to its variant and sample date was 155 
identified and truncated to account for expected bounds, where these could be determined by 156 
previous positive or negative samples from the same individual.  157 

 158 
For each sample, we next estimated an expected distribution of Ct values. This was achieved 159 
by assuming that within-host Ct values are described by a piecewise, valley-shaped trajectory 160 
(Figure 1b) with depth (viral burden peak) and width (infected period) taken from normal 161 
distributions. The timing of the valley trough (peak viral burden) was fixed at a chosen 162 
fraction across the width. The parameters describing these metrics were estimated from an 163 
alternative data source [16]. However, the mean maximum valley depth (mean peak viral 164 
burden) was iteratively inferred, and other parameters – including the timing of peak viral 165 
burden – were varied during sensitivity analyses. For each sample, an adjusted Ct value was 166 
then inferred by finding the percentile of the observed Ct value among the expected Ct 167 
distribution and selecting the Ct at the corresponding percentile in an expected Ct 168 
distribution, calculated from a flat epidemic trajectory (Figure 1c). 169 
 170 
 171 
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Figure 1. A method for estimating epidemiologically adjusted Ct values. a) Inferred daily incidence with the 173 
B.1.177 lineage and the Alpha, Delta and BA.1 Omicron variants between July 2020 and January 2022 in the 174 
UK. These were estimated to equal the product of the total daily incidence and the fraction of incident infections 175 
of that variant. b) Within-host Ct trajectories were assumed to be valley shaped, with infected period (width) w, 176 
and depth d. The valley trough was estimated to be a fraction θv across the width. c) Adjusted Ct values were 177 
inferred by first estimating the cumulative probability distribution of Ct values based upon the sample date and 178 
the known epidemiological trajectory of the sample variant and identifying the percentile at which the observed 179 
Ct value falls within this distribution. Second, the cumulative probability distribution of Ct values under an 180 
assumption of a flat epidemiological trajectory was estimated and the Ct value at the selected percentile was 181 
identified. 182 

 183 
Ct values from early and late during the Alpha wave are more closely aligned after 184 
epidemiological adjustment 185 
 186 
Since we had data spanning the full epidemiological trajectory of the Alpha wave in the UK, 187 
we determined the impact of our method when applied to data collected at different stages 188 
during its trajectory. We applied the adjustment to Alpha-variant samples collected from 189 
individuals who were unvaccinated and had not been identified as being spike-antibody 190 
positive prior to infection (n=3413). By splitting the samples according to sample date into 191 
two equally sized sets (early-phase and late-phase) we visualised how the timing of sampling 192 
during the epidemiological trajectory impacted observed Ct values (Figure 2).  193 
 194 
The median of the unadjusted Ct values was lower for early-phase samples than for late-195 
phase samples (Figure 2a), consistent with the expected impact of the epidemiological effect. 196 
For each sample, our method estimates a probability distribution for the time since infection 197 
for that sample, based upon the sample variant, sample collection date, and, where available, 198 
the dates of recent positive and negative sample within the same infection. The mean time 199 
since infection derived from each of these distributions is plotted in Figure 2b. On average 200 
the mean time since infection is longer among the late-phase compared to early-phase 201 
samples. Because Ct values are, on average, lower in early infection compared to late 202 
infection (Figure 1b), the adjustment acted in the opposite direction and increased the Ct 203 
values of early-phase samples, but decreased the Ct values of late-phase samples (Figure 2c). 204 
 205 
When the epidemiological adjustment was applied to the Ct values, the adjusted distribution 206 
of Ct values for the early-phase and late-phase were more closely aligned compared to the 207 
unadjusted values (Figure 2d). For comparison, the application of the method to data from the 208 
whole Alpha wave is also shown (middle column in Figure 2), revealing that the net 209 
adjustment applied to the full set of samples is negligible. This emphasises the value of using 210 
the epidemiological adjustment when samples are only available for part of the 211 
epidemiological trajectory of a variant, such as during the emergence phase of a new variant. 212 
 213 

 214 
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a) 

b) 

c) 

 
d) 

Figure 2. Epidemiological adjustment results in more closely aligned estimates of mean viral burden from 215 
samples taken early and late during the Alpha wave. Samples that correspond to Alpha-variant infections in 216 
individuals who are unvaccinated and have not been identified as being antibody positive prior to infection are 217 
split according to sample date. Four metrics are applied to data from the early phase, all phases and the late 218 
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phase. In each panel, median and interquartile ranges are overlaid onto individual data points. a) The observed 219 
Ct values are, on average, higher for late phase, compared to early phase samples. b) The estimated mean time 220 
since infection is, on average, longer for late-phase, compared to early-phase samples. c) The Ct adjustment size 221 
is, on average, positive for early phase samples, negative for late phase samples and negligible when all data are 222 
considered. d) On average, the adjusted Ct values relating to the early and late phase are more closely aligned 223 
than the observed Ct values. However, adjusted values remain, on average, higher in late-phase, compared to 224 
early-phase samples.  225 
 226 

The asymmetry of the within-host viral trajectory impacts comparisons  227 

Our framework highlights that the combined impact of the shape of the within-host viral 228 
trajectory and the epidemiological stage of a variant can affect viral burdens measured at the 229 
population level. Plausible changes to our assumption of the mean infected period have only 230 
a small impact upon the adjusted values (Figure 3a), whereas plausible changes to the 231 
fractional position of the viral burden peak across this period have a much bigger effect on 232 
the adjusted values (Figure 3b) (although absolute changes are still relatively modest 233 
compared with variability between individuals). The closer the peak viral burden is to the 234 
start of infection, the greater the epidemiological correction applied to samples selected from 235 
just early on or just late on during the Alpha wave. This can be understood by noting that in a 236 
random sample, early-phase samples have, on-average, shorter times since infection than late-237 
phase samples and the greater the asymmetry of the within-host viral burden, the greater the 238 
difference in expected viral burdens between infections in the earlier or later phases of 239 
infection (Figure 3c). 240 
 241 
In calculating the adjusted Ct values for samples with the Alpha variant (Figures 2d) we 242 
assumed that peak viral burden occurs at a fraction 0.3 across the infected period, based upon 243 
prior data from 103 individuals [16]. It is noteworthy that using this parameter estimate the 244 
median adjusted Ct value remains slightly higher for late-phase, compared to early-phase 245 
samples. This can be visualised by comparing the red and blues lines shown in Figure 3b at a 246 
value θAlpha=0.3 along the x-axis (grey dashed vertical line). By identifying the intersection of 247 
these two lines, it is possible to show that the median adjusted Ct values of the early-phase 248 
and late-phase samples are equal when the asymmetry of the within-host trajectory is 249 
increased, such that θAlpha=0.18 (black dashed vertical line). Arguably, changing this 250 
parameter estimate so that the peak is closer to the start of infection than we have assumed 251 
may provide a better estimate of its true value compared to the one that we derived from a 252 
prior study. However, there are other explanations for higher viral burdens (lower Ct values) 253 
in the early-phase samples. Because the CIS has not intensively sampled participants 254 
throughout the pandemic, but rather conducted a large round of recruitment in September-255 
October 2020, meaning that many participants at the start of the Alpha wave were still 256 
undergoing more regular – approximately weekly – follow-up, they may genuinely have been 257 
sampled closer to the start of infection in the early phase than the later phase. Second, CIS 258 
tested antibodies in only ~15% participants prior to the Alpha wave, so we cannot rule out 259 
that some samples come from individuals who had had a prior infection and that the number 260 
of such individuals has increased over the duration of the Alpha wave. It is thus credible that 261 
more intensive sampling and lower population levels of immunity present earlier on in the 262 
Alpha wave could contribute to the pattern of lower adjusted Ct values in early-phase 263 
compared to late-phase samples. 264 
 265 
 266 
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Figure 3.  The epidemiological stage and the asymmetry of the within-host viral trajectory impact the Ct 267 
adjustment size. In panels a) and b) samples that correspond to Alpha-variant infections in individuals who are 268 
unvaccinated and have not been identified as being antibody positive prior to infection are split according to 269 
sample date. The medians of the adjusted Ct values are plotted for early samples (red), late samples (blue) and 270 
all samples (green) under different assumptions about the asymmetry and the mean width of the within-host 271 
viral burden trajectory. In panel a) the infected period is varied under an assumption that the viral burden 272 
trajectory is skewed towards the start of infection (θAlpha=0.3). This shows that Ct values are lower (viral 273 
burdens are higher) amongst samples taken earlier on during infection, but vary to only a limited degree with 274 
changes in the mean infected period (wAlpha). In panel b) the fractional location of the peak viral burden, θAlpha, is 275 
varied under the assumption that the mean infected period is 8 days (wAlpha=8). This shows that the asymmetry 276 
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of the within-host viral burden trajectory measurably impacts the adjusted Ct values and that the early and late-277 
phase Alpha variant samples are most closely aligned when θAlpha=0.18. Panel c) highlights how when the 278 
within-host trajectory is skewed towards earlier during infection, viral burdens sampled during early infection 279 
will on average be higher than those sampled later on in infection.  280 

 281 
 282 
Investigating factors associated with viral burdens  283 

We investigated whether factors, including viral variant, are associated with adjusted Ct 284 
values sampled in the CIS and sequenced at Oxford or Northumbria Universities using partial 285 
least squares regression (PLS). Samples sequenced at Oxford were collected between 27th 286 
September 2020 and 17th July 2021, and cover the period of the epidemic that includes part of 287 
the B.1.177 wave, the full Alpha and part of the Delta wave. Samples sequenced in 288 
Northumbria were collected between 20th September 2021 and 19th January 2022 and cover 289 
part of the Delta wave and part of the BA.1 Omicron wave. We have analysed the samples 290 
sequenced from the two centres separately so that differences in sequencing protocols and 291 
inclusion criteria do not affect our results.  292 

Adjusted Ct values for samples from these two centres are shown in Figure 4, categorised 293 
according to sample date (Figure 4a and 4d), participant age (Figure 4b and 4e), and a 294 
combination of prior exposure category and variant (Figure 4c and 4f). Using partial least 295 
squares regression analysis, we assess the impact of sample date, sex, first vaccine dose 296 
product (AstraZeneca, Pfizer) and prior exposure category (no known prior exposure, prior 297 
exposure without vaccination, 1 vaccine dose, 2 vaccine doses, 3 vaccine doses) on adjusted 298 
Ct values. In addition, within each prior exposure we assess the impact of variant (B.1.177, 299 
Alpha, Delta and BA.1 Omicron). 300 
  301 
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 305 

Figure 4. Adjusted Ct values plotted against different factors 306 

For samples sequenced at Oxford (a, b and c) and at Northumbria (d, e and f), adjusted Ct values are plotted 307 
against different factors.  Panel a) and d) show a LOESS fit (smoothing parameter=0.55) of adjusted Ct values 308 
over sample date, categorised by variant. Panels b) and e) show box and whisker plots of adjusted Ct values by 309 
age category. Panels c) and f) show box and whisker plots of adjusted Ct values by prior vaccination and/or 310 
infection, by variant. Horizontal lines represent the median and interquartile range. Parameter values used in 311 
these calculations are listed in table 3. 312 

 313 
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Prior to application of the PLS regression model, we investigated multicollinearity among 314 
predictor variables, by calculating variance inflation factor (VIF) values (supplementary table 315 
2). A VIF> 3 can be considered an indicator of moderate multicollinearity and a VIF>5 an 316 
indicator of strong multicollinearity. Among the Oxford samples, we found that sample date 317 
was highly multicollinear with other predictors (VIF 7.5). This is intuitively clear from the 318 
strong temporal separation of samples with the Alpha and Delta variants, as observed in 319 
Figure 4a. Because we wanted to assess the potential impact of variant, and since it is not 320 
possible to independently assess the effect of sample date and variant, we removed sample 321 
date from the regression model of the Oxford samples. In the interpretation of the subsequent 322 
analysis, it is therefore important to recognise that factors that have not explicitly been 323 
included in the regression, but correlate with calendar time, cannot be ruled out as being 324 
predictive of viral burdens. For the Northumbria samples, although the sample date VIF value 325 
of 3.4 indicates only a moderate degree of collinearity, for consistency we similarly removed 326 
sample date from the regression.  327 

Because several of the VIF values for other predictor variables among both sample sets were 328 
greater than 3, we analysed our data using PLS regression to acknowledge the difficulties in 329 
disentangling the relative roles of different factors in explaining viral burdens. 330 
 331 
Viral burdens are higher among older individuals 332 

For samples sequenced in Oxford, six components (linear combinations of the predictors that 333 
are orthogonal to each other) describe the data (Supplementary Figure 1a), as determined by 334 
the number that minimises the mean squared prediction error. Although these components 335 
only explain a small amount of variance in the adjusted Ct values (2.1%), the first two are 336 
both significant in predicting the values in a quantile median regression model (p<0.0001 and 337 
p=0.003) (used to acknowledge non-normality in the residuals). For the Northumbria 338 
samples, six latent components also minimise the mean squared prediction error, the first 339 
three of which significantly predict (p<0.0001) the adjusted Ct values (Supplementary Figure 340 
1a and 1b). This analysis highlights that, taken together, factors included in our model 341 
significantly impact viral burdens. For reference, loading plots for the first two latent 342 
components of each sample are shown in Supplementary Figures 1c and 1d.  343 
 344 
Beta scores (which can be considered equivalent to regression coefficients), and variance in 345 
projection (VIP) scores can be used to assess the magnitude and importance of the 346 
contribution of the different variables to the response (Table 1), respectively. Variables with 347 
VIP values greater than 1 are typically considered to be important and those with VIP values 348 
greater than 0.8 are considered to be borderline important. Using this approach, we identified 349 
age as an important predictor of Ct values among both the Oxford (Beta score=-0.013 per 350 
year, VIP=1.38) and Northumbria (Beta score=-0.026 per year, VIP=2.15) samples. The 351 
effect that we measure equates to the mean Ct value being on average (across both datasets) 352 
0.20 lower for every 10 years older.  353 
 354 
There was no evidence of an association between sex and viral burden among either the 355 
Oxford (Beta score=-0.13, VIP=0.35) or Northumbria samples (Beta score=-0.13, VIP=0.63), 356 
with only slightly lower Ct values (higher viral burdens) in males compared to females.  357 
 358 
Among individuals with no known exposure, viral burdens are higher during Alpha 359 
compared to B.1.177 infection. 360 
 361 
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We defined unvaccinated individuals with no known prior exposure as those individuals who 362 
have had neither a previous recorded infection, a previous positive test for spike antibodies, 363 
nor a vaccine at least 14 days prior. For samples sequenced at Oxford, Ct values in this group 364 
were higher for B.1.177 samples (Beta score=0.94, VIP=1.42) compared to Alpha. Since this 365 
difference in Ct values is in the opposite direction to that expected from increasing immunity 366 
over time, it is credible to infer that infection by the Alpha variant directly resulted in higher 367 
within-host viral burdens compared to infection with B.1.177. 368 
 369 
Among unvaccinated individuals with no known prior exposure sampled at Oxford, we also 370 
found strong importance in support of Ct values being higher in Delta infected individuals 371 
(Beta score=1.06, VIP=1.52) than Alpha infected individuals. However, it is not possible to 372 
determine whether this difference is caused by infection by the different variants, or other 373 
factors that also correlate with calendar time. In particular, infection-acquired immunity has 374 
been increasing in the population over time, and we cannot rule out increased immunity over 375 
time, rather than the shift from the Alpha variant to the Delta variant, explaining the 376 
measured difference. 377 

Among individuals with no known prior exposure whose samples were sequenced at 378 
Northumbria, there was no evidence of a difference in Ct values between BA.1 Omicron and 379 
Delta (Beta score=-0.14, VIP=0.60).  380 
 381 
Among vaccinated individuals, viral burdens are higher during Delta compared to 382 
Alpha infection. 383 
 384 
For individuals who were vaccinated or had a known prior exposure, we further categorised 385 
them according to whether they had either tested positive for spike antibodies prior to the first 386 
PCR-positive sample in the infection, or had 1 vaccine dose, 2 vaccine doses, or 3 vaccine 387 
doses. Individuals who had both a prior antibody positive sample and were vaccinated were 388 
assigned to the appropriate vaccination group (1, 2 or 3 doses). Among the Oxford samples, 389 
Ct values were higher among vaccinated individuals, compared to those with no known prior 390 
exposure (Beta score=1.42, VIP=1.33). Though the magnitude and importance of the signal 391 
was weaker, a similar pattern was observed among the Northumbria samples (Beta 392 
score=0.47, VIP=0.88). The impact of two vaccine doses over one on Ct values was limited 393 
(Oxford samples: Beta score=0.01, VIP=0.75; Northumbria samples: Beta score=0.05, 394 
VIP=0.82), but the impact of variant among vaccinated individuals was important. Ct values 395 
were lower among Delta compared to Alpha infections (Oxford samples: Beta score=-0.34, 396 
VIP=1.02) and, although less significant, also lower among BA.1 Omicron infections, 397 
compared to Delta infections (Northumbria samples: Beta score=-0.15, VIP=0.88). 398 
Vaccination with AstraZeneca was associated with slightly higher viral burdens compared to 399 
Pfizer (Oxford samples: Beta score=-0.09, VIP=1.02; Northumbria samples: Beta score=-400 
0.09, VIP=1.00). 401 
 402 
There was an effect of lower higher Ct values among individuals with a prior antibody 403 
positive sample (compared to those with no known prior exposure); however, the importance 404 
of this factor was low (Oxford samples: Beta score=3.29, VIP=0.42; Northumbria samples: 405 
Beta score=0.33, VIP=0.24), as was the impact of variant in this group. 406 
 407 
  408 
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 409 
 410 
 411 

Samples Oxford Northumbria 

Result Beta score  VIP Beta score VIP 

Included in Model     

Age (in years) -0.013 1.38 -0.026 2.15 

Prior immunity 

Ref = AB -ve and unvaccinated 

    

AB +ve 3.29 0.42 0.33 0.24 

Vaccinated 1.42 1.33 0.47 0.88 

Variant (in AB -ve and unvaccinated)     

Ref = Alpha (Oxford), Delta (Northumbria)     

B.1.177  0.94 1.42   

Delta  1.06 1.52   

BA.1 Omicron   -0.14 0.60 

Variant (in AB+ve)     

Ref = Alpha (Oxford), Delta (Northumbria)     

B.1.177 0.78 0.35   

Delta -2.91 0.22   

BA.1 Omicron   -0.07 0.23 

Variant (in vaccinated)     

Ref = Alpha (Oxford), Delta (Northumbria)     

B.1.177 -0.31 0.05   

Delta -0.34 1.02   

BA.1 Omicron   -0.15 0.88 

Vaccine dose in vaccinated     

Ref = 1 dose     

2 doses 0.01 0.75 0.05 0.82 

3 doses   0.51 0.81 

Vaccine product      

Ref = Pfizer      

AstraZeneca -0.09 1.02 -0.09 1.00 

Not included in model     

Sex 

Ref = Female 

    

Male -0.13 0.35 -0.13 0.63 

     

Table 1. Beta scores and variance in projection (VIP) values for the partial least squares 412 
analysis of samples sequenced in Oxford and Northumbria. 413 

  414 
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Higher viral burden in Alpha infections is robust to assumptions about the within-host 415 
viral trajectory  416 
 417 
Given our previous observation that the assumed asymmetry in the viral load trajectory can 418 
have a measurable impact on the adjusted Ct value, we conducted a sensitivity analysis on 419 
our PLS regression. We varied the parameter that determines the asymmetry of the within-420 
host viral burden trajectory for each of the variants. Both the Beta score (Figure 5a) and VIP 421 
value (Figure 5b) the for the indicator for the variant being B.1.177 rather than Alpha among 422 
individuals sampled at Oxford with no known prior exposure (i.e. no known prior infection, 423 
prior antibodies or vaccination) decreased as the assumed viral burden trajectories of B.1.177 424 
were more skewed towards the start of the infection compared to Alpha (Figures 5a and 5b). 425 
These relationships are linked to the fact that although the Oxford samples span the whole of 426 
the Alpha wave, they did not span the early part of the B.1.177 wave. It is noteworthy that the 427 
VIP value remained greater than unity across plausible parameter combinations, providing 428 
support for the conclusion that viral burdens are higher in samples with the Alpha variant 429 
compared to B.1.177, among these individuals.  430 

When evaluating the impact on Ct values of the variant being Delta (rather than Alpha) 431 
among vaccinated individuals (Figures 5c and 5d), both the VIP value and the magnitude of 432 
the Beta score increased as the assumed viral burdens of Delta were more skewed towards the 433 
start of the infection compared to Alpha. These relationships are linked to the fact that that 434 
the Oxford samples did not span the latter part of the Delta wave. The VIP value remained 435 
greater than unity (or very close to for higher discordant within-host trajectories of the two 436 
variants) across plausible parameter combinations. This analysis therefore provides support 437 
for the finding that samples with the Delta variant had lower viral burdens compared to 438 
samples with the Alpha variant among vaccinated individuals.  439 

  440 
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 441 

 a)        b)  
        

 

  

 
 c)          d) 
 

 

 

 
 442 
Figure 5. Sensitivity analysis investigating the impact of the shape of within-host viral trajectory on PLS 443 
regression analysis into the impact of variant on Ct values  444 
 445 
Panels a) and c) show Beta scores, which can be considered to be equivalent to regression coefficients, defining 446 
the magnitude of the effect of the variant on the adjusted Ct values. Panels b) and d) show VIP values defining 447 
the importance of the association – where values greater than 1 are typically considered to indicate importance. 448 
Panels a) and b) investigate the association between the variant being B.1.177 (relative to Alpha) and Ct values 449 
among individuals with no known prior immunity. The Beta scores and VIP values vary with changes to the 450 
assumed asymmetry of the within-host viral burden trajectory associated with the B.1.177 lineage and the Alpha 451 
variant. The asymmetry is determined by changes to the fractional location of the minimum Ct value (peak viral 452 
burden) for each variant (θB.1.177 and θAlpha, respectively). Data sampled at Oxford. Panels c) and d) investigate 453 
the association between the variant being Delta (relative to Alpha) and Ct values among vaccinated individuals 454 
and how the Beta scores and VIP values vary with changes to θAlpha and θDelta, respectively. Data sampled at 455 
Oxford.  456 
 457 

Discussion 458 
 459 
We developed a framework to compare within-host viral burdens across different SARS-460 
CoV-2 variants from random survey data, such as the CIS. The method directly estimates the 461 
level of uncertainty in the time-since-infection of each sample due to the sparse nature of the 462 
sampling and the effect of differing epidemiological trends of SARS-CoV-2 variants. The 463 
method highlights how the combination of the within-host viral trajectory and the 464 
epidemiological trajectory of a viral variant can influence observed viral burdens in survey 465 
data.  466 
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 467 
Using this framework, we inferred epidemiologically adjusted Ct values from samples 468 
sequenced as part of the CIS, a large-scale community survey, recruiting randomly selected 469 
private residential households and testing participants regardless of symptoms. Using partial 470 
least squares regression we found that viral burdens were higher among older individuals. In 471 
addition, among individuals with no known prior immunity, viral burdens were, on average, 472 
higher among Alpha-variant compared to B.1.177 samples. Viral burdens among individuals 473 
with no known prior exposure to infection or vaccination then decreased during the transition 474 
from primarily Alpha to primarily Delta infections. However, it is not possible to determine 475 
whether this was due to the infecting variant or other factors that also have a temporal 476 
component. For example, an increase in immunity due to unobserved infection over time 477 
could also explain this result. Among vaccinated individuals, we found evidence of higher 478 
viral burdens in infections with the Delta-variant, compared to those with the Alpha-variant.  479 
 480 
Our study supports the hypothesis that the observed increases in transmissibility from 481 
B.1.177 to the Alpha variant (in individuals with no known prior exposure to infection or 482 
vaccination) and then to the Delta variant (in vaccinated individuals) were, at least in part, 483 
due to higher viral burdens. However, we cannot rule out other factors playing a role, 484 
including differences between variants in the viral shedding rate, infectious period [25], or 485 
per-virion probability of transmission. Although we infer higher viral burdens among BA.1 486 
Omicron samples relative to Delta variant samples, our inferred support for this result is not 487 
strong. The replacement of the Delta variant with the BA.1 Omicron variant in the UK 488 
therefore cannot be clearly attributed to changes in viral burdens. 489 
 490 
For this study we determined viral variant from viral sequence data, which in practice meant 491 
excluding samples with low viral burdens. This is because only samples with Ct ≤30 are 492 
routinely sequenced, and additionally, samples with higher Ct values (lower viral burdens) 493 
are less likely to have sufficient genomic coverage to determine the variant. Although these 494 
restrictions could impact our qualitative estimates, we do not expect them to bias our main 495 
qualitative results. Furthermore, since individuals with low viral burdens contribute little to 496 
viral transmission [26], our study reflects the impact of viral variants and other factors on 497 
viral burdens at levels that are relevant for transmission. 498 
 499 
Monitoring of the characteristics of SARS-CoV-2 variants will continue to be critical to 500 
public health decisions in the foreseeable future. As more countries roll out population 501 
representative surveys, correcting for epidemiological effects will remain important. More 502 
generally, any studies using community surveillance data that aim to consider traits that vary 503 
through infection (e.g. Ct values, immune markers), could be impacted by pathogen 504 
epidemiology and therefore could benefit from epidemiological adjustment. In summary, our 505 
study promotes a new way of critically analysing random survey data to acknowledge the 506 
combined impact of pathogen epidemiology and within-host traits that vary over the course 507 
of an infection.  508 
 509 
Methods 510 
 511 
Study cohort 512 
We used data from the Office for National Statistics Covid infection survey 513 
(ISRCTN21086382CT, https://www.ndm.ox.ac.uk/covid-19/covid-19-infection-survey). The 514 
survey has been described in detail elsewhere [24]. However, in brief, private households 515 
were randomly selected on a continuing basis in order to provide a representative sample of 516 
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inhabitants of the UK. Following agreement to participate, self-collected nose and throat 517 
swabs were taken by participants – or their parents/carers if under 12 years of age – as 518 
instructed by a study worker. The intended schedule of swabbing was weekly for the first 519 
month of participation and monthly thereafter, for up to a year. However, there was 520 
variability among participants due to missed or late swabs, and participants could also chose 521 
to participate only once, or only for the first month, rather than on an ongoing basis, and were 522 
also free to leave the study at any time. For a random 10–20% of households, participants 16 523 
years or older were invited to provide monthly venous blood samples for assays of anti-524 
trimeric spike protein IgG. Metadata that includes age, sex, gender, postcode and vaccination 525 
details, were additionally recorded.  526 
 527 
Sequencing and lineage identification 528 

All swabs were tested for SARS-CoV-2 using RT-QPCR, and the cycle threshold (Ct) values 529 
of positive samples were recorded. A random selection of positive samples collected before 530 
mid-December 2020 were sequenced, and from mid-December 2020 onwards the ambition 531 
was to sequence all positive samples with Ct≤30. Sequenced samples collected between 27th 532 
Sep 2020 and 17th July 2021 were sequenced at the University of Oxford using veSEQ. This 533 
employs an RNASeq protocol based on a quantitative targeted enrichment strategy [27] and 534 
sequencing on the Illumina Novaseq platform. For a full description of the sequencing 535 
protocol see [27, 28]. Most sequenced samples collected between 20th Sep 2021 and 19th Jan 536 
2022 were sequenced at the University of Northumbria using the CoronaHiT [29] variant of 537 
the ARTIC protocol and Illumina Novaseq 550. Consensus sequences were produced using 538 
the shiver pipeline [30] and lineage assigned using the PangoLEARN [31].  539 

All samples sequenced in Oxford with Ct≤30 were retained for analysis, with the added 540 
restriction of ≥50% genome coverage required for samples sequenced in Northumbria. 541 
Lineages were assigned using the PangoLEARN [31], with samples assigned as B.1.177 (and 542 
sublineages), Alpha (B.1.1.7 and sublineages), Delta (B.1.617.2 and sublineages) and 543 
Omicron (BA.1 and sublineages) used for this analysis. For Oxford sequenced samples with 544 
<50% coverage, and which could not be reliably assigned using PangoLEARN, we assigned 545 
one of the four major lineages if a consensus base was called at three or more lineage 546 
defining sites, and with more than two-thirds of these calls consistent with the lineage. To 547 
avoid differences in sequencing protocol influencing our analyses, samples sequenced in 548 
Oxford and Northumbria were analysed separately. 549 

 550 

Infection characteristics 551 

All individuals with at least one positive sample sequenced in Oxford or Northumbria, and with 552 
the virus assigned to one of the four major lineages as described above, were included in our 553 
analysis, and indexed i=1...n, where n is the number of individuals. If an individual was 554 
infected by more than one major lineage during the study period, these were designated with 555 
an infection number j, where j=1 represents the first infection, j=2 the second infection, and so 556 
on. Positive samples were assumed to be part of the same infection if they were of the same 557 
major variant and were in a continuous sequence of positive samples (i.e. no negative 558 
intermediate samples). The index k denotes the kth sample of the infection. In the case of a 559 
non-continuous sequence of positive samples of the same major lineage, any addition positive 560 
samples were excluded from our study. Infections which were of the same major lineage but 561 
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not in a continuous sequence of positive samples were excluded from the analysis. The list of 562 
variables used to describe the data are given in Table 2. 563 

 564 

Variable Description 

ijkt  Sample date of the kth sample of the jth infection of the ith 
individual 

ijt  Sample date of the last negative before the first positive of the 
jth infection of the ith individual 

ijkc  Observed Ct value of the kth sample of the jth infection of the 
ith individual. 

ijv  Major variant of the jth infection of the ith individual 

i  Sex of the ith individal 

ie  Age group of the ith individual  

if  Vaccine product (AstraZeneca or Pfizer) of the first vaccine 
dose of the ith individual  

r
ih  Date of the rth vaccine dose of the ith individual 

Table 2. Data used in the study 565 

 566 

Calculating epidemiologically adjusted Ct values 567 

 568 

Step 1. Describing the within-host Ct trajectory. 569 

We assume that within-host Ct trajectories are piecewise linear and valley-shaped (Figure 570 
1b), defined by the infected period (width, w) and the difference between the minimum Ct 571 
value and 40 (depth, d). Probability distributions for these variables (calculated in a discrete 572 
manner, each spaced by value 0.25 and 0.5 respectively) are derived from truncated 573 
discretised normal distributions, described by p(d) (equation 1) and p(w) (equation 2), with 574 
means 𝑊௩

௠௘௔௡ and 𝐷௩
௠௘௔௡ and standard deviations, 𝑊ௌ஽, 𝐷ௌ஽, so that  575 

 576 

   ( ) ( ) ( 0.5) / (5) (32) for  d [5.5,6.0,6.5,...,32]D D D Dp d d d                         (1) 577 

   ( ) ( ) ( 0.25) / (35) (3) for [3.25,3.50,3.75,..,35]W W W Wp w w w w                       (2) 578 

where 579 

( , )
( ) ( )  mean SD

v
D D D

d normalCDF d                        (3) 580 
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( , )
( ) ( )  mean SD

v
W W W

w normalCDF w                      (4) 581 

The peak viral burden is assumed to occur at a time since infection equal to a fraction, θ<1, of 582 
the total infected period. The parameters 𝑊௩

௠௘௔௡, 𝑊ௌ஽, 𝐷ௌ஽,  and θ are derived from 583 
previous studies and varied in sensitivity analyses. The parameter 𝐷௩

௠௘௔௡,  is iteratively 584 
inferred to a tolerance of 0.1 following implementation of the methodology described – 585 
which, for each sample, estimates an adjusted Ct value – and calculated to equal twice the 586 
difference between 40 and the mean adjusted Ct value for that variant. For ease of reference, 587 
all other variables described here and throughout the following derivation are listed in Table 588 
3. 589 

Step 2. Estimating the distribution of time since infection for different SARS-CoV-2 590 
variants over calendar time. 591 

We estimated the distribution of infections in the population stratified by variant and time 592 
since infection over calendar time using published estimates of total incidence of SARS-593 
CoV-2 in the UK ( 594 
www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases595 
/datasets/coronaviruscovid19infectionsurveydata) and published estimates of the proportion 596 
of incident infections with each of the major variants under study (B.1.177, Alpha, Delta and 597 
BA.1 Omicron) over time from the COVID-19 Genomics UK Consortium (COG-UK: 598 
www.cogconsortium.uk). Working in discrete time steps (τ=1,2,3… ) that are 0.25 days each, 599 

we define I  to be the incidence during time step, τ and rτ,v to be the proportion of incident 600 

infections during time step τ that are of variant v  (v=1:4 represent B.1.177, Alpha, Delta and 601 
BA.1 Omicron, respectively). We further define , ,a vu   to be the number of infections with 602 

time since infection, a (stratified as discrete time steps of 0.25 days each), during time step τ 603 
with variant v. The number of incident infections (i.e. infections with time since infection=0) 604 
during time step τ with each variant v is estimated to be the product of the total incidence 605 
during that time step and the fraction of incident infections of that variant ( 0, , ,v vu r I   ). To 606 

estimate , ,a vu   for each a>0, we assume that the infected periods are taken from a truncated 607 

normal distribution with mean, mean
vW , and variance SDW .

 Therefore, the number of infections 608 

of time since infection a, at time step τ is calculated to be the number of incident infections 609 
from time step τ-a that are still persisting after a time a, thus: 610 

, , 0, , ( , )
(1 ( ))    mean SD

v
a v a v W W

u u normalCDF a . 611 

 612 

Step 3. For each sample and each infected period, estimate a time since infection 613 
distribution.  614 

For each sample and for each assumed infected period (w), we inferred the distribution of 615 
time since infection. We first selected the distribution (Step 2) that corresponds to the sample 616 
date and variant of the sample and adjusted it to account for known bounds on the time since 617 

infection for that sample, measured in days. The bounds (
max 4( )ij ijk ija t t     and 618 

min
, 14( )ij ijk ij ka t t   ) are derived by considering information on Ct values at previous samples 619 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.12.02.518847doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518847


21 
 

and scaled to account for the transformation to discrete time steps. The time since infection 620 
probability distribution for each sample is then given by: 621 

 622 

max

min

max

min

4min( , )

,4 , ,4 ,
4

 or

0 if  or 

( | , , )

otherwise
ij

ijk ijk ij ijk ij

ij

ijk ij

ijk ijk ij ij

a w

a t v a t v
a a

w

a a

p a w t v a

u u


 
  
 

  







                                (6) 623 

 624 

Step 4. Infer a sample-specific expected distribution of Ct values.  625 

For each sample, based upon the sample time ( ijkt ) and variant ( ijv ), we derived an expected 626 

distribution of Ct values (equation 7). This was done by conditioning on the time since 627 
infection (a) and the depth (d) and width (w) of the within host viral trajectory. These 628 
conditional probabilities were combined with the time since infection distributions derived in 629 
step 3 and the within-host parameter distributions described in step 1.  630 

 631 

40

0.5

( 0.5 | , , ) ( , , | , )

( 0.5 | , )
( 0.5 | , , ) ( , , | , )

ijk

ijk

ijk ijk ijk ij
a d w

ijk ij

ijk ijk ijk ij
c a d w

p C c C a d w p a d w t v

p C c C t v
p C c C a d w p a d w t v



  

   
  




  632 

               633 
                       (7) 634 

where the probability of a particular time since infection (aijk), trajectory width (w) and 635 
trajectory depth (d) is given by: 636 

 637 

( , , | , ) ( | , , ) ( ) ( )ijk ijk ij ijk ijk ijp a d w t v p a w t v p d p w .       (8) 638 

 639 

and the probability of the Ct value (c) falling within a certain discrete boundary, given the 640 
time since infection and the width and depth of the viral trajectory, is defined as 1 or 0 641 
depending upon whether it matches up with the valley-shaped viral trajectory curve (figure 642 
1b), as shown below: 643 

, , , ,

, , , ,

1 if ( 0.5) ( ) and 

( 0.5 | , , ) 1 if ( 0.5) ( ) and 

0 otherwise

v v

v v

d w ijk d w ijk

ijk d w ijk d w ijk

A C a A C a w

p C c C a w d A C a A C a w

 

 





   
       



   644 

                          (9) 645 

Where C is a dummy variable representing the Ct value, and 646 
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 647 

, ,

(40 )
( )

v

v
d w

C w
A C

d


          (10) 648 

and 649 

, ,

(40 )(1 )
( )

v

v
d w

C w
A C w

d
 

          (11) 650 

are dummy variables that describe the relationship between the Ct value (C) and the time 651 

since infection ( , , ( )vd wA C  and , , ( )


vd wA C ), during down phase and up phase of the valley-652 

shaped trajectory, respectively.  653 

 654 

Step 5. Calculate an expected distribution of Ct values for a flat epidemic trajectory.  655 

The full process for calculating an expected distribution of Ct values (steps 1-4) was repeated 656 
under an assumption of a flat epidemic trajectory, rather than a variant-specific trajectory.  657 

 658 

Step 6. For each sample, infer an epidemiologically adjusted Ct value.  659 

For each sample, we identified the percentile that the observed Ct ( ijkc ) falls in, among the 660 

sample-specific expected Ct distribution. The adjusted Ct value ( ijkc ) was then derived by 661 

identifying the Ct value at that percentile within the expected distribution of Ct values based 662 
upon a flat epidemic trajectory (Figure 1c). 663 

 664 
1

( ( ))ijk flat sample ijk ijkc F F c


          (12) 665 

where 666 

 667 
ˆ

5.5,6.0,...

ˆ ˆˆ( ) ( | )= ( 0.5 | , )
C

sample ijk ijk ij
C

F C p c C sample ijk p C c C t v


                  (13) 668 

ˆ

5.5,6.0,...

ˆ ˆˆ( ) ( | flat epidemic)= ( 0.5 | flat epidemic)
C

flat
C

F C p c C p C c C


                         (14) 669 

 670 
 671 

Variable Description  

a Time since infection (discrete: each unit 
equivalent to 0.25 days) 

 

d Minimum Ct -40 (viral trajectory depth)   

w Infected period (viral trajectory width) 
(days)  
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v Variant   

τ Time step (discrete: each unit equivalent to 
0.25 days)  

 

ijka  Time since infection of the kth sample of 
the jth infection of the ith individual (days) 
(discrete: each unit equivalent to 0.25 days) 

 

, ,a vu   Estimated of number of people with time 
since infectiona at time step τ, with variant 
v  

 

rτ,v The proportion of incident infections 
during time step τ that are of variant v 

 

I  Number of new infections (incidence) 
during time step τ 

 

, , ( )d wA C  Time since infection at Ct value, C, during 
the down phase of the assumed valley 
shaped Ct trajectory 

 

, , ( )d wA C
  Time since infection at the Ct value, C, 

during the up phase of the assumed valley 
shaped Ct trajectory 

 

ijkc  Adjusted Ct value of the kth sample of the 
jth infection of the ith individual 

 

( )sample ijkF C  Cumulative probability for the expected Ct 
value, C   for sample ijk 

 

( )flatF C  Cumulative probability for the expected Ct 
value, C, assuming a flat trajectory 

 

Parameters Description Values 

θv Fractional location of the minimal Ct 
across the infected period, with variant v 

0.3 

mean
vW  Mean viral trajectory width (infected 

period, days) 
8 

mean
vD  Mean viral trajectory depth (difference 

between minimum Ct value and 40) 
Iteratively inferred to 
equal 
10 2(30 mean adj Ct) 
with initial condition: 
Ct=20. 
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WSD Standard deviation of viral trajectory width 5 

DSD Standard deviation of viral trajectory depth 1.7 

 
 672 
Table 3. Description of additional variables and parameters used in calculation of 673 
adjusted Ct values 674 

 675 

Implementation of analysis 676 
 677 
All analyses were implemented in Matlab and the code is available at 678 
https://github.com/helenfryer1000000/epidemiologically-adjusted-viral-load. Estimation of 679 
adjusted Ct values was implemented using a bespoke script. Partial least squares regression 680 
was implemented using the PLSregress function, which is part of the Statistics and Machine 681 
Learning toolbox in Matlab. Quantile median regression was implemented using the function 682 
qr_standard, provided at: https://github.com/zjph602xtc/Quantile_reg. 683 
 684 
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 1264 

Reference Ct values How were individuals chosen to 
be part of the study 

Longitudinal? How was 
strain 
determined? 

Predecessor variants to 
B.1.17 

B.1.1.7  B.1.351 Delta 

Frampton [12] Ct Mean=32 
SD=4.8 
N=143 

Mean Ct=28.8  
SD=4.7 
N=341 

  Individuals acutely admitted to 
hospital in London.  

No S-gene target 
failure 

Calistri [13] Median Ct=16.9 
95% CI=[10.4,19.9] 
N=965 

Median Ct=15.8 
95% CI=[9.6,19.6] 
N=313 
 
p-value<10-4 (relative to 
predecessor) 

  Swabs from three provinces of 
Abruzzo in Italy were collected 
based on clinical symptoms or 
reported contact with confirmed 
COVID-19 cases. 

Yes, but only 
from some 
individuals. 
Infected periods 
were calculated 
from only those 
individuals with 
2 or more 
positive 
samples. 

Whole genome 
sequencing 

Kidd [14] median Ct (ORF1ab) =22.30 
median Ct (N gene)=23.1 
N=450 

median Ct (ORF1ab)=18.16 
median Ct (N gene)=19.39 
N=178 
 
p-value<10-5

 (relative to 
predecessor for both 
ORF1ab and N gene) 

  Samples in the UK Department of 
Health and Social Care Test and 
Trace network.  

No S-gene target 
failure 

Cosentino [15] Ct at self reported symptom 
onset=22.7  
95% CI=[22.4,23.0] 
N=3272 

Ct at self reported symptom 
onset= 21.3  
95% CI=[21.1,21.6] 
N=11496 
 
p-value<10-6

 (relative to 
predecessor) 

Ct at self reported 
symptom onset= 21.6 
95% CI=[21.1,22.0] 
N=1366 
 
p-value<10-6

 (relative to 
predecessor) 

 Community testing. Symptomatic 
individuals 

Principally no, 
although 20% of 
individuals had 
two or more 
samples 

S-gene target 
failure 

Kissler [16] Peak viral concentration: 
Ct=20.1 
95% CI=[18.3,21.7]  
N=41 

Peak viral concentration 
Ct=21.0 
95% CI=[19.1,20.9]  
N=36 
 
No meaningful difference 
compared to predecessor 
reported 

 Peak viral concentration 
Ct=19.8  
95% CI=[18.0,22.0] 
N=36 
 
No meaningful difference 
compared to predecessor 
reported 

Individuals associated with a 
professional basketball league 

Yes (testing 
done daily) 

Whole genome 
sequencing 

Ke [17] Predicted minimum Ct (in 
saliva)= 23.7 
N=44 
 
 

Predicted minimum Ct (in 
saliva)= 24.2 
N=16 
p-value=0.32 (relative to 
predecessor) 

  Positive samples, or contacts of 
positive samples, from twice 
weekly testing of all faculty, staff 
and students at a university 
campus.  

Yes (daily 
testing for up to 
14 days 

Whole genome 
sequencing 

Pouwels [11]  Median Ct=31.6 * 
IQR=[22.8,33.7] 
N=577 
 

 Median Ct=30.1 
IQR=[18.6,33.7] 
N=110 
 

Population representative survey 
(includes asymptomatic)  

Yes, although 
samples are 
typically spaced 
1 week or 1 

Estimated 
based upon 
sample date 
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*in new PCR positives 
vaccinated for 14 
21 days after dose 1 or 
<14 days after dose 2 

 in  new PCR-positives 
vaccinated for 14 
21 days after dose 1 or 
<14 days after dose 2 
 

month apart, 
meaning that 
most recorded 
infections have 
only one 
positive sample  

Li [19] Median Ct =34.31 
IQR=[31-36] 
N=63 
 

  Median Ct =24 
IQR=[19-29] 
N=62 
 

Close contacts of confirmed cases Yes (daily 
testing) 

Whole genome 
sequencing 

Supplementary Table 1. A review of published studies investigating the impact of viral variant on Ct values.1265 
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 Variance inflation factor (VIF) 

 Oxford Northumbria 

Sample date 7.5* 3.4* 

Age 1.6 2.8 

Prior exposure 

Ref= vaccine and AB –ve 

  

AB +ve 2.1 4.1 

Vaccinated 4.1 5.2 

Variant (in vaccine and AB -ve)   

Ref=Alpha (Oxford), Delta(Northumbria)   

B.1.177  1.1  

Delta  1.2  

BA.1 Omicron  1.3 

Variant (in AB+ve)   

Ref=Alpha (Oxford), Delta(Northumbria)   

B.1.177 1.4  

Delta 1.7  

BA.1 Omicron  4.1 

Variant (in vaccinated)   

Ref=Alpha (Oxford), Delta(Northumbria)   

B.1.177 1.0  

Delta 5.0  

BA.1 Omicron  2.2 

Vaccine dose in vaccinated   

Ref=1 dose   

2 doses 2.3 5.3 

3 doses  2.1 

Sex 

Ref=female 

  

Male 1.0 1.0 

Vaccine product   

Ref=Pfizer   

AstraZeneca 1.4 1.5 

Supplementary table 2. Variance inflation factor (VIF) values.  1266 

 1267 

  1268 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.12.02.518847doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518847


39 
 

 1269 

 1270 

a) b) 

  

c) d) 

  
 1271 

Supplementary Figure 1. Mean squared error and loading plots relating to the partial least 1272 
squares regression analysis. a) The mean squared error (MSE) plot for the samples sequenced at 1273 
Oxford show that 6 latent components minimise the MSE. b) The mean squared error plot for the 1274 
samples sequenced at Northumbria show that 6 latent components minimise the MSE. c) The loading 1275 
plot relating to the first two latent components for the samples sequenced at Oxford show that age, 1276 
vaccine product, vaccination status and variant (Delta vs Alpha) amongst vaccinated and unvaccinated 1277 
individuals most strongly to the first component; and that variant (B.1.177 vs Alpha) amongst 1278 
individuals with no known prior exposure contributes most strongly to the second component. d) The 1279 
loading plot relating to the first two latent components for the samples sequenced at Northumbria 1280 
show that age, vaccination status and vaccine product contribute most strongly to the first component; 1281 
and variant (BA.1 Omicron vs Delta) amongst vaccinated individuals contributes most strongly to the 1282 
second component. 1283 
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