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Abstract

Motivation: Biomedical identifier resources (ontologies, taxonomies, controlled vo-
cabularies) commonly overlap in scope and contain equivalent entries under different
identifiers. Maintaining mappings for these relationships is crucial for interoperability
and the integration of data and knowledge. However, there are substantial gaps in
available mappings motivating their semi-automated curation.

Results: Biomappings implements a curation cycle workflow for missing mappings
which combines automated prediction with human-in-the-loop curation. It supports
multiple prediction approaches and provides a web-based user interface for reviewing
predicted mappings for correctness, combined with automated consistency checking.
Predicted and curated mappings are made available in public, version-controlled re-
source files on GitHub. Biomappings currently makes available 8,560 curated mappings
and 41,178 predicted ones, providing previously missing mappings between widely
used resources covering small molecules, cell lines, diseases and other concepts. We
demonstrate the value of Biomappings on case studies involving predicting and curating
missing mappings among cancer cell lines as well as small molecules tested in clinical
trials. We also present how previously missing mappings curated using Biomappings
were contributed back to multiple widely used community ontologies.

Availability: The data and code are available under the CC0 and MIT licenses at
https://github.com/biopragmatics/biomappings.

Contact: benjamin gyori@hms.harvard.edu

1 Introduction

Standardizing the identification of small molecules, proteins, and other biomedical entities
is an important step in creating and maintaining Findable, Accessible, Interoperable, and
Reusable (FAIR) (Wilkinson et al., 2016) data in the life sciences. Resources that catalog
and provide identifiers for such entities are essential for this effort. Such identifier resources
include ontologies, taxonomies, and other controlled vocabularies, e.g., the Human Disease
Ontology (DO) (Schriml et al., 2021), Medical Subject Headings (MeSH) (Rogers, 1963), and
the Chemical Entities of Biomedical Interest (ChEBI) (Hastings et al., 2016). However, many
identifier resources overlap in scope and include equivalent entities with different identifiers.
For example, the small molecule cyclin-dependent kinase inhibitor alsterpaullone appears in
several chemical- and drug-related identifier resources including ChEBI as chebi:138488 and
MeSH as mesh:C120793. Merging equivalent entities is crucial for tasks dependent on data
integration like ontology merging (Geleta et al., 2022; Guo et al., 2022; Lambrix and Tan,
2008), entity linking (Gyori et al., 2022), construction of knowledge graphs (Himmelstein
et al., 2017; Friedrichs, 2021; Nicholson and Greene, 2020), and automated systems biology
model assembly (Gyori et al., 2017; Bachman et al., 2022). More generally, mapping
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between equivalent identifiers from different identifier resources is a ubiquitous task across
computational life science analyses, workflows, and tools.

A mapping (often referred to as ontology mapping or semantic mapping) represents a
relationship between two entities in different identifier resources using a specific predicate
such as one representing an exact match (i.e., when the entities can be used interchangeably),
a broad match (i.e., when one entity is a super-class of the other), or a narrow match (i.e.,
when one entity is a subclass of the other). Mappings can also carry additional metadata
representing provenance for its creation. We refer to Figure 2 of Matentzoglu et al. (2022a)
for a more detailed description of mappings. High-quality, semantically rich equivalence
mappings are required to support merging and converting between identifiers from different
resources. Therefore, many identifier resources provide equivalence mappings to one or more
other resources. We refer to mappings provided directly by an identifier resource as primary
mappings. Such mappings are typically curated by the maintainers of the resource and are
provided along with entries in the resource in the form of cross-references. For example, the
HUGO Gene Nomenclature Consortium (HGNC) (Yates et al., 2017) provides mappings
from its identifiers for human genes to the Entrez gene database (Maglott et al., 2011),
Ensembl (Zerbino et al., 2018), and several other identifier resources. Similarly, ontologies
like the Monarch Disease Ontology (MONDO) (Vasilevsky et al., 2022) curate and distribute
mappings to other identifier resources (e.g., DO, MeSH).

Though primary mappings from identifier resources are often available, a survey from
Laadhar et al. (2020) of mappings in life science ontologies highlights several widespread
issues such as the use of unspecific predicates (e.g., oboInOwl:hasDbXRef), the lack of
standardization of the syntax and semantics of the targets of mappings, and a lack of
detailed provenance metadata. The Simple Standard for Sharing Ontological Mappings
(SSSOM) (Matentzoglu et al., 2022a) was recently developed to provide a standardized
format for mappings and thereby increase their availability and interoperability. While
SSSOM supports disseminating mappings through a common standard, it does not in itself
provide a solution to identifying and curating missing mappings.

Several services aggregate, process, and redistribute mappings including BridgeDB (van
Iersel et al., 2010), TogoID (Ikeda et al., 2022), and the Ontology Mapping Service (EMBL-
EBI, 2022). However, these services only draw from primary mappings provided by identifier
resources and are therefore unable to address gaps, lack of specificity, and lack of rich
provenance metadata in these resources.

Despite existing curation and aggregation efforts, there still exist gaps in mappings
between major resources (e.g., despite ChEBI and MeSH both providing identifiers for small
molecules, neither provides mappings to the other) and mappings that are provided are
often incomplete (e.g. there are many gaps in mapping disease terms between MONDO
and MeSH). Several automated methodologies have been proposed to predict missing map-
pings, including algorithms exploiting lexical similarity (Ghazvinian et al., 2009), ones
based on logical/structural alignment of resources (Jiménez-Ruiz and Cuenca Grau, 2011),
and others based on machine learning (Berrendorf et al., 2020). However, beyond routine
benchmarking, mappings produced by such automated mapping algorithms are not system-
atically reviewed for correctness, and then contributed to primary sources to which the
mappings apply, ultimately resulting in limited impact on the state of existing resources.
Further, existing automated mapping approaches often do not provide interfaces for cu-
rating (e.g., reviewing, confirming, and rejecting) predicted mappings, storing important
metadata (e.g., mapping confidence), and maintaining curation artifacts in accessible ways
(e.g., via public version control). For example, the Ontology Alignment Evaluation Initiative
(https://oaei.ontologymatching.org) has used the same task of aligning the Founda-
tional Model of Anatomy Ontology (Rosse and Mejino, 2003) and SNOMED-CT (Donnelly
et al., 2006) for more than fifteen years (see Bodenreider and Zhang (2006) and Wang and Hu
(2022)). However, the manuscripts published on the task only focus on method development

2/15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.11.29.518386doi: bioRxiv preprint 

https://oaei.ontologymatching.org
https://doi.org/10.1101/2022.11.29.518386
http://creativecommons.org/licenses/by/4.0/


and neither predict novel mappings, curate them, nor contribute them back to the upstream
identifier resources. Overall, existing work does not provide a workflow for finding, predicting,
and curating missing mappings.

To address this, we introduce Biomappings (v0.2.0), a framework for semi-automatically
creating and maintaining mappings in a public, version-controlled repository. Biomappings
combines multiple contributions: (i) a ”curation cycle” workflow for creating mappings, (ii)
an extensible pipeline for automatically predicting missing mappings between resources,
and automatically detecting inconsistencies, (iii) a web interface for reviewing and curating
predicted mappings, and (iv) a public, version-controlled repository of predicted and curated
mappings.

Biomappings currently makes available ∼8.5 thousand reviewed mappings and ∼41
thousand predicted ones. Mappings are associated with necessary metadata in an intuitive
tab-delimited format; licensed permissively to encourage community contributions and
restriction-free integration back into primary identifier resources. In addition to novel
mappings, Biomappings provides an extensible lexical mapping prediction pipeline based
on Gilda (Gyori et al., 2022), and a web-based interface for curation of predictions and
adding manually constructed mappings. The mappings themselves, functions supporting
the programmatic creation and usage of mappings, the web-based curation interface, as
well as several workflow examples for generating new mappings are made available in the
open-source biomappings Python package.

We demonstrate the utility of Biomappings in three case studies. First, we used Biomap-
pings to predict and curate mappings for cell lines in the Cancer Cell Line Encyclopedia
(CCLE) (Ghandi et al., 2019) to three other resources providing identifiers for cell lines.
Biomappings added a total of 622 novel mappings that could not be inferred from existing
mappings (a 71% increase). These mappings crucially improve the interoperability between
databases describing the characteristics and measurements of cancer cell lines.

Second, we used Biomappings to predict and curate mappings between MeSH and ChEBI,
both of which contain entries for chemicals of biological interest but lack any mappings
to each others’ entries. We show that the 2, 663 mappings added by Biomappings enable
mapping chemicals (listed using MeSH identifiers) in 100,265 ClinicalTrials.gov trials (70.5%
of all trials) to ChEBI identifiers, thereby enabling the integration of clinical trials data with
other ChEBI-aligned resources.

Third, we used Biomappings to predict and curate missing mappings between four widely
used Open Biomedical Ontologies (OBO) (Jackson et al., 2021) ontologies and MeSH. We
then contributed 1, 378 confirmed mappings back to the primary OBO resources through
GitHub pull requests. These contributions have the potential for high impact given the
ubiquity of these ontologies in various workflows, tools, and analyses.

Biomappings is available through a web portal (https://biopragmatics.github.io/
biomappings) and as a Python software package (https://pypi.org/project/biomappings).
All underlying data, code, and governance documentation are accessible through GitHub
(https://github.com/biopragmatics/biomappings) under the MIT and CC0 licenses and
are archived on Zenodo (Hoyt et al., 2022a).

2 Methods

2.1 The Biomappings curation cycle

We propose a novel, semi-automated approach to curation and maintenance of mappings
supported by Biomappings (Fig. 1).

The first step of the cycle comprises retrieval and preprocessing of target identifier
resources, including any existing mappings between the resources. We automate this process
for ontologies by using the Bioregistry (Hoyt et al., 2022c) to locate the ontology (i.e., with
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Figure 1. The Biomappings curation cycle supports sustainable, efficient curation of high-quality
mappings between identifier resources, consisting of five steps.

a URL) and ROBOT (Jackson et al., 2019) to parse it. Similarly, we use custom automated
preprocessing workflows in PyOBO (Hoyt et al., 2022b) for other identifier resource types
(e.g., databases like HGNC).

The second step comprises generating predictions through lexical similarity or other
approaches (see Section 2.2). This step is often mediated by task-specific scripts which focus
on generating mappings between two target identifier resources. At this stage, predictions for
mappings that have already been manually curated in Biomappings or ones made available
by other sources can be excluded to ensure predictions are novel.

The third step comprises choosing a scope for manual review, i.e., filtering predictions to
a desired subset and applying additional filters. For instance, one may filter to predicted
mappings between two specific identifier resources to focus curation on.

The fourth step is to review and curate predicted mappings as correct, incorrect, or
unsure. In Biomappings, this step is mediated by a web interface described in Section 2.3.

The fifth step involves improving the first four steps of the cycle based on insights gained
from curation, as well as contributing curated mappings to external resources. For example,
manual inspection of predictions may reveal systematic errors in prediction that can be used
to improve preprocessing or update the filtering step in order to reduce curation burden.
Concurrently, the novel mappings can be contributed to increase their visibility and impact
(we demonstrate this in Section 4.3).

This curation cycle workflow may support one of several goals such as 1) the exhaustive
curation of mappings between identifiers in two identifier resources following previous rounds
of curation, 2) a task-oriented curation goal to maximize return on fixed curation effort, often
prioritized or driven by an external task-specific need, 3) analysis or quality assurance-driven
curation such as the example described in Section 2.4.2, or 4) open-ended/interest-driven
curation.
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2.2 Generating Predictions

We employ a lexical matching workflow in the case studies presented in Section 4. This relies
on labels and synonyms associated with entities for predicting mappings. The workflow is
implemented using Gilda (Gyori et al., 2022), based on the text tagging algorithm from Allen
et al. (2015). First, Gilda generates an index of the labels and synonyms for entities in the
desired identifier resources by applying custom string transformations and normalizations (e.g.,
Amyloid-β becomes amyloid-beta). Second, Gilda applies the normalizations to each query
string, identifies matches in the index, then calculates a score based on which normalizations
were applied that resulted in the match (e.g., exact string matches have higher scores than
strings with different usages of symbols or punctuation). For the lexical matching workflow,
the labels and synonyms from each entity in a given identifier resource are used as the queries
to an index built from the target identifier resource(s).

Lexical matching has the advantage of being computationally inexpensive, highly explain-
able, and ultimately easy to curate. However, we note that the Biomappings workflow is
able to support other methodologies such as knowledge graph-based matching workflows (see
Supplement), structural matching (e.g., that exploits ontology hierarchy, see Supplement),
or other custom workflows. Following generation, predicted mappings are filtered to remove
predictions that appear in primary identifier resources or have already been curated in
Biomappings in order to reduce duplicate curation. Importantly, Biomappings also pro-
vides the framework for capturing provenance about how mappings are generated for all
methodologies.

2.3 Web interface for curating mappings

Biomappings provides a locally-deployable web-based interface for browsing, reviewing, and
curating predicted mappings (Fig 3). It displays a paginated view of the subject, predicate
object, and confidence of each predicted mapping that can be searched by entity compact
uniform resource identifier (CURIE), by entity name, and by resource to support restricted
curation scopes. On the right-hand side, it displays buttons for curating each prediction as
correct, incorrect, or unsure. After each curation, the interface updates the relevant resource
files and includes provenance about the curation such as the curator’s ORCID identifier. It
then communicates with git to create the appropriate commits that can be sent to GitHub.
Finally, the bottom of the interface also includes a bar for inputting novel curations not
included in the predictions.

2.4 Quality Assurance

Biomappings uses a combination of social and technical workflows to maintain high data
quality and integrity.

2.4.1 Version control and continuous testing

Biomappings uses git for version control to track all changes and mediate releases via
Zenodo. Second, it uses GitHub as technical platform to host and distribute the project’s
code and data openly and as a social platform to enable discussion and external contribution
through pull requests. Third, it uses GitHub Actions as a continuous integration and
continuous delivery system to apply data quality checks (e.g., all mappings’ prefixes and
local unique identifiers are compliant with the Bioregistry (Hoyt et al., 2022c)). Further,
several summaries (e.g., charts, tables, website), analyses (see Section 2.4.2), and artifacts
(see Section 3.1) are automatically re-generated when a pull request is merged and archived
on Zenodo (Hoyt et al., 2022a).
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Figure 2. Three motifs identified by graph-theoretic methods for quality assurance. A) A prefix
appearing twice in triangle of positive mappings signifies that one node and all of its edges is
incorrectly mapped. B) A missing edge in a path of positive mappings with three nodes suggests
the existing of a high confidence mapping. C) A triangle with a negative mapping and two
positive mappings implies one of the positive mappings is incorrect.

2.4.2 Automated consistency checking of mappings

Biomappings implements three graph-theoretic approaches for identifying incorrect, inconsis-
tent, or missing mappings. This serves as an automated quality check to maintain the global
consistency of the resource.

First, a labeled, undirected graph is constructed from the union of positive and neg-
ative mappings. Then, certain pre-defined motifs are found as shown in Fig. 2 to detect
inconsistencies.

The duplicate prefix in clique motif contains a set of nodes connected by equivalence
relationships (e.g., skos:exactMatch) where two or more nodes originate from the same
identifier resource (Fig. 2A). In the example, two entities from MeSH (i.e., proanthocyanidin
(mesh:C013221) and Proanthocyanidins (mesh:D044945)) appear in the same clique. Upon
further inspection, Proanthocyanidins was found to be represent a class of chemicals with
similar structures and proanthocyanidin was found to represent a specific, prototypical
instance of the class. Because the other entities in the clique referred to the specific chemical,
Proanthocyanidins (i.e., the class) should be removed. Such motifs can also help identify
more generic properties of the identifier resources that lead to curation errors, such as the
pluralization schemes of its chemical classes.

The incomplete clique motif contains a set of nodes that are connected by equivalence
relationships, but some nodes are not connected (Fig. 2B). This motif provides support for
curating additional equivalence mappings via the transitivity of equivalence. In the example,
a mapping between Spasms, Infantile (mesh:D013036) and West Syndrome (umls:C0037769)
could be curated.

The unstable clique motif contains a set of nodes that are connected by equivalence
relationships, but two of the nodes are also curated with a negative mapping (Fig. 2). This
motif suggests that one (or more) of the equivalence or negative mappings are incorrect and
should be removed. In the example, the equivalence between Severe Dengue (mesh:D019595)
and Dengue Shock Syndrome (umls:C0376300) was incorrect.

These analyses are run on all changes to the Biomappings database using GitHub Actions
as a continuous integration service and posts the results to https://biopragmatics.github.
io/biomappings.
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Figure 3. A screenshot of the Biomappings curation interface filtered to ChEBI and MeSH
mappings showcases mappings of varying degrees of difficulty to curate. For example, some are
exact matches, some are close matches, and some are matched due to synonyms.

3 Results

Biomappings (v0.2.0) contains 8,560 positive mappings, 1,122 negative mappings, 47 unsure
mappings, and 41,178 predicted mappings of 6 types across 27 identifier resources curated by
6 individuals (Table 1, see also detailed summary in Supplementary Fig. 2). These mappings
were generated through a combination of prioritized curation (e.g., motivated by creating
mappings to support a specific downstream task), open-ended curation (e.g., motivated
by interest in a specific prefix or search term, or motivated by curating highest confidence
mappings), and exhaustive curation (e.g., motivated by completing alignments between two
or more identifier resources). Examples of each can be found in Section 4.

While Biomappings is generally able to use any predicate encoded as a CURIE, mappings
typically use the Simple Knowledge Organization System (SKOS) vocabulary to denote
matches in the sense of information retrieval. The three most common predicates that
are useful for curating mappings are skos:exactMatch for terms that can be used inter-
changeably, skos:broadMatch for when the object term is a super-class of the subject, and
skos:narrowMatch for when the object term is a subclass of the subject. Three additional
relations appear in Biomappings (v0.2.0) for species differentia (e.g., for mapping species-
generic and species-specific pathways in KEGG (Kanehisa et al., 2017)), for homologs (e.g.,
for mapping related species-specific pathways in WikiPathways (Martens et al., 2021)), and
for connecting different ionization states (e.g., conjugate acid, conjugate base) of small
molecules (e.g., appearing in ChEBI).

3.1 Availability

Biomappings stores mappings in four tab-separated values (TSV) files corresponding to
the correct, (non-trivially) incorrect, unsure, and predicted mappings (Table 1) that can
be manually edited directly, modified via the back-end to web-based manual curation, or
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Table 1. Biomappings resource files. Each row corresponds to a distinct tab separated value file
in version control on GitHub.

Curated Description #
Yes Human-curated true mappings 8,560
Yes Human-curated non-trivial false (i.e., incorrect) mappings 1,122
Yes Mappings that have been checked but not yet decided 47
No Automatically predicted mappings 41,178

extended with new predictions programmatically. Each stores rich metadata about the
source, target, mapping type, as well as its associated provenance. Further, the predicted
mappings include confidence assessments and additional provenance about how they were
generated. These are collated into a single SSSOM document that fully represents all
provenance, can be used to generate additional exports (e.g., JSON, RDF), and can be
readily consumed by curation workflows such as those in the Ontology Development Kit
(ODK) (Matentzoglu et al., 2022b) for developing ontologies. These artifacts are re-generated
by the continuous integration workflow triggered on all data changes in the repository.
Further, these mappings can be accessed via the biomappings Python package, installable
through the Python Package Index (PyPI). Finally, the mappings are available as an
interactive network on the Network Data Exchange (NDEx) (Pratt et al., 2015) under
https://bioregistry.io/ndex:402d1fd6-49d6-11eb-9e72-0ac135e8bacf.

3.2 Governance and Sustainability

Biomappings is built using open source code and open data distributed under a permissive
license (MIT and CC0) in a public, version-controlled repository that is archived on Zenodo
in order to encourage community reuse and incorporation into upstream resources that it de-
scribes. It leverages public infrastructure and automation to support its maintenance and ex-
tension. It has well-defined contribution guidelines (https://github.com/biopragmatics/
biomappings/blob/master/docs/CONTRIBUTING.md) and a governance model (https://
github.com/biopragmatics/biomappings/blob/master/docs/GOVERNANCE.md) that enables
contributions directly from the broader community to support the project’s longevity. Finally,
Biomappings has a transparent attribution model that associates all mappings with the
Open Researcher and Contributor Identifier (ORCID) of the curator. These are summarized
on the auto-generated summary website and also on APICURON (Hatos et al., 2021).

4 Case Studies

We present three case studies demonstrating the utility of Biomappings. In Section 4.1, we
describe generating and curating exhaustive mappings between several identifier resources for
cancer cell lines. In Section 4.2, we describe taking a prioritized approach towards generating
and curating mappings between ChEBI and MeSH in order to support data integration
with clinical trials data. Finally, in Section 4.3, we describe predicting and curating missing
MeSH mappings for several OBO ontologies, then contribute the results back to the primary
identifier resources.

4.1 Mapping missing cancer cell line identifiers

Several identifier resources have been constructed to describe cells and cell lines in order to
support the generation of databases describing their characteristics and associated experi-
mental measurements. For example, the Cancer Cell Line Encyclopedia (CCLE) contains
a detailed genetic and pharmacological characterization of hundreds of cancer cell lines
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Figure 4. Mappings between identifiers in four cancer cell line resources. Solid black arrows
represent primary mappings provided by identifier resources (arrows point from an identifier
resource that provides a mappings to its target, labels show the number of mappings provided).
Dashed arrows represent inferrable mappings through two hops (blue, 723 mappings inferred)
or three hops (red, 725 mappings inferred). The green arrow represents the added benefit of
Biomappings curation of mappings between CCLE and EFO, 1,241 total with 516 not obtainable
from existing primary or inferred mappings.

constituting models of various human cancers. Such detailed, large-scale databases have
proven useful in the prediction of anti-cancer drug sensitivity (Barretina et al., 2012) and
pre-clinical testing Wilding and Bodmer (2014).

We were interested to integrate experimental data from CCLE in a dialogue system,
but because CCLE provides an identifier resource that does not contain lexicalizations (i.e.,
names and synonyms), it was necessary to map CCLE to external identifier resources in order
to use their respective lexicalizations. Cellosaurus (Bairoch, 2018) and the Experimental
Factor Ontology (EFO) (Malone et al., 2010) were chosen because of their high quality
curation, detailed lexicalizations, and pre-existing mappings to CCLE and related identifier
resources.

EFO (v3.47.0) contains no direct mappings to CCLE, but Cellosaurus (v43.0) contains
1,448 (black lines in Fig. 4). Cellosaurus also contains 1,302 mappings to EFO which
theoretically enabling the inference of 723 two-hop mappings from CCLE to EFO (blue
dotted line in Fig 4). Further, we were able to recover a partially overlapping three-hop
mapping of 725 from CCLE to EFO when using the Cancer Dependency Map (DepMap) as
an intermediate (red dotted line in Fig 4). However, such inference is inconvenient, relies on
several implicit assumptions, and is still incomplete.

In order to complete the alignments between these three identifier resources, we gener-
ated novel lexical mappings (i.e., that were not inferrable) and curated 106 (+7%) from
CCLE to Cellosaurus and 516 (+71%) from CCLE to EFO. We also curated 30 non-
trivial negative mappings from CCLE to Cellosaurus and 9 non-trivial negative mappings
from CCLE to EFO to help avoid future mismatches. For example, we asserted that
CL14 LARGE INTESTINE (ccle:CL14 LARGE INTESTINE), a colorectal adenocarcinoma,
is not the same as XPCS2BASV Cl-14 (cellosaurus:ZP40), a transformed fibroblast.

While this case study focused on aligning cancer cell line terms, it represents an important
first step in more generally improving the interoperability between cell and cell line resources
that support comparative analysis, generation and characterization of disease models, and
many other efforts in drug discovery.
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4.2 Chemical identifier mappings to improve clinical trials data
integration

ClinicalTrials.gov is a database of publicly funded clinical studies provided by the United
States National Library of Medicine. It provides bulk programmatic access that includes for
each trial which include the MeSH terms for around 3,600 unique interventions (e.g., small
molecules) and around 4,200 unique conditions. However, MeSH does not provide primary
mappings to highly accessible identifier resources (e.g., ChEBI) that are necessary to support
data integration with other popular data sets using different identifier resources1.

In this case study, we focused on generating and curating lexical mappings from MeSH to
ChEBI. Many interventions appear across multiple clinical trials, so rather than exhaustively
curating MeSH term mappings for all unmapped interventions, we prioritized curation by
frequency of appearance across all 430K clinical trials. Because the distributions of frequencies
of interventions has a long tail, we selected a subset of MeSH terms that represented 80% of
the respective unmapped trial-intervention instances.

This resulted in the curation of mappings from 282 interventions’ MeSH terms to ChEBI
that covered 80% (120K) of the 150K trial-intervention pairs with unmapped interventions.
Note that some previous curations from MeSH to ChEBI already existed in Biomappings from
a combination of undirected curation and various task-specific curations, causing this number
to be lower than if we had conducted this curation at the beginning of the Biomappings
project. Further, iterations of identifying the most valuable 80% of remaining unmapped
interventions becomes successively less impactful due to the remaining interventions appearing
in fewer trials.

Ultimately, Biomappings (v0.2.0) contains 2,663 mappings from MeSH to ChEBI which
enables mapping 100,265 (70.5%) clinical trials to 987 unique chemicals. These mappings
enable the previous difficult integration of clinical trials data from ClinicalTrials.gov with
other resources using (or mappable to) ChEBI. For example, a knowledge graph containing
ClinicalTrials.gov, chemical-protein bioactivities in ChEMBL (Gaulton et al., 2017), and
protein-pathway memberships in WikiPathways can be used to answer questions like ”What
are the protein targets modulated in a given clinical trial?” and ”What are the pathways
modulated in a given clinical trial?” with simple graph queries relying on.

4.3 Extending community ontologies with missing mappings

Several high quality OBO ontologies cover similar topics/domains as MeSH and therefore
maintain mappings to relevant MeSH terms. When reviewing mappings to MeSH in multiple
widely used community ontologies, we found that mappings were incomplete. We therefore
predicted (using an automated lexical approach) and predicted mappings from four OBO
ontologies to MeSH outlined in Table 2.

We then implemented automated scripts for inserting the new mappings into the respective
version-controlled source files for each ontology in the OWL/XML, functional OWL, or
OBO text formats, depending on the ontology. Finally, we made pull requests on the
associated GitHub repository for each ontology to integrate the proposed mappings made
using Biomappings through which ontology maintainers were able to add these contributions.

Contributing curated mappings upstream is important and highly impactful because it is
propagated directly to users, generic services that consume ontologies such as Ubergraph (Bal-
hoff and Curtis, 2021), other services that consume mappings such as the Ontology Mapping
Service (EMBL-EBI, 2022), and pipelines that build knowledge graphs (e.g., Phenotype
Knowledge Translator (PheKnowLator) (Callahan, 2019)). Together, these form the basis
for a large number of computational workflows used across by researchers and engineers in
academic, industrial, and research institutions.

1Some mappings are available from MeSH to CAS and UNII, but these are not annotated well and these
resources are relatively inconvenient to use

10/15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.11.29.518386doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.29.518386
http://creativecommons.org/licenses/by/4.0/


Table 2. A summary of upstream contributions of 1,378 Medical Subject Headings (MeSH)
mappings back to primary ontology resources

Resource # Link
Human Disease Ontology (DO) 974 PR #1073
Monarch Disease Ontology (MONDO) 190 PR #4930
UBERON (Haendel et al., 2014) 130 PR #2432
Cell Ontology (CL) (Diehl et al., 2016) 84 PR #1561

5 Discussion

We presented Biomappings, a repository for community curated mappings between biomedical
entities. Biomappings stores predictions and manual curations along with granular metadata
and high-level semantics for each. It relies on an open data, open code, open infrastructure
philosophy combined with a novel governance strategy to foster community contributions and
engagement. It also explicitly encourages reuse and redistribution via its highly permissive
CC0 license. Biomappings uses public infrastructure for quality assurance and distribution
to promote transparency and increase trust.

5.1 Limitations

Biomappings enables the curation of missing mappings that are not available from primary
identifier resources. In some cases, however, identifier resources have idiosyncratic curation
guidelines for what constitutes a mapping, e.g., in how strictly two terms need to match to
justify a mapping. This means that conflicts may arise if the curators of a primary identifier
resource differ in their interpretation with what is curated via Biomappings. These can be
resolved through community engagement and discussion, and - as demonstrated in this paper
- direct contribution to primary resources in a public space.

Further, even after completing an exhaustive curation campaign to create mappings
between two identifier resources, it is still possible that new terms will be added late, even
more complex operations such as the splitting or merging of terms, changes to the scope of a
term’s definition. The automation of predictions in Biomappings can facilitate keeping up
with updates to identifier resources, however, automation does not yet extend to interpreting
more complex changes to resource over time, requiring manual review.

5.2 Extensibility

The initial focus of the Biomappings project is on entities in the biomedical domain. However,
we believe that the tooling and philosophy can be readily adapted to domains outside of
biomedicine, in fields where multiple overlapping identifier resources exist and need to be
mapped for data integration. One such example is agriculture and agronomy: as a proof of
concept, Biomappings includes 142 curations contributed to align concepts related to soil in
the Agronomy Ontology (Arnaud et al., 2020) and Agronomy Vocabulary (Mietzsch et al.,
2021). This demonstrates the possibility of the extension of Biomappings’ scope and the
project’s ability to motivate external contribution.

In our case studies, we used a lexical approach to predict missing mappings between
resources. However, the Biomappings curation cycle does not depend on the specific approach
to two resources are aligned to identify potential mappings. For instance, knowledge graph-
based or machine learning-based methods such as those demonstrated by Berrendorf et al.
(2020) can be readily used with Biomappings and our future work will involve making use of
such methods to find mappings missed via lexical alignment.
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5.3 Future Work on Biomappings

Following the initial development and curation of Biomappings, two ongoing challenges
remain. First, there are multiple ways in which the (semi-)automated approach to the
generation and curation of predictions could be improved in the future. These include
improving the data model to propagate information about the version of each identifier
resource used for the generation of predictions, and the ability to re-run generation workflows
in an automated way, then to notify relevant curators that new content is available. In order
to reduce curation burden, maximize return on curator time, and ultimately to scale curation
of mappings, we will need to develop more accurate approaches for prediction, filtering, and
prioritization.

The second challenge is to build, train, and engage a community of curators. One
sub-challenge of this is to create curation interfaces that can be more easily deployed (or
hosted) and seamlessly interact with git and GitHub (e.g. similar to the OntoDev suite, see
https://github.com/ontodev) to support potential curators who might not be familiar
with common software workflows or comfortable with version control. A second sub-challenge
is to improve the ability to contribute content curated in Biomappings back to primary
identifier resources. While we demonstrated this for four OBO ontologies, there are both
technical challenges (e.g., the data is not curated in public version control) and social
challenges (e.g., the maintainers are not receptive to contribution) for contributing content
to primary resources. Distributing the burden of curation, for example, using Biomappings,
has substantial potential to improve ontologies which are used either directly or indirectly
by most modern scientists.

5.4 Future Vision

We envision the broader community of curators and developers who create and consume
ontology mappings working in several directions to better support the tasks (e.g., ontology
merging, entity alignment) that rely on mappings. First, we hope to see more resources
adopting formats and minimum metadata standards like SSSOM to make their mappings more
reusable (e.g. by assigning more precise predicates and including provenance information).
Second, we hope to see these resources converging on external standards for the syntax and
semantics used to communicate the entities and predicates appearing in mappings, such as
the Bioregistry (Hoyt et al., 2022c) in order to improve interoperability. Third, we hope to
see large-scale efforts to aggregate, store, and redistribute mappings with more general scope
than existing mapping services. Finally, we hope to see the development, implementation,
and deployment of standardized, efficient algorithms for inference and retrieval of mappings
as well as an associated provenance model. We believe Biomappings will have an important
role in supporting curation efforts and applications of mappings as the community works
towards these goals.
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