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ABSTRACT 42 

Background 43 

Infection during pregnancy can result in adverse outcomes for both pregnant persons 44 

and offspring. Maternal vaccination is an effective mechanism to protect both mother 45 

and neonate into post-partum. However, our understanding of passive transfer of 46 

antibodies elicited by maternal SARS-CoV-2 mRNA vaccination during pregnancy 47 

remains incomplete.   48 

 49 

Objective 50 

We aimed to evaluate the antibody responses engendered by maternal SARS-CoV-2 51 

vaccination following initial and booster doses in maternal circulation and breastmilk to 52 

better understand passive immunization of the newborn.  53 

 54 

Study Design 55 

We collected longitudinal blood samples from 121 pregnant women who received 56 

SARS-CoV-2 mRNA vaccines spanning from early gestation to delivery followed by 57 

collection of blood samples and breastmilk between delivery and 12 months post-58 

partum. During the study, 70% of the participants also received a booster post-partum. 59 

Paired maternal plasma, breastmilk, umbilical cord plasma, and newborn plasma 60 

samples were tested via enzyme-linked immunosorbent assays (ELISA) to evaluate 61 

SARS-CoV-2 specific IgG antibody levels.  62 
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 63 

Results 64 

Vaccine-elicited maternal antibodies were detected in both cord blood and newborn 65 

blood, albeit at lower levels than maternal circulation, demonstrating transplacental 66 

passive immunization. Booster vaccination significantly increased spike specific IgG 67 

antibody titers in maternal plasma and breastmilk. Finally, SARS-CoV-2 specific IgG 68 

antibodies in newborn blood correlated negatively with days post initial maternal vaccine 69 

dose.  70 

 71 

Conclusion 72 

Vaccine-induced maternal SARS-CoV-2 antibodies were passively transferred to the 73 

offspring in utero via the placenta and after birth via breastfeeding. Maternal booster 74 

vaccination, regardless of gestational age at maternal vaccination, significantly 75 

increased antibody levels in breastmilk and maternal plasma, indicating the importance 76 

of this additional dose to maximize passive protection against SARS-CoV-2 infection for 77 

neonates and infants until vaccination eligibility.  78 

Keywords: Antibody, Booster, Breastmilk, COVID-19 vaccine, Newborn, Passive 79 

transfer  80 
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INTRODUCTION 81 

The fetal immune system is highly immature resulting in heightened susceptibility 82 

to infection.1-3 Similarly, infection during pregnancy can lead to significant adverse 83 

outcomes for both pregnant persons and offspring4, as has been demonstrated by the 84 

SARS-CoV-2 global pandemic.  These adverse outcomes can be mitigated through 85 

maternal vaccination which protects the pregnant person and the neonate/infant via 86 

passive transfer of maternal antibodies either in utero via the placenta or after birth via 87 

breastmilk .5-9 Immunoglobulins G (IgG) pass from maternal to fetal circulation via 88 

neonatal plasma Fc receptors (FcRN) in the placenta and fetal intestines.9  89 

Pregnant persons are encouraged to receive the seasonal influenza vaccine as 90 

soon as it becomes available, regardless of gestational trimester,8, 10 to prevent 91 

maternal influenza infection. Babies born to mothers who were vaccinated against 92 

influenza during pregnancy have higher hemagglutination-inhibition antibody (HIA) 93 

titers.11 Similarly, influenza-specific antibody titers in breastmilk are higher in mothers 94 

who were vaccinated.12 Current recommendations also include administration of the 95 

tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccine at 96 

approximately 27-36 weeks’ gestation13 as prior studies of maternal vaccination have 97 

suggested that IgG is preferentially transported across the placenta in late gestation, 98 

resulting in neonatal levels higher than maternal plasma levels.14  99 

The Centers of Disease Control and Prevention (CDC) now recommends 100 

vaccination against SARS-CoV-2 for persons who are pregnant or plan to become 101 

pregnant.15 Despite mounting evidence that maternal vaccination is safe, decreases 102 

maternal and neonatal morbidity and mortality, and leads to passive newborn 103 
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immunization via both placental transfer and breastfeeding,16-20 there remains a high 104 

level of vaccine hesitancy,21 resulting in only 71.5% of the pregnant population receiving 105 

a SARS-CoV-2 vaccination22 and less than half receiving a booster dose.23 Additionally, 106 

46% of pregnant women recorded vaccine hesitancy 24 citing safety concerns 25 despite 107 

lack of significant adverse gestational outcomes,26 a comparable antibody response in 108 

pregnant and nongravid females,19 evidence of transplacental passive transfer of IgG 109 

antibodies,16 and detectable antibody levels in breastmilk after the initial vaccination 110 

series.20, 27 Moreover, booster vaccinations led to increased levels of maternal IgG1 and 111 

IgA antibodies in umbilical cord blood28 and breastmilk.29  112 

For some pregnant individuals, vaccination decisions are highly influenced by a 113 

primary goal to protect neonatal health. Thus, their decision as to whether to receive 114 

primary or booster vaccinations during pregnancy or to delay vaccination until a later 115 

gestational age or postpartum are shaped by knowledge about impact of vaccine timing 116 

and duration of protection. To date, there are limited published data to guide these 117 

decisions.16, 18-20, 27-32 Previous studies investigating maternal SARS-CoV-2 vaccination 118 

include minimal longitudinal sampling that spans across the initial vaccination series 119 

and booster. In addition, the impact of gestational age at the time of vaccination on 120 

maternal and fetal/newborn antibody titers remains poorly understood. In this study, we 121 

addressed these gaps in our knowledge by measuring antibody levels in maternal 122 

circulation, cord blood, newborn blood, and breastmilk, throughout gestation, at birth, 123 

and up to 12 months post-partum in a cohort of 121 women.  124 

MATERIALS AND METHODS 125 

Ethical statement 126 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.518385doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.29.518385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

The study was approved by the institutional Ethics Review Boards of Oregon Health & 127 

Science University and the University of Kentucky. All subjects provided written consent 128 

prior to enrollment which occurred from March 2021 to June 2022.  129 

Sample processing 130 

Breastmilk was diluted 1:1 in 1X HBSS (CORNING, Corning, NY) and centrifuged at 131 

810g at room temperature for 10 minutes. After the removal of the fat layer, the 132 

supernatant was collected and stored at -80°C until analysis. Whole blood samples 133 

were processed as previously described.33 134 

 135 

Enzyme-linked immunosorbent assay (ELISA): 136 

An indirect ELISA was used to determine the IgG end-point titer (EPT) of antibodies 137 

against SARS-CoV-2 receptor-binding domain (RBD) of the spike protein as described 138 

in 34. Newborn plasma was initially diluted 1:50 in blocking buffer (BB) while maternal 139 

plasma and umbilical cord plasma were initially diluted 1:30. Breastmilk was loaded at a 140 

4:1 dilution to BB. A three-fold dilution series was performed for all plasma samples 141 

while breastmilk samples were not diluted further. Plasma endpoint IgG titers (EPT) 142 

were calculated using log-log transformation of the linear portion of the curve, and 0.1 143 

OD units as cut-off. For breastmilk, antibody levels were reported as optical density 144 

(OD) values. 145 

To measure specific IgG isotypes titers, newborn plasma was diluted 1:50 for IgG1 and 146 

IgG3, and 1:10 for IgG2 and IgG4 in BB while maternal plasma and umbilical cord 147 

plasma were diluted 1:30 for IgG1 and IgG3 and 1:10 for IgG2 and IgG4 in BB followed 148 
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by 6 three-fold dilutions. Breastmilk was loaded at a 4:1 ratio of sample to BB. 149 

Responses were visualized by adding HRP anti-human IgG1, IgG2, IgG3, or IgG4 150 

(1:4,000 in BB) (SouthernBiotech, Birmingham, Alabama). Plates were read and 151 

analyzed as previously cited 34.  152 

Statistical analyses: 153 

We conducted all statistical analyses using Prism9 (Graphpad Prism, San Diego, 154 

California) and SAS version 9.4 (TS1M1, SAS institute, Cary, NC) statistical software.  155 

Data was tested for normality. Normally and not normally distributed data sets were 156 

analyzed by parametric and nonparametric tests, respectively. Two group comparisons 157 

were conducted via a paired T-test if samples were from the same participants and an 158 

unpaired T-test if not. Multiple group comparisons were tested by a paired one-way 159 

ANOVA with Dunn’s multiple comparison when all data were derived from the same 160 

subjects. An unpaired ANOVA was used for IgG isotype analysis when data on for all 161 

four isotypes were not derived from the same group of subjects. Additionally, the half-162 

life of the antibody response following initial or booster dose of SARS CoV-2 vaccines 163 

was calculated using the standard exponential decay rate formula. The half-life was 164 

estimated using a probability integral transform. Pearson’s correlation analysis was 165 

used to establish pair-wise relationships. P-values and FDR ≤ 0.05 were considered 166 

statistically significant; 0.05-0.1 were denoted as trending. 167 

RESULTS 168 

Cohort Description 169 

 170 
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Maternal blood and breastmilk samples were obtained longitudinally from 121 SARS-171 

CoV-2 vaccinated participants (Pfizer BN162b2 or Moderna mRNA-1273). The 172 

overwhelming majority (90.9%) of participants received the Pfizer BN162b2 vaccine; the 173 

remainder received the Moderna mRNA-1273 vaccine. Newborn blood, umbilical cord 174 

blood, and colostrum were collected at the time of delivery (Figure 1A). The 175 

characteristics of the cohort are described in Table 1. Participants received their first 176 

vaccine either pre-pregnancy (12.4%); first trimester (T1, 12.4%); second trimester (T2, 177 

29.8%); third trimester (T3, 22.3%); or postpartum (23.1%). Nearly three-quarters 178 

(72.7%) of participants received a booster dose post-partum (Table 1). The average 179 

maternal age at initial vaccination and the average gestational age at delivery were not 180 

different between groups. 181 

Vaccination against SARS-CoV-2 leads to a robust antibody response in pregnant 182 

women which is significantly increased following booster dosing. 183 

 184 

RBD-specific IgG titers strongly inversely correlated with time elapsed since the first 185 

vaccination (r=0.07043 p<0.0001) with a half-life of 56.45 days. (Figure 1B). IgG 186 

effector function has been shown to vary among antibody isotypes.35 Specifically, viral 187 

infections are associated with increased IgG1 and IgG3 isotypes, while significant IgG2 188 

involvement is linked to defense mechanisms against bacterial capsular 189 

polysaccharides.35, 36 IgG4 immunoglobulin responses have been attributed to 190 

subsequent or persistent exposure to antigen.35,36,37 Therefore, we investigate the IgG 191 

isotype specificity post mRNA vaccination. The initial series elicited a comparable 192 

response among all IgG isotypes (Figure 1C). Circulating RBD-specific IgG titers 193 
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increased significantly after the booster dose (p<0.0001) (Figure 1D). In addition, 194 

antibody responses elicited by the booster dose had a longer half-life of 128.12 days 195 

(Figure 1B, 1E) with minimal decrease in IgG levels after 6 months.  The booster led to 196 

a significant increase in all four IgG isotypes measured in maternal plasma (Figure 1F) 197 

with IgG4 becoming the dominant isotype (Figure 1G). Gestational age at the time of 198 

initial vaccination did not significantly impact antibody levels in maternal plasma at 199 

delivery and post partum (Figure 1H). However, RBD-specific IgG antibody titers in 200 

women who were subsequently boosted were significantly higher 6 weeks post-partum 201 

(wpp) (p=0.0272), 3 months post-partum (mopp) (p=0.0032), 6mopp (0.0467), and 202 

9mopp (0.0089) respectively relative to titers in women who were not boosted (Figure 203 

1I).  204 

Breastmilk IgG antibody levels positively correlated with maternal circulating 205 

antibody levels.  206 

 207 

The initial 2-dose vaccination regimen resulted in detectable IgG antibody response in 208 

breastmilk (albeit much reduced levels compared to maternal plasma) with a half-life of 209 

61.34 days (Figure 2A). In contrast to maternal plasma, levels of RBD-specific IgG4 210 

were significantly lower than those of IgG1 (p<0.0001) and IgG3 (p = 0.0011) in 211 

breastmilk after initial maternal vaccination (Figure 2B).  As described for maternal 212 

circulation, the booster led to a significant increase in breastmilk antibody levels 213 

(p<0.0001) (Figure 2C) and half-life (124.67 days) (Figure 2D). After the booster dose, 214 

levels of IgG1 and IgG4 increased significantly (Figure 2E) with IgG4 becoming the 215 

dominant IgG isotype in breastmilk (Figure 2F).  As seen for maternal systemic 216 
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antibodies, gestational age at the time of initial vaccination did not significantly impact 217 

antibody levels in breastmilk (Figure 2G). However, booster vaccination resulted in a 218 

significant increase in RBD-specific IgG titers at 6wpp and 3mopp in women who were 219 

initially vaccinated in T1 (p=0.0055; p=0.056) or T2 (p<0.001 for both time points) 220 

compared to levels in women who had not received the booster dose. (Figure 2H). 221 

Significantly higher antibody levels were also observed at 6mopp among those initially 222 

vaccinated at T3 and then received a booster (p=0.0174). Antibody levels in women 223 

who were vaccinated post-partum increased post booster dose at 9mopp (p=0.0622) 224 

and 12mopp (p=0.0536). Breastmilk antibody titers significantly positively correlated 225 

with plasma antibody titers (Figure 2I) at 6 weeks (r=0.1346 p=0.0039) and again after 226 

(55.27 days) receiving the booster at 12mopp (r=0.3925 p=0.0041). 227 

Maternal IgG antibodies are passively transferred and are detected in cord blood 228 

plasma.  229 

At delivery, RBD-specific IgG antibodies were detected in umbilical cord blood (UCB) 230 

plasma albeit at significantly lower levels than in maternal circulation at delivery 231 

(p=0.0012) or peak maternal IgG titers (Figure 3A,B). Significant difference was most 232 

evident when mothers received their initial SARS-CoV-2 vaccination in the second (p = 233 

0.0494) and third trimester (p = 0.0012) (Figure 3C). RBD-specific IgG2 antibody titers 234 

were lowest in cord blood (Figure 3D). Interestingly, there was no correlation between 235 

UCB RBD-specific IgG titers and maternal titers at delivery (Figure 3E), peak maternal 236 

IgG levels pre-delivery (Figure 3F), or time since maternal first vaccination (Figure 3G).   237 

Maternal IgG antibodies are present in newborn circulation.  238 
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UCB is often used as surrogate for newborn blood,38, 39 however, there may be key 239 

differences in antibody transfer into cord blood and fetal circulation. Therefore, we next 240 

assessed RBD-specific IgG titers in newborn blood. IgG antibody titers were 241 

comparable in paired UCB and newborn plasma samples (Figure 4A) and correlated 242 

with each other (r=0.1943 p=0.0056) (Figure 4B). Moreover, as described for UCB 243 

plasma, RBD-specific IgG titers in newborn plasma were lower than those observed in 244 

maternal circulation at delivery (p=0.0200) as well as compared to peak maternal levels 245 

pre-delivery (p<0.0001) (Figure 4C, Supp. 1A), especially for mothers who received 246 

their initial vaccination series during the third trimester (p=0.0200) (Figure 4D). 247 

However, in contrast to UCB, a significant positive correlation was observed between 248 

newborn plasma and paired maternal plasma RBD-specific IgG titers at delivery 249 

(r=0.3782 p=<0.0001) (Figure 4E), but not peak maternal levels pre-delivery (Supp. 250 

1B). As described for UCB, titers of RBD-specific IgG2 titers were lowest in newborn 251 

plasma (Figure 4F). Unlike UCB, newborn antibody titers were significantly inversely 252 

correlated with the time since initial maternal vaccination (r=0.3130 p=0.0002) (Figure 253 

4G) with lower newborn IgG antibody titers for infants born to mothers vaccinated in 254 

early pregnancy.  255 

Impact of fetal sex 256 

Previous studies have indicated that male fetal sex is associated with lower maternal 257 

EPT and transplacental transfer of SARS-CoV-2 antibodies following SARS-CoV-2 258 

infection,40 therefore we investigated the impact of fetal sex. No significant difference in 259 

peak RBD-specific IgG in maternal circulation pre-delivery (Supp 1C), maternal 260 
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antibody levels at delivery (Supp 1D), UCB (Supp 1E), or newborn plasma was 261 

observed based on fetal sex (Supp 1F).  262 

Comment 263 

Principal Findings 264 

 It is well established that maternal vaccination during pregnancy is an effective method 265 

to protect neonates via passive transfer of maternal antibodies.8, 13, 41 Despite studies on 266 

the immunogenicity and efficacy of the SARS-CoV-2 vaccines in adult populations, 267 

vaccine hesitancy remains relatively high among pregnant women. 24 Our results 268 

confirm earlier conclusions that the initial two dose vaccination series during gestation 269 

resulted in appreciable RBD-specific IgG response in maternal circulation, UCB, and 270 

breastmilk. 20, 27 Importantly, longitudinal analysis of post-partum samples indicates that 271 

the booster dose is essential for producing higher and more durable antibody levels in 272 

both maternal circulation and breastmilk,28, 29, 42 and should be strongly encouraged for 273 

all pregnant people to increase neonatal passive immune protection against SARS-274 

CoV-2.  275 

Results in the Context of What is Known 276 

Although SARS-CoV-2 RBD antibodies were present in UCB, their levels were 277 

significantly lower compared to maternal plasma. This observation is in line with 278 

previous studies of SARS-CoV-2 maternal infection 31, 43 and maternal vaccination,27 but 279 

differ from prior studies on Tdap vaccination 44 and another SARS-CoV-2 study that 280 

reported high antibody levels in UCB when compared to maternal.32  Furthermore, our 281 

data showed no correlation between maternal and UCB IgG titers against RBD. These 282 
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data differ from a study that showed early third trimester vaccination resulted in the 283 

highest maternal antibody titer.45 A possible explanation for the discrepancy between 284 

our study and this earlier one may be differences in sample size (121 versus 1536). 285 

Moreover, considerable differences in the platforms used to measure antibody 286 

responses to SARS-CoV-2 mRNA vaccination ranging from traditional end-point ELISA 287 

to Luminex based antibody levels and OD measurements at one given dilution could be 288 

another explanation for the discrepancies between the results described herein and 289 

elsewhere. In addition, earlier studies reported a significantly higher level of IgG 290 

antibodies in arterial relative to venous cord blood.46 Thus, another possible explanation 291 

for the discrepancies between these studies and ours could stem from a variability in 292 

UCB sample collection. 293 

Similar to our observations with cord blood plasma, IgG titers were also lower in 294 

newborn plasma compared to those in maternal circulation. In contrast to the data 295 

obtained using cord blood, we do see a significant negative correlation between the 296 

days post first vaccination and RBD IgG in newborn plasma, suggesting higher newborn 297 

EPT are associated with maternal vaccination in T3. The increased antibody presence 298 

in newborn circulation following vaccination during T3 agrees with the rationale driving 299 

current Tdap vaccination recommendation during gestational T3.13, 47 Furthermore, IgG1 300 

titers in newborn circulation were higher than those observed in maternal circulation 301 

confirming the greatest transplacental transfer ratio of IgG1.46 These data highlight the 302 

need to examine newborn blood samples when feasible. 303 

The booster resulted in a striking increase in antibody levels in breastmilk, independent 304 

of the trimester when the initial vaccine series was administered in line with results from 305 
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previous studies.29, 45 We report a significant increase across all isotypes with IgG1 and 306 

IgG4 becoming dominant after booster vaccination. Plasma observations are similar to 307 

those reported in recent studies.42 Since B-cells undergo the class switching pattern of 308 

IgM>IgG3>IgG1>IgA>IgG2>IgG4, 48 the IgG4 dominance we observed suggest 309 

enhanced maternal B-cell class switching. Our study results align with a study that 310 

showed an increase in IgG4 with pregnancy and higher IgG4 response in the pregnant 311 

population when compared to non-pregnant individuals.49  312 

Strengths and Limitations  313 

Our study leverages paired longitudinal samples from subjects ranging from their initial 314 

SARS-CoV-2 vaccine through the administration of the booster dose. Furthermore, the 315 

collection of newborn blood at delivery allowed us to directly evaluate passive transfer 316 

into fetal circulation and draw comparisons to cord blood, a commonly used surrogate. 317 

However, our study is not without limitations, including its sole focus on RBD-specific 318 

IgG binding antibody responses targeting the sequence from the USA-WA1/2020 319 

isolate, as well as a lack of functional assays to assess vaccine-induced virus 320 

neutralization and antibody Fc-dependent functions. 321 

Clinical Implications and Conclusion 322 

Taken together, our results show that SARS-CoV-2-specific maternal antibodies 323 

generated via vaccination are passively transferred in utero and after birth via 324 

breastfeeding but wane within 6 months after first vaccination dose. Furthermore, our 325 

longitudinal maternal data indicate that breastmilk antibody levels are dramatically 326 

increased by the booster dose. Therefore, the best protection against SARS-CoV-2 327 
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mothers can give to their offspring is to receive the 3-dose vaccination series including 328 

the booster dose at any point during pregnancy and prior to delivery to allow for 329 

placental antibody transfer, and to subsequently breastfeed their children for at least 6 330 

months, at which point their infants are eligible for vaccination as the CDC recently 331 

authorized SARS-CoV-2 vaccination of children starting at 6-months of age. 50 332 

Continued breastfeeding throughout the first year of life is encouraged as SARS-CoV-2-333 

specific maternal antibody levels persist in breastmilk following booster dosing for at 334 

least 12 mopp.  335 
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 Table 1: Cohort Metadata 462 

 

All (121) 

Pre-

pregnancy 

T1 T2 T3 Post-

Partum 

N (%) 15 (12.4%) 15 (12.4%) 36 (29.8%) 27 

(22.3%) 

28 (23.1%) 

Maternal age 

(years) 

34.9 ± 3.7 34.5 ± 3.1 34.2 ± 4.1 34.8 ± 4.7 33.6 ± 4.6 

Gestational age 

at delivery (years) 

38.9 ± 0.9 39.2 ± 1.2 38.9 ± 1.3 39.0 ± 2.0 39.0 ± 1.2 

Fetal sex (% 

female) 

33% 40% 47% 52% 36% 

Initial Vaccine 

Series 

     

Pfizer 13 13 34 26 24 

Moderna 2 2 2 1 4 

Received booster 14 12 27 23 15 

Days between 

initial vaccination 

and booster 

278 ± 27.8 298.5 ± 

27.7 

242.3 ± 

32.0 

257.5 ± 

32.8 

263.3 ± 

32.4 

 463 

Table 1 Cohort characteristics. Subjects are stratified by the trimester of initial 464 

maternal SARS-CoV-2 vaccination. Maternal age and gestational age at delivery are 465 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.518385doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.29.518385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

mean ± standard deviation. There is no significant difference among maternal age nor 466 

gestational age of delivery within the cohort when stratified by vaccination timepoint.  467 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.11.29.518385doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.29.518385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

FIGURE LEGENDS 468 

Figure 1: SARS-CoV-2 initial vaccination regimen and the booster result in robust 469 

RBD-specific IgG antibody response in maternal plasma.   470 

(A) Experimental design to investigate the impact of maternal SARS-CoV-2 vaccination 471 

on passive transmission of RBD-specific IgG antibodies by assessing antibody titers in 472 

maternal plasma, UCB, newborn plasma, and breastmilk. (B) RBD-specific IgG antibody 473 

titers in maternal plasma relative to days post first vaccination (n=370 samples). (C) IgG 474 

isotypes titers in maternal circulation 163.53 ± 14.28 days post first vaccine and pre-475 

booster, (n=15). (D) RBD-specific IgG antibody titers 50.59 ± 4.46 days before and 476 

55.74 ± 4.14 days after booster dose (n=77 pairs).  (E) RBD-specific IgG antibody titers 477 

in maternal plasma relative to days post booster dose (n=112). (F) IgG isotype levels 478 

84.07 ± 12.34 days before and 58.47 ± 8.98 days after the booster dose (n=15 pairs). 479 

(G) Isotype analysis of maternal plasma 58.13 ± 8.87 days post booster (n=16). (H-I) 480 

Average RBD-specific IgG antibody titers post-partum in women who have not received 481 

the booster (H) (Prepreg, n=0; T1, n=26; T2, n=57; T3, n=64; Postpartum, n=40) and (I) 482 

who have received the booster (Prepreg, n=30; T1, n=16; T2, n=43; T3, n=30; 483 

Postpartum, n=12) classified by trimester of initial vaccination. Bar graphs show median 484 

values with the standard error of the mean (SEM). * indicates a significant difference 485 

between the antibody levels at that timepoint when comparing pre- and post-booster 486 

groups (panel H vs. panel I). ∗ p < 0.03 ∗∗ p < 0.002, ∗∗∗ p < 0.0002, ∗∗∗∗ p<0.0001. 487 

 488 

Figure 2: SARS-CoV-2-specific IgG antibody titers in breastmilk correlate with 489 

those in maternal circulation.   490 
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(A) RBD-specific IgG levels in breastmilk after the first and second vaccine doses 491 

(n=179). (B) IgG isotype levels in breastmilk 174.33 ± 10.08 days after the first and 492 

second vaccine doses, (IgG1, n=26; IgG2, n=22; IgG3, n=24; IgG4, n=22). (C) 493 

Breastmilk IgG levels 37.84 ± 3.80 days prior to and 55.32 ± 5.30 days after booster 494 

(n=45 pairs). (D) RBD-specific IgG antibodies in breastmilk after maternal booster 495 

vaccination (n=123). (E) Levels of RBD specific IgG isotypes in breastmilk 57.50 ± 8.17 496 

days before (n=28) and 117.23 ± 11.32 days after the booster dose (n=44). (F) IgG 497 

isotype detection of SARS-CoV-2 RBD specific antibodies in breastmilk 115.10 ± 11.46 498 

days after booster dose (n=43). (G-H) Average IgG titers post-partum in women who 499 

had not received the booster dose (G) (Prepreg, n=0; T1, n=15; T2, n=52; T3, n=51; 500 

Postpartum, n=39) and (H) who had been boosted (Prepreg, n=26; T1, n=14; T2, n=38; 501 

T3, n=21; Postpartum, n=12) classified by trimester of initial vaccination. * indicates a 502 

significant difference between the antibody levels at that timepoint when comparing pre- 503 

and post-booster (panel G vs H). Data are median values ± SEM. (I) Correlation 504 

between RBD-specific IgG levels in breastmilk and maternal plasma post-partum 505 

(Delivery, n=24; 6 weeks (6wpp), n=60; 3 months (3mopp), n=59; 6 months (6mopp), 506 

n=48; 9 months (9mopp), n=32 and 12 months (12m), n=19). ∗ p < 0.03, ∗∗ p < 0.002, 507 

∗∗∗ p < 0.0002, ∗∗∗∗ p<0.0001. 508 

 509 

Figure 3: Maternal IgG antibodies generated in response to vaccination are 510 

detected in umbilical cord plasma.   511 

(A) RBD-specific IgG titers in maternal circulation and umbilical cord plasma at delivery 512 

(n=45 pairs). (B) Correlation of peak levels of RBD-specific IgG antibodies in maternal 513 
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circulation pre-delivery and UCB (n=41). (C) Comparison of antibody levels in UCB and 514 

maternal circulation (M) at delivery, by trimester of initial maternal vaccination (T1=10, 515 

T2=19, T3=14). (D) IgG isotype analysis of UCB (n=14 pairs).  (E) Correlation between 516 

UCB and maternal RBD-specific IgG titers at delivery (n=45). (F) Correlation between 517 

UCB and peak RBD specific IgG in maternal circulation before delivery (n=41). (G) 518 

RBD-specific IgG titers in UCB relative to days since maternal first vaccine dose (n=48). 519 

∗ p < 0.03, ∗∗ p < 0.002, ∗∗∗ p < 0.0002, ∗∗∗∗ p<0.0001. 520 

 521 

Figure 4: Passively transferred antibodies are detected in newborn circulation. 522 

(A) Comparison (n=38 pairs) and (B) correlation (n=38) between UCB and newborn 523 

blood RBD-specific antibody titers. (C) Overall comparison between maternal RBD-524 

specific IgG antibodies at delivery and newborn RBD-specific IgG titers, independent of 525 

trimester of initial vaccination, (n=35) and (D) RBD-specific IgG titers in maternal 526 

plasma (M) at delivery and newborn plasma stratified by trimester of initial maternal 527 

vaccination (T1, n=6; T2, n=20; T3, n=7). (E) Correlation (n=35) of RBD-specific IgG 528 

titers in newborn and maternal plasma at delivery. (F) IgG isotype analysis in newborn 529 

plasma (n=14 pairs). (G) RBD-specific IgG titers in newborn plasma relative to days 530 

post maternal vaccination (n=40). ∗ p < 0.03, ∗∗ p < 0.002, ∗∗∗ p < 0.0002, ∗∗∗∗ 531 

p<0.0001. 532 

 533 

Supplemental Figure 1: Fetal sex does not influence maternal antibody response 534 

to the SARS-CoV-2 vaccine or the passive transfer of SARS-CoV-2 vaccine-535 

elicited antibodies.   536 
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(A) Comparison (n=38) and (B) correlation (n=38) between peak RBD-specific IgG titers 537 

in maternal circulation pre-delivery and newborn plasma. (C) Peak maternal antibody 538 

titers pre-delivery (Female, n= 28; Male, n=19). (D) Antibody EPT of maternal plasma 539 

delivery (Female, n=34; Male, n=25). (E) RBD-specific IgG titers in UCB (Female, n=31; 540 

Male, n=23), and (F) RBD-specific IgG titers in newborn plasma (Female, n=24; Male, 541 

n=23) by fetal sex. Data in bar graphs are mean ± SEM. (G-J) Comparison of IgG 542 

isotype antibody titers in newborn blood, UCB, and maternal plasma at delivery. ∗ p < 543 

0.03, ∗∗ p < 0.002, ∗∗∗ p < 0.0002, ∗∗∗∗ p<0.0001. 544 
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