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Background 26 

KDM5 family proteins are multi-domain regulators of transcription that when dysregulated 27 

contribute to cancer and intellectual disability. KDM5 proteins can regulate transcription through 28 

their histone demethylase activity in addition to demethylase-independent gene regulatory 29 

functions that remain less characterized. To expand our understanding of the mechanisms that 30 

contribute to KDM5-mediated transcription regulation, we used TurboID proximity labeling to 31 

identify KDM5-interacting proteins.  32 

Results 33 

Using Drosophila melanogaster, we enriched for biotinylated proteins from KDM5-TurboID-34 

expressing adult heads using a newly generated control for DNA-adjacent background in the form 35 

of dCas9:TurboID. Mass spectrometry analyses of biotinylated proteins identified both known and 36 

novel candidate KDM5 interactors, including members of the SWI/SNF and NURF chromatin 37 

remodeling complexes, the NSL complex, Mediator, and several insulator proteins.  38 

Conclusions 39 

Combined, our data shed new light on potential demethylase-independent activities of KDM5. In 40 

the context of KDM5 dysregulation, these interactions may play key roles in the alteration of 41 

evolutionarily conserved transcriptional programs implicated in human disorders. 42 

  43 
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 44 

Background 45 

Lysine demethylase 5 (KDM5) family proteins are multidomain transcriptional regulators 46 

able to recognize and enzymatically modify chromatin.(1,2) The best characterized function of 47 

KDM5 proteins is their histone demethylase activity, which cleaves a chromatin mark that is found 48 

at most active promoters, trimethylated lysine 4  on histone H3 (H3K4me3).(1,3–6) KDM5 proteins 49 

are evolutionarily conserved, with four paralogous genes in mammals encoding KDM5A-D, while 50 

animals with smaller genomes such as nematodes and flies possess a single kdm5 gene. The 51 

importance of KDM5 function is emphasized by the observation that changes to the expression 52 

of this family of proteins is associated with two clinical outcomes: cancer and intellectual disability 53 

(ID).(7–9) KDM5A and KDM5B are amplified or overexpressed in a range of cancers, including 54 

breast, ovarian, skin, and lung.(8,10–13) KDM5A/B appear to play several roles in tumorigenesis, 55 

including promoting cell cycle progression and regulating the metabolism of cancer stem 56 

cells.(14–16) In contrast to the gain of function seen in cancer cells, loss of function variants in 57 

the autosomal paralogs KDM5A, KDM5B, and the X-linked KDM5C have been observed in 58 

individuals with intellectual disability.(17–21) KDM5 proteins have an evolutionarily conserved 59 

role in regulating critical gene expression programs in neurons as evidenced by morphological 60 

and functional neuronal phenotypes in KDM5B and KDM5C knockout mice.(21–23) Similarly, flies 61 

and nematodes with kdm5 mutations display altered neuroanatomical development and 62 

neurotransmission. (24–26)  63 

 64 

KDM5 catalytic function is mediated by the joint activity of the Jumonji N (JmjN) and JmjC 65 

domains and is classically thought to result in transcriptional repression. In addition, KDM5 66 

proteins possess other potential gene regulatory domains, including plant homeodomain domain 67 

(PHD) motifs that can recognize H3K4me2/3 or H3K4me0, and a potential DNA binding A/T 68 

interaction domain (ARID).(27–32) These binding domains likely function in-concert with the 69 
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histone demethylase activity of KDM5 by, for example, recruiting it to target promoters or altering 70 

enzymatic activity through the activity of individual or combinations of accessory domains. 71 

Conversely, non-enzymatic functions of these domains and/or other motifs of KDM5 that have no 72 

currently known function, such as the C5HC2 domain, could regulate transcription through distinct 73 

mechanisms. There is ample evidence that KDM5 proteins can regulate transcription 74 

independently of their demethylase activity. For instance, KDM5 is essential for viability in flies in 75 

a manner that is independent of its histone demethylase activity.(31,33) In addition, both 76 

demethylase-dependent and independent functions of KDM5 are critical for Drosophila neuronal 77 

development and function.(24,25) Consistent with this, some missense alleles of KDM5C 78 

observed in individuals with intellectual disability diminish its enzymatic activity, while others do 79 

not.(34–37) Similarly, demethylase dependent and independent activities of KDM5 proteins are 80 

likely to be important for their contributions to the etiology of and spread of cancers.(38,39) For 81 

example, KDM5B demethylase-independent functions in breast cancer promote metastatic 82 

potential to the lung.(38,39) Thus, even though KDM5 proteins derive their name from their 83 

enzymatic function, other conserved motifs contribute to their gene regulatory activities, although 84 

these activities remain much less characterized.  85 

 86 

Understanding the repertoire of gene regulatory mechanisms utilized by KDM5 family proteins 87 

requires a comprehensive understanding of the proteins they can interact with. Traditional 88 

immunoprecipitation coupled with mass spectrometry (IP-MS) approaches have been used to 89 

identify proteins that form complexes with KDM5 family proteins in both mammals and 90 

Drosophila.(6,40–45) These experiments have revealed several conserved interactions, most 91 

notably with histone deacetylase 1 (HDAC1) and other proteins known to associate with this 92 

chromatin modifier.(42,44) To expand our understanding of the proteins that function with KDM5 93 

to mediate its gene regulatory activities, we used TurboID-mediated proximity labeling.(46) This 94 

has been shown to be a powerful technique to identify weak or transient interactions that may 95 
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otherwise be disturbed during the process of traditional IP experiments.(46–53) This technique 96 

takes advantage of the promiscuous biotin ligase activity of TurboID, which results in the 97 

biotinylation of lysine residues within 10 nm of its active site. When expressed as a chimeric fusion 98 

to a protein of interest, interacting proteins will be biotin-labeled.(46,54) Covalently modified 99 

proteins are then recovered with streptavidin beads and prepared for liquid chromatography-100 

tandem mass spectrometry (LC-MS/MS). By expressing KDM5 that was N- or C-terminally tagged 101 

with TurboID in vivo, we recovered about half of previously identified interactions in Drosophila, 102 

and almost all interactions known to be conserved in mammalian cells, clearly demonstrating the 103 

robustness of this technique. Furthermore, we have discovered a novel interactome for KDM5 104 

that suggests roles in the function of the switch/sucrose non-fermentable (SWI/SNF), non-specific 105 

lethal (NSL), nucleosome remodeling factor (NURF), and Mediator complexes, in addition to 106 

chromatin insulation.  107 

 108 

Results 109 

Chimeric TurboID-KDM5 proteins are functional and broadly biotinylate 110 

To identify KDM5 interactors in vivo, we created constructs in which KDM5 was N- or C-terminally 111 

tagged with TurboID to maximally identify proteins that could function with KDM5. Because our 112 

long-term goal is to further develop our Drosophila model of KDM5-induced intellectual disability, 113 

we chose to carry out our TurboID studies using adult heads to enrich for neuronal tissue, using 114 

the general workflow shown in Fig 1A. Generating a TurboID system that closely mimics 115 

endogenous kdm5 expression has been shown to be important for delivering more specific 116 

biotinylation compared to overexpression.(55) Based on our prior generation of a UASp-kdm5 117 

transgene that is expressed at approximately endogenous levels in somatic cells when crossed 118 

to a range of Gal4 drivers, we generated transgenic flies harboring HA-tagged UASp-119 

TurboID:kdm5  and UASp-kdm5:TurboID (Fig. 1B).(56) Therefore, we generated both N-terminal 120 

(NT-KDM5) and C-terminal (CT-KDM5) TurboID fusions of KDM5 to understand the full breadth 121 
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of its interactome and to highlight terminus-specific interactions. To test the functionality and 122 

expression of the chimeric KDM5-TurboID proteins, we expressed them ubiquitously in a kdm5140 123 

null mutant background.(33) Western blot analysis using adult heads showed that NT-KDM5 and 124 

CT-KDM5 were expressed at levels similar to those observed from an endogenously HA-tagged 125 

KDM5 (Fig. 1C). Importantly, N- and C-terminally tagged KDM5 proteins were able to restore 126 

viability to kdm5140 null mutant flies, which normally die prior to adulthood (Fig. 1D).(33) Tagging 127 

KDM5 with TurboID therefore does not interfere with its essential functions. Flies in which 128 

TurboID-KDM5 was the only source of KDM5 (kdm5140;Ubi-Gal4>TurboID:kdm5) were used for 129 

all subsequent experiments to maximize the number of interactors identified.  130 

 131 

Determining the proper controls to identify the KDM5 proximitome 132 

To confidently identify proteins that function with KDM5, appropriate controls are critical. 133 

Due to the novelty of the technique, there are no standard controls for proximity labeling 134 

experiments. Many studies simply enrich over endogenous biotinylation and bead 135 

background.(57–60) Other studies expressed forms of TurboID alone that were localized to the 136 

specific cellular compartment that the protein of interest resided, such as the cellular 137 

membrane.(46,49,50) As a non-TurboID-expressing wild-type control with a similar genetic 138 

background, we used a fly strain in which endogenous kdm5 is removed and HA-tagged KDM5 139 

is expressed using its endogenous promoter from a transgene inserted at the same locus as the 140 

TurboID constructs (kdm5140;gkdm5WT). We will refer to this genotype as control. We also 141 

generated a transgene able to express nuclear localized, HA-tagged, TurboID alone using the 142 

same UAS promoter used for CT-kdm5 and NT-kdm5, in an effort to assay general nuclear 143 

background (Fig. 1B). To compare the levels of TurboID alone to TurboID-KDM5 we expressed 144 

these transgenes using Ubi-Gal4 in a wild-type and kdm5140 background, respectively. Anti-HA 145 

western blot from adult heads showed significantly higher levels of expression for TurboID alone, 146 

possibly creating high levels of background biotinylation in this strain (Fig. 1C). Because biotin is 147 
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essential for animal viability and thus included in the standard fly food used for crosses and stock 148 

maintenance, we assessed the ability of all TurboID transgenes to biotinylate proteins when 149 

expressed using Ubi-Gal4 by probing with infrared-conjugated streptavidin. Compared to control 150 

flies, similar levels of biotin-conjugated proteins were observed in heads expressing TurboID, NT-151 

KDM5 and CT-KDM5, demonstrating their ability to biotinylate in vivo (Fig 1C).  152 

 153 

To identify proteins preferentially biotinylated by NT-KDM5 and CT-KDM5 compared to 154 

control and TurboID alone, we carried out streptavidin-bead pulldowns in quadruplicate followed 155 

by LC-MS/MS. This experiment (experiment 1) identified a total of 1332 proteins, 476 of which 156 

are found in the nucleus where we have previously shown KDM5 to be localized.(25) Principal 157 

component analysis (PCA) of normalized nuclear protein abundances showed that TurboID alone, 158 

NT-KDM5, and CT-KDM5 clustered together, but were distinct from controls (Fig S1A). We 159 

therefore compared the proteins identified in NT-KDM5 and CT-KDM5 to control heads which 160 

revealed enrichment of 172 and 184 proteins, respectively, using a p-value cutoff of 0.05 (Fig 161 

S1B, C; Table S1). 136 proteins were commonly enriched by N- and C-terminally tagged KDM5, 162 

suggesting that we can robustly detect proteins in proximity to KDM5 (Fig. S1D). To assess the 163 

quality of our data, we determined how many known KDM5 interactors were identified in our 164 

analyses. Fifteen proteins have been established to form a complex with Drosophila KDM5 165 

through IP-MS studies or targeted co-IP experiments (Table S2). Suggesting the robustness with 166 

which the TurboID approach identifies bona fide KDM5-associated proteins, 7 known interactors 167 

were identified by NT-KDM5 and 6 by CT-KDM5 (47% and 40%, respectively). We additionally 168 

assessed biotinylated protein enrichment of NT-KDM5 and CT-KDM5 compared to TurboID alone 169 

(Fig S1E, F). As expected, based on the increased level of expression of this protein compared 170 

to TurboID-tagged KDM5, a high level of background was observed in these flies. This resulted 171 

in fewer proteins being enriched in NT-KDM5 and CT-KDM5 (32 and 61, respectively), reduced 172 

overlap between the datasets, and a reduction in the number of known interactors identified (Fig 173 
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S1G, H). Interestingly, TurboID alone appears to show bias in its biotinylation of nuclear proteins, 174 

as comparing TurboID to control revealed significant enrichment of 199 proteins, a majority of 175 

which are involved in chromatin-mediated transcriptional regulation (Fig. S1I).  176 

 177 

Because of concerns related to the use of TurboID alone as a control, we generated a 178 

transgene encoding an enzymatically inactive form of the Cas9 enzyme (dCas9) fused to an HA-179 

tagged nuclear localized TurboID (UASp-dCas9:TurboID). The encoded dCas9:TurboID fusion 180 

protein is more similar in size to the KDM5 fusion proteins, being 194kDa and 235kDa, 181 

respectively, compared to 36kDa for TurboID alone. In addition, dCas9 can scan the DNA, 182 

potentially making this fusion an appropriate control for chromatin binding proteins such as KDM5 183 

by restricting biotinylation to DNA-adjacent proteins.(61) Ubi-Gal4-mediated expression of this 184 

transgene revealed that dCas9:TurboID was expressed at similar levels to the KDM5-TurboID 185 

fusion proteins and was able to biotinylate (Fig. 1C). Repeating the proximity labeling experiment, 186 

we carried out triplicate streptavidin-bead pulldowns from heads of control, TurboID, 187 

dCas9:TurboID, NT-KDM5 and CT-KDM5 flies (experiment 2). MS analyses identified 1,146 188 

proteins across all samples, 203 of which were nuclear. PCA from this second experiment showed 189 

that NT-KDM5 and CT-KDM5 clustered together, indicating that these datasets are more alike to 190 

each other than to any of the controls (Fig S2A). Like our first experiment, TurboID alone clustered 191 

with NT-KDM5 and CT-KDM5, and was distinct from control and dCas9:TurboID samples. Using 192 

these data, we compared NT-KDM5 and CT-KDM5 to control, dCas9:TurboID, and to TurboID 193 

alone (Table S3). Proteins enriched in the KDM5 samples compared to control gave similar results 194 

to those obtained in the first experiment (Fig 2A, B). Using control flies as reference, 82 proteins 195 

were identified using NT-KDM5 and 68 for CT-KDM5, with 61 of these proteins being identified in 196 

both datasets. Compared to TurboID alone, only 29 and 24 proteins were enriched for NT-KDM5 197 

and CT-KDM5, with 13 overlapping between the two datasets (Fig. 2C, D). Importantly, we find 198 

that comparing NT-KDM5 and CT-KDM5 with dCas9:TurboID yielded data very similar to that 199 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2023. ; https://doi.org/10.1101/2022.11.20.517232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.20.517232


 9 

seen using control animals, despite providing a higher biotinylation background. 66 and 59 200 

proteins were enriched in NT-KDM5 and CT-KDM5, respectively, with an overlap of 48 proteins 201 

(Fig. 2E, F).  202 

 203 

To complete our characterization of dCas9:TurboID as a tool to identify enriched DNA-204 

adjacent proteins, we compared these data to both TurboID alone and to control. Similar to data 205 

from the first experiment comparing TurboID and control, TurboID alone shows a preference for 206 

biotinylating a large number of chromatin-related proteins, even compared to dCas9:TurboID (Fig. 207 

S2B, C). Comparing dCas9:TurboID to control revealed enrichment in a relatively small number 208 

of proteins that were enriched for transcriptional-regulatory proteins consistent with the ability of 209 

dCas9:TurboID to biotinylate targets while scanning DNA (Fig. S2D). Confirming the challenges 210 

related to using TurboID alone, the consistency with which proteins were enriched in NT-KDM5 211 

or CT-KDM5 compared to TurboID alone was very low, with little agreement across experiments 212 

using a p-value cutoff <0.05 or <0.1 (Fig. S2E, F). Moreover, the number of previously identified 213 

interactors remained low in experiment 2 when comparing to TurboID alone, with only 5 and 3 214 

being identified in NT-KDM5 and CT-KDM5, respectively (Fig. S2G). We therefore suggest that 215 

endogenous biotinylation or dCas9:TurboID are superior to TurboID as controls for proximity 216 

labeling experiments where the protein of interest is nuclear-specific and DNA-adjacent.  217 

 218 

Proximity labeling identifies new potential KDM5 interacting complexes 219 

To build a high confidence list of proteins which interact with KDM5, we combined data from 220 

experiment 1 comparing NT-KDM5 and CT-KDM5 to control (2 datasets), and experiment 2 in 221 

which NT-KDM5 and CT-KDM5 were compared to control (2 datasets) as well as dCas9:TurboID 222 

(2 datasets). To do this, we began by filtering for enriched nuclear proteins across all six datasets 223 

using a p-value<0.1. We first filtered for proteins identified in at least two of six datasets. Then to 224 

include the possibility of terminus-exclusive interactors, we required that at each terminus proteins 225 
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had to be identified in 0 (exclusive to other terminus) or in 2 of 3 datasets (Fig. 2G). Demonstrating 226 

the power of this approach, this included 7 of the 15 (47%) known Drosophila KDM5 interactors 227 

(Fig. 2H, I). This ratio increased to 7 of 8 (88%) for those interactors that have been shown in both 228 

Drosophila and mammalian cells. In addition, we identified several proteins not previously been 229 

found to be Drosophila KDM5 interactors but have been purified with mammalian KDM5A, 230 

KDM5B, KDM5C and/or KDM5D. These included the nucleosome remodeler Mi-2, the chromatin 231 

assembly factor 1 (Caf1;Caf1-55), the actyl-lysine binding protein Zmynd8 and the 232 

heterochromatin-associated protein HP1c (Fig 2H, I). (6,42,44) With these stringent filtering 233 

criteria, we identified a total of 87 proteins (Fig. 2I). 234 

 235 

Our proximity-labeling studies using Turbo-KDM5 revealed a broader interactome than 236 

previously described in the literature. To better understand the relationships between the proteins 237 

identified in our study, we generated a protein interaction map using Cytoscape and STRING (Fig. 238 

3A).(62,63) Gene Ontology (GO) analysis shows that many of these proteins have roles in the 239 

regulation of gene expression, chromatin modification, and chromatin remodeling (Fig. 3B). In 240 

addition to confirming the strong link between KDM5 and Sin3/HDAC1-containing complexes, 241 

these analyses also highlighted interactions with new protein complexes. Among these, we find 242 

proteins such as Boundary Element-Associated Factor of 32kDa (BEAF-32), Chromator (Chro), 243 

Putzig (Pzg), and Centrosomal protein 190kDa (Cp190) that function in regulating genomic 244 

architecture, suggesting a unstudied role for KDM5 in this process.(64–69) In addition, we 245 

identified proteins critical for forming the transcriptional pre-initiation complex (TPIC), which is 246 

consistent with the promoter-proximal binding of KDM5 proteins across species.(25,44,70–72) 247 

Using a recent cryo-EM structure of the human TPIC, we found that distinct surfaces interacted 248 

with KDM5, consistent with the specificity of biotinylation using TurboID-KDM5.(73)  Specifically, 249 

three adjacent proteins in the mediator complex (MED1, MED14 and MED17) and three adjacent 250 

subunits of TFIID (Taf4, Taf6, and Taf9) were identified in our analyses (Fig. 3C). This suggests 251 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2023. ; https://doi.org/10.1101/2022.11.20.517232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.20.517232


 11 

that KDM5 may play a role in enhancer-promoter communications that regulate the transcriptional 252 

activity of target genes. 253 

 254 

KDM5 and newly identified interactors occupy overlapping genomic binding sites in 255 

Drosophila and human cells  256 

To further explore the relationship between KDM5 and newly identified interactors in 257 

Drosophila, we compared their genomic binding with those of interactors using publicly available 258 

ChIP-seq datasets. We used published KDM5 ChIP-seq data from whole adult flies to interrogate 259 

ChIP-Atlas as a means to identify datasets from any Drosophila cell type that significantly overlap 260 

(via permutation 100X).(74) We then overlapped these with our high confidence interactor (HCI) 261 

list to reveal a total of 27 overlapping datasets. 30 proteins in our interactor list had available data 262 

on ChIP Atlas. (Fig. 4A, B). These overlapping datasets included known interactors such as 263 

Sin3A, in addition to new interactors BEAF-32, the DNA replication-related element factor Dref 264 

and the NURF chromatin remodeler component Iswi. We analyzed the distribution of KDM5 265 

around interactor peaks and found that KDM5 seems to flank their binding sites (Fig. 4C-F). In 266 

these cases, the distribution of KDM5 appears to be bimodal while Sin3A, BEAF-32, Dref and 267 

Iswi have a single peak. This is likely due to KDM5 binding to promoter regions of adjacent genes 268 

with divergent promoters, leading to two peaks occurring within the 4kb range shown.(75) Sin3A, 269 

BEAF-32, Dref, and Iswi bind to a single site that overlaps with the region bound by KDM5 at one 270 

or both promoters. In contrast, KDM5 and female sterile (1) homeotic (fs(1)h), which encodes the 271 

ortholog of the acetyl-histone binding Brd2/Brd4, appear coincident (Fig. 4G). It is also notable 272 

that for Sin3A and Iswi, KDM5 does not co-localize across all binding sites (Fig. 4C, F). This could 273 

simply reflect binding differences in the cell types used for the ChIP-seq studies, or that specific 274 

promoter sub-types are co-occupied. A combined genome browser snapshot highlights the 275 

binding of KDM5, Sin3A, BEAF-32, Dref, Iswi and fs(1)h relative to each other, and also relative 276 

to the transcriptional start site (TSS; Fig. 4H; Fig. S3A). 277 
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 278 

To assess the extent to which our high confidence KDM5 interactors might be 279 

evolutionarily conserved, we investigated genomic co-occupancy in human cells. We first 280 

converted our 87 Drosophila high confidence interactors to their human ortholog(s), which 281 

resulted in a total of 138 proteins due to humans possessing multiple paralogous proteins for 282 

some Drosophila proteins (DIOPT v8.0 score > 8/15; Table S4).(76) Due to the strong link 283 

between KDM5B and breast cancer, and the wealth of ChIP-seq datasets available in cell lines 284 

derived from this cancer type, we used KDM5B data from MCF-7 cells for these analyses.(77) 285 

Using peaks called from this ChIP-seq data, we interrogated all available breast cancer cell line 286 

datasets again using ChIP-Atlas (100X permutation). This revealed that 26 candidate interactors 287 

had binding profiles that significantly overlapped with KDM5B binding (Fig. 4I, J). Interestingly, 288 

these included the KDM5 paralogs KDM5A and KDM5C, suggesting that there may be 289 

overlapping or redundant function for these proteins. Similar to our studies using Drosophila, 290 

some proteins identified were known interactors, such as SIN3A that is known show similar 291 

genomic binding to KDM5B (Fig. 4K).(78) Other proteins overlapped with our genomic binding 292 

studies in Drosophila, including Brd4 (fs(1)h), while other proteins were identified because 293 

datasets were available in human cells and not Drosophila. These included the Mediator subunit 294 

MED1 and the small ubiquitin-like modifier SUMO2 (Drosophila Sumo) (Fig. 4L, M). A combined 295 

genome browser emphasizes the colocalization of these proteins with KDM5B and their 296 

relationship to the TSS (Fig. 4N; Fig. S3B). These data also highlight the difference in genome 297 

size between Drosophila and human cells, with the greater distance between promoters resulting 298 

in a single binding peak. Combined, our data show that the high confidence KDM5 interactors 299 

identified in Drosophila may be important for the function of KDM5B and other KDM5 paralogs in 300 

mammalian cells.  301 

 302 

Identified KDM5 interactors are implicated in neurodevelopmental disorders 303 
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Based on the association between genetic variants in KDM5A, KDM5B, and KDM5C and 304 

ID and autism spectrum disorder (ASD), KDM5-interactors could potentially be implicated in 305 

neurological disorders.(22,26,79–82) To examine this in more detail, we used the Simons 306 

Foundation Autism Research Initiative (SFARI) genes as an up-to-date source of genes with 307 

significant causal links to ASD.(83) The 1231 genes in this database are scored based on the 308 

level of confidence of association, with a score of 1 being the strongest link, in addition to whether 309 

ASD occurs as part of a syndrome (S). Using our list of 138 human ortholog-converted KDM5 310 

interactors, we found that 26 of these overlap with SFARI ASD-associated proteins (p=8e-08; Fig. 311 

5A-B). Some of these proteins have clear links to each other, such as TAF4 and TAF6 that are 312 

components of TFIID, while others are associated with numerous other aspects of transcriptional 313 

regulation. To look more broadly into the link between KDM5 interactors and neurodevelopmental 314 

disorders, we used the Developmental Brain Disorder Gene Database (DBD) which is a curated 315 

list of genes implicated in disorders such as ID, ASD, attention deficit hyperactivity disorder 316 

(ADHD) and schizophrenia.(84) 24 human-converted orthologs represented in DBD have been 317 

shown to contribute to ID, ASD, ADHD, and Schizophrenia (Fig. 5C). Unsurprisingly given the 318 

frequency that ID and ASD co-occur, 14 proteins were identified in both datasets, including 319 

KDM5B, KDM5C and BRD4. In addition, 9 ID-associated proteins were identified, including 320 

MED17, the NURD chromatin remodeling complex component GATAD2A and the C-terminal 321 

binding protein (CtBP) transcriptional repressor. Combined, these analyses expand our 322 

understanding of the potential network of proteins that function with KDM5 and provide new 323 

avenues for investigating the links between KDM5 family proteins and the etiology of 324 

neurodevelopmental disorders. A summary of our KDM5 interaction data highlighting proteins 325 

with known roles in transcriptional regulation is shown in Figure 5D. 326 

 327 

Discussion  328 
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Here we describe the interactome of Drosophila KDM5 in the adult head using TurboID-329 

mediated proximity labeling. To identify the broadest selection of potential interactors, we N- and 330 

C-terminally TurboID-tagged KDM5 as some interactors were expected to be in proximity to both 331 

termini while others might be terminus specific. Importantly, TurboID-KDM5 chimeric proteins 332 

were functional, as they were able to rescue the lethality caused by a kdm5140 null allele. Using 333 

NT-KDM5 and CT-KDM5, we performed two experiments to optimize the experimental controls, 334 

as none are established for this relatively new technique. Our study revealed that expression of 335 

TurboID alone led to high background levels of biotinylation, particularly of chromatin-related 336 

proteins. In contrast, using control (endogenous biotinylation and bead background) or 337 

dCas9:TurboID provided similar and more reasonable background to identify proteins enriched 338 

by expression of TurboID-KDM5. Because we carried out two separate MS experiments, we were 339 

able to stringently filter our data to retain only those proteins that were nuclear localized and 340 

showed high reproducibility and rigor. This led to the identification of 87 high confidence KDM5 341 

interactors, 12 of which were previously described in either Drosophila or mammals. Notably, 342 

while we refer to proteins identified in our TurboID analyses as interactors, we acknowledge that 343 

proximity labeling does not necessarily detect direct interactions. However, TurboID biotinylates 344 

lysine residues within 10 nm of its active site(54), which is equivalent to about 27 bp of B-DNA (8 345 

bp per 3.4 nm). However unlikely, this short biotinylation radius can result in the identification of 346 

proteins that are nearby but in a distinct complex that do not physically touch KDM5. While these 347 

proteins are not in the same complex(es) as KDM5, they could still function with KDM5 to regulate 348 

gene expression by acting in concert with, or independently of, its histone demethylase activity. 349 

For simplicity, we will refer TurboID-enriched proteins as interactors. 350 

 351 

Several lines of evidence allow us to have confidence in our described KDM5 interactome. 352 

The first is that we identified 88% of proteins previously described as KDM5 interacting proteins 353 

in flies and mammalian cells. We did not, however, detect all previously known KDM5 interactors 354 
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in our proximity-labeling studies. For example, our prior studies have shown interactions between 355 

KDM5 and the transcription factors Myc and Foxo, and one of the best-established interactions 356 

of mammalian KDM5 proteins is with the Retinoblastoma protein (RBF in Drosophila).(5,72,85) 357 

None of these proteins were significantly enriched in our current study. Because these 358 

interactions have not been examined in neuronal cells, this may simply reflect differences in 359 

KDM5 complex composition across cell types. Alternatively, these complexes may be low 360 

abundance and therefore more difficult to detect by proteomic approaches. While we undoubtably 361 

missed some KDM5 interactors, we were able to reproducibly enrich a number of proteins using 362 

both NT- and CT-KDM5 across two independent experiments. In addition, many of the proteins 363 

identified have known physical connectivity with each other. Thus, rather than identifying 364 

individual components of complexes, we identified proteins well known to complex with each 365 

other, such as the SWI/SNF and NURF chromatin remodeling complexes. Interestingly, a 366 

functional link between KDM5 and these complexes is supported by studies in mouse embryonic 367 

stem cells which showed that a loss of KDM5B altered nucleosome position surrounding the TSS, 368 

although the mechanism was not revealed.(86) We also identified the insulator proteins BEAF-369 

32, Chromator, Putzig, and Cp190 which complex together.(66,67) Our previous investigation in 370 

a fly strain harboring an allele associated with human intellectual disability identified enrichment 371 

of BEAF-32 binding sites at dysregulated genes.(26) Functionally, it is also notable that mutations 372 

in kdm5, BEAF-32, and putzig all modify position effect variegation (PEV) suggesting the 373 

possibility that these proteins function together to regulate chromatin compaction and/or 374 

organization.(87–89) For some TurboID-identified proteins such as the Mediator complex 375 

components (MED1, MED14, and MED17), as well as the TFIID proteins (Taf4, Taf6, and Taf9), 376 

published structural data are consistent with their link to KDM5.(73,90) The Mediator and Taf 377 

proteins identified neighbor each other, respectively, in the hTPIC cryo-electron microscopy 378 

structure. Moreover, we found that KDM5 interactions could be mapped to distinct surfaces at the 379 

hTPIC, suggesting one way that KDM5 could localize with respect to key transcriptional initiation 380 
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machinery. Our enrichment of a subset of transcriptional preinitiation proteins implies that this is 381 

not simply due to KDM5 proteins binding near the promoter region of its target genes. If that were 382 

the case, then the entire preinitiation complex would have been identified in our datasets, 383 

including TBP and RNA Pol II. We additionally observed enrichment for proteins implicated in 384 

enhancer function, such as Zmynd8 that has previously been shown to interact with KDM5A and 385 

KDM5D and binds to monomethylated histone H3 lysine 4 (H3K4me1), a chromatin mark that is 386 

found at enhancers.(42,44) Consistent with the possibility that KDM5 may impact the chromatin 387 

status and activity of enhancers, our studies additionally revealed enrichment for the 388 

methyltransferase responsible for depositing H3K4me1, Trr/KMT2C.(91) Further studies are now 389 

required to define precisely which proteins directly interact with KDM5 to provide insight into how 390 

KDM5 carries out its functions to influence gene expression. Importantly, given the range of 391 

proteins found in our study, KDM5 may use distinct mechanisms to modulate gene expression 392 

levels in different genomic contexts and in cell distinct types. Although limited by the number of 393 

available ChIP-seq datasets available, corroborating evidence for our interactors also comes from 394 

the extensive overlap in genomic binding observed in Drosophila and/or mammalian cells.  395 

 396 

The relationships between KDM5 and other gene regulatory complexes provide insight 397 

into how its dysregulation could contribute to human disorders. Many of the interacting complexes 398 

identified in our study have been implicated in tumorigenesis, including NSL and SWI/SNF.(92–399 

95) Furthermore, like KDM5, MED1 has been implicated as a transcriptional coactivator that 400 

mediates breast cancer metastasis and treatment resistance.(96,97) Identification of KDM5 401 

interactors may provide insight to mechanisms of KDM5-mediated transcriptional regulation which 402 

underlie tumor development and progression. Changes to protein interactions could also 403 

contribute to the intellectual disability seen in individuals with genetic variants in KDM5A, KDM5B, 404 

or KDM5C. Indeed, for variants that do not alter histone demethylase activity, this may be a 405 

contributor to cognitive dysfunction. Our analyses of KDM5 interactors revealed an enrichment in 406 
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proteins found to be altered in neurodevelopmental disorders whose clinical presentations overlap 407 

with those seen for KDM5 genes. KDM5 and interacting proteins could therefore influence 408 

neurodevelopment through common pathways. Altogether, our study suggests that KDM5 likely 409 

functions through numerous transient interactions with interconnected complexes to regulate 410 

gene expression in a context-dependent manner.   411 
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FIGURE LEGENDS 448 

Figure 1: TurboID-tagged KDM5 proteins are functional and biotinylate endogenous 449 

proteins 450 

(A) Schematic of the workflow used for purifying and fingerprinting biotinylated proteins from 451 

adult heads using LC-MS/MS mass spectrometry. 452 

(B) Schematic of the four UASp constructs generated able to express HA-tagged TurboID 453 

alone, dCas9:TurboID, NT-KDM5 and CT-KDM5. 454 

(C) Western blot using adult heads showing levels of expression of KDM5 using anti-HA, 455 

biotinylation using a streptavidin-680 conjugate and the loading control alpha-tubulin. 456 

Genotypes: kdm5140 ; gkdm5:HA (a wild-type strain; Control), Ubi-Gal4/+ ; UASp-457 

TurboID/+ (TurboID), Ubi-Gal4/+ ; UASp-dCas9:TurboID (dCas9:TurboID), kdm5140, Ubi-458 

Gal4/kdm5140 ; UASp-NT- kdm5/+ (NT-KDM5) and kdm5140, Ubi-Gal4/kdm5140 ; UASp-CT- 459 

kdm5 /+ (CT-KDM5).  460 

(D) Rescue of kdm5140-induced lethality by ubiquitous expression of UAS-NT-KDM5 or UAS-461 

CT-KDM5 using Ubi-Gal4. Genotype of male and female adult flies shown is kdm5140, Ubi-462 

Gal4/kdm5140 ; UASp-NT- kdm5 /+ (NT-KDM5) and kdm5140, Ubi-Gal4/kdm5140 ; UASp-463 

CT- kdm5 / + (CT-KDM5). 464 

 465 

Figure 2: Identification of high confidence KDM5 interactors through TurboID 466 

(A) Volcano plot showing data comparing biotinylated proteins enriched by NT-KDM5 to 467 

control.  468 

(B) Volcano plot showing data comparing CT-KDM5 to control. 469 

(C) Volcano plot showing data comparing NT-KDM5 to TurboID. 470 

(D) Volcano plot showing data comparing CT-KDM5 to TurboID. 471 

(E) Volcano plot showing data comparing NT-KDM5 to dCas9:TurboID. 472 

(F) Volcano plot showing data comparing CT-KDM5 to dCas9:TurboID. 473 
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(G) Filtering workflow for identification of high confidence KDM5 interactors by combining data 474 

from experiments 1 and 2. 475 

(H) Summary of known Drosophila KDM5 interactors, whether the interaction is conserved in 476 

mammals (mouse or human) and the identification of these proteins in experiment 1 and 477 

experiment 2 compared to control and dCas9:TurboID. Three interactors identified in 478 

mammalian cells but not previously in Drosophila are also included (Caf1-55, Mi-2 and 479 

Zmynd8). 480 

(I) High confidence interactors (HCI) based on their identification in experiment 1 (compared 481 

to control) and experiment 2 (compared to control and dCas9:TurboID). Dark red box 482 

indicates enrichment of p<0.05, pink indicates p<0.1. 483 

For all volcano plots shown, known interactors are indicated with text. Red dots indicate 484 

significantly enriched proteins (p<0.05) and the dotted line on Y-axis indicates p=0.05. 485 

 486 

Figure 3: TurboID-tagged KDM5 biotinylates proteins involved in several aspects of gene 487 

expression regulation.  488 

(A) STRING analyses of nuclear proteins that were significantly biotinylated by NT-KDM5 and 489 

CT-KDM5. Grey lines indicate known physical interactions between proteins. Darker lines 490 

indicate a higher confidence of interaction. Cytoscape was used to manually cluster 491 

annotated proteins based on their STRING Cluster Enrichment and known functions 492 

based on published literature. Unconnected nodes and proteins with unclear links to 493 

known complexes are not shown.  494 

(B) Gene Ontology Biological Process (GO-BP) analyses of the 87 high confidence KDM5 495 

interacting proteins. 496 

(C) Structure of the human pre-initiation complex (PDB accession: 7ENA) showing proteins 497 

identified as high confidence interactors in our TurboID data in red bubbles. DNA (yellow), 498 

TBP (pink bubbles) and RNA polymerase II (cyan bubbles) are also shown.  499 
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 500 

Figure 4: Proteins enriched in KDM5 TurboID experiments show overlapping genomic 501 

binding profiles in Drosophila and human cells. 502 

(A) Venn diagram showing overlap between high confidence biotinylated proteins (red) and 503 

datasets enriched when comparing published KDM5 ChIP-seq data from whole adult flies 504 

to other Drosophila ChIP datasets (blue). A total of 27 datasets showed significant overlap 505 

using ChIP-atlas. 30 interactors had ChIP-seq datasets in the ChIP Atlas database 506 

(green). 507 

(B) Volcano plot showing fold enrichment and p-values of the permutation analyses between 508 

KDM5 and 27 ChIP-seq datasets of high confidence interactors.  509 

(C) Heat maps showing ChIP-seq genomic binding profiles of Sin3A from S2 cells and KDM5 510 

from whole adult flies.   511 

(D) Genomic binding profiles of BEAF-32 ChIP-seq from S2 cells and KDM5.  512 

(E) Genomic binding profiles of Dref ChIP-seq from Kc167 cells and KDM5. 513 

(F) Genomic binding profiles of Iswi ChIP-seq from Kc167 cells and KDM5.   514 

(G) Genomic binding profiles of fs(1)h ChIP-seq from Kc167 cells and KDM5.   515 

(H) Representative genome browser image showing binding of KDM5, Sin3A, BEAF-32, Dref, 516 

fs(1)h, and Iswi . 517 

(I) Venn diagram showing overlap between human orthologs of Drosophila KDM5 high 518 

confidence interactors (HCI) and their enrichment when comparing published KDM5B 519 

ChIP-seq data to breast cancer ChIP-seq datasets using ChIP-Atlas. 26 datasets 520 

significantly overlapped. 521 

(J) Volcano plot showing fold enrichment and p-values of the permutation analyses between 522 

KDM5B and 26 ChIP-seq datasets of human-ortholog converted high confidence 523 

interactors. 524 
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(K) Genomic binding profiles of KDM5B, SIN3A and BRD4 showing similar genome-wide 525 

binding. Binding is shown relative to KDM5B due to the much larger number of SIN3A and 526 

BRD4 binding sites in the genome compared to KDM5B. 527 

(L) Genomic binding profiles of MED1 ChIP from MCF-7 cells and KDM5B showing similar 528 

localization.   529 

(M) Genomic binding profiles of SUMO2 (ortholog of Drosophila Sumo) ChIP from MCF-7 cells 530 

and KDM5B showing similar localization. 531 

(N) Representative genome browser image showing binding of KDM5B, SIN3A, MED1, BRD4 532 

and SUMO2. 533 

 534 

Figure 5: A subset of KDM5 interactors are implicated in neurodevelopmental disorders 535 

(A) Overlap between human orthologs of Drosophila KDM5 interactors and genes associated 536 

with ASD using the SFARI database. S indicates syndromic ASD. Scores indicate 537 

confidence of causal association, with 1 indicating strongest link. 538 

(B) 26 candidate interacting proteins identified and their SFARI score. 539 

(C) 24 candidate interacting proteins were identified as being implicated in ID, ASD and/or 540 

schizophrenia using DBD.  541 

(D) Model for KDM5 interactions with key transcriptional proteins that are likely to impact the 542 

expression of downstream target genes.  543 

 544 

Figure S1: KDM5-TurboID studies using control and TurboID alone 545 

(A) Principal component analysis of normalized nuclear protein abundances from control (Ctl), 546 

TurboID, NT-KDM5 and CT-KDM5 (experiment 1 data). 547 

(B) Volcano plot showing data comparing NT-KDM5 to control. 548 

(C) Volcano plot showing data comparing CT-KDM5 to control. 549 
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(D) Venn diagram showing overlap of the proteins identified using NT-KDM5 and CT-KDM5 550 

compared to control (Ctl). 551 

(E) Volcano plot showing data comparing NT-KDM5 to TurboID. 552 

(F) Volcano plot showing data comparing CT-KDM5 to TurboID. 553 

(G) Venn diagram showing overlap of the proteins identified using NT-KDM5 and CT-KDM5 554 

compared to TurboID. 555 

(H) Summary of known Drosophila KDM5 interactors, whether the interaction is conserved in 556 

mammals (mouse and/or human) and the identification of these proteins in experiment 1 557 

with all comparisons. Three interactors identified in mammalian cells but not previously in 558 

Drosophila are also included (Caf1-55, Mi-2 and Zmynd8). 559 

(I) Volcano plot showing data comparing TurboID to control.  560 

For all volcano plots shown, known interactors are indicated with text. Red dots indicate 561 

significantly enriched proteins (p<0.05) and the dotted line on Y-axis indicates p=0.05. 562 

 563 

Figure S2: Comparing TurboID alone to dCas9:TurboID 564 

(A) Principal component analysis of normalized nuclear protein abundances from control (Ctl; 565 

grey), dCas9:TurboID (T-dCas9; green), TurboID (black), NT-KDM5 (red) and CT-KDM5 566 

(blue). 567 

(B) Volcano plot showing data comparing dCas9:TurboID to TurboID alone. Red dots indicate 568 

significantly enriched proteins (p<0.05) and the dotted line on Y-axis indicates p=0.05. 569 

(C) Volcano plot showing data comparing dCas9:TurboID to control. Red dots indicate 570 

significantly enriched proteins (p<0.05) and the dotted line on Y-axis indicates p=0.05. 571 

(D) GO analyses of proteins enriched comparing TurboID to control (Ctl), TurboID to 572 

dCas9:TurboID, dCas9:TurboID to TurboID and dCas9:TurboID to control. 573 

(E) UpSet plot showing the number of common interactors identified in experiments in which 574 

TurboID was used to compare datasets using p<0.05. 575 
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(F) UpSet plot showing the number of common interactors identified in experiments in which 576 

TurboID was used to compare datasets using p<0.1. 577 

(G) Summary of all known interactors identified in all experimental comparisons from 578 

experiment 1 and experiment 2.  579 

 580 

Figure S3: Binding of KDM5 proteins and identified interactors relative to the 581 

transcriptional start site 582 

(A) Genomic binding profiles of Drosophila KDM5, Sin3A, fs(1)h, BEAF-32, Dref and Iswi 583 

relative to the TSS.  584 

(B) Genomic binding profiles of human KDM5B, SIN3A, BRD4 (fs(1)h ortholog), MED1 and 585 

SUMO2 relative to the TSS.  586 

 587 

 588 

MATERIALS AND METHODS 589 

Fly strains and care 590 

Fly crosses were maintained at 25°C with 50% humidity and a 12-hour light/dark cycle. Food (per 591 

liter) contained 18g yeast, 22g molasses, 80g malt extract, 9g agar, 65 cornmeal, 2.3g methyl 592 

para-benzoic acid, 6.35ml propionic acid. The number of male and female animals were equal 593 

across all genotypes examined. The kdm5140 null allele has been previously described. (33)  594 

 595 

Cloning and Transgenesis 596 

The N- and C-terminally TurboID-tagged constructs were generated by cloning the coding region 597 

of kdm5 upstream or downstream of HA:TurboID from pCDNA3-TurboID 598 

(RRID:Addgene_107171)(46) in the pUASpattB vector (RRID:DGRC_1358). UASp-HA:TurboID 599 

with a NLS was generated by cloning HA:TurboID into the same UASpattB vector. UASp-600 

dCas:HA:Turbo:NLS was made by combining the dCas9 open reading frame from SID3s-dCas9-601 
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KRAB (RRID:Addgene_106399) with HA:TurboID:NLS in the pUASpattB vector 602 

(RRID:DGRC_1358). All transgenes were generated by injection into y1 M{RFP[3xP3.PB] 603 

GFP[E.3xP3]=vas-int.Dm}ZH-2A w* ; M{3xP3-RFP.attP}ZH-86Fb at BestGene Inc.  604 

 605 

Western Blotting  606 

Western analyses were carried out as previously described. (33) Briefly, five 2- to 5-day old adult 607 

fly heads were homogenized in 2x NuPAGE LDS sample buffer, sonicated for 10 mins, treated 608 

with DTT, run on a 4-12% Bis-Tris 1 mm gel and transferred to a PVDF membrane. The following 609 

primary antibodies were used: mouse anti-HA (1:1000, Cell Signaling Technology Cat# 2367, 610 

RRID: AB_10691311), Streptavidin 680 (1:10,000, ThermoFisher, Streptavidin Alexa Fluor 680 611 

conjugate), rabbit anti-alpha-Tubulin (1:5000, Cell Signaling Technology Cat# 2144, 612 

RRID:AB_2210548). Secondary antibodies used were IRDye® 680RD Donkey anti-Mouse 613 

IgG (1:5000; LI-COR Biosciences Cat# 925-68072, RRID: AB_2814912) and IRDye® 800CW 614 

Donkey anti-Rabbit IgG (1:5000; LI-COR Biosciences Cat# 926-32213, RRID: AB_621848). Blots 615 

were scanned and processed using a LI-COR Odyssey Infrared scanner. 616 

 617 

Purifying and identifying proteins using TurboID 618 

Biotinylated Protein Enrichment   619 

2-5 day-old flies were flash frozen in liquid nitrogen and decapitated and a total of ten heads were 620 

used per sample. Heads were homogenized in 250 µL RIPA Buffer (Thermofisher 89901) 621 

supplemented with Halt™ Protease Inhibitor Cocktail (Thermofisher, 78430) and centrifuged at 4 622 

°C for 10 minutes at 15,000XG to remove debris. 100 µL of Pierce™ Streptavidin Magnetic Beads 623 

(Thermofisher, 88817) were washed twice with RIPA and the cleared lysate was added. The 624 

lysate-bead mixture was incubated with rotation at 4 °C overnight. The next day the lysate was 625 

discarded, and beads were washed twice with RIPA, once with 1M KCl, once with 0.1 M Na2HCO3, 626 
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once with 1 M Urea in 10 mM Tris pH 8.0, and twice again with RIPA. For Western Blot analyses 627 

all RIPA was removed and biotinylated proteins were eluted with 4X NuPAGE™ LDS Sample 628 

Buffer (Invitrogen, NP0007) supplemented with 2 mM biotin and 20 mM DTT. 629 

On-bead protein digestion  630 

Proteins were digested directly on streptavidin beads. 5 mM DTT and 50 mM ammonium 631 

bicarbonate (pH = 8) were added to the solution and left on the bench for about 1 hour for disulfide 632 

bond reduction. Samples were then alkylated with 20 mM iodoacetamide in the dark for 30 633 

minutes. Afterward, 500 ng of trypsin was added to the samples, which were digested at 37 oC 634 

for 18 h. The peptide solution was dried in a vacuum centrifuge. 635 

Sample desalting  636 

Prior to mass spectrometry analysis, samples were desalted using a 96-well plate filter (Orochem) 637 

packed with 1 mg of Oasis HLB C-18 resin (Waters). Briefly, the samples were resuspended in 638 

100 µl of 0.1% TFA and loaded onto the HLB resin, which was previously equilibrated using 100 639 

µl of the same buffer. After washing with 100 µl of 0.1% TFA, the samples were eluted with a 640 

buffer containing 70 µl of 60% acetonitrile and 0.1% TFA and then dried in a vacuum centrifuge. 641 

LC-MS/MS Acquisition and Analysis  642 

Samples were resuspended in 10 µl of 0.1% TFA and loaded onto a Dionex RSLC Ultimate 300 643 

(Thermo Scientific), coupled online with an Orbitrap Fusion Lumos (Thermo Scientific). 644 

Chromatographic separation was performed with a two-column system, consisting of a C-18 trap 645 

cartridge (300 µm ID, 5 mm length) and a picofrit analytical column (75 µm ID, 25 cm length) 646 

packed in-house with reversed-phase Repro-Sil Pur C18-AQ 3 µm resin. Peptides were separated 647 

using a 90 min gradient from 4-30% buffer B (buffer A: 0.1% formic acid, buffer B: 80% acetonitrile 648 

+ 0.1% formic acid) at a flow rate of 300 nL/min. The mass spectrometer was set to acquire 649 

spectra in a data-dependent acquisition (DDA) mode. Briefly, the full MS scan was set to 300-650 

1200 m/z in the orbitrap with a resolution of 120,000 (at 200 m/z) and an AGC target of 5x10e5. 651 

MS/MS was performed in the ion trap using the top speed mode (2 secs), an AGC target of 1x10e4 652 
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and an HCD collision energy of 35. Raw files were searched using Proteome Discoverer software 653 

(v2.4, Thermo Scientific) using SEQUEST search engine and the UniProt database of Drosophila 654 

melanogaster. The search for total proteome included variable modification of N-terminal 655 

acetylation, and fixed modification of carbamidomethyl cysteine. Trypsin was specified as the 656 

digestive enzyme with up to 2 missed cleavages allowed. Mass tolerance was set to 10 pm for 657 

precursor ions and 0.2 Da for product ions. Peptide and protein false discovery rate was set to 658 

1%. Following the search, data was processed as described by Aguilan et al.(98). Briefly, proteins 659 

were log2 transformed, normalized by the average value of each sample and missing values were 660 

imputed using a normal distribution 2 standard deviations lower than the mean. Statistical 661 

regulation was assessed using heteroscedastic T-test (if p-value < 0.05).  Data were assumed to 662 

be Gaussian distributed but this was not formally tested. 663 

 664 

Interaction Map Generation 665 

STRINGDB(62) and Cytoscape(63) were used for physical interaction mapping. Lines between 666 

proteins represent physical interaction and the darkness of the lines represent the confidence of 667 

physical interaction. A confidence score of greater than 0.4/1 was used as a cutoff. Nodes were 668 

manually positioned and annotated using STRING GO Clusters and published literature as an 669 

organizational guide. 670 

 671 

Bioinformatic Analyses 672 

Gene Ontology analysis utilized R packages clusterProfiler (v4.4.4)(99) and ReactomePA 673 

(v1.40.0)(100). Volcano plots were generated using EnhancedVolcano (v1.14.0).(101) The 674 

Enrichment Analysis function on ChIP Atlas(74) was used to perform permutation tests, which 675 

compares the overlap of datasets using genomic ranges of called peaks (BED files). For our 676 

studies, the query datasets were Drosophila KDM5 (SRX1084165) and Human KDM5B 677 

(SRX3285561), which were compared using the following specific parameters: “TFs and others”, 678 
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cell type class was set to ‘All types’ and ‘Breast’ for Drosophila and Human respectively. A 100X 679 

random permutation of each was used as the control. For these analyses, a single base pair 680 

overlap is considered as an overlap. For Drosophila, selected profiles were generated using 681 

bigWig files from: KDM5 (SRX1084165), Sin3A (SRX1158165), BEAF-32 (SRX386677), Dref 682 

(SRX749042), Iswi (SRX5346167), and fs(1)h (SRX203000). For Human, selected profiles 683 

generated using: KDM5B (SRX3285561), SIN3A (SRX190318), MED1 (SRX673749), BRD4 684 

(SRX5089551), and SUMO2 (SRX3541112). Deeptools(3.5.1)(102) computeMatrix and 685 

plotHeatmap functions were used to make profiles and heatmaps. For these, the corresponding 686 

BED files from each interactor’s SRX accession was used as the --region option. The bigWigs for 687 

the interactor and KDM5 were used in the –score option, bin size was set to 5 bp. Due to large 688 

differences in peak number, for Figure 4K, KDM5B’s BED file was used as the region file.   689 

Pygenometracks(3.7)(103) was used to visualize ChIP-seq tracks.  690 

  691 
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Supplemental Figure 3

-2.0 TSS 2.0Kb

2

3

4

5

6

KDM5

genes

-2.0 TSS 2.0Kb

1.00

1.25

1.50

1.75

2.00

2.25

Sin3A
genes

-2.0 TSS 2.0Kb
1

2

3

4

5

6
BEAF-32

genes

-2.0 TSS 2.0Kb

0.4

0.5

0.6

0.7

fs(1)h
genes

-2.0 TSS 2.0Kb

0.5

1.0

1.5

2.0
Iswi

genes

-2.0 TSS 2.0Kb

0.04

0.06

0.08

0.10

0.12

SIN3A
genes

-2.0 TSS 2.0Kb

0.034

0.036

0.038

0.040

0.042

0.044

SUMO2
genes

-2.0 TSS 2.0Kb

0.06

0.08

0.10

0.12

0.14

0.16
BRD4

genes

-2.0 TSS 2.0Kb

0.08

0.10

0.12

0.14

0.16

MED1
genes

-2.0 TSS 2.0Kb

0.08

0.10

0.12

0.14

KDM5B
genes

A B
Drosophila melanogaster Homo sapiens

-2.0 TSS 2.0Kb

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Dref

genes

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 1, 2023. ; https://doi.org/10.1101/2022.11.20.517232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.20.517232

	Yheskel_revision_text
	Revised_Yheskel et al Figures_PDF

