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Abstract

Cell entry of SARS-CoV-2 causes genome-wide disruption of the transcriptional profiles of

genes and biological pathways involved in the pathogenesis of COVID-19. Expression allelic

imbalance is characterized by a deviation from the Mendelian expected 1:1 expression ratio and

is an important source of allele-specific heterogeneity. Expression allelic imbalance can be

measured by allele-specific expression analysis (ASE) across heterozygous informative

expressed single nucleotide variants (eSNVs). ASE reflects many regulatory biological

phenomena that can be assessed by combining genome and transcriptome information. ASE

contributes to the interindividual variability associated with disease. We aim to estimate the

transcriptome-wide impact of SARS-CoV-2 infection by analyzing eSNVs. We compared ASE

profiles in the human lung cell lines Calu-3, A459, and H522 before and after infection with

SARS-CoV-2 using RNA-Seq experiments. We identified 34 differential ASE (DASE) sites in 13

genes (HLA-A, HLA-B, HLA-C, BRD2, EHD2, GFM2, GSPT1, HAVCR1, MAT2A, NQO2,

SUPT6H, TNFRSF11A, UMPS), all of which are enriched in protein binding functions and play a

role in COVID-19. Most DASE sites were assigned to the MHC class I locus and were

predominantly upregulated upon infection. DASE sites in the MHC class I locus also occur in

iPSC-derived airway epithelium basal cells infected with SARS-CoV-2. Using an RNA-Seq

haplotype reconstruction approach, we found DASE sites and adjacent eSNVs in phase (i.e.,

predicted on the same DNA strand), demonstrating differential haplotype expression upon

infection. We found a bias towards the expression of the HLA alleles with a higher binding

affinity to SARS-CoV-2 epitopes. Independent of gene expression compensation, SARS-CoV-2

infection of human lung cell lines induces transcriptional allelic switching at the MHC loci. This

suggests a response mechanism to SARS-CoV-2 infection that swaps HLA alleles with poor

epitope binding affinity, an expectation supported by publicly available proteome data.

Keywords: allele-specific expression, COVID-19, HLA alleles,  RNA-Seq, SARS-CoV-2
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic significantly continues to burden public

health response and management, with over 631 million infected people and over 6.5 million

cumulative deaths worldwide (https://covid19.who.int/). The severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) infection causes asymptomatic to life-threatening pulmonary

illness with multiorgan dysfunction (1,2). About 0.1 to 0.9% of infected people evolve fatal

disease outcomes (3).

Epidemiological studies showed that advanced age, male biological sex, and comorbidities are

major risk factors for life-threatening COVID-19 (4). Respiratory tract epithelial cells and

pneumocytes are the first target cells of SARS-CoV-2. The virus enters cells through the binding

of the Spike protein to the host angiotensin-converting enzyme 2 (ACE2) membrane receptor (5).

The kinetics of the SARS-CoV-2 replicative cycle during the acute phase of infection can lead to

endothelial barrier disruption, dysfunctional alveolar-capillary oxygen transmission, and

impairment in oxygen diffusion capacity (6). These phenotypes are characteristic of acute

respiratory distress syndrome (ARDS) and usually demand oxygen support.

A hallmark of severe COVID-19 is the overactivation of the inflammatory response through

maladaptive proinflammatory cytokine production by transendothelial leukocyte migration. The

cytokine storm causes local cell damage in the alveoli and systemic inflammation. Excessive

inflammation, hypoxia, immobilization, and diffuse intravascular coagulation are not

uncommonly observed in COVID-19 patients. Those conditions may predispose to both venous

and arterial thromboembolism, ischemic stroke, and myocardial infarction, which are

life-threatening complications (7). Also, SARS-CoV-2 interferes with the way antigens are

presented, how alveolar macrophages work, and how type I interferon works (8,9).

Understanding the perturbations associated with SARS-CoV-2 infection in the respiratory tract

cells is challenging because of the difficulty in obtaining relevant biological samples from

affected subjects. To do this, in vitro culture models permissive to SARS-CoV-2 infection are

used to investigate the underlying mechanisms of infection and disease pathology. Calu-3 and

A549 are the most amenable human lung-derived cell line models available (10,11). Even though
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both cells are epithelial and come from adult lung non-small cell adenocarcinoma, Calu-3 is

highly permissive to SARS-CoV-2 infection and replication in an ACE2-dependent way, while

A549 is not permissive to SARS-CoV-2 due to its low expression of the ACE2 receptor (12).

Notably, the exogenous expression of ACE2 in A549 renders a chemokine signature similar to

Calu-3 cells (12). ACE2 receptor-independent models, such as the H522 lung adenocarcinoma

cell line, showed that viral infection uses an alternative receptor and depends on surface heparan

sulfates (13). In addition, airway epithelium basal cells (iBCs) experimentally derived from

induced pluripotent stem cells (iPSCs) also reproduced the transcriptome profile of the primary

human airway epithelial cells and other airway cell types (14). Comprehensive transcriptome

studies with these cell lines showed genome-wide activation of genes related to type I and III

IFN production, chemokine expression, NLRP3 inflammasome, metabolic hormone process, and

low-density granulocyte (LDG) gene signature (12,15–17). Nevertheless, the impact of

SARS-CoV-2 infection on allele-specific expression has not been fully explored.

Genome-wide association studies (GWAS) found that common SNVs at 17 different loci were

linked to severe COVID-19 outcomes (18–20). Loss-of-function rare SNVs in genes related to

inborn errors of type I IFN immunity were found in at least 3.5% of patients with pneumonia

(3,21). Variants in the Human Leukocyte Antigen (HLA) locus appear to play a role in

asymptomatic and mild diseases. The highly variable HLA locus codes for proteins that activate

T-cells and help the immune system fight off different pathogens. Class I and II HLA molecules

present antigens to CD8+ and CD4+  T-cells, respectively. In couples who were discordant for

COVID-19, HLA-A variants were associated with highly exposed, asymptomatic, seronegative

women (22). In resilient super elders (i.e., infected individuals aged over 90 years presenting

with mild or no symptoms), an increased frequency of missense variants in the MUC22 gene was

found (23).

Most of the markers found by GWAS are single-nucleotide variations (SNVs) at noncoding sites

that often act as cis-regulatory variants. Expression quantitative trait loci (eQTL) analysis (24,25)

is often used to identify causal regulatory variants from GWAS, which also requires many

samples, despite being deeply influenced by interindividual differences (26). SARS-CoV-2

infection is known to promote imbalances in the expression of genetic variants across the human
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genome (27). But it is still not clear what their functional effects are because figuring out the

links between genotype and phenotype in people with different genetic backgrounds requires

analyzing a large number of transcriptomes. For these reasons, allele-specific expression (ASE)

has become the most effective assay for quantification of genetic variant expression (28).

ASE analysis measures the steady-state imbalance in the transcription of the two parental alleles

at heterozygous sites of the diploid genome (29). Each genetic variation is expected to show a

1:1 allelic expression ratio. The departure from this assumption captures a dynamic regulation of

biological processes related to the effects of cis-regulatory variants, genomic imprinting, X

chromosome inactivation (XCI), A-to-I(G) RNA editing, nonsense-mediated decay, random

monoallelic expression, or allelic exclusion (30). ASE analysis also helps the identification of

gene-by-environment (GxE) interactions, highlighting the environment's contributions to

modulating the genetic effects of relevant complex traits (31). Unlike GWAS and eQTL analyses,

ASE analysis quantifies the allelic effects within the same individual, by controlling the effects

of genetic background and environmental changes in replicate samples (26). Comparisons across

allelic expression profiles can highlight genes potentially involved in mechanisms associated

with the disease. For example, Goovaerts et al., found that the parent-of-origin-dependent

monoallelic expression of imprinted genes is deregulated in breast cancer (32). Pervasive

perturbations in ASE sites were found in monozygotic twins discordant for Down syndrome,

suggesting genome-wide dysregulation in cells with extranumerary chromosome 21 (30). Here,

we describe a new way to use RNA-Seq experiments on human cell lines infected with

SARS-CoV-2 to find allele-specific changes that are important for COVID-19 disease.

Materials and methods

Biological data and sample information

We chose transcriptome studies from publicly available bulk RNA-Seq data of SARS-CoV-2

infected lung human cell lines on the Sequence Read Archive platform (Table S1). Only

experiments comparing mock-treated and SARS-CoV-2 infected cells with two or more

replicates per condition were selected. We included three different lung cell lines in our analysis:

Calu-3, A549, and H522. These cell lines originated from the lung adenocarcinoma epithelium of
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Caucasian adult male subjects. Both A549 and H522 are ACE2-negative models supporting

SARS-CoV-2 replication via independent entries. In our analysis, we also used A549 with an

exogenous expression of ACE2. In the study by Blanco Melo et al., 2020 (GEO BioProject

PRJNA615032), we selected four experiments using the A549 cell line and one from Calu-3

(12). In the study by Wyler et al. (GEO BioProject PRJNA625518), we included a longitudinal

experiment of RNA-Seq in Calu-3 cells at three different time points (16). We also used

RNA-Seq data of Calu-3 cells from the study by Kim D et al., 2021 (GEO BioProject

PRJNA661467) at eight different time points (17). The H522 experiments were retrieved from

the study conducted by Puray-Chavez et al. (GEO BioProject PRJNA686659), which compares

the transcriptional profile for four ratios of the multiplicity of infection (MOI) at six-time points

(13). We also use data from whole-exome sequencing (WES) data for the cell lines listed above

(Table S1) to figure out the zygotic profile of each RNA-Seq variant. Lastly, we used RNA-Seq

data of airway epithelium basal cells (iBCs) made from induced pluripotent stem cells (iPSCs)

(GEO BioProject PRJNA805095) to confirm what we found in the three models we used in our

analysis. The human airway epithelium cells were differentiated from BU3 NGPT and 1,566

iPSC lines (14).

Data processing and identification of differential allele-specific expression sites

We extracted the fasta files of each replicate using the fastq-dump function from the sra-toolkit

(https://github.com/ncbi/sra-tools). Bioinformatic analysis was conducted separately for each

replicate. Allelic imbalance analysis at expressed SNVs (eSNVs) sites was performed using

PipASE, a pipeline to identify ASE sites in transcriptome data (30). We first examined the

sequencing quality parameters for each fastq file using fastqc

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Next, bad-formed reads were

removed using Trimmomatic (33). We aligned the filtered reads to the human GRCh38 reference

genome assembly with STAR v3.7 software (34). Mapped sequences were further post-processed

using SAMtools to sort, index, and select reads based on mapping quality parameters (MAPQ ≥

30) in BAM files (35). Then, we masked duplicate reads and performed variant calling in

RNA-seq data using MarkedDuplicates and HaplotypeCaller from GATK v4.1, respectively

(36,37). We used ASEReadCounter to determine the counts for reference and alternative alleles
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in each position (29). The genomic information for each variant was annotated using the

Ensembl Variant Effect Predictor (https://www.ensembl.org/Tools/VEP).

To estimate the impact of SARS-CoV-2 infection on the differential expression of genetic

variants across the human genome, we calculated the reference allele ratio (ref ratio) in each

replicate using the following equation: ref ratio = (# of reads with the reference allele) / (# of

reads with the reference allele + # of reads with the alternative allele). For differential ASE

analysis, we required coverage of at least ten reads per variant site and the occurrence of each

site in at least two replicates in each assay condition. We used a binomial model from the stats

package R (38) to do differential ASE analysis at each eSNV site. Adjusted P-values for multiple

comparisons were performed using the p.adjust function in R with the Benjamini & Hochberg

method. To estimate the magnitude of the expression changes, we calculated the log2 fold

change of the ASE (LogASE) for each site using DESeq2 (39) according to the framework

available by Love (2017). Positive LogASE values represent the increase of the alternative allele

over the reference. In contrast, negative values represent ASE sites that exhibited a preferential

expression of the reference allele after infection. Only the SNVs that exhibited FDR < 0.1 and

-0.95 < LogASE > 0.95 were considered differentially expressed across the conditions. We used

the R package clusterProfiler to perform functional enrichment analysis on the set of genes that

displayed differential allele expression in our study (40). Annotations were made for Gene

Ontology (GO) terms in three different areas: molecular function (MF), biological process (BP),

and cellular component (CC). We performed a GO over-representation test, keeping only

enriched terms that showed p.adjust < 5%. To further investigate the main metabolic pathways

enriched for the genes containing ASE sites, we also conducted a KEGG over-representation

analysis using clusterProfiler. Similar analyses were also performed using ReactomePA in R

(41).

Detection of chromosomal aberrations and haplotype inference using allelic imbalance

from RNA-seq dataset

As the tumoral cell lines used in this study are hypotriploid (42), we conducted a chromosomal

aberration analysis in RNA-Seq data using eSNP-Karyotyping (43). We sought to compare the

karyotype of mock-treated and SARS-CoV-2-infected cells to determine whether the allelic
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imbalance was either generated by chromosomal differences between both samples or associated

with the infection. Thus, BAM files from different replicates within the same condition were

merged with SAMtools (35) and edited using AddOrReplaceReadGroups from Picard

(https://broadinstitute.github.io/picard/) to assign a single new read-group for all reads in the

BAM file. The BAM file generated by this step was indexed with the SAMtools index, followed

by a second variant calling with HaplotypeCaller from GATK v4.1. We filtered out eSNVs with

low coverage (below 20 reads) and low minor allele frequency (lower than 0.2). Using a window

of 151 eSNVs, we estimate the moving medians of the major to minor allele ratios across the

genomic coordinates. eSNP-Karyotyping also shows FDR-corrected P values for regions

significantly altered within each sample. Combined BAM and VCF files were also used to phase

eSNVs within haplotype blocks. We used a Bayesian haplotype reconstruction framework from

HapTree-X to assess phased haplotype blocks from the allelic imbalance observed in RNA-Seq

data (44). We passed the human GTF file from the Ensembl GRCh38.105 version via the -g

parameter to improve the phasing quality.

Sequence-based HLA typing using RNA-Seq data

After the haplotype reconstruction approach, we conducted HLA allele identification directly

from RNA-Seq reads in each sequence. First, RNA-Seq reads in fastq format were mapped to

human chromosome 6 (GRCh38) using bowtie2 (45). The mapped sequences were assembled

into 200 bp contigs using the TASR tool (46) and aligned to HLA reference sequences by using

the NCBI BLAST+ 2.13.0 package (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The following

alignment parameters were used: -b 5 -v 5. The HLA reference sequences of classes I and II

genotypes were retrieved in fasta format from the IMGT/HLA database. After alignment, the

selected sequences were used to predict HLA alleles in the HLAminer tool with the default

parameters (47). Next, the definition of HLA alleles for each sample was based on the

intersection of alleles present across the different replicates of the experiments. Finally, we

queried DASE sites and co-localized eSNVs affected in samples predicted to be heterozygous to

verify the HLA allele preferentially expressed during SARS-CoV-2 infection.
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Results

Allelic expression of eSNVs in MHC class I locus is preferentially impacted in lung

epithelial cell lines during SARS-CoV-2 infection

We compared the allelic expression profiles of eSNVs in bulk RNA-Seq data from Calu-3, A549,

and H522 lung cell lines before and after SARS-CoV-2 infection. We interrogated 6,884

heterozygous eSNVs detected across the mock-treated and SARS-CoV-2-infected comparisons,

with coverage ≥ 35 reads at each site. Thirty-four eSNVs displayed differential allele-specific

expression (DASE) after viral infection (Figure 1; Table S2). These sites were heterozygous in

the WES data of their respective cell lines. The ACE2-dependent model, Calu-3 (n = 23/2,850),

harbored 68% of all DASE sites. We also noticed seven eSNVs significantly altered in A549

with exogenous expression of ACE2 (n = 7/4,094). The ACE2-independent models of H522 and

A549 showed the smallest DASE sites with four (n = 3/672) and two eSNVs (n = 2/872),

respectively (Figure 1). The read depth at DASE sites was 2.5-fold greater than the coverage

across all positions.

Nineteen DASE sites were mapped to coding regions, with 56% being missense and 41%  being

synonymous variants. Only one eSNV mapped to the HLA-C 3´ UTR. Furthermore, DASE sites

are in 13 autosomal genes located on eight chromosomes (Table S2), with most eSNVs on

chromosome 6. The major histocompatibility complex (MHC) locus harbored 24 (70%) of the

DASE sites (Figure 1). HLA-B (n = 10) and HLA-A (n = 10) carried the highest number of

affected variations followed by HLA-C (n = 4). Only one eSNV changed significantly in each of

the other ten genes (BRD2, EHD2, GFM2, GSPT1, HAVCR1, MAT2A, NQO2, SUPT6H,

TNFRSF11A, and UMPS). HLA-C harbored DASE sites in all lung cell lines included in this

study (Figure 1). Both Calu-3 and A549 also shared DASE sites in the HLA-B gene. No

significant association was observed between the number of DASE sites from the different

multiplicity of infection (MOI) ratios and hours post-infection (hpi), suggesting that the

mechanisms underlying the differential expression of some alleles may be independent of these

variables.

Gene ontology (GO) over-representation analysis revealed that upregulated genes are mainly

involved in antigen processing and presentation of endogenous peptides via MHC class I
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(GO:0019885), cell killing (GO:0001906), and regulation of leukocyte mediated cytotoxicity

(GO:0001910). We observed an association between HLA-A and HLA-B with IFN-γ

(GO:0032609) and interleukin-12 production (GO:0032615). GFM2 and GSPT1 were associated

with the biological process of translational termination (GO:0006415). We also noticed an

enrichment of the guanyl ribonucleotide binding (GO:0032561) molecular functions linked to

EHD2, GFM2, and GSPT1. TNFRSF11A showed significant over-representation in the tumor

necrosis factor-activated receptor (GO:0005031) and death receptor (GO:0005035) activities.

HAVCR1 displayed virus receptor activity (GO:0001618), whereas NQO2 had a function of

chloride ion binding (GO:0031404).

The expression profiles of the genes harboring DASE sites distinguish genetic regulatory

mechanisms triggered by infection

The allelic imbalance observed at DASE sites could result from the differential gene expression

(DGE) induced by SARS-CoV-2. So, we compared the LogASE values to the log2-fold change

(LogFC) of the significant DGE (Figure 2A). We found that 23 DASE sites were linked to

increased expression of the HLA-A, HLA-B, and HLA-C genes at 24 hpi in Calu-3, A459, and

H522 cell lines (Table S2). This showed that HLA expression was increased in a way that was

specific to each chromosomal copy. Such differentiation was detected across the seven

experiments included in our study. For 14 eSNVs in HLA-A (n = 7), HLA-B (n = 6), and HLA-C

(n = 1), upregulation was seen in DASE sites where the reference allele was more likely to be

expressed (Figure 2B). Ten eSNVs in the upregulated group showed that the alternative allele

was more often expressed upon SARS-CoV-2 infection (Figure 2B). In Calu-3 cells, the

rs713031 in the HLA-B gene showed random allele expression over time, with an allelic

imbalance towards the alternative allele at 24 hpi with MOI = 10 and switching to the reference

allele at 48 hpi with a 0.1 MOI. For both experiments, an increased transcriptional level was

detected for the gene. Such an allele switch may represent a random allelic imbalance expression

once both comparisons where this eSNV was detected originated from cells with the same

genotype.

Twelve genes with 13 DASE sites showed compensated expression, which means that the virus

did deregulate their expression level. At six eSNVs, the reference allele was expressed more than
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the alternative allele, but at seven DASE sites, the alternative allele was expressed more. No shift

in the allele expression of the same eSNV across different experiments was observed in this

group of genes. For the rs2071876 in BRD2, we identified a consistent expression of the

reference allele in the H522 cell line at 72 and 96 hpi (MOI = 0.06).

Furthermore, HLA-B and HLA-C also displayed compensated gene expression at 12 hpi despite

being upregulated at 36 hpi in the same Calu-3 cell (MOI = 10). Though the gene expression

changed, for rs41553715 in HLA-B, the expression of the alternative allele was increased in both

scenarios. Interestingly, the reference allele was preferentially expressed during upregulation of

the gene at 48 hpi in Calu-3 (MOI = 0.1) for the same genetic variant, suggesting

biased allele expression or a parental-dependent effect. Similar results were found when

comparing different HLA-C cell lines; for the rs41550715, the alternative allele was preferential

regardless of gene expression compensation in A549 or upregulation in Calu-3 (Table S3).

HLA-A gene is also altered in iPSC-derived airway epithelium basal cells

Next, we aimed to verify the expression profiles of genetic variants across alternative cell lines to

determine the extension of the DASE events. We then performed the ASE analysis on a dataset

of airway epithelium basal cells derived from iPSC lines (iBCs). The iBCs originated from two

independent precursors (iBCs-1566 and iBCs-BU3 NGPT). Unlike lung-derived cell lines, we

could not retrieve WES data from both cells. Therefore, the genetic variants identified were

considered theoretically heterozygous. We interrogated 26,420 sites, including 14,909 from

iBCs-1566 and 16,338 from iBCs-BU3 NGPT. The SNV rs2075684-T-A located in the HLA-A

gene was found to be differentially expressed during viral infection in iBCs-1566 cells after 24

hpi (Figure 2C; Table S3). After infection, the reference T allele was seen to be more active than

the alternative A allele. This variation changes phenylalanintoby tyrosine at position 33

(Phe33Tyr) of the HLA-A protein. However, the alleles carrying phenylalanine codons seem to

be preferentially expressed. The overall minor allele frequency of rs2075684 was 0.14 in

GnomAD. Allele A has a MAF greater than 0.3 in South and East Asia populations. During

infection, the expression profiles of two other HLA-A variants, rs45585732 and rs1655894,

which are close to each other, were changed. In iBCs (BU3 NGPT), we detected two DASE sites

(rs2269350-G-A and rs11724369-G-A) in the RPSA and UVSSA genes after 72 hpi (Table S3).
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Both genetic variants had a synonymous effect on their proteins. The expression of the reference

alleles went down, and then the expression of allele A went up. The alternative allele has a

relatively elevated frequency across the populations in GnomAD (MAF = 0.26 and 0.29,

respectively). We also identified expression perturbations across five neighboring SNVs

(rs2276903, rs28614045, rs9996817, rs9685761, and rs6838561) in the UVSSA gene. All three

genes highlighted in iBCs displayed a compensated gene expression profile in the experiments.

DASE sites are not related to chromosomal aberrations differences between mock-treated

and SARS-CoV-2 infected samples

Having identified DASE sites across lung-derived and airway basal epithelial cell lines, we asked

whether these allele biases were caused by genomic instability or viral infection. We wished to

rule out possible karyotype differences as the primary source of ASE since Calu-3, A549, and

H522 are hypotriploid (42). We confirmed chromosomal aberrations in all cell lines analyzed

using eSNP karyotyping and WES karyotyping (Figure 3). Though the eSNP-Karyotyping

revealed a dynamic pattern in the RNA-Seq data of Calu-3, no significant karyotype alterations

were detected at the DASE sites (Figure 3). For A459, the nine DASE sites identified are

mapped at chromosomes 2, 5, 6, and 19, of which six SNVs target the MHC class I locus (Figure

3). At the genomic level, we detected significant alterations in chromosomes 17 and 20. Both

aberrations were also present at the transcriptional level reported by eSNP-Karyotyping analysis

in all A549 experiments. The pattern was consistent when both conditions were compared.

Karyotyping with WES or RNA-Seq data in H522 cells suggested the presence of a structural

aberration across the MHC locus (Figure 3, panels E and F). Infected cells have a DASE site in

the HLA-C gene. This suggests that the observed allelic shift is related to SARS-CoV-2. We

could not retrieve WES data from the iBCs lines used in our study. Despite this, the allelic ratios

from RNA-Seq data were consistent in both IBC cell lines, implying that no chromosomal

aberrations were present (Figure 3). Thus, the DASE sites are not likely to be caused by the

alterations in the karyotype of the mock-treated and infected samples.

Allelic imbalance at DASE sites is partly linked to the differential expression of haplotype

blocks
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To understand the extension of the allelic imbalance across neighboring eSNVs, we expanded

our screening around the DASE sites of each gene. In seven experiments, the BRD2, HLA-C,

MAT2A, RPSA, SUPT6H, and TNFRSF11A genes each displayed only one eSNV. Also, even

though they had multiple eSNVs, the LogASE values of co-localized variants in four genes

(EHD2, GFM2, GSPT1, and UMPS) did not change. We then sought to evaluate if these

variations overlapped single gene isoforms. By mapping each DASE site and its nearby eSNVs

to the transcripts, we saw that all of the eSNVs were in areas where more than one isoform

passed through. Thus, the possibility of isoform-specific allele expression was excluded from

this set of genes. Finally, for six genes in 14 experiments, we observed DASE sites neighboring

eSNVs affected after SARS-CoV-2 infection. For instance, HLA-B displayed many SNVs

impacted close to the DASE sites in Calu-3 and A549 cell lines. Similar results were found for

the HAVCR1, NQO2, and UVSSA genes.

The overwhelming occurrence of eSNVs at the MHC locus raises the question of whether the

eSNVs are in phase, i.e., in the same RNA molecule and transcribed from the same parental

allele. We use HapTree-X to reconstruct longer-range haplotypes using allelic imbalance at

theoretically heterozygous eSNVs (44). We focused our analysis on six genes with DASE sites

that span at least two heterozygous SNVs. We reconstructed the phased haplotype for all genes

investigated across the different experiments. DASE sites affected by SARS-CoV-2 infection

co-localized on the same RNA molecules raising the possibility of viral-induced differential

haplotype expression (DHE) (Figure 4). This pattern was consistently observed in the HLA-B

gene throughout seven different comparisons. DHE also occurred in the HLA-C and UVSSA

genes in at least two comparisons.

A single haplotype block spanned the entire HLA-B gene, covering a genomic window of 3,268

bp in Calu-3 cells (Figure 4). We identified 80 SNVs, of which 44 were interrogated during

DASE analysis, five of which were differentially expressed. All the other affected eSNVs that

did not reach statistical significance or pass the LogASE threshold were in phase with DASE

sites. In the other experiments, the reconstruction of the HLA-B haplotype was fragmented, but

we could identify haplotype blocks harboring DASE sites and co-localized eSNVs where all

alleles with distinct expression patterns during viral infection were phased. Single haplotype
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blocks were also detected in HLA-A and HLA-C (Figure 4). Ten DASE sites were detected in

HLA-A in Calu-3 and were co-expressed with the 18 eSNVs in Haplotype 2 (Figure 4). For

HLA-C, we noticed DHE toward the haplotype #2, similar to that observed for non-HLA genes

such as HAVCR1 and UVSSA.

DASE sites and affected co-localized SNVs discriminate MHC class I alleles preferentially

expressed during infection

The reconstruction of extended haplotype blocks in the MHC class I locus allows allelic typing,

which provides insights into the preferential expression of alleles during SARS-CoV-2 antigen

presentation. Thus, to predict the HLA alleles assigned to each haplotype reconstructed in the

previous analysis, we performed sequence-based HLA typing from RNA-Seq reads in each

sample. We identified six samples heterozygous for HLA alleles that displayed DHE, in which

the DASE sites and co-localized SNVs could discriminate the HLA allele preferentially

expressed (Table 1). The HLA-A gene of Calu-3 cells was heterozygous for the A*24:02 and

A*68:01 alleles. The 10 DASE sites with increased expression after infection mapped to the

A*68:01 allele. In the HLA-C gene from Calu-3, the DASE sites did not distinguish the

heterozygous HLA alleles. Using the SNVs in phase with DASE sites, we could differentiate the

imbalance between the two alleles. We found the preferential expression of the allele C*15:02

co-expressed with the allele C*07:02 with three discriminant variations. The DASE sites found

in HLA-B of Calu-3 did not distinguish alleles. However, by extending our analysis to three

neighboring SNVs, we found an imbalance between the alleles B*51:01 and B*07:02. We

observed that two altered SNVs mapped to B*51:01 while B*07:02 was characterized by a single

variant (Table 1). Lastly, we found that the B*44:03 and B*18:01 alleles of the HLA-B gene were

both heterozygous in the A459 experiments.

Discussion

This study identified an imbalanced expression of genetic variations in classical MHC class I

genes and ten other genes associated with SARS-CoV-2 infection. Gene ontology analysis

showed that the 13 genes with DASE sites in Calu-3, A549, and H522 are enriched in protein

binding functions, some of which are involved in SARS-CoV-2 infection, COVID-19 disease

progression, and severity. HLA-A, -B, and -C genes act on endogenous peptide antigen
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presentation and are associated with disease susceptibility. The transcriptional regulator

bromodomain-containing protein 2 (BRD2) is a potent regulator of ACE2 transcription in Calu-3

cells (48). The EHD2 protein, highly enriched at the neck of caveolae, controls a

cell-autonomous, caveolae-dependent fatty acid uptake pathway by adipocytes, endothelial cells,

and muscle cells (49). Importantly, EHD2 is underexpressed in obese patients, a known risk

comorbidity for severe COVID-19.

Patients carrying the cytosolic glutathione S-transferase GSPT1 rs1695 allele are at lower risk of

COVID-19 development (50). The hepatitis A virus cellular receptor (HAVCR1, also called

KIM1), used by Ebola, Marburg, Dengue, and Zika viruses, is an entry factor for SARS-CoV-2

to kidney cells, where the virus induces organ abnormalities associated with poor prognosis and

mortality in COVID-19 patients (51). The methionine adenosyltransferase 2A (MAT2A),

involved in S-adenosylmethionine methylation pathways, is differentially upregulated in

mono-CD14+CD16+ cells in patients with severe COVID-19 (52). MAT2A presumably is

required to methylate the SARS-CoV-2 RNA cap structures, allowing genome transcription and

preventing the recognition of RNA Cap structures by cellular innate immunity receptors (53).

The SUPT6H gene codes one of the many RNA binding proteins profoundly down-regulated

upon SARS-CoV-2 infection (54). The uridine monophosphate synthase (UMPS) is involved in

pyrimidine biosynthesis, and pyrimidine inhibitors synergize with nucleoside analogs to block

SARS-CoV-2 replication (55).

The observed allele bias in classical MHC class I genes leads to the preferential expression of

one allele within a heterozygous locus, showing that the upregulation of these genes is driven in

a haplotype-specific manner. The classical MHC class I molecules handle mainly self-peptides or

viral antigens. The exposure of the HLA-peptide complex on the cell surface is followed by

CD8+ cytotoxic T lymphocyte binding, which may induce apoptosis in virally infected cells and

generate long-term immunological memory. By having heterozygous alleles in the HLA-A, -B,

and -C genes, up to six MHC class I alleles can be expressed at a time in a single human cell.

Perturbations in MHC allelic expression can change how antigens are presented. The cellular

immunity conferred by CD8+ memory T cells is crucial to fighting earlier SARS-CoV-1

infection and the current SARS-CoV-2 pandemic, even with or without humoral responses
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(56–59). Though our findings seem to be limited to the repertoire of antigens for T CD8+ cell

presentation, the isoform expressed may play a role in the efficiency of the immune response to

viral infection.

For example, the A*68:01 allele overexpressed in Calu-3 has been predicted to have a high

binding affinity to SARS-CoV-2 epitopes (60). A*68:01 is a common allele found across

different populations at a frequency of 5.2–25%. This allele was strongly associated with

mortality from influenza A (H1N1) infection (61,62). A large-scale analysis also revealed a

proclivity for the worst COVD-19 outcome in patients with the B*51:01 allele that is

overexpressed in Calu-3-cells (63). In silico analysis identified a high affinity for potential T-cell

epitopes of S-protein (64). Previous studies reported a protective role of B*51:01 in the

long-term control of AIDS progression in HIV-infected individuals (65–67). The alternative

allele B*07:02, co-expressed with B*51:01, had a beneficial association with high antiviral

efficacy against SARS-CoV-2 (68). For HLA-B of Calu-3 cells, we were not able to determine

the phase of DASE sites considering the two alleles B*51:01 and B*07:02.

Cross-referencing with the HLA peptidome in Calu-3 infected by SARS-CoV-2 revealed that the

epitopes presented on the cell surface matched most of the HLA alleles that were found to be

differentially expressed by our analysis (69). The majority of peptides presented by HLA-A on

the Calu-3 surface matched the A*68:01 allele. Nagler and his team did not see B*51:01 and

C*07:02 being expressed in SARS-CoV-2-infected Calu-3. These results may help settle the

disagreement about the haplotype that is most strongly expressed at the RNA level for HLA-B.

Thus, the absence of epitopes matching the alternative allele for both HLA-B and HLA-C genes

shows that the differential haplotypic expression may be reflected at the protein level. It is still

not clear if the immunodominant epitope controls the preferential expression of the HLA alleles

or if the different expression of the HLA alleles makes some peptides more likely to be chosen.

The three HLA alleles upregulated in Calu-3 may play a protective role against COVID-19

(Figure 5). A*68:01 showed a protective effect against severe manifestations of the disease in

Tapachula-Chiapas, Mexico (70). In contrast, the peptides presented by A*68:01 derived from

the envelope protein are homologous to the neuronal cell adhesion molecule (NCAM) (71).
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Thus, A*68 has been associated with developing Guillain-Barre syndrome (GBS). B*07:02 and

C*15:02 have antiviral activity and resistance against SARS-CoV-2, respectively (68,72).

In the HLA-B gene in A549 cells, we observed the preferential expression of the B*18:01 allele

over the B*44:03 allele in all experiments. B*18:01 was associated with the manifestation of

subacute thyroiditis triggered during the SARS-CoV-2 infection (73). This allele has also been

linked to T cell cross-reactivity between EBV epitopes and a self-peptide, causing an aberrant

immune response (74). The HIV viral replicative capacity was significantly higher in subjects

expressing the B*18:01 allele (75). In contrast to the patterns seen with HLA-A and -B, there is

no clear link between the allele C*15:02 and COVID-19. This allele was upregulated in Calu-3

experiments when co-expressed with C*07:02. The C*15:02 allele confers resistance against

SARS-CoV infection (72). Francis and colleagues recently described the HLA-B*07:02 allele as

presenting homologous epitopes from SARS-CoV-2 and other HCoVs, providing high

pre-existing immunity. Preferential expression of HLA alleles may be closely connected to TCR

repertoire diversity (76). Moreover, HLA genotypes and CD8+ T cell responses have been

described as having implications for herd immunity and strategies to consider during vaccine

design to guarantee long-term immunity against SARS-CoV-2 (76,77).

Zhang et al. reported allelic imbalances across HLA-B alleles in lung cell lines infected by

SARS-CoV-2 using an alternative methodological approach. The authors offered three

non-exclusive biologically plausible mechanisms to explain the differential haplotype

expression: (i) the activation/silencing of one allele is attributed to pathological effects, (ii)

independent regulation of the transcription of both alleles, and (iii) the presence of cis-acting

regulatory elements (27). In our study, the occurrence of DASE sites in the BRD2 gene mapping

to the HLA chromosomal region corroborates the cis-acting regulatory elements' hypothesis.

During T cell activation, allele-specific expression changes were described in HLA and other

autoimmune loci for CD4+ T cells (78).

ASE perturbations are not mechanistically unique to SARS-CoV-2 infection, despite the reported

shift in allele expression in HLA and ten other genes. Multiple ASE alterations have been

identified in CD4-T cells infected by the oncogenic Marek's Disease herpesvirus (MDV) (79).

MDV caused ASE changes in six genetic resistance loci (MCL1, SLC43A2, PDE3B, ADAM33,
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BLB1, and DMB2) that are related to T-cell activation, T-cell and B-cell receptors, ERK/MAPK,

and PI3K/AKT-mTOR signaling pathways, all of which play important roles in MDV infection.

Because ASE-affected genes represent the complex trait of genetic resistance to Marek's disease,

the trait is then determined by transcriptional regulation (80). Our results show that when

SARS-CoV-2 infects cells, there is a transcriptional allelic flip in the affected genes, which

occurs regardless of compensation of gene expression. We hypothesize that when the virus enters

the cell, a DASE flip regulatory mechanism swaps HLA alleles that display epitopes with poor

binding affinity. Functional studies are required to assess the biological significance of the

transcriptional allelic flip. We warn against drawing any more conclusions from these results

because the sample size was small and the study was done with public secondary WES and

RNA-Seq data.
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Statement of contribution to the field
In response to infection with SARS-CoV-2, cells engage their innate and adaptive immune
systems. SARS-CoV-2 interferes with cytokine signaling and affects the antigen-presenting
function of HLA molecules because of transcriptional modifications influenced by
interindividual variance. By evaluating allele-specific expression as a measure of interindividual
variation, we found that infection of human epithelial lung and airway cell lines with
SARS-CoV-2 causes a shift in the expression of HLA alleles that swaps alleles with poor epitope
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binding affinity. The observed shift in HLA allele expression may relate to improved COVID-19
outcomes.
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Figure Legends

Figure 1. Differential allele-specific expression sites across the single-nucleotide variants

identified in Calu-3, A549, and H522 lung cell lines. A) Circular Manhattan plot of the

chromosomal distribution of eSNVs tested using a binomial approach. The densities of eSNVs

per chromosome in the Calu-3, A549, and H522 cell lines are depicted inward. Red points

represent DASE sites with FDR < 10%. B-D) Regional plot of classical MHC class I genes with

the orange diamond showing the DASE sites in Calu-3, green circles for A549, and H522

represented by the pink triangle point down. E) The total number of eSNV sites tested in each

lung cell line, followed by the number of DASE sites found. The intersection between the genes

harboring DASE sites in the three cell lines is depicted in the Venn diagram. HLA-C was the only

gene that showed DASE sites in all lines. Nevertheless, HLA-B was also shared between Calu-3

(red circle) and A549 (yellow circle).
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Figure 2. Comparison of the LogASE and LogFC from differential gene expression (DGE).

A) Plot showing the LogASE values for DASE sites on the x-axis and LogFC from the DGE

comparing the infected with mock-treated cells. Positive LogASE values represent the increase

of the alternative allele over the reference. In contrast, negative values represent ASE sites that

exhibited a preferential expression of the reference allele after infection. Colored circles show

the genes where each DASE site is mapped, whereas gray circles show the eSNVs that met the

requirement of FDR > 10% in the DASE analysis. B) Comparison between the Ref Ratio values

of SARS-CoV-2 infected and mock-treated cells. The plot shows the ref ratio values on the

x-axis and DASE sites on the y-axis. Red and blue circles represent the mean of Ref Ratio values

among the replicates of SARS-CoV-2 infected and mock-treated cells, respectively. The interval

bars denote the range between the min and max values found across the replicates. Ref Ratio

values > 0.5 represent the preferential expression of the reference allele, whereas values < 0.5

show the bias towards the alternative allele. The heatmap at the right highlights the cell line

where the DASE sites were found. C) Manhattan plot showing the DASE sites found in

iPSC-derived airway epithelium basal cells (iBCs).
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Figure 3. Comparison of chromosomal aberrations between mock-treated and

SARS-CoV-2-infected cell lines. Comparison between e-Karyotyping analysis of samples from

whole-exome sequencing and RNA-Seq data from Calu-3 (A-B), A549 (C-D), and H522 (E-F).

G-H) e-Karyotyping analysis in RNA-Seq data from iPSC-derived airway epithelium basal cells

(iBCs) from 1566 and BU3 NGPT cell lines. For each experiment, red dots and lines represent

SARS-CoV-2-infected replicates, whereas blue dots and lines show mock-treated replicates.

Diploid samples usually display an allelic ratio (y-axis) around 1.4 as previously shown (43,81).

The gray background shown at the top and bottom of each plot shows regions that reach

statistical significance for aneuploidy using the piecewise constant fit algorithm. The color
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gradient displayed next to each region represents the FDR-corrected P value for both

comparisons.

Figure 4. Phasing of DASE sites and co-localized eSNVs from classical MHC class I genes

using RNA-seq data from Calu-3 cells. A-C) Regional plot of eSNVs localized around the

HLA-A, -B, and -C genes. In blue, DASE sites revealed by the binomial test. The gray represents

the other eSNVs tested that did not reach statistical significance. The ideogram of the

chromosome is also shown, and a red tick shows where each relevant transcript isoform is

located. Next, a plot showing the single haplotype block spanning the genes under analysis.
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Purple circles represent the reference allele, while the alternative is represented in pink. The

x-axis refers to the genomic position of each eSNV in the GRCh38 genome assembly, and the

y-axis shows the two haplotypes from the chromosomal locus. Blue and gray circles matched the

SNVs in the regional plot on the left. The SNVs found in HLA genes that were not used in the

binomial test are shown by the empty circles.

Figure 5. Schematic representation of the proposed regulatory genetic mechanism

associated with the haplotype-specific expression of class I HLA alleles during SARS-CoV-2

infection. Viral cell entry triggers preferential transcription of the RNA molecules in the

classical class I HLA locus. Even though Calu-3 is heterozygous for HLA-A, -B, and -C alleles

(69), we found that the A*68:01 allele was more expressed than the A*24:02 allele, the B*07:02

allele was more expressed than the B*51:01 allele, and the C*15:02 allele was more expressed

than the C*07:02 allele. Such differences in the expression may be attributed to structural

differences in promoter motifs (82), transcriptional factors, genetic variations, and environment

(83,84). Cross-referencing analysis using HLA peptidome data from Calu-3 infected by

SARS-CoV-2 generated by Nagler and colleagues (2021) revealed that the same RNA molecule

found to be preferentially expressed in RNA-Seq data corresponds to the HLA protein expressed

on the cell surface for classical class I alleles. Nagler and colleagues (2021) reported that most
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peptides presented on the cell surface matched the A*68:01 allele when compared to the

A*24:02. For HLA-C, no peptide matching C*07:02 was found after infection. Similarly, the

B*07:02 allele was found to be preferentially expressed at the HLA-B locus. By using DASE,

swapping alleles with low binding affinity could be a part of the defense that helps COVID-19

outcomes be less severe. Created with BioRender.com.

Table Legends

Table 1. Detection of DASE sites and affected co-localized SNVs in MHC class I alleles.

Table S1. Public RNA-Seq and WES experiments included in this study.

Table S2. DASE sites identified in Calu-3, A549, and H522 cell lines.

Table S3. DASE sites found in airway epithelium basal cells derived from iPSCs.
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