
 

Dandelion utilizes single cell adaptive immune receptor repertoire to 
explore lymphocyte developmental origins 

 
Authors: Chenqu Suo1,2,8, Krzysztof Polanski1,8, Emma Dann1, Rik G.H. Lindeboom1, Roser 
Vilarrasa-Blasi1, Roser Vento-Tormo1, Muzlifah Haniffa1,3,4, Kerstin B. Meyer1, Lisa M. 
Dratva1, Zewen Kelvin Tuong1,5,7,9*, Menna R. Clatworthy1,5,9*, Sarah A. Teichmann1,6,9* 
 
Affiliations:  
1Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK. 
2Department of Paediatrics, Cambridge University Hospitals; Hills Road, Cambridge, UK. 
3Biosciences Institute, Newcastle University; Newcastle upon Tyne, UK. 
4Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle 
upon Tyne Hospitals NHS Foundation Trust; Newcastle upon Tyne, UK. 
5Molecular Immunity Unit, University of Cambridge Department of Medicine; Cambridge, 
UK. 
6Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of 
Cambridge; Cambridge, UK. 
7Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia 
8These authors contributed equally to this work. 
9These senior authors contributed equally to this work. 
*Corresponding authors. Email: z.tuong@uq.edu.au (Z.K.T.), mrc38@cam.ac.uk (M.R.C.), 
st9@sanger.ac.uk (S.A.T.). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2023. ; https://doi.org/10.1101/2022.11.18.517068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Abstract: 

Assessment of single-cell gene expression (scRNA-seq) and adaptive immune receptor 
sequencing (scVDJ-seq) has been invaluable in studying lymphocyte biology. Here, we 
introduce Dandelion, a computational pipeline for scVDJ-seq analysis. It enables the 
application of standard V(D)J analysis workflows to single-cell datasets, delivering improved 
V(D)J contig annotation and the identification of non-productive and partially spliced 
contigs. We devised a novel strategy to create an adaptive immune receptor feature space that 
can be used for both differential V(D)J usage analysis and pseudotime trajectory inference. 
The application of Dandelion improved the alignment of human thymic development 
trajectories of double positive T cells to mature single-positive CD4/CD8 T cells, with 
important new predictions of factors regulating lineage commitment. Dandelion analysis of 
other cell compartments provided novel insights into the origins of human B1 cells and 
ILC/NK cell development, illustrating the power of our approach. Dandelion is an open 
access resource (https://www.github.com/zktuong/dandelion) that will enable future 
discoveries.  
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Introduction 

Recent developments in single-cell genomics have significantly advanced our understanding 
of human immunology1,2. Paired adaptive immune receptor (AIR) sequencing with mRNA 
expression in the same cell allows for direct linkage of AIR repertoire with cellular 
phenotypes, and has proven to be a powerful tool in understanding lymphocyte development 
and function in healthy and disease contexts3–6. 
 
Multi-omics analysis leverages data from different modalities and has been successfully 
applied in recent years to study cellular biology at an unprecedented resolution. Examples 
include integration of paired single-cell RNA sequencing (scRNA-seq) and Assay for 
Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) data or 
Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) data7,8. 
However, unlike many other sequencing modalities, which largely consist of continuous data, 
AIR repertoire sequencing data are a mixture of categorical and continuous data which pose 
additional challenges for integration. AIR data consist of annotations of variable (V), 
diversity (D) and joining (J) genes, which are recombined and selected during B/T cell 
development9. The Adaptive Immune Receptor Repertoire (AIRR) community was formed in 
2015 to help address the issues and challenges related to the curation and analysis of AIR 
data generated with high throughput sequencing technologies10–12. This has led to the 
standardization of repertoire data representation across various modes of AIR data, including 
single-cell V(D)J sequencing data. There are established options and packages that can deal 
with single-cell AIR repertoire data and they provide a variety of methods for downstream 
analyses (non-exhaustive list of some popular tools shown in Supplementary Fig. 1). The 
functions include re-annotation of genes in AIR contigs, quality control checks, matching 
contigs to cells, clonotype definition, mutation quantification and diversity estimation and 
many more (Supplementary Fig. 1). The single-cell AIR softwares are often designed to 
interact with a single-cell gene expression software package of choice, e.g. scirpy13 with 
scanpy14 and scRepertoire15 with Seurat16, providing valuable visualization options. There are 
also tools for predicting antigen specificity of T cell receptors (TCRs) (e.g. TcellMatch17), 
annotating TCRs that recognize known epitopes (e.g. Platypus18, Immunarch19) and 
extraction of significant motifs and motif groups (e.g. ALICE20). There have also been 
developments in joint-embedding of single-cell gene expression and AIR complementarity-
determining region 3 (CDR3) sequences, which have been used for correlating TCRs with T 
cell transcriptomes (e.g. CoNGA21, mvTCR22). There remains opportunities for new methods 
to realize the full potential of paired scRNA-seq and scVDJ-seq data. 
 
To that end, we developed Dandelion, a holistic analysis framework within the context of 
single-cell lymphocyte biology. It offers a B cell receptor (BCR) and TCR contig annotation 
pipeline, integrative analysis with single cell RNA-seq data and a novel V(D)J feature space 
for differential V(D)J usage and pseudotime trajectory inference. Here, using two immune 
development datasets, we showcase how Dandelion can be applied to improve alignment of 
cells along the double positive (DP) T cell to mature T cell development trajectory, and 
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provide novel insights into human B1 cell origin and innate lymphoid cell (ILC) and natural 
killer (NK) cell development. 
 
Results 

Dandelion enables holistic scVDJ-seq analysis 
As Dandelion operates on the AIRR data format, it has high interoperability with existing 
tools in the AIRR community13,23 and can serve as a bridge between these tools and single-
cell gene expression analysis software ecosystem e.g. scverse14,24 (Fig. 1a). Dandelion has 
also been certified by the AIRR Software Working Group to be compliant with the software 
standards that encourage collaboration and reproducibility.  
 
Dandelion can be used to analyze single-cell BCR, αβTCR and γδTCR data, allowing for 
BCR mutation calling, improved γδTCR mapping, extraction of both productive and non-
productive V(D)J contigs and identification of unspliced J gene alignments (‘multi-J 
mapping’) (Fig. 1b). Dandelion then performs quality control checks, clonotype calling and 
clonotype network generation for downstream analyses, and is designed to work with any 
AIRR formatted input or 10X Genomics’ cellranger vdj output. A main novel feature of 
Dandelion is the creation of a ‘V(D)J feature space’ that can be used to visualize TCR/BCR 
usage across cell pseudo-bulks or neighborhoods, perform differential V(D)J usage analysis 
and pseudotime trajectory inference. A summary list of features of Dandelion and a non-
exhaustive list of other existing pipelines is shown in Supplementary Fig. 1. A subset of the 
functionalities of Dandelion was previously applied to a large COVID-19 study4 which 
showcased its network-based repertoire diversity analysis method.  
 
Dandelion provides a streamlined contig re-annotations pipeline 
For optional re-annotation of contigs, Dandelion expects 10X Genomics’ cellranger vdj 
output files, specifically the contig annotation spreadsheet and fasta file (e.g. 
all_contig_annotations.csv and all_contig.fasta). 
 
Similar to Change-O23, Dandelion re-annotates V(D)J contigs using igblastn25 with reference 
sequences contained in the international ImMunoGeneTics information system (IMGT) 
database26. The individual contigs are then checked with blastn for the D and J gene 
separately, using the same settings as per igblastn25. The additional blastn step allows us to: i) 
apply an e-value cut off for D and J calls to ensure only high confidence calls are retained; ii) 
identify multi-J mapping contigs (see below); and iii) recover contigs without V gene calls 
(removed by igblastn). We packaged this pre-processing workflow into a single-line 
command implemented via a singularity container to streamline and improve the user 
experience, circumventing the difficulty of setting up the various software environments and 
dependencies.  
 
Non-productive contigs, which are contigs that cannot be translated into a functional protein, 
are often filtered out by other scVDJ-seq analysis pipelines e.g. scirpy13, scRepertoire15, 
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Platypus18 (Supplementary Fig. 1). In the Immcantation/changeo23 workflow, non-
productive contigs are preserved and there are specific instructions for filtering or retention 
during annotation and clone definition steps. Moreover, igblastn is a V gene annotation tool25 
and would filter contigs without V gene presence. We found that a significant proportion of 
contigs were non-productive in αβTCR, γδTCR and BCR data from fetal human tissues3 and 
the majority were due to absent V genes, with the exception of the TRA locus where most 
non-productive contigs were annotated due to presence of premature stop codons (Fig. 2a). 
This pattern was consistent even after excluding thymic samples to remove the influence of 
developing T cells (Supplementary Fig. 2a). These non-productive contigs without V genes 
were captured in scVDJ-seq because the rapid amplification of 5′ complementary DNA 
(cDNA) ends (5′ RACE) technology used in the protocol does not require primers against V 
genes for targeted enrichment, in contrast to the previous multiplex PCR approach 
(Supplementary Fig. 2b). Although these contigs are not translated into functional proteins, 
they likely represent products of partial or failed recombination that we reasoned are still 
biologically meaningful, reflecting a cell’s history and origin. The Immcantation workflow 
would divert these contigs into a “failed” file and this file is not typically exposed to the user 
unless specified explicitly. Therefore, Dandelion does not automatically filter out non-
productive contigs, and this data has utility, as later discussed, when we used it to track B1 
cell origin and ILC/NK development.  
 
We have also discovered that multiple J genes can be sequentially mapped onto different 
regions in the same messenger RNA (mRNA) contig, a phenomenon we termed ‘multi-J 
mapping’. Looking at the most frequent multi-J mapping contigs in each locus 
(Supplementary Table 1), we found that the majority were two to four neighboring J genes 
on the genome interspersed with introns. As the process of linking the chosen J to C genes is 
achieved through RNA splicing rather than DNA recombination, contigs with multi-J 
mapping are likely products of partially spliced transcripts (Fig. 2c). Nevertheless, it is 
biologically plausible that the J gene nearest to the 5′ end is the intended exon that would be 
expressed in the mature mRNA. 
 
We next investigated factors that might contribute to multi-J mapping. We first noted that 
non-productive contigs without V genes appeared to be more likely to have multi-J mapping 
(Fig. 2c). This difference could be due to nonsense-mediated decay (NMD), an RNA 
degradation process that is triggered when translation encounters a premature stop codon27. 
Multi-J mapping contigs that contain a V gene will initiate translation from the V gene, which 
will trigger degradation by NMD due to premature stop codons in J gene introns. Transcripts 
of multi-J mapping without a V gene cannot be translated and will therefore evade 
degradation by NMD. To test the contribution of NMD to multi-J mapping, we treated 
peripheral blood mononuclear cells (PBMCs) with cycloheximide to block NMD and 
analyzed treated and untreated cells by scRNA-seq with scVDJ-seq. This resulted in an 
increase in the proportion of multi-J mapping in TCR contigs with V genes (Supplementary 
Fig. 2c), supporting the conclusion that NMD recognises and degrades V-gene containing 
multi-J mapping contigs.  
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We used a logistic regression model to look for additional factors associated with multi-J 
mapping (Fig. 2d) in both the Suo et al. 20223 dataset (Supplementary Table 2) and the new 
control/cycloheximide-treated PBMC dataset that we generated for this study 
(Supplementary Table 3). The above finding was further supported by a significant 
interaction (Benjamini–Hochberg (BH) adjusted P-value 7.07e-04) between V gene presence 
and cycloheximide treatment, although the significant non-interacting V gene term (BH 
adjusted P-value 5.73e-182) in the regression fit suggests that NMD may only partially 
account for the effect of V genes on multi-J mapping. Furthermore, we compared the 
sequences of 5′ end J genes positively and negatively associated with multi-J mapping and 
found the known consensus motif for splicing, ‘GTAAGT’ in +1 to +6 position of adjacent 
intron28, was disrupted in J genes associated with more multi-J mapping (Fig. 2e, 
Supplementary Table 4). In conclusion, the factors that might contribute to multi-J mapping 
include specific cell types and J gene identity, which potentially affect splicing efficiencies; 
as well as V gene presence, which might be partially explained by NMD (illustrated by 
Supplementary Fig. 2d). 
 
An additional application of Dandelion’s contig annotation functionality is that it allows for 
γδTCR contig annotation. There are two existing methods for sc-γδTCR mapping: i) the 
cellranger vdj pipeline developed by 10X Genomics, although this is primarily tailored for 
αβTCR contigs; ii) the TRUST429 software which performs de novo contig assembly and 
annotation. The cellranger software is capable of reconstructing the γδTCR contigs, but most 
versions struggle with annotating them, a problem 10X was aware of and addressed with 
user-side workaround instructions (see Supplementary Note 1). While TRUST4 can yield sc-
TCR annotations, including γδTCR, it relies on the presence of a V gene in the contig thus 
unable to handle non-productive contigs without V genes. Supplying the reconstructed 
contigs into Dandelion’s pre-processing pipeline from the cellranger output yields re-
annotated output that can be used for downstream analysis. We processed 33 γδTCR 
libraries3; One mapping was done with cellranger 6.1.2 to the 10X GRCh38 5.0.0 V(D)J 
reference, with the contigs identified by cellranger as high confidence subsequently re-
annotated with Dandelion. Another mapping was done with cellranger 6.1.2 to the 5.0.0 
reference modified to obtain annotated γδTCR contigs as per 10X Genomics’ workaround 
instructions. We see a consistent higher recovery rate of both high confidence γδTCR contigs 
and high confidence productive γδTCR contigs in the mapping post-processed with 
Dandelion, verified as statistically significant by the Wilcoxon signed-rank test (P-value for 
high confidence contigs: 5.39e-7, P-value for high confidence productive contigs: 3.14e-6) 
and showing a large effect size (rank correlations equal to 1 and 0.98 for all high confidence 
contigs and high confidence productive contigs respectively) (Fig. 2f). While 10X Genomics 
has introduced some γδTCR support with cellranger 7.0.0, the results were inferior to the 
prior workaround from version 6 (Supplementary Fig. 2e). 
 
Creating a V(D)J feature space 
To better leverage the combined gene expression and AIR repertoire data, we introduced a 
novel analysis strategy to create a pseudo-bulk V(D)J feature space, which transforms V(D)J 
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data from categorical to continuous format for downstream applications (Fig. 3a). 
Transcriptionally similar cells are first grouped into pseudo-bulks, which can be based on 
metadata features, or partially overlapping cell neighborhoods30. For instance, cells can be 
pseudobulked by annotated cell type, donor and organ to perform differential gene usage 
analysis across cell types while appropriately controlling for donor and organ differences. For 
trajectory analysis, we recommend pseudo-bulking cells by partially overlapping cell 
neighborhoods sampled from gene expression space e.g. using Milo30 to model a more 
continuous cell state. For each pseudo-bulk, we compute the fraction of cells using each of 
the genes within the same segment (e.g. TRAJ1 to TRAJ61 in the TRAJ segment). These 
vectors of fractions are concatenated across V(D)J segments of interest to form the feature 
vector in the V(D)J space. This can then be used with conventional dimension reduction 
techniques such as principal component analysis (PCA) or uniform manifold approximation 
and projection (UMAP).  
 
The utility of this V(D)J feature space is demonstrated on a dataset containing adult human T 
cells5 (Fig. 3b). We pseudo-bulked cells by cell types and donors to explore differential usage 
that is consistent across different donors. On the new UMAP computed from the V(D)J 
feature space, pseudo-bulks containing mucosal-associated invariant T (MAIT) cells formed 
a distinct cluster away from the others, in contrast to the single-cell gene expression space 
UMAP, indicating its unique V(D)J usage (Fig. 3b, Supplementary Fig. 3a-b). This is 
expected due to the semi-invariant nature of MAIT TCRs and illustrates the power of V(D)J 
feature space. Although there is no clear clustering in other cell types apart from MAIT 
(Supplementary Fig. 3b), there is a distinct separation between cell types that belong to 
CD4+T cells with those of CD8+T cells (Fig. 3b). The differential V(D)J usage for each cell 
type can be computed similarly to differentially expressed gene calculation e.g. with non-
parametric statistical tests implemented within scanpy14 (Fig. 3b, Supplementary Table 5). 
 
Leveraging V(D)J usage in pseudotime trajectory inference 
We also developed a novel usage for V(D)J data by performing pseudotime inference in 
lymphocytes with the cell neighborhood-based V(D)J feature space. Many pseudotime 
inference methods have been proposed to infer cell development based on transcriptomic 
similarity31. However, the current approaches remain problematic in immune cell 
development because the differentiation process is often interspersed with waves of 
proliferation, and transcriptomic convergence e.g. between NKT cells and NK cells can be 
misleading. Because usage of V(D)J genes in AIRs changes definitively as a result of cycles 
of recombination and selection during lymphocyte development, the AIR repertoire acts as a 
natural ‘time-keeper’ for developing T and B cells. A developing T cell’s fate towards CD8 
versus CD4 T cells is determined by whether its TCR interacts with antigen presented on 
MHC class I or class II during positive selection. Therefore, it is biologically conceivable that 
the TCR gives more accurate predictions on the branch probability to each T cell lineage. 
This is the motivation for leveraging V(D)J data in pseudotime inference. For this task, we 
chose to pseudo-bulk by cell neighborhoods as modeling cell states with partially overlapping 
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cell neighborhoods has advantages over clustering into discrete groups; clusters do not 
always provide the appropriate resolution and might miss important transition states. 
 
We sampled cell neighborhoods on a k-nearest neighbor (KNN) graph built with gene 
expression data using Milo30. An example is shown in Supplementary Fig. 3c and Fig. 3c 
using the dataset from Suo et al. 20223 showing cells with paired productive αβTCR from 
double positive (DP) T cells to mature CD4+T and CD8+T. This neighborhood V(D)J feature 
space was the input to compute pseudotime with palantir32. It outputs pseudotime and branch 
probabilities (Fig. 3c) to each terminal state with a predefined starting point and terminal 
states (Supplementary Fig. 3d). The inferred pseudotime follows from proliferating DP 
(DP(P)) to quiescent DP (DP(Q)) T cells, to abT(entry) which splits into CD8+T and CD4+T 
lineages. Trends of TCR usage can also be visualized along the pseudotime trajectory 
(Supplementary Fig. 3e). Pseudotime and branch probabilities can then be projected back 
from neighborhoods to cells (Fig. 4a) by averaging the parameters from all neighborhoods a 
given cell belongs to, weighted by the inverse of the neighborhood size. 
 
There are two alternative tools, CoNGA21 and mvTCR22, that also offer integration of 
transcriptional profiles with TCR information. Both of them were created to detect clonally 
expanded cell phenotypes with CDR3 sequences being the input. We tested whether they 
could also be used to reveal developmental relationships with the same dataset above. With 
CoNGA, the relationships between cell types were not preserved (Supplementary Fig. 4a). 
Same applies to mvTCR (Supplementary Fig. 4b), which failed to separate CD4+T cells 
from CD8+T cells. This is not surprising, as what is changing during recombination is 
selection of different V(D)J genes, while CDR3 junctional sequence diversity can 
additionally be influenced by random nucleotide insertions. This likely explains why the 
sequence-based methods do not capture the intercellular relationships as faithfully as the 
V(D)J feature space.  
 
V(D)J trajectory accurately orders DP T cells and reveals early CD4/CD8 
lineage decision genes 
We next compared the pseudotime and branch probabilities inferred from the neighborhood 
V(D)J feature space with the same parameters inferred from either single-cell gene 
expression or neighborhood gene expression feature space.  
 
Pseudotime inferred directly from single-cell gene expression performed unsatisfactorily, as a 
large proportion of CD8+T and CD4+T cells were misclassified with higher branch 
probabilities to the opposite terminal state (Supplementary Fig. 5a-b). We mainly focused 
our comparison with results from pseudo-bulked neighborhood gene expression (GEX) 
space, which produced more biologically meaningful pseudotime and branch probabilities 
(Fig. 4a). To construct the pseudo-bulked neighborhood GEX space, raw gene counts were 
pseudo-bulked by the same neighborhoods used to construct the V(D)J feature space 
(Supplementary Fig. 3c), and then normalized and logarithmically transformed. Pseudotime 
and branch probabilities were computed on this neighborhood GEX feature space and 
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projected back to cells (Supplementary Fig. 5c and d). The inferred pseudotime in the 
pseudo-bulked space better reflected the known biology of DP(P)_T to DP(Q)_T, to 
abT(entry) and subsequent splits into CD8+T and CD4+T lineages. This suggests that 
pseudotime inference with pseudo-bulked cells work better than directly from single cells, 
potentially due to more stable transcriptomic profiles compared to more noisy single-cell 
data.  
 
We observed two major differences when comparing the pseudotime inferred from 
neighborhood V(D)J feature space versus that from neighborhood GEX space (Fig. 4a). First, 
DP(Q) T cells appeared to dwell for a longer ‘time’ in the V(D)J trajectory as compared to 
the GEX trajectory. Second, the branching point of CD8+T and CD4+T cell lineages 
happened earlier in abT(entry) cells in the V(D)J trajectory (Supplementary Fig. 6c). In 
order to assess the fidelity of the V(D)J trajectory, we used the known fact that V-J 
recombination in the TRA locus happens processively33 using genes in the middle of the 
genomic locus and progressing to the two distal ends in an orderly manner. We have 
therefore encoded the genomic order numerically for each TRAV and TRAJ gene, and looked 
at the average TRAV and TRAJ relative locations for each DP(Q) neighborhood against their 
pesudotime ordering (Fig. 4b). V(D)J pseudotime showed a substantially better monotonic 
relationship with TRAV relative locations. Local Pearson’s correlations were computed over 
sliding windows of 30 adjacent neighborhoods on the pseudotime order (Supplementary 
Fig. 6a), and V(D)J pseudotime had higher absolute correlation coefficients on average (-
0.67 versus -0.43 for TRAV). A smaller improvement was also observed for TRAJ, with the 
average local Pearson’s correlations improved from 0.42 to 0.50 (Supplementary Fig. 6b).  
 
CD4 versus CD8 T cell lineage commitment is a classical immunological binary lineage 
decision that has been intensely investigated over many years34 but remains challenging to 
study as the selection intermediates have been difficult to observe directly35. We examined 
which genes in abT(entry) cells showed expression patterns that are correlated with branch 
probabilities to CD8+T lineage (Fig. 4c). This approach actually allows us to subdivide the 
abT(entry) cell population into two subsets, associated with higher probability of CD4 versus 
CD8 differentiation respectively. 
 
When considering the top genes that were positively correlated with the CD8+ T cell lineage 
choice, these included CD8A and CD8B, which are markers for CD8+T cells6. The top genes 
that were negatively correlated included CD40LG, which is a marker for CD4+T helper 
cells6, and ITM2A which is found to be induced during positive selection and causes CD8 
downregulation36. Other markers of CD4+T cells such as CD46, together with highly 
validated transcription factors (TFs) that are known to be involved in CD8+T or CD4+T 
lineage decisions34, including RUNX337,38, ZBTB7B39,40, TOX41 and GATA342,43 all displayed 
significant correlations in the expected directions. In contrast, when we performed the same 
test with CD8+T branch probabilities from GEX pseudotime, the magnitude of the 
correlation coefficients were notably reduced and some (e.g. TOX and RUNX3) were no 
longer statistically significant (Fig. 4c). In the case of TOX, the direction of the correlation 
was wrongly inverted (Fig. 4c). In addition, the V(D)J pseudotime also revealed novel 
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associations between the trajectories and TFs such as ZNF496, MBNL2 and RORC for 
CD8+T, and SATB1, STAT5A and STAT1 for CD4+T (Supplementary Fig. 6d, full gene list 
in Supplementary Table 6). These new insights into TFs predicted to be involved in lineage 
commitment merit future investigations and validations.  
 
We have also used different pseudotime inference methods to ensure the robustness of the 
results. Pseudotime inferred from neighborhood V(D)J space using palantir32, monocle344, 
and diffusion pseudotime45 was very similar (Supplementary Fig. 7a) and they all showed a 
better monotonic relationship with TRAV or TRAJ relative locations compared to 
pseudotime inferred from neighborhood GEX space (Supplementary Fig. 7b). However, 
palantir is preferred as the only method allowing output of branch probability to each 
terminal state, which is useful in deciphering CD4/8 lineage decisions as shown above. 
 
Taken together, we showed that V(D)J-based pseudotime inference gives more accurate 
DP(Q) T cell alignment, improves association of CD8/CD4 branch probabilities within 
abT(entry) cells allowing us to subdivide this cell state. We can use this approach to 
recapitulate known regulators, and uncover novel candidate regulators underlying 
CD8+T/CD4+T fate choice. 
 
New insights into lymphocyte development using non-productive 
recombination as a “fossil record” 
Based on our earlier observations of high proportions of non-productive contigs being 
represented in the single-cell V(D)J data (Fig. 2a), we next explored whether different 
lymphoid cell types expressed different proportions of non-productive contigs. While non-
productive BCR contigs were restricted to B lineage cells (Supplementary Fig. 8a-b) as 
expected, we were surprised to find that non-productive TRB contigs were not only expressed 
in developing DN T cells, but also in the ILC/NK lineage, and some B lineage cells (Fig. 5a, 
Supplementary Fig. 8c). The majority of the non-productive TRB contigs within ILC/NK/B 
cells were contigs without V gene (Supplementary Fig. 8d).  
 
The B lineage cells with non-productive TRB contigs included pre-pro B and B1 cells but not 
pro- or pre-B cells (Fig. 5a, Supplementary Fig. 8c). Pre-pro B and B1 cells expressed only 
non-productive TRB but not TRG/D contigs (Supplementary Fig. 9a-c), suggesting that pre-
pro B and B1 cells share a common development route (Fig. 5b schematic illustration) while 
bypassing pro- or pre-B cell stages. This clarifies that B1 cells in human fetal development 
stages can emerge through an alternative route to the rest of mature B cells (B2 cells). The 
conventional B cell differentiation route is thought to start from pre-pro B cells, the earliest 
cells that are committed to B lineage. The cells then progress through the pro- and pre-B cell 
stages, rearranging their BCR heavy and light chains respectively, while expressing the pre-
BCR, and then emerge as immature B cells with a productive BCR and then finally 
differentiate into mature naive B cells46. Our observations are consistent with findings in 
murine B1s, which were shown to bypass the pre-BCR selection stage47,48 that normally 
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happens in pre-B cells to remove self-reactive B cells. This may also explain why B1 cells 
have BCRs with shorter non-coded/palindromic (N/P) nucleotide insertions3, due to 
negligible expression of DNTT in pre-pro B but much higher expression in pro- and late pro-
B cells3. In addition, as pre-pro B cells are almost undetectable in adult bone marrow49, this 
potentially explains why we were unable to definitively locate B1-like cells in adult human 
tissues3. 
 
The ILC/NK lineage also expressed non-productive TRG/D contigs with some TRA contigs 
(Supplementary Fig. 9a-c), similar to DN T cells. With the V(D)J feature space described 
above (Fig. 3), we used TRBJ frequency as the input to delineate T/ILC/NK developmental 
trajectories, since all of them express TRBJ (Fig. 5b, Supplementary Fig. 10a). The inferred 
trajectory suggests that ILC/NK cells deviate away from T cell development between 
DN(early) and DN(Q) stage (Fig. 5b-c).  
 
Previous literature on the ILC/NK lineage has also demonstrated partial recombination of 
TRG/D in murine lung ILC250, and of TRB/G in murine thymic ILC251, leading to the 
hypothesis of ‘aborted’ DNs for ILC/NK development52. Our observation of the expression of 
non-productive TRB/G/D in ILC/NK cells partially supports this theory. Notably, we also 
observed non-productive TRB expression in ILC/NK cells in other fetal organs, with no overt 
differences in frequencies between organs (Supplementary Fig. 9d). This potentially 
suggests that T cells and ILC/NK cells might share the same initial stage of development, and 
then deviate away from each other before productive TRB/G/D is made.  
 
In addition, by examining the expression patterns of transcription factors (Fig. 5c) and genes 
encoding cell surface proteins (Supplementary Fig. 10b) that changed along the TRBJ-
inferred pseudotime, we can define stages for DN development at higher resolution than 
previously reported in the literature. We observed that expression levels of genes such as 
SPI1, RAG1, HHEX, TCF12, CD34, CD3D, CD8A, CD8B followed an expected pattern 
along the trajectory53. At the same time, we also discovered many novel genes that could re-
define DN stages. We further noted that there were some discordances in expression patterns 
of selected transcription factors between human and mouse DN development53 
(Supplementary Fig. 10c). However, this discrepancy could be due to age mismatch i.e. fetal 
human to adult mouse, and the murine data was mainly learnt from transcription factor 
knockout instead of scRNA-seq studies. Comparison across different human age groups, as 
well as a detailed comparison with mouse thymic scRNA-seq with paired scVDJ-seq data 
need to be performed in the future. 
 
Finally, we have also explored BCR expression in plasmacytoid dendritic cells (pDC). 
Several papers have reported that pDC can be derived from both myeloid and lymphoid 
progenitors54,55 and there is IgH D-J rearrangement in some pDCs54,56–59. The question is 
whether the pDCs that have initiated BCR rearrangements are derived from lymphoid 
progenitors54,55. We have repeated the analysis in all the myeloid cells in the human fetal 
dataset3. There are indeed some non-productive BCR in pDC (both heavy and light chain as 
shown in Supplementary Fig. 11a and b), in agreement with previously reported IgH D-J 
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rearrangement in pDC54,56–59. However, pDC itself expresses RAG and DNTT 
(Supplementary Fig. 11c). This means that the presence of non-productive BCR does not 
necessarily indicate that pDCs are derived from lymphoid progenitors as BCR rearrangement 
can be carried by RAG in pDC itself, similar to what has been claimed in Shigematsu et al. 
200457. While it may be interesting to use our VDJ-based trajectory to explore whether the 
development of pDC overlaps with early B cell development, the current dataset is limited by 
the cell number as only 51 pDC and cycling pDC cells have non-productive IGH. This is 
certainly worth future investigations when the data becomes available.  
 
In summary, the unexpected finding of expression of non-productive TCR contigs in specific 
cell types has the potential to shed new light on the origin and history of lymphocyte 
development. We have utilized this information and suggested that B1 potentially arises 
directly from pre-pro B cells, and provided support for the ‘aborted’ DN theory for the origin 
of ILC/NK cells. 
 
Discussion 

Overall, Dandelion improves upon existing methods with more refined contig annotations, 
recognising non-productive contigs, identifying multi-J mapping and recovering more γδTCR 
contigs. In conjunction with our novel V(D)J feature space approach with pseudotime 
trajectory inference, it has allowed us to better align CD4 versus CD8 T cell lineage 
commitment processes, and further identify developmental origins of innate-like lymphocyte 
cells.  
 
Our improved data processing workflow revealed two unexpected data challenges and 
opportunities with scVDJ-seq. First, the surprising observation that a high proportion of 
TCR/BCR contigs are non-productive suggests that these are unique data challenges in the 
single-cell space due to choice of library construction. However, it is not unexpected as 
V(D)J rearrangement is a ‘wasteful’ exercise, a price that comes with the generation of 
effective and diverse immune response; for example, two out of three rearrangement events 
for immunoglobulins are destined to be non-productive60,61. While non-productive TCRs and 
BCRs from high-throughput ‘bulk’ AIR sequencing data have previously been used in 
conjunction with productive contigs to estimate the generation probabilities and diversities of 
AIRs during affinity maturation and infection62,63, these would only have factored in those 
with V gene annotation due to library construction limitations. Through scVDJ-seq and 
analysis using Dandelion, we now have the ability to corroborate this at the single-cell level, 
including partially rearranged contigs, as outlined in our analysis of innate lymphocyte 
development. This suggests that the presence of the non-productive contigs may have 
important biological implications in a cell-type specific manner.  
 
Second, detection of multi-J mapping suggests that these are naturally occurring and likely 
represent products of partial splicing events at the transcript level. A few factors were 
identified to be associated with multi-J mapping, including J gene identities, which 
potentially affect splicing efficiencies with their disrupted splicing site, as well as V gene 
presence, which might be partially explained by NMD27. The biological implications of the 
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presence of these multi-J mapping contigs are unclear at this stage and require future 
experimental validation to understand how and why they arise. 
 
We introduced a novel way of analyzing the single-cell V(D)J modality in Dandelion with 
the pseudo-bulk V(D)J feature space, which can be used for visualization and differential 
V(D)J usage testing. In addition, when the pseudo-bulking is done by gene expression 
neighborhoods, the V(D)J feature space is anchored to the underlying gene expression feature 
space where cell neighborhoods are sampled. We utilized this approach for pseudotime 
trajectory inference and demonstrated its advantages in both of our case studies. 
 
The first case study examined the processes underlying T cell development in the thymus. 
Our approach allowed us to discover that fate commitment starts earlier than expected with 
the inclusion of TCR information. It was previously suggested that abT(entry) cells were 
likely to be a point of divergence due to its position as an intermediary cell state between DP 
T cells and mature single positive T cells6. With this new technique that includes TCR 
information, we are now able to better delineate the branching point to a much earlier point 
within the abT(entry) cells. The gene expression patterns of marker genes and transcription 
factors known to be associated with CD4 versus CD8 T cell fate were better aligned with the 
new trajectories. Our analysis has further revealed novel CD4/8 associations with other 
transcription factors that remain to be explored.  
 
Similar approaches can be applied to other TCR trajectories in different contexts e.g. across 
different developmental stages in human lifespan, diseases and in vitro settings. It remains to 
be seen whether a VDJ-based trajectory can be utilized in T cell activation. Furthermore, this 
approach has not been optimized for BCR trajectories, as we are limited by the small number 
of B progenitors in the existing dataset collections. Further, BCRs have additional 
rearrangement rules that need to be considered e.g. somatic hypermutation, differential 
rearrangement events leading to asymmetric usage of kappa and lambda light chains and light 
chain editing processes64, as well as recently described light chain coherence in functional 
antibodies65. We hope to improve on these aspects in a future iteration of Dandelion when 
more single-cell V(D)J data become available. 
 
The second case study extended the observations of non-productive V(D)J contig 
representation in 10X Genomics’ single-cell data, which has been largely ignored and/or not 
easily accessible with other existing workflows e.g. scirpy13 and immcantation23. Our 
unexpected finding that B1 cells and pre-pro B cells were expressing relatively higher levels 
of non-productive TRB contigs suggest that B1 lineage commitment diverged earlier than 
expected, some time between the pre-pro B stage and pro-B stage. Two competing models 
have been described with regard to B1 origin66. The lineage model, or layered immune 
system hypothesis67 proposed that B1 cells compared to B2 cells arise from distinct 
progenitors emerging at different times during development68–71; while the selection model 
hypothesized that they originate from the same progenitors but after differential signaling 
depending on self-reactivity72,73. Our finding here potentially offers a reconciliation of both 
models, with fetal specific pre-pro B cells being B1 progenitors supporting the layered 
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immune system model, and the skipping of pre-BCR selection presumably allows formation 
of self-reactive BCR in support of the selection model.  
 
The enrichment of the non-productive TRB contigs is not just found in the pre-pro B and B1 
cells, but also in NK and ILC lineage cells along with non-productive TRG and TRD. The 
latter lineage is easier to explain as partial recombination of TCR has been reported in murine 
ILC50,51 and our findings support the ‘abandoned’ DN theory52. The hypothesis is that 
ILC/NK cells are originally on a canonical T cell development trajectory, but subsequently 
influenced to abort this process, resulting in sustained expression of non-productive TCR 
rearrangements whilst developing into ILC/NK. Perhaps this is driven by overexpression of 
key transcription factors such as ID2 and ZBTB1652,53, or lack of NOTCH signaling52. While 
we cannot rule out other routes of ILC/NK development, our new insights do support the 
notion that T and NK/ILC developments partially overlap but diverge before productive 
TCRs are rearranged. Our analysis offers new insights into transcription factors and surface 
marker genes that define DN T cell stages at high resolution, opening avenues for future in-
depth investigation.  
 
In summary, we present Dandelion as an easy-to-use package/pipeline for integrative 
analyses of single-cell GEX and V(D)J data modality. The package is freely available online 
at https://github.com/zktuong/dandelion with tutorials and demo cases and is actively updated 
for further improvements. The pseudo-bulk V(D)J data is also publicly available for use as a 
reference to project or align new query data e.g. for disease samples such as cancers that 
originate from T cells. We hope that the software and the resource will be useful to the 
community for exploring lymphocyte biology in the single-cell space, generating new 
insights that will help advance our understanding of immune cell development and function 
in health and disease. 
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Main Figures 

 

Fig. 1 | Holistic scVDJ-seq analysis pipeline. a, Schematic illustration showing that 
Dandelion bridges methods from single-cell V(D)J workflows such as AIRR standards and 
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the single-cell gene expression analysis software, and combines with them additional novel 
methods of its own to create a holistic pipeline for analysis. b, Schematic illustration of the 
Dandelion workflow. Paired single-cell gene expression (scRNA-seq) and AIR repertoire 
(scVDJ-seq) data is generated, followed by mapping of the sequencing reads. From the 
mapped results, Dandelion provides refined contig annotations with BCR mutation calling, 
improved γδTCR mapping and identification of multi-J mapping contigs. It also provides 
downstream analysis after integration with scRNA-seq results. Apart from allowing the users 
to explore clonotype networks and V(D)J usage, Dandelion also supports building a V(D)J 
feature space on pseudo-bulked cells, that can be used for differential V(D)J usage and 
pseudotime inference. Additional unique features provided by Dandelion are boxed in 
orange. 
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Fig. 2 | Dandelion offers improved contig annotations. a, Left: barplot of proportion of 
contigs that are productive or non-productive in each locus. Right: barplot showing the causes 
of non-productive contigs in each locus. For both plots, sc-γδTCR, -αβTCR and -BCR data 
were taken from Suo et al. 20223. b, Schematic illustration of the V(D)J rearrangement 
process and the potential cause of multi-J mapping with sequential mapped J genes on the 
same contig. c, Boxplot of the proportion of contigs with multi-J mapping, in the presence 
(blue) or absence (orange) of V genes. Each point represents a sample and data were taken 
from Suo et al. 20223. Only samples with at least 10 contigs are shown. Boxes capture the 
first to third quartiles and whisks span a further 1.5X interquartile range on each side of the 
box. For each locus, the proportions in contigs with and without V genes were compared by 
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the Wilcoxon rank sum test. P-values less than 0.001 were marked with *** (P-value for 
TRA: 8.78e-10; TRB: 4.96e-19; TRG: 1.47e-5; TRD: 0.68; IGH: 3.60e-11; IGL: 0.84; IGK: 
0.073). d, Top: logistic regression formula to explore factors associated with multi-J 
mapping. Bottom: volcano plot summarizing logistic regression results using data from Suo 
et al. 20223. The y-axis is the −log10(BH adjusted P-value) and the x-axis is log(odds 
ratio). The variables that were also significant in our control/cycloheximide-treated PBMC 
dataset were highlighted in red (associated with increased multi-J mapping) or blue 
(associated with decreased multi-J mapping). e, Sequence logos of sequences covering the 
last 11 nucleotides at 3′ ends (position 1 to 11) and the first 10 nucleotides of the neighboring 
intron (position 12 to 21) for genes associated with increased (top) or decreased (bottom) 
multi-J mapping. J genes associated with increased multi-J mapping were less likely to have 
T in position 17 (P-value 0.059 in logistic regression) and ‘GTAAGT’ is a known consensus 
motif for splicing in position 12 to 17 i.e. +1 to +6 in the intron. They were also more likely 
to have T in position 6 (P-value 0.022 in logistic regression) although the effect on splicing is 
unknown. f, Swarmplots of fraction difference of sc-γδTCR contigs annotated by Dandelion 
versus 10X cellranger vdj (v6.1.2) using data from Suo et al. 20223. Each dot represents a 
sample. The red dashed line marks the threshold of 0, above which Dandelion recovers more 
γδTCR contigs than 10X. Left: all high confidence contigs. Right: high confidence 
productive contigs.   
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Fig. 3 | Creating a V(D)J feature space. a, Schematic illustration of the workflow of 
creating a V(D)J feature space. Step 1: cells are assigned to pseudo-bulks, which can be 
based on metadata features, or partially overlapping cell neighborhoods. Step 2: V(D)J usage 
frequency per pseudo-bulk is computed for each gene, and used as input of the V(D)J feature 
space. Step 3: the V(D)J feature space can be visualized with conventional dimension 
reduction techniques such as PCA or UMAP, and it can then be utilized for differential V(D)J 
usage analysis and pseudotime inference. b, Top left: gene expression UMAP of all T cells 
from adult human tissues in Conde et al. 20225, colored by low-level cell type annotations. 
Each point represents a cell. Top middle: V(D)J usage frequency per celltype_donor pseudo-
bulk is computed for each gene, and used as input of the V(D)J feature space. Top right: 
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UMAP of the pseudo-bulk V(D)J feature space of the same cells. Each point represents a cell 
pseudo-bulk. Bottom panel: top two differentially expressed TCR genes in CD4+T cells, 
CD8+T cells and MAIT cells. c, Left: UMAP of neighborhood V(D)J feature space covering 
DP to mature T cells with paired productive αβTCR in data from Suo et al. 20223. Each point 
represents a cell neighborhood, colored by the dominant cell type in each neighborhood. The 
point size represents neighborhood size, with connecting edges representing overlapping cell 
numbers between any two neighborhoods. Only edges with more than 30 overlapping cells 
are shown. Right top: inferred pseudotime, and branch probabilities to CD8+T and to CD4+T 
respectively overlaid onto the same UMAP embedding on the left. Right bottom: scatterplot 
of branch probability to CD8+T against pseudotime. Each point represents a cell 
neighborhood, colored by the dominant cell type in each neighborhood.  
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Fig. 4 | Comparing pseudotime inferred from V(D)J space or gene expression (GEX) 
space. a, Top: pseudotime and branch probability to CD8+T inferred from neighborhood 
V(D)J space in Fig. 3c, projected back to the cells, overlaid onto the same UMAP embedding 
as in the top left panel. Left bottom: UMAP of DP to mature T cells with paired productive 
αβTCR in data from Suo et al. 20223. Each point represents a cell, colored by cell types. 
Underneath the UMAP is a schematic showing the T cell differentiation process. Right 
bottom: pseudotime and branch probability to CD8+T inferred from neighborhood GEX 
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space, projected back to the cells, overlaid onto the same UMAP embedding as in the top left 
panel. b, Scatterplots of the pseudotime ordering against the average relative TRAV or TRAJ 
location. Each point represents a cell neighborhood. Each TRAV or TRAJ gene is encoded 
numerically for its relative genomic order. The x-axis represents the average TRAV/TRAJ 
relative location for each cell neighborhood. Top: results from pseudotime inferred from 
neighborhood V(D)J space. Bottom: results from pseudotime inferred from neighborhood 
GEX space. c, Stripplot of correlation coefficients of gene expression with branch 
probabilities to CD8+T within abT(entry) cells, for branch probabilities inferred from 
neighborhood V(D)J space and neighborhood GEX space separately. Only genes that are 
known CD4+/CD8+T cell markers or TFs involved in CD8+T/CD4+T lineage decision are 
labeled, and colored. The rest of the genes are grayed out. Labeled genes that had significant 
(BH adjusted P-value < 0.05) positive correlations were colored in red, the ones with 
significant negative correlations were colored in blue, and those without significant 
correlations were colored in orange.   
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Fig. 5 | Insights into lymphocyte development from non-productive TCR. a, Boxplot of 
the proportion of cells with productive (blue) or non-productive (orange) TRB in different 
fetal lymphocyte subsets. Each point represents a sample and data were taken from Suo et al. 
20223. Only samples with at least 20 cells are shown. Boxes capture the first to third quartiles 
and whisks span a further 1.5X interquartile range on each side of the box. The annotations 
used here were based on the version whereby the exact identity of cycling B cells was 
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predicted to be immature B, mature B, B1 or plasma B cells using Celltypist3,5. The 
equivalent boxplot using the original annotations is shown in Supplementary Fig. 8a. b, Top 
left: schematic illustration showing the proposed development of B cells (top panel), and 
relationship between ILC/NK and T cell lineages. Top right: UMAP of neighborhood V(D)J 
feature space covering ILC, NK and developing T cells with TRBJ in data from Suo et al. 
20223. Each point represents a cell neighborhood, colored by cell types. The point size 
represents neighborhood size, with connecting edges representing overlapping cell numbers 
between any two neighborhoods. Only edges with more than 30 overlapping cells are shown. 
Bottom: inferred pseudotime, and branch probabilities to ILC/NK and T lineage respectively 
overlaid onto the same UMAP embedding on the top right. c, Top: scatterplot of branch 
probability to ILC/NK lineage against pseudotime. The pseudotime was inferred from 
neighborhood V(D)J space shown in Fig. 5b and projected back cells. Each point represents a 
cell, colored by cell types. Bottom: heatmap of TF expressions across pseudotime in DN T 
cells. Pseudotime is equally divided into 100 bins, and the average gene expression is 
calculated for DN T cells with pseudotime that falls within each bin. Genes selected here are 
TFs that had significantly high Chatterjee’s correlation74 with pseudotime (BH adjusted P-
value < 0.05, and correlation coefficient > 0.1).   
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Methods 
Dandelion 
Pre-processing 
Dandelion can run the pre-processing of data using the standard outputs from all cellranger 
vdj versions. In this manuscript, single-cell V(D)J data from the 5′ Chromium 10X kit were 
initially processed with cellranger vdj pipeline (v6.1.2) with cellranger vdj reference 
(v5.0.0). TCR and BCR contigs contained in ‘all_contigs.fasta’ and 
‘all_contig_annotations.csv’ from all three library types (αβTCR, γδTCR and BCR) were 
then reannotated using an immcantation-inspired23 pre-processing pipeline contained in the 
Dandelion singularity container (v0.3.0).  
 
The pre-processing pipeline includes the following steps:  

i) adjust cell and contig barcodes by adding user-supplied suffixes and/or prefixes to 
ensure that there are no overlapping barcodes between samples; 

ii) optionally subset to contigs deemed high confidence in the cellranger output; this was 
done in the analysis performed here;  

iii) re-annotation of contigs with igblastn (v1.19.0) against IMGT (international 
ImMunoGeneTics) reference sequences (last downloaded: 01/08/2021) with the 
following parameters: minimum D gene nucleotide match = 9, V gene e-value cutoff 
= 10-4; rearrangements missing the CDR3/junction sequences are enforced to be non-
productive (productive = “F”) and incomplete (complete_vdj = “F”). 

iv) re-annotation of D and J genes separately using blastn with similar parameters as per 
igblastn25 (dust =“no”, word size (J = 7; D = 9)) but with an additional e-value cutoff 
(J = 10-4 in contrast to igblastn’s default cut off of 10; D = 10-3). This is to enable 
annotation of contigs without the V gene present;  

v) identification and recovery of non-overlapping individual J gene segments (under 
associated ‘j_chain_multimapper’ columns). In the list of all mapped J genes 
(all_contig_j_blast.tsv) from blastn, the J gene with the highest score (j_support) was 
chosen. Dandelion then looks for the next J gene with the highest ‘j_support’ value, 
and with start (j_sequence_start) and end (j_sequence_end) position not overlapping 
with the selected J gene, and does so iteratively until the list of all mapped J genes is 
exhausted. In contigs without V gene annotations, we then select the 5′ end leftmost J 
gene and update the ‘j_call’ column in the final AIRR table. For contigs with V gene 
annotations, but with multiple J gene calls, we use the annotations provided by 
igblastn (NCBI IgBLAST Release 1.19.0’s release notes states that they “*Added 
logic to handle the case where there is an unrearranged J gene downstream of the 
VDJ rearrangement.”).  

 
For BCRs, there are two additional steps:  
vi) additional re-annotation of heavy-chain constant (C) region calls using blastn 

(v2.13.0+) against curated sequences from CH1 regions of respective isotype class;  
vii) heavy chain V gene allele correction using tigger (v1.0.0)75. The final outputs are then 

parsed into AIRR format with change-o scripts23.  
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All the outputs from each step are saved in a subfolder which the user can elect to retain or 
remove as per their requirements. Typically a user would proceed with the file ending with 
the suffix ‘_contig_dandelion.tsv’ as this represents the rearrangement sequences that pass 
standard quality control checks. In this manuscript, we used the data found in the 
‘all_contig_db-all.tsv’ as it also contains the multi-J mapping. 
 
Post-processing 
In addition to the pre-processing steps at the contig level, post-processing, or integrating cell-
level quality control, is performed using Dandelion’s ‘check_contig’ function. The function 
checks through whether a rearrangement is annotated with consistent V, D, J and C gene calls 
and performs special operations when a cell has multiple contigs. All contigs in a cell are 
sorted according to the unique molecular identifier (UMI) count in a descending order and 
productive contigs are ordered higher than non-productive contigs. For cells with other than 
one pair of productive contigs (one VDJ and one VJ), the function will assess if the cell is to 
be flagged with having orphan (no paired VDJ or VJ chain), extra pair(s) or ambiguous 
(biologically irreconcilable e.g. both TCRs and BCRs in the same cell) status with some 
exceptions: ii) IgM and IgD are allowed to co-exist in the same B cell if no other isotypes are 
detected; ii) TRD and TRB contigs are allowed in the same cell because rearrangement of 
TRB and TRD loci happens at the same time during development and TRD variable region 
genes exhibits allelic inclusion76. The function also asserts a library type restriction with the 
rationale that the choice of the library type should mean that the primers used would most 
likely amplify only relevant sequences to a particular loci. Therefore, if there are any 
annotations to unexpected loci, these contigs likely represent artifacts and will be filtered 
away. A more stringent version of ‘check_contigs’ is implemented in a separate function, 
‘filter_contigs’, which only considers productive VDJ contigs, asserts a single-cell should 
only have one VDJ and one VJ pair, or only an orphan VDJ chain, and explicitly removes 
contigs that fail these checks (with the same exceptions for IgM/IgD and TRB/TRD as per 
above). If a single-cell gene expression object (AnnData) is provided to the functions, it will 
also remove contigs that do not match to any cell barcodes in the gene expression data. 
Lastly, Dandelion can accept any AIRR-formatted data formats e.g. BDRhapsody VDJ data.  
 
Clonotype definition and diversity 
Dandelion’s mode of clonotype definition and network based diversity analysis has been 
previously described4. Briefly, TCRs and BCRs are grouped into clones/clonotypes based on 
the following sequential criteria that apply to both heavy-chain and light-chain contigs: (1) 
identical V and J gene usage; (2) identical junctional CDR3 amino acid length; (3) CDR3 
sequence similarity: for TCRs, 100% nucleotide sequence identity at the CDR3 junction is 
recommended while the default setting for BCRs is to use 85% amino acid sequence 
similarity (based on Hamming distance). Single-cell V(D)J networks are constructed using 
adjacency matrices computed from pairwise Levenshtein distance of the full amino acid 
sequence alignment for TCR/BCR(s) on a per cell basis. A minimum-spanning tree is then 
constructed on the adjacency matrix for each clone/clonotype, creating a simple graph with 
edges indicating the shortest total edit distance between a cell and its neighbor. Cells with 
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total pairwise edit distance of zero are then connected to the graph to recover edges trimmed 
off during the minimum-spanning-tree construction step. A graph layout is then computed 
either using the Fruchterman–Reingold algorithm in networkx (≥ v2.5) or Scalable Force-
Directed Placement algorithm implemented through graph-tool package77,78. Visualization of 
the resulting single-cell V(D)J network is achieved via transfer of the graph to relevant 
‘AnnData’ slots, allowing for access to plotting tools in scanpy. The resulting V(D)J network 
enables computation of Gini coefficients based on cluster/cell size/centrality distributions, as 
discussed previously4. 
 
Pseudo-bulk V(D)J feature space 
Pseudo-bulk construction requires pseudo-bulk assignment information of cells, along with V 
and J genes for the cells’ identified primary TCR/BCR contigs (selected based on productive 
status and highest UMI count). The former is a cell by pseudo-bulk binary matrix which can 
be either explicitly provided by the user or inferred from unique combinations of cell level 
discrete metadata. While the code is calibrated to work with Dandelion’s structuring by 
default, it can work with any V(D)J processing provided it stores cell level information on 
primary per-locus V/D/J calls. The input is used to generate a pseudo-bulk by V(D)J feature 
space, with the V(D)J calls converted to a binary matrix, added up for each pseudo-bulk, and 
normalized to a unit sum on a per-pseudo-bulk, per-locus, per-segment basis. The cell by 
pseudo-bulk information is stored in the resulting object for potential communication with the 
original cell space. Utility functions are provided for compatibility with palantir32 output for 
trajectory inference.  
 
Non-productive TCR/BCR contigs  
Single-cell BCR, αβTCR and γδTCR data from Suo et al. 20223 were remapped with 
cellranger vdj (v6.1.2) and processed further using Dandelion as described above. For all 
samples, contigs were extracted from ‘all_contig_igblast_db-all.tsv’ or in the case whereby 
‘all_contig_igblast_db-all.tsv’ was empty, ‘all_contig_igblast_db-fail.tsv’ was used. 
Preprocessed and annotated scRNA-seq data was downloaded from 
https://developmental.cellatlas.io/fetal-immune. Only contigs from annotated cells were kept 
for downstream analysis. For each contig, productive status was obtained from the column 
‘productive’, and the causes for non-productive contigs were extracted from ‘vj_in_frame’ (is 
‘F’ if there is a frameshift), ‘stop_codon’ (is ‘T’ if there is a premature stop codon) and 
‘v_gene_present’ (is ‘False’ if V gene is absent) columns. 
 
Cycloheximide treatment on PBMC  
A vial of frozen PBMCs was acquired from Stemcell Technologies with informed consent (as 
stated by Stemcell Technologies) and approval from the Yorkshire & The Humber - Leeds 
East Research Ethics Committee (19/YH/0441). Frozen PBMCs were thawed in pre-warmed 
RF10 media, which was RPMI (Sigma-Aldrich) supplemented with 10% fetal bovine serum 
(FBS; Gibco) and penicillin/streptomycin (Sigma-Aldrich). Cells were pelleted by 
centrifugation at 500g for 5 min and resuspended in RF10 media, and split between two 10 
cm petri dishes. Control PBMCs were then incubated in a total of 10 ml RF10 media at 37°C 
for 2 hr, whereas treated PBMCs were incubated in RF10 supplemented with cycloheximide 
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(Sigma-Aldrich; final concentration of 100 μg/ml). After incubation, control and treated 
PBMCs were washed with ice cold RF10 and resuspended in 2% FBS in phosphate buffered 
saline (PBS; Gibco). For treated PBMCs, both the washing and resuspension buffer contained 
100 μg/ml cycloheximide. 
 
Control and treated PBMCs were then loaded onto two separate channels of the Chromium 
chip from Chromium single cell V(D)J kit (10X Genomics 5′ v2) following the 
manufacturer’s instructions before droplet encapsulation on the Chromium controller. Single-
cell cDNA synthesis, amplification, gene expression (GEX) and targeted BCR and αβTCR 
libraries were generated. Sequencing was performed on the Illumina Novaseq 6000 system. 
The gene expression libraries were sequenced at a target depth of 50,000 reads per cell using 
the following parameters: Read1: 26 cycles, i7: 8 cycles, i5: 0 cycles; Read2: 91 cycles to 
generate 75-bp paired-end reads. BCR and TCR libraries were sequenced at a target depth of 
5000 reads per cell. 

Raw scRNA-seq reads were mapped with cellranger 3.0.2 with Ensembl 93 based GRCh38 
reference. Low quality cells were filtered out (minimum number of reads > 2000, minimum 
number of genes > 500, maximum number of genes < 7000, maximum mitochondrial reads 
fraction < 0.2, maximum scrublet79 (v0.2.1) doublet score ≤ 0.5). Data normalization and log 
transformation were performed using scanpy14 (v1.9.1) 
(scanpy.pp.normalize_per_cell(counts_per_cell_after=10e4) and scanpy.pp.log1p). Highly 
variable genes were then selected (scanpy.pp.highly_variable_genes), and PCA 
(scanpy.pp.pca), neighborhood graph (scanpy.pp.neighbors) and UMAP (scanpy.tl.umap) 
were computed. Automatic annotation was done using celltypist (v1.2.0) 
(celltypist.annotate(model = 'Immune_All_Low.pkl', majority_voting = True)). 

Single-cell αβTCR and BCR sequencing data was mapped with cellranger vdj (v6.1.2) and 
processed further using Dandelion as described above. For all samples, contigs were 
extracted from ‘all_contig_igblast_db-all.tsv’ or in the case whereby ‘all_contig_igblast_db-
all.tsv’ was empty, ‘all_contig_igblast_db-fail.tsv’ was used. Only contigs from annotated 
cells were kept for downstream analysis. 

Factors associated with multi-J mapping 
Logistic regression analysis 
We used the following logistic regression model to look for factors associated with multi-J 
mapping: 

𝑙𝑜𝑔
𝑝!

1 − 𝑝!
= 𝛽"#$$,"(!) + 𝛽(,)(!) + 𝛽*𝑥*,! + 𝛽"+"$,𝑥*,!𝑥"+"$,,! 	

where 𝑝! is the probability of multi-J mapping present in the 𝑖th contig, c(i) and j(i) are the 
cell type and the 5′ end J gene of the 𝑖th contig respectively, 𝑥*,! is the indicator of whether V 
gene is present in the 𝑖th contig and 𝑥"+"$,,! is the indicator of whether 𝑖th contig belongs to a 
cell that had cycloheximide treatment. Here, (𝛽"#$$,":	𝑐	 ∈ 	𝑐𝑒𝑙𝑙	𝑡𝑦𝑝𝑒𝑠), (𝛽(,):	𝑗 ∈
	5′	𝑒𝑛𝑑	𝐽	𝑔𝑒𝑛𝑒𝑠), 𝛽* and 𝛽"+"$, are parameters to be estimated. 
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To control for multiple testing, P-values were adjusted with Benjamini–Hochberg 
procedure80. This was applied on all contigs from the γδTCR, αβTCR and BCR sequencing 
data that were identified within high-quality annotated cells from Suo et al. 20223 and results 
are shown in Supplementary Table 2; and it was also applied on contigs from the αβTCR 
and BCR sequencing data that were identified within high-quality annotated cells from 
control/cycloheximide-treated PBMCs and results are shown in Supplementary Table 3.  
 
Splicing site motif analysis 
For the lists of 5′ end J genes that had significant (BH adjusted P-value < 0.05) association 
with increased or decreased multi-J mapping from Supplementary Table 2, the sequences of 
the last 11 nucleotides at each gene’s 3′ ends with the first 10 nucleotides of its 3′ end intron 
were extracted from the 10X GRCh38 2020-A reference. Sequence logos shown in Fig. 2e 
were generated on https://weblogo.berkeley.edu/logo.cgi81.  
 
γδTCR annotation comparison 
To compare our γδTCR annotations against the 10X cellranger vdj output in the 33 γδTCR 
libraries3, we performed two additional mappings following 10X γδTCR support instructions. 
In one, the 5.0.0 reference was modified according to 10X instructions by replacing all 
instances of TRG with TRA and TRD with TRB. The reference was filtered to just 
TRG/TRD sequences prior to this replacement to avoid erroneous sequence overlaps. For the 
other, we performed the alignment with cellranger v7.0.0 with the accompanying reference 
(v7.0.0). The output of these two mappings was compared with the cellranger - Dandelion 
pre-processing pipeline described above. The number of high confidence γδTCR contigs and 
high confidence productive γδTCR contigs were determined for each mapping and each 
sample, and mappings were compared with the Wilcoxon signed-rank test. The effect size r is 
the rank correlation, which is the signed-rank test statistic divided by the total rank sum82. 
 
Differential V(D)J usage in adult T cell subsets 
Preprocessed and annotated scRNA-seq data of T and innate lymphoid cells with paired 
αβTCR information from Conde et al. 20225 was downloaded from 
https://www.tissueimmunecellatlas.org/. Only cells within the T cell subsets with paired 
αβTCR were included in the downstream analysis. T_CD4/CD8 was excluded as a low 
quality cell cluster. The cells were then pseudo-bulked by donor ID and cell type, and the 
pseudo-bulk V(D)J feature space was created with TRAV, TRAJ, TRBV and TRBJ. Only 
pseudo-bulks with at least 10 cells were kept. PCA, neighborhood graph and UMAP of the 
pseudo-bulk V(D)J feature space were computed using scanpy14 (v1.9.1) with default settings 
(scanpy.pp.pca, scanpy.pp.neighbors, scanpy.tl.umap).  
 
For low-level cell type annotations, Tem/emra_CD8, Tnaive/CM_CD8, Trm/em_CD8, 
Trm_gut_CD8 were grouped into CD8+T, and Teffector/EM_CD4, Tfh, Tnaive/CM_CD4, 
Tnaive/CM_CD4_activated, Tregs, Trm_Th1/Th17 were grouped into CD4+T, while MAIT 
was left as a separate annotation. For differential V(D)J usage, Wilcoxon rank-sum test was 
performed using scanpy.tl.rank_genes_groups(method='wilcoxon'). 
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Pseudotime inference from DP to mature T cells 
Data integration and filtering 
scRNA-seq data of human fetal lymphoid cells from Suo et al. 20223 was integrated with 
Dandelion preprocessed αβTCR, BCR and γδTCR data (see section on Non-productive 
TCR/BCR contigs, using all_contig_igblast_db-all.tsv for all samples) with 
dandelion.tl.transfer. Two samples from F67, F67_TH_CD137_FCAImmP7851896 and 
F67_TH_MAIT_FCAImmP7851897 were excluded from the analysis as they were sorted for 
specific T cell subpopulations, instead of the CD45 sorting in all other donor samples, and 
inclusion might result in biased TCR sampling within this donor. Only DP(P)_T, DP(Q)_T, 
ABT(ENTRY), CD8+T, CD4+T cells with productive TRA and TRB were included for the 
trajectory analysis. Neighborhood graph (scanpy.pp.neighbors(n_neighbors = 50)) and 
UMAP (scanpy.tl.umap) was re-calculated using scVI latent factors as the initial data was 
integrated with scVI83.  
 
Pseudotime inference from neighborhood V(D)J feature space  
Neighborhoods were sampled using Milo30 (milopy v0.1.0) (milo.make_nhoods). Cells were 
pseudo-bulked by the sampled neighborhoods and the V(D)J feature space was created with 
cells’ primary TRAV, TRAJ, TRBV and TRBJ genes. The cell type annotation of each 
neighborhood was assigned to be the most frequent annotation of the cells within that 
neighborhood. PCA, neighborhood graph and UMAP of the neighborhood V(D)J feature 
space were computed using scanpy14 (v1.9.1) with default settings (scanpy.pp.pca, 
scanpy.pp.neighbors, scanpy.tl.umap).  
 
For pseudotime trajectory analysis, palantir32 (v1.0.1) was used and diffusion map was 
computed using the first five principal components (PCs) 
(palantir.utils.run_diffusion_maps(n_components=5), 
palantir.utils.determine_multiscale_space). The root cell was chosen to be the DP(P) T 
neighborhood with the smallest value on UMAP1 axis, and the two terminal states were 
chosen with the largest and smallest values on the UMAP2 axis for CD4+T and CD8+T 
neighborhoods respectively (Supplementary Fig. 3d). Pseudotime and branch probabilities 
to the terminal states were then computed with 
palantir.core.run_palantir(num_waypoints=500).  
  
Imputed pseudotime and branch probabilities were then projected back from neighborhoods 
(Fig. 3c) to cells (Fig. 4a top panel) by averaging the parameters from all neighborhoods a 
given cell belongs to, weighted by the inverse of the neighborhood size. Cells that did not 
belong to any neighborhood were removed (91 out of 17248).  
 
For pseudotime inferred with other trajectory inference methods as shown in Supplementary 
Fig. 7, monocle344 (0.2.3.0) was applied on the UMAP embedding of the neighborhood 
V(D)J feature space and diffusion pseudotime45 was applied using scanpy.tl.dpt function with 
default settings. The same root cell neighborhood was used as above.  
 
Pseudotime inference from neighborhood GEX feature space  
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Raw gene counts from scRNA-seq data were pseudo-bulked by the same cell neighborhoods 
as above. Data normalization and log transformation were performed using scanpy14 (v1.9.1) 
(scanpy.pp.normalize_per_cell(counts_per_cell_after=10e4) and scanpy.pp.log1p). Highly 
variable genes were then selected (scanpy.pp.highly_variable_genes), and PCA 
(scanpy.pp.pca), neighborhood graph (scanpy.pp.neighbors) and UMAP (scanpy.tl.umap) of 
the neighborhood GEX feature space were computed. Pseudotime trajectory inference was 
done similar to above with the first five PCs. The root cell was chosen to be the DP(P) T 
neighborhood with the smallest value on UMAP1 axis, and the two terminal states were 
chosen with the smallest and largest values on the UMAP2 axis for CD4+T and CD8+T 
neighborhoods respectively (Supplementary Fig. 5c). Imputed pseudotime and branch 
probabilities were then projected back from neighborhoods (Supplementary Fig. 5d) to cells 
(Fig. 4a bottom right panel). 
 
Pseudotime inference from single cell GEX  
Pseudotime trajectory inference was performed with palantir32 (v1.0.1) using the first 20 
scVI latent factors. The root cell was chosen to be the DP(P) T cell with the largest value on 
UMAP2 axis, and the two terminal states were chosen with the largest value on the UMAP2 
axis for CD8+T and smallest value on the UMAP1 axis for CD4+T cells respectively 
(Supplementary Fig. 5a). Results of the inferred pseudotime and branch probabilities are 
shown in Supplementary Fig. 5b. 
 
Correlation between pseudotime ordering and relative TRAV/TRAJ locations 
The relative genomic location of each TRAV gene was encoded numerically based on its 
order among all TRAV genes from 5′ to 3′ on the genome, and similarly for TRAJ. For each 
neighborhood, its relative TRAV or TRAJ location was computed by the average relative 
locations of all cells within that neighborhood. Only neighborhoods that had more than 90% 
cells being DP(Q) T cells were selected. The relative pseudotime order was plotted against 
the average relative TRAV or TRAJ location for each neighborhood in Fig. 4b. Local 
Pearson’s correlations were then computed over sliding windows of 30 adjacent 
neighborhoods on the pseudotime order (Supplementary Fig. 6a-b). 
 
Correlation between gene expression and branch probabilities to CD8+T in abT(entry) cells  
Pearson’s correlations were computed between gene expression and branch probabilities to 
CD8+T lineage within abT(entry) cells for all genes. P-values were adjusted for multiple 
testing with Benjamini–Hochberg procedure. Results are shown in Fig. 4c, Supplementary 
Fig. 6d and Supplementary Table 6.  
 
VDJ-based dimensionality reduction with CoNGA21 
Preprocessed and annotated scRNA-seq data of human fetal lymphoid cells from Suo et al. 
20223 was downloaded from https://developmental.cellatlas.io/fetal-immune. Matching 
αβTCR samples had their all_contig_annotations.csv cellranger output files flagged with the 
sample IDs for both cell and contig IDs, and were subsequently merged into a single file and 
subset to just high confidence contigs for cells present in the scRNA-seq object. This file was 
used on input for CoNGA’s (v0.1.1) setup_10x_for_conga.py script, which produced a 
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tcrdist-based PCA representation of the cells’ VDJ data. The PCA coordinates were used to 
compute a neighborhood graph and UMAP representation (Supplementary Fig. 4a), using 
default scanpy settings. 
 
Joint embedding of single cell gene expression and TCR with mvTCR22 
The same cells for which we performed pseudotime inference from DP to mature T cells 
above were used in the mvTCR (version under development, cloned from the repo at commit 
528d3e11a360fc4b0f09d782b88f5ec7de9283d6) trial. Clonotypes were called based on 
CDR3 nucleotide sequence identity of the cells’ primary TRA and TRB chains 
(scirpy.pp.ir_dist, and scirpy.tl.define_clonotypes(receptor_arms=”all”, 
dual_ir=”primary_only”)). 
 
Normalized and log transformed data was used as recommended in mvTCR’s tutorial. The 
donor ID was one-hot encoded and supplied as a conditional variable. 80% of cells were used 
as training data, the remaining 20% for validation. The models were trained for 200 epochs. 
Three runs were performed with the GEX to TCR ratio varying between 1:1, 2:1 and 3:1. 
Each run produced 15 trials and each trial had a different combination of model 
hyperparameters resulting from an automated hyperparameter grid search. The ‘best’ trial 
(lowest validation loss) was indicated at the end of each run, however when we manually 
inspected all the trial results, we found the ‘best’ trials showed strong variations between 
different donors. Thus, we selected one representative result from each run with minimal 
cross-donor batch effects for Supplementary Fig. 4b.  
 
Pseudotime inference combining ILC/NK and T cells 
Pseudotime inference using TRBJ 
scRNA-seq data of human fetal lymphoid cells from Suo et al. 20223 was integrated with 
αβTCR data as described above. Only DN(early)_T, DN(P)_T, DN(Q)_T, DP(P)_T, 
DP(Q)_T, ILC2, ILC3, CYCLING_ILC, NK, CYCLING_NK cells with TRBJ were included 
for the trajectory analysis. Neighborhood graph (k=50) and UMAP was re-calculated using 
scVI latent factors similar to above.  
 
For pseudotime trajectory analysis, palantir32 (v1.0.1) was used and a diffusion map was 
computed using the first five PCs. The root cell was chosen to be the neighborhood with the 
highest CD34 expression, and the two terminal states were chosen with the largest and 
smallest values on the UMAP1 axis for T and NK/ILC cell neighborhoods respectively 
(Supplementary Fig. 10a). Pseudotime and branch probabilities to the terminal states were 
then computed and projected back from neighborhoods (Fig. 5b) to cells (Fig. 5c top panel).  
 
Gene expression trend in DN T cells along pseudotime 
Chatterjee’s correlations74 were computed between gene expression and inferred pseudotime 
within DN T cells for all genes that were expressed in at least 50 cells. Chatterjee’s 
correlation was chosen instead of Pearson’s or Spearman’s correlation to look for any 
functional change and not restricted to a monotonic change. TFs84 and genes encoding cell 
surface proteins that had significantly high Chatterjee’s correlation with pseudotime (BH 
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adjusted P-value < 0.05, and correlation coefficient > 0.1) were shown in Fig. 5c and 
Supplementary Fig. 10b respectively.   
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Code and data availability 
Dandelion is implemented as an open-source package in Python 3 
(https://github.com/zktuong/dandelion) with tutorials available at https://sc-
dandelion.readthedocs.io/en/latest/. The tool and workflow is also available through an 
interactive online Google Colab notebook at 
https://colab.research.google.com/github/zktuong/dandelion/blob/master/container/dandelion
_singularity.ipynb. Code and data used to generate figures and perform analyses in the 
manuscript are available at https://github.com/zktuong/dandelion-demo-
files/dandelion_manuscript. Raw sequencing data for newly generated sequencing libraries 
have been deposited in ArrayExpress (accession number E-MTAB-12524). 
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Supplementary Figures 

 
Extended Data Fig. 1 | List of features included in AIR repertoire analysis pipelines. A 
table outlining the features of a non-exhaustive list of other methods compared to Dandelion. 
Handling of non-productive contigs (with or without V gene annotation) is not common 
across the various software packages. While the Immcantation workflow is capable of 
handling the data, contigs without V genes are typically diverted to a “failed” file but can be 
retrieved separately. The output from Dandelion is compatible with any AIRR-compliant 
softwares e.g. Dandelion output can be passed to Immcantation to perform phylogenetic 
lineage inference.  
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Extended Data Fig. 2 | Dandelion offers improved contig annotations. a, Left: barplot of 
proportion of contigs that are productive or non-productive in each locus. Right: barplot 
showing the causes of non-productive contigs in each locus. For both plots, sc-γδTCR, -
αβTCR and -BCR data were taken from Suo et al. 20223 excluding thymus samples. b, 
Schematic illustration showing that mRNA without V genes would be captured by 5′RACE + 
Switch oligo technique but not by multiplex PCR strategy. c, Pointplot of proportion of 
contigs with multi-J mapping in the presence of V gene in control and cycloheximide-treated 
PBMC samples. Points are colored by locus of TCR/BCR. For both IGH and IGL/IGK, the 
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proportions were 0% in control and treated. d, Schematic illustration showing the factors 
associated with multi-J mapping and the proposed mechanisms. e, Boxplots of sc-γδTCR 
contig counts annotated by 10X cellranger vdj v6.1.2 versus v7.0.0 using data from Suo et al. 
20223. Left: all high confidence contigs (P-value 5.43e-6, r 0.91 in the Wilcoxon signed-rank 
test). Right: high confidence productive contigs (P-value 1.69e-6, r 0.96 in the Wilcoxon 
signed-rank test).  
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Extended Data Fig. 3 | V(D)J feature space. a, Gene expression UMAP of all T cells from 
Conde et al. 20225, colored by donor ID (left) or high-level cell type annotations (right). Each 
point represents a cell. b, UMAP of the pseudo-bulk V(D)J feature space of the same cells as 
in a, colored by donor ID (left) or high-level cell type annotations (right). Each point 
represents a cell pseudo-bulk. c, Left: UMAP of DP to mature T cells with paired productive 
αβTCR in data from Suo et al. 20223. Each point represents a cell, colored by cell types. 
Right: cell neighborhood graph on the same UMAP embedding. Each point represents a cell 
neighborhood, colored by cell types. The point size represents neighborhood size, with 
connecting edges representing overlapping cell numbers between any two neighborhoods. 
Only edges with more than 30 overlapping cells are shown. The layout of nodes is 
determined by the position of the neighborhood index cell in the UMAP on the left. d, The 
root cell and terminal states selected for pseudotime inference in Fig. 3c. e, Gene expression 
trends over CD8+T pseudotime imputed with palantir32. Only the top 10 most frequently 
used TRAV or TRAJ genes are shown.   
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Extended Data Fig. 4 | Embedding with alternative methods. a, UMAP representation of 
tcrdist-derived PCA coordinates of VDJ data computed by CoNGA21, with the same dataset 
as used in Supplementary Fig. 3c, colored by cell types. b, UMAP representation of joint 
gene expression and TCR embedding computed by mvTCR22 with varying weights for GEX 
and VDJ input, on the same dataset as used in Supplementary Fig. 3c. Cells are colored by 
donor ID (top panel) or cell types (bottom panel).  
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Extended Data Fig. 5 | T cell development pseudotime inference comparison. a, DP to 
mature T cells with paired productive αβTCR in data from Suo et al. 20223, on the same 
UMAP embedding as in Fig. 4a and Supplementary Fig. 3c. The first two panels show the 
root cell and terminal states selected for pseudotime inferred directly from single-cell gene 
expression. The last panel shows the cell types. b, Top: pseudotime and branch probabilities 
inferred directly from single-cell gene expression on the same UMAP embedding as in a. 
Bottom: scatterplot of branch probability to CD8+T against pseudotime. Each point 
represents a cell. c, UMAP of neighborhood GEX space, with the same neighborhoods as 
sampled in Supplementary Fig. 3c and UMAP embedding computed on gene expression 
pseudo-bulked by neighborhoods. Each point represents a cell neighborhood. The first two 
panels show the root cell and terminal states selected for pseudotime inferred from 
neighborhood GEX space. The last panel shows the cell types. d, Inferred pseudotime, and 
branch probabilities to CD8+T and to CD4+T respectively overlaid onto the same UMAP 
embedding in c.   
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Extended Data Fig. 6 | Comparing pseudotime inferred from neighborhood V(D)J space 
or GEX space. a, Pearson’s correlation coefficients of pseudotime order and average relative 
TRAV location over sliding windows of 30 adjacent neighborhoods on the pseudotime order 
(left: pseudotime inferred from neighborhood V(D)J space; right: pseudotime inferred from 
neighborhood GEX space). Y-axis is the correlation coefficient and the x-axis is the median 
pseudotime order of the 30 adjacent neighborhoods. The color of the points represents 
statistical significance (orange: P-value from the Pearson’s correlation < 0.05; blue: P-value 
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≥ 0.05). The red dashed lines mark the correlation coefficient of 0. b, The same plot as in a 
but for TRAJ. c, Scatterplots of branch probability to CD8+T against pseudotime in 
abT(entry) cells. Each point represents a cell. Top panel: pseudotime inferred from 
neighborhood V(D)J space as in Fig. 4a top panel. Bottom panel: pseudotime inferred from 
neighborhood GEX space as in Fig. 4a bottom right panel. d, Volcano plot summarizing 
results of TFs that are correlated with branch probabilities to CD8+T lineage in V(D)J 
pseudotime within abT(entry) cells. The y-axis is the -log10(BH adjusted P-value) and the x-
axis is the correlation coefficient. Labeled TFs that had significant (BH adjusted P-value < 
0.05) positive correlations (correlation coefficient > 0.1) were colored in red, the ones with 
significant negative correlations (correlation coefficient < -0.1) were colored in blue, and the 
rest were colored in black.   
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Extended Data Fig. 7 | Pseudotime inferred with different trajectory inference methods. 
a, First three panels display pseudotime inferred from neighborhood V(D)J space using 
palantir32, monocle344, and diffusion pseudotime45 respectively, overlaid onto the same 
UMAP embedding as in Fig. 3c with each point represents a cell neighborhood. The fourth 
panel represents the pseudotime inferred from neighborhood GEX space using palantir32. The 
last panel represents the dominant cell type in each neighborhood. b, Scatterplots of the 
pseudotime ordering against the average relative TRAV (top) and TRAJ (bottom) location. 
Each point represents a cell neighborhood. Each TRAV or TRAJ gene is encoded 
numerically for its relative genomic order. The x-axis represents the average TRAV/TRAJ 
relative location for each cell neighborhood. The y-axis represents the pseudotime order 
inferred from neighborhood V(D)J space using palantir32, monocle344, and diffusion 
pseudotime45, and the pseudotime order inferred from neighborhood GEX space using 
palantir32 respectively. The Pearson’s correlations are -0.95, -0.91, -0.95, and -0.90 
respectively (P-values of 4.8e-76, 4.9e-56, 2.1e-74, and 7.4e-54) for TRAV, and 0.93, 0.90, 
0.93, and 0.89 respectively (P-values of 1.7e-62, 3.8e-54, 7.6e-65, and 4.2e-52) for TRAJ.  
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Extended Data Fig. 8 | Non-productive BCR and TCR. a,b,c, Boxplot of the proportion of 
cells with productive (blue) or non-productive (orange) BCR light chain (a) and heavy chain 
(b), and TRB (c) in different fetal lymphocyte subsets. Each point represents a sample and 
data were taken from Suo et al. 20223. Only samples with at least 20 cells are shown. Boxes 
capture the first to third quartiles and whisks span a further 1.5X interquartile range on each 
side of the box. d, Barplot showing the VDJ composition of non-productive TRB contigs in 
selected lymphocyte subsets from Fig. 5a.   
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Extended Data Fig. 9 | Non-productive TCR. a,b,c, Boxplot of the proportion of cells with 
productive (blue) or non-productive (orange) TRA (a), TRG (b) and TRD (c) in different 
fetal lymphocyte subsets. Each point represents a sample and data were taken from Suo et al. 
20223. Only samples with at least 20 cells are shown. Boxes capture the first to third quartiles 
and whisks span a further 1.5X interquartile range on each side of the box. d, Boxplot of the 
proportion of cells with non-productive TRB in different fetal lymphocyte subsets, colored by 
organs. Each point represents a sample. Only samples with at least 20 cells are shown. Boxes 
capture the first to third quartiles and whisks span a further 1.5X interquartile range on each 
side of the box.   
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Extended Data Fig. 10 | TRBJ-based trajectory for ILC/NK/T cell lineage. a, 
Neighborhood V(D)J feature space covering ILC, NK and developing T cells with TRBJ on 
the same UMAP embedding as in Fig. 5b. The first two panels show the root cell and 
terminal states selected for pseudotime inference. The last panel shows the cell types. b, 
Heatmap of gene expression for genes encoding cell surface proteins across pseudotime in 
DN T cells. Pseudotime is equally divided into 100 bins, and the average gene expression is 
calculated for DN T cells with pseudotime that falls within each bin. Genes selected here had 
significantly high Chatterjee’s correlation with pseudotime (BH adjusted P-value < 0.05, and 
correlation coefficient > 0.1). c, Heatmap of gene expression for TFs known to be important 
in mouse DN T cell development53, across pseudotime in human fetal DN T cells. TFs that 
showed discordant expression patterns between mouse and human are highlighted in red.   
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Extended Data Fig. 11 | Non-productive BCR in pDC. a,b, Boxplot of the proportion of 
cells with productive (blue) or non-productive (orange) BCR heavy chain (a) and light chain 
(b) in different fetal myeloid subsets. Each point represents a sample and data were taken 
from Suo et al. 20223. Only samples with at least 20 cells are shown. Boxes capture the first 
to third quartiles and whisks span a further 1.5X interquartile range on each side of the box. c, 
Expression of genes involved in V(D)J rearrangement in pDCs and cycling pDCs. Data was 
taken from Suo et al. 20223.  
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Supplementary Note 1 

When cellranger vdj updated its contig annotation pipeline in version 3.1.0 
(https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/3.1/release-
notes), the priority was αβTCR and the software lost the ability to annotate γδTCR contigs. 
However, the same release saw the introduction of custom enrichment primer support, which 
is integral for proper γδTCR contig reconstruction. γδTCR contig reannotation was 
reintroduced on an experimental basis in version 7.0.0 
(https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/7.0/release-
notes). cellranger vdj versions between 3.1.0 and 6.1.2 can still reconstruct γδTCR contigs, 
but cannot natively annotate them. 
 
10X Genomics was aware of the issue, but it was not a priority for them as γδTCR libraries 
require custom enrichment primers not part of their product line-up. Early support requests 
would direct users to the last legacy version, 3.0.2, that supported γδTCR annotation 
(https://github.com/10XGenomics/cellranger/issues/45). However, this was not an ideal 
solution due to the lack of custom enrichment primer support. 10X Genomics subsequently 
revised their recommended solution to a modification of the reference, wherein all TRG 
sequences would be renamed to TRA and TRD would be renamed to TRB. This advice used 
to be available at https://kb.10xgenomics.com/hc/en-us/articles/360015793931-Can-I-detect-
T-cells-with-gamma-delta-chains-in-my-V-D-J-data- but this has since been overwritten by 
cellranger multi instructions for version 7.0.0. 
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Supplementary Tables 

Supplementary Table 1: top_10_j_multimappers.csv (separate file) 
Top 10 J gene combinations with multi-J mapping for each locus in data from Suo et al. 
20223, with the number of contigs containing each combination shown next to it.  
 
Supplementary Table 2: LR_results.csv (separate file) 
Logistic regression results exploring factors associated with multi-J mapping presence in data 
from Suo et al. 20223. 
 
Supplementary Table 3: LR_results_combined.csv (separate file) 
Logistic regression results exploring factors associated with multi-J mapping presence in 
control and cycloheximide-treated PBMC data. 
 
Supplementary Table 4: j_sequence_affect_j_multimapper.csv (separate file) 
List of leftmost (5′ end) J genes that had significant association with increased or decreased 
multi-J mapping, together with the sequences of their last 10 nucleotides at 3′ ends and the 
first 11 nucleotides of its 3′ end intron.  
 
Supplementary Table 5: panimmune_differential_VDJ.csv (separate file) 
Differential V(D)J usage across CD4+T, CD8+T, and MAIT cells in data from Conde et al. 
20225. 
 
Supplementary Table 6: abtentry_cor_result.csv (separate file) 
Pearson’s correlation coefficients and BH adjusted P-values of all genes with branch 
probabilities to CD8+T lineage within abT(entry) cells.  
[cor_tcr] Pearson’s correlation coefficients for pseudotime inferred from neighborhood V(D)J 
space 
[pval_tcr] Pearson’s correlation P-values for pseudotime inferred from neighborhood V(D)J 
space 
[adjp_tcr] P-values from pval_tcr adjusted by BH procedure  
[cor_gex] Pearson’s correlation coefficients for pseudotime inferred from neighborhood GEX 
space 
[pval_gex] Pearson’s correlation P-values for pseudotime inferred from neighborhood GEX 
space 
[adjp_gex] P-values from pval_gex adjusted by BH procedure  
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