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Abstract 

The prefrontal cortex (PFC) is central to working memory, temporal processing, decision making, 
flexibility, and goal-oriented behavior, and has been implicated as a key brain region responsible for age-
related cognitive decline. Although studies in humans and multiple nonhuman primate (NHP) species 
have shown reduction of PFC activity associated with cognitive decline, little is known about aging-
related molecular changes in PFC that may mediate these effects. To date, no studies have used untargeted 
discovery methods and integrated analyses to determine PFC molecular changes across the adult age span 
in healthy primates. The goal of this study was to quantify PFC molecular changes associated with 
healthy aging in female baboons (Papio), a NHP model of aging, by integrating multiple omics data types 
(transcriptomics, proteomics, metabolomics) from samples across the adult age span. Our integrated 
omics approach using unbiased weighted gene co-expression network analysis (WGCNA) to integrate 
data, revealed 2 modules containing 587 transcripts and 13 proteins negatively correlated with age. In 
addition, we identified an additional 57 proteins and 20 metabolites associated with age using regression 
analyses. Pathway enrichment analysis revealed 25 overlapping, coordinated pathways negatively 
correlated with age. We identified pathways previously associated with PFC aging such as dopamine-
DARPP32 feedback in cAMP signaling, and additional pathways not previously associated with aging-
related PFC changes such as nitric oxide signaling. In addition, we found GABA associated with these 
signaling pathways, providing one potential biomarker to assess PFC changes with age. These highly 
coordinated pathway changes during aging may represent early steps for aging-related decline in PFC 
functions, such as learning and memory, and provide potential biomarkers to assess cognitive status in 
humans. 
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1 Introduction 

The prefrontal cortex (PFC) is central to working memory, temporal processing, decision making, 
flexibility, and goal-oriented behavior (Funahashi and Andreau 2013; Friedman and Robbins 2022). 
Studies in humans and multiple nonhuman primate (NHP) species have shown a reduction of PFC activity 
without loss of neurons in aging that is associated with cognitive decline (Lacreuse et al., 2020). 
However, little is known about aging-related molecular changes in PFC. Ianov et al., (Ianov et al., 2016) 
observed age-related differences in gene expression in the PFC of young (5–6 months, n = 11) and aged 
(17–22 months, n = 20) male Fischer 344 rats; however, these were not associated with age-related 
cognitive impairment in a PFC-mediated task. Erraji-Benchekroun et al., (Erraji-Benchekroun et al., 
2005) observed age-related transcriptional changes in Broadmann’s Area 9 (BA9) and BA47 in 39 
humans from 13 to 79 years of age; however, half of these were samples obtained after suicides and the 
postmortem interval (PMI) averaged 17.5 hours, both of which very likely effect RNA and protein 
quality. Previous studies in rhesus macaques have analyzed more than 40 brain regions by RNA-Seq, but 
these were limited to comparisons of a small number of young versus middle-aged animals (3-8 per age 
group) (Li et al., 2019; Yin et al., 2020). There is no detailed dataset available characterizing molecular 
changes in the PFC across the adult age span in healthy primates.  

The goal of this study was to integrate data from multiple omics methods to quantify PFC molecular 
changes associated with healthy aging in female baboons (Papio), a NHP model of aging. This study is 
unique compared to prior studies in that it evaluates a relatively large group of NHPs (n=34) across the 
entire adult age span (human equivalent ~30 to 88 years). All animals consumed the same healthy diet, 
were group housed the same way, and tissues were collected on a defined schedule with short PMIs (~30 
min); therefore, this type of controlled investigation is not possible in humans. In addition, previous 
studies used only RNA-Seq data to quantify molecular changes; whereas, this study integrated 
transcriptomic, proteomic, and metabolomic data. In previous studies, we (Cox et al., 2021) and others 
(e.g., (Meng et al., 2019) have demonstrated greater power to detect phenotypically relevant molecular 
pathways using integrated omics compared to transcriptomics analyses alone.  

Our integrated omics approach using unbiased weighted gene co-expression network analysis (WGCNA) 
and pathway enrichment analysis revealed 2 modules containing 587 transcripts and 13 proteins 
negatively correlated with age. We identified an additional 57 proteins and 20 metabolites associated with 
age using regression analyses. Pathway enrichment analysis revealed 25 overlapping, coordinated 
pathways negatively correlated with age. The top ranking pathways included dopamine-DARPP32 
feedback in cAMP signaling and estrogen receptor signaling, both previously associated with age-related 
changes in PFC. In addition, top ranking pathways included pathways not previously associated with 
aging-related PFC changes - synaptogenesis, synaptic long term depression, and nitric oxide signaling. 
We also identified proteins negatively correlated with age that serve as key regulators in these signaling 
pathways, and age-associated metabolites that are regulators or by-products of these pathways. Our 
untargeted integrated omic approach revealed highly coordinated, novel pathways that may represent 
early events leading to aging-related decline in PFC functions, such as learning and memory, and provide 
potential biomarkers to assess cognitive status in humans. 

2 Materials and Methods 

2.1 Animal Care and Maintenance 

The study included 34 females ranging in age from 7.5y to 22.1y (human equivalent ~30y to 88y), median 
age 14.3y (human equivalent ~50y) (Bronikowski et al., 2002). All procedures were approved by the 
Texas Biomedical Research Institute (TBRI) Animal Care and Use Committee and conducted in facilities 
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approved by the Association for Assessment and Accreditation of Laboratory Animal Care. The TBRI 
animal use programs operated according to all National Institutes of Health (NIH) and U.S. Department of 
Agriculture guidelines, and were directed by board certified veterinarians (DVM). All animal care 
decisions were made by the Southwest National Primate Research Center (SNPRC) veterinarians. 
Baboons (Papio hamadryas spp., crosses of olive, hamadryas, and yellow baboons) were housed in 
outdoor social groups of 3-19 animals at the SNPRC at TBRI, in San Antonio, Texas. Animals were fed 
monkey chow (Monkey Diet 5LEO, Purina, St Louis, MO, USA) ad libitum throughout life, and water 
was continuously available with multiple lixits in each enclosure. All animals were provided complete 
veterinary care by SNPRC veterinary staff throughout their lives. 

2.2 Necropsy 

Baboons were pre-medicated with ketamine hydrochloride (10 mg/kg IM) and anesthetized using 
isoflurane (2%) as previously described (Schlabritz-Loutsevitch et al., 2007). All collections were 
conducted between 8:00 AM – 10:00 AM to minimize variation from circadian rhythms. While under 
general anesthesia, baboons were exsanguinated as approved by the American Veterinary Medical 
Association. Following cardiac asystole, left lateral prefrontal cortex, including BAs 8,9,10, 44, 45 and 
46, was collected, snap frozen in liquid nitrogen, and stored at -80oC (Yang et al., 2017). 

2.3 Morphometric Measures 

Morphometric measures were collected from sedated animals prior to necropsy using standard anatomical 
landmarks as described previously (Chavez et al., 2009). 

2.4 Clinical Measures 

Blood samples were collected from the femoral vein in overnight fasted animals after intramuscular 
administration of ketamine at 10 mg/kg. All collections were conducted between 8:00 AM – 10:00 AM to 
minimize variation from circadian rhythms. Blood samples were collected within 5 min of ketamine 
administration. For all measures, assay precision was determined by testing pooled samples using 5 
replicates in each assay. These assays were repeated at 2 dilutions to assess linearity of the results. All test 
samples were run at dilutions estimated to achieve values in the middle of the assay calibration range. 

Plasma Lipids and Glucose - Total plasma cholesterol (TPC), low density lipoprotein (LDL) cholesterol, 
high density lipoprotein (HDL) cholesterol, triglyceride, and glucose concentrations were determined by 
the Wake Forest Comparative Medicine Clinical Chemistry and Endocrinology Laboratory using reagents 
(ACE) and instrumentation (ACE AXCEL autoanalyzer) from Alfa Wasserman Diagnostic Technologies 
(West Caldwell, NJ). Plasma lipids were standardized to calibrated controls from the Centers for Disease 
Control and Prevention/National Institutes of Health Lipid Standardization Program (Solomon Park, 
Burien, WA, USA). 

Leptin - Leptin concentrations were determined by radioimmunoassay using a kit from EMD Millipore 
(Burlington, MA, kit HL-81K). 

2.5 Transcriptomics 

2.5.1 RNA Isolation  

Approximately 5 mg of frozen prefrontal cortex was homogenized in 1 ml RLT buffer (Qiagen) using a 
BeadBeater (BioSpec) with zirconia/silica beads, and RNA was extracted using the Zymo Direct-zol RNA 
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Miniprep Plus kit according to manufacturer’s instructions. RNA quality was assessed using high 
sensitivity RNA ScreenTape with the TapeStation instrument (Agilent). RNA was stored at −80°C. 

2.5.2 Sequence Data Generation 

The Kapa RNA HyperPrep kit with RiboErase (Roche) was used to generate cDNA libraries, and quality 
assessed using Agilent D1000 ScreenTape according to the manufacturer’s protocol. cDNA libraries were 
pooled and sequenced using v1.5 reagent kit (Illumina) for paired-end sequencing (2x150) on a NovaSeq 
6000 Sequencer. 

2.5.3 Sequence Data Analysis  

Low quality bases with Phred scores below 30 were removed prior to alignment. Trimmed reads were 
aligned against the olive baboon reference (Panu_3.0, GCF_000264685.3) using HISAT2 (Kim et al., 
2015). Aligned reads were quantified using an expectation-maximization algorithm (Xing et al., 2006) 
with Panu_3.0 annotation (NCBI release 103). The criteria to be counted as paired-end reads were 100% 
overlap with transcript sequences and skipped regions of junction reads matched the introns of transcripts. 
Transcripts without read counts across all samples were filtered out, and normalized by the trimmed mean 
of M values method. Raw read counts were filtered to remove those with less than 30 counts across all 
samples and further filtered to include only transcripts with 3 or more counts in 50% of the samples, 
resulting in 25,381 transcripts that passed quality filters.  

2.6 Proteomics  

2.6.1 Sample Processing 

Proteomic samples were prepared as described (Hamid et al., 2022). Briefly, approximately 5 mg of each 
tissue sample was homogenized in Tris buffer, precipitated overnight in acetone at − 20°C, and 
centrifuged at 12,000 g for 10 min. The protein pellet was dried, reconstituted in 100 mM of ammonium 
bicarbonate, and quantified. One hundred mg of protein were reduced using dithiothreitol for 1 h at 56°C, 
alkylated using iodoacetamide for 30 min in dark, and digested overnight with trypsin. Samples were 
cleaned and desalted using Thermo Scientific Pierce C18 Tips, dried, and reconstituted in 0.1% formic 
acid. 

2.6.2 LC/MS Data Acquisition and Analysis 

LC/MS data were acquired as described (Hamid et al., 2022). One mg of each sample was loaded on a 
PepMap RSLC C18 easy-spray column (3um, 100A, 75um x 15cm) using Easy-nLC 1200 coupled to an 
Orbitrap Lumos Tribrid Mass Spectrometer (Thermo Scientific), and peptides were separated using a 3 hr 
gradient of Mobile phase A (0.1% Formic acid in 95:5 Water:Acetonitrile) and Mobile Phase B (0.1% 
Formic acid in 80:20 Acetonitrile:Water). Peptides were eluted according to the gradient program: 2% to 
30% B in 140 min, 30% to 95% B in 30 min and 95% to 100% B in 10 min. Mass spectrometer data were 
acquired in MS1 scan mode (m/z=375-1800) with a resolution of 120,000 with Automatic Gain Control 
of 4.0x105 and maximum injection time of 50 ms. MS/MS data acquisition was done using HCD mode at 
a resolution of 30,000 with an Automatic Gain Control target of 4.0 x 105 and maximum injection time of 
50 ms. All data acquisition was done using Thermo Scientific Xcalibur software.  

MS raw data were analyzed using MetaMorpheus (Hamid et al., 2022; Miller et al., 2019) using the P. 
anubis reference proteome database from Uniprot with 44,721 entries (UP000028761). Data files were 
calibrated using the following settings: precursor mass tolerance of 15 ppm, product mass tolerance of 
25 ppm with Carbamidomethyl as fixed modification, and oxidation of methionine as variable 
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modification. Trypsin was selected as protease with 2 maximum mixed cleavages and the calibrated data 
files were converted to mzML format. Post calibration data was searched using G-PTM-D task for 
incorporation of common biological, metal or artifact PTMs into the search database. A final search was 
done using the augmented search database with incorporated G-PTM-D based modifications at precursor 
and product mass tolerance of 5 and 20 ppm respectively. Peptide and protein quantification were done 
using the FlashLFQ approach and the Match between runs option was enabled. Protein intensities were 
normalized using global intensity normalization. In the final normalized data missing values were 
imputed using Random forest imputation workflow (Hamid et al., 2022; Stekhoven and Buhlmann 2012). 

2.7 Metabolomics  

2.7.1 Sample Processing  

Extraction of metabolites from brain samples was performed following a protocol adopted from a 
previously described study (Misra et al., 2019). Briefly, aliquots (15 μL) of brain homogenates were 
subjected to sequential solvent extraction, once each with 1 mL of acetonitrile:isopropanol:water (3:3:2) 
and 500 μL of acetonitrile:water (1:1) mixtures at 4°C (Fiehn et al., 2008). Adonitol (2 μL from 10 mg/ml 
stock) was added to each aliquot prior to the extraction as internal standard. The extracts were then dried 
under vacuum at 4°C prior to chemical derivatization (silylation reactions). Tubes without samples 
(blanks) were treated similarly as sample tubes to account for background noise and other sources of 
contamination. Samples and blanks were sequentially derivatized with methoxyamine hydrochloride 
(MeOX) and 1% TMCS (2,2,2-Trifluoro-N-methyl-N-(trimethylsilyl)-acetamide, Chlorotrimethylsilane) 
in N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) or 1% TMCS containing N-(t-
butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) as described (Misra et al., 2019). This 
involved addition of 20 μL of MeOX (20 mg/mL) in pyridine to the dry extracts and incubation at 55°C 
for 1 h followed by addition of 80 μL MTBSTFA and incubation at 60°C for 1 h. 

2.7.2 GC/MS Data Acquisition and Analysis  

Data were generated with a high-resolution (HR) Orbitrap Mass Spectrometer (Q Exactive Orbitrap MS, 
Thermo Fisher) coupled to gas chromatography (GC). In all cases, 1 µL of derivatized sample was 
injected into the TRACE 1310 GC (Thermo Scientific, Austin, TX) in a splitless (SSL) mode at 220°C. 
Helium was used as a carrier gas and the flow rate was set to 1 mL/min for separation on a Thermo 
Scientific Trace GOLD TG-5SIL-MS (30 m length × 0.25 mm i.d. × 0.25 μm film thickness) column with 
an initial oven temperature of 50°C for 0.5 min, followed by an initial gradient of 20°C/min ramp rate. 
The final temperature of 300°C was held for 10 min. All eluting peaks were transferred through an 
auxiliary transfer line into a Q Exactive-GC-MS (Thermo Scientific, Bremen, Germany). The total run 
time was 25 min. Data were generated in an electron ionization (EI) mode at the standard 70 eV energy, 
emission current of 50 μA, and an ion source temperature of 250°C. A filament delay of 5.7 min was set 
to prevent excess reagents from being ionized. High resolution EI spectra were acquired at 60,000 
resolution (fwhm at m/z 200) with a mass range of 50 - 650 m/z. The transfer line was set to 230°C. Data 
acquisition and instrument control were carried out using Xcalibur 4.3 and TraceFinder 4.1 software 
(Thermo Scientific). Capillary voltage was 3500V with a scan rate of 1 scan/s. Finally, raw data (.raw 
files) obtained from data acquired by GC/MS were converted to .mzML formats using the open source 
ProteoWizard’s msConvert software prior to data preprocessing with MS-DIAL 4.6 software (Riken, 
Japan, and Fiehn Lab, UC Davis, Davis, CA, USA). The MS-DIAL 4.6 open software was used for raw 
peak extraction and data baseline filtering and baseline calibration, peak alignment, deconvolution 
analysis, peak annotation, and peak height integration as described (Tsugawa et al., 2015). Key 
parameters included peak width of 20 scan, a minimum peak height of 10,000 amplitudes was applied for 
peak detection, sigma window value of 0.5, and EI spectra cutoff of 50,000 amplitudes for deconvolution. 
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For annotation settings, the retention time tolerance was 0.5 min, the m/z tolerance was 0.5 Da, the EI 
similarity cutoff was 60%, and the annotation score cutoff was 60%. In the alignment parameters setting 
process, the retention time tolerance was 0.5 min, and retention time factor was 0.5. Spectral library 
matching for metabolite identification was performed using an in-house and public library consisting of 
pool EI spectra from MassBank, GNPS, RIKEN, MoNA. Data were further normalized by QC-based-
loess normalization prior to log10 transformation and missing values were imputed based on random 
forest imputation method (Ampong et al., 2022; Dunn et al., 2011; Stekhoven and Buhlmann 2012). 

2.8 Statistical Analysis of Integrated Omics Data 

2.8.1 Weighted Gene Co-expression Network Analysis (WGCNA) 

WGCNA was performed with the WGCNA package (Langfelder and Horvath 2008) in R software 
according to the R package WGCNA protocol 
(https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/). We first checked for 
outliers after sample clustering in WGCNA. We found one sample outlier, which was removed from all 
three omics datasets. Subsequent analyses included 33 female baboons. A total of 26,622 omics molecules 
were included in WGCNA. Brain omics data from female baboons were used to generate a correlation-
matrix for all pair-wise omics data. Next, the threshold function was used to obtain soft threshold (power-
12) to construct an adjacency matrix in accordance with a scale-free network (Zhang and Horvath 2005). 
This adjacency matrix was then transformed into a topological overlap matrix (TOM) to measure relative 
gene interconnectedness and proximity. The TOM was then used to calculate the corresponding 
dissimilarity (1 – TOM). Average linkage hierarchical clustering coupled with the TOM-based 
dissimilarity was used to group correlated omics data into modules (Zhang and Horvath 2005). More 
specifically, modules were generated from the Dynamic Tree Cut method for Branch Cutting. The major 
parameters were set with a deep‐split value of 2 to branch splitting and a minimum size cutoff of 50 
(minimum cluster size = 50) to avoid abnormal modules in the dendrogram; highly similar modules were 
merged together with a height cutoff of 0.25. Modules were considered significant if the correlation was > 
0.30 and p-value < 0.05. In the resulting network, as neighbors in a cluster shared high topological 
overlap, the resulting modules likely indicated a common functional class. WGCNA has the advantage of 
allowing analysis of continuous traits without binning the data for arbitrary phenotypic cutoffs in an 
analysis because binning data into categories typically translates into loss of power.  

2.8.2 Construction of Module-Trait Relationships 

The omics modules summarize the main patterns of variation. The first principal component represents 
the summary of each module and is referred to as the module eigengene (Langfelder and Horvath 2007). 
The relationship between module eigengenes and clinical traits was assessed by Pearson correlation; if p-
value < 0.05, then the module and clinical trait were regarded as significant. The modules and clinical 
traits that showed significant (p-value < 0.05) and high correlations (> 0.30) were selected for further 
investigation. A heat map was used for visualization of the correlations of each module-trait relationship. 

2.8.3 Proteomics and Metabolomics Correlation with Age 

The central question of our study was whether modules of brain omics data correlated with age. The 
identified modules negatively correlated with age contained few proteins and no metabolites. WGCNA is 
designed to alleviate the multiple testing burden in transcriptomic data, which is less of an issue for 
proteomic and metabolomic data due to their smaller numbers of molecules. Consequently, we used 
Pearson correlation to nominate proteins and metabolites that correlated with age and age-squared. 
Although we did not adjust for multiple testing, we addressed this within pathway enrichment analysis, 
i.e., pathway statistical values for enrichment plus EOP stringent filtering (Nijland et al., 2007). 
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2.9 Pathway and Network Enrichment Analysis 

To assess directionality of pathways significantly enriched with molecules from WGCNA and regression 
analyses, negative correlated molecules were converted to negative fold change and positive correlations 
to positive fold change. All molecules from significant modules were imported to Ingenuity Pathway 
Analysis (IPA) software (Qiagen) for core analysis where pathways were analyzed for significant 
enrichment of module genes. Right-tailed Fisher's exact test was used to calculate associations between 
molecules in the dataset and molecules in annotated pathways, and pathways were ranked by -log p-value 
(Spradling et al., 2013). A p-value of < 0.01 was considered significant. We used an EOP approach to 
identify pathways in which activity was biologically consistent between the beginning and end of the 
pathway - we considered that a pathway is biologically relevant if fold changes of the molecules at both 
ends of the pathway were consistent with the overall pathway change, i.e., activated or inhibited (Nijland 
et al., 2007).  

3 Results 

3.1 Morphometric and Clinical Measures 

Our study included PFC samples and corresponding blood samples from 34 female baboons (Papio) 
ranging in age from 7.5y to 22.1y (human equivalent ~30y to 88y). PFC samples were rapidly collected in 
a controlled setting from scheduled necropsies providing high quality tissues for multi-omic analyses. 
Morphometry and blood for clinical chemistries were collected immediately prior to necropsy 
(Supplemental Table 1). Regression analysis showed body length associated with age (p-value = 0.024) 
and age-squared (p-value < 0.001), and BMI was nominally associated with age (p-value = 0.063). 
Among the clinical measures, triglycerides (p-value = 0.004) and glucose (p-value = 0.044) were 
associated with age, and LDL cholesterol was associated with age-squared (p-value = 0.019) (Table 1).  

3.2 Integrated Omics to Identify Age-Associated Molecules 

We identified 25,381 transcripts (Supplemental Table 2), 917 proteins (Supplemental Table 3), and 324 
metabolites (Supplemental Table 4) that passed quality filters (Table 2). We used WGCNA to identify 26 
modules of co-correlated omics molecules, and then determined whether any of these modules associated 
with age, age-squared, and morphometric and clinical measures.  

We identified 2 modules negatively correlated with age (white, p-value = 0.008, correlation = -0.45; and 
light yellow, p-value = 0.020, correlation = -0.40) (Table 2, Supplemental Table 5) which included 587 
genes, 13 proteins, and 0 metabolites (Supplemental Table 6, Table 1). We did not find any significant 
modules associated with age-squared. However, we did identify 27 proteins (23 mappable in IPA) 
negatively correlated with age, 30 proteins associated with age-squared (21 mappable in IPA), and 20 
metabolites associated with age-squared (Supplemental Table 7). 

To determine whether metabolic and/or morphometric measures were associated with PFC molecular 
changes with age, we assessed whether age-associated WGCNA modules overlapped with morphometric- 
and clinical measures-associated WGCNA modules. Although triglycerides, LDL, leptin, and body length 
revealed significant associations with WGCNA modules, none of these overlapped with age (Figure 1). 

3.3 Pathway Enrichment Analysis 

Pathway analysis of genes, proteins, and metabolites correlated with age revealed 52 pathways with p-
values < 0.01 and z-scores predicting directionality (Supplemental Table 8). Among these, the top 25 
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pathways all passed EOP filtering, all shared 5 or more genes in common (Figure 2), indicating extensive 
molecular coordination among the age-associated molecules in the PFC. Neurotransmitter signaling and 
other nervous system signaling pathways were the most statistically significant with the greatest numbers 
of molecules (Figure 3). 

The top 5 pathways highlighted our findings for signaling pathways previously associated with age in 
PFC, and novel pathways in PFC not previously associated with age. Consistent with previous studies  
(Kelly et al., 2014; Garcia et al., 2014), we found decreased abundance with age for VEGFA (vascular 
endothelial growth factor A) and PDE1B (phosphodiesterase 1B) genes and in dopamine signaling. In 
addition, two metabolites, γ-aminobutyric-acid (GABA) and 1,10-phenanthroline, in the dopamine 
signaling pathway were positively correlated with age (Figure 4), consistent with previous reports 
(Kiemes et al., 2021; Gao et al., 2013; Maitra et al., 2021). Also consistent with previous work was 
decreased activity of estrogen signaling with age (reviewed in Friedman and Robbins 2022), including 
downregulation of IGF1 (insulin like growth factor 1), IGFR (insulin like growth factor 1 receptor), 
VEGFA, and EIF4EBP2 (eukaryotic translation initiation factor 4E binding protein 2) gene expression, 
and EIF4EBP1 (eukaryotic translation initiation factor 4E binding protein 1) and PRKAR1A protein 
expression (Supplemental Figure 1).  

Novel PFC pathways associated with age included nitric oxide signaling (Figure 5), synaptogenesis 
(Supplemental Figure 2), and synaptic long-term depression (Supplemental Figure 3). The nitric oxide 
signaling pathway was significantly enhanced by including proteomic data, an example of proteomic data 
enriching the pathway beyond transcripts alone, with proteins found in key signaling steps such as 
calmodulin processing. In addition, multiple metabolites from the metabolomic dataset were associated 
with this pathway as regulators (1,10-phenanthroline and physostigmine) and by-products (GABA). 
Increased abundance of these metabolites with age was inverse to decreased activity of the signaling 
pathway with age, consistent with previous studies (Kiemes et al., 2021; Gao et al., 2013; Maitra et al., 
2021). Synaptogenesis signaling also included proteins in key signaling steps such as cadherin (CDH13) 
and EIF4EBP1. Identification of GABA and 1,10-phenanthroline inhibiting synaptic long-term depression 
signaling was also consistent with decreased PFC neuron activity with age in this cohort. Taken together, 
pathway enrichment analysis revealed coordinated decreased activity of neuronal signaling pathways with 
age in the primate PFC. 

4 Discussion 

The overall goal of this study was to use unbiased multi-omics analysis methods and data integration to 
identify molecular pathways associated with age in the primate PFC. Previous studies have established the 
importance of the PFC in cognition (Miller and Cohen 2001) and shown commonalities in cognitive 
decline with age among humans and multiple NHP species (Lacreuse et al., 2020). Although ongoing 
studies have used RNA-Seq in human (Miller et al., 2017) and NHP (Li et al., 2019; Yin et al., 2020) 
brain region samples to quantify age-associated molecular changes, no studies to date have systematically 
characterized the broad adult age span included in this study, approximating a human age range of ~30y 
to 88y. In addition, the size of our study cohort, which averages almost 3 animals per year of age, is far 
larger than any previous NHP study related to cognition and aging (reviewed in Lacreuse et al., 2020). 
This study is unique in that animals were maintained on a low cholesterol, low fat “chow” diet throughout 
life, housed under identical conditions, and neural tissues were collected on a defined schedule with short 
PMIs (~30 min) which allowed us to assess PFC molecular changes associated with normal aging across 
multiple omics domains. 

We quantified morphometry and clinical chemistries for measures previously positively associated with 
age-related co-morbidities and found measures of body length associated with age, as well as plasma 
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LDL, triglyceride concentrations, and glucose. Interestingly, we did not find significant associations 
between either HDL or total serum cholesterol and age in this cohort of female baboons.  

Using unbiased WGCNA, we identified 2 modules of omics molecules that were significantly correlated 
with age. Neither of these age-associated modules overlapped with triglycerides, or morphometric 
measures correlated with age, suggesting that molecular pathways influencing age-associated variation in 
these morphometric and clinical measures differ from molecular pathways influencing PFC age-
associated changes. Overall, the number of molecules in the two age-correlated WGCNA modules was 
small, including only 2.3% of transcripts and 1.4% of proteins that passed quality filters. Although few 
metabolites correlated with age, 5/20 (25%) were remarkably informative and consistent with 
gene/protein pathway directionality. Furthermore, pathway enrichment analysis showed extensive overlap 
and coordination based on molecules common among the top 25 pathways and consistent with decreased 
age-associated activity. Taken together, these results provide a detailed molecular picture in which few 
molecules were associated with age, but those few were highly interconnected, suggesting coordinated 
functional changes with age in the primate PFC.  

Our unbiased integrated omics approach identified both known and novel pathways associated with PFC 
aging in primates, and provides evidence for molecular mechanisms mediating age-related cognitive 
decline and reduced PFC function. Known pathways include PFC dopaminergic circuits, which are 
essential for cortical connectivity and cognition (Dehaene and Changeux 2000), and have been shown in 
imaging studies to decrease with age, consistent with decreased dopamine signaling reported here (Berry 
et al., 2016). GABA-mediated inhibition is critical to the function of neural circuits that support memory 
in the PFC (Deco and Rolls 2003; McQuail et al., 2015). Here, GABA was positively correlated with age. 
GABA and dopamine signaling act together to support spatial working memory in the primate 
dorsolateral PFC (Arnsten et al., 2015; Goldman-Rakic 1995). Also, GABA is negatively correlated with 
human neural activity in functional MRI (Kiemes et al., 2021; Gao et al., 2013) which is consistent with 
our findings of increased GABA abundance with increased age. We also observed decreased estrogen 
signaling with age, which has been associated with cognitive decline (reviewed in Friedman and Robbins 
2022) and modulates dopamine (Shanmugan and Epperson 2014) and GABA (Gilfarb and Leuner 2022) 
function. Proteins and metabolites in these pathways were of particular interest, providing multi-level 
molecular data on key signaling steps and pathway read outs, respectively. 

The top ranked novel pathways for primate PFC included decreased nitric oxide signaling with age. Our 
results differ from a study in male rats showing increased eNOS with age (Liu et al., 2004). It is possible 
this difference is based on significant differences in PFC cell composition and function between rodents 
and primates (Seamans et al., 2008) or may be due to sex-specific signaling, i.e., female NHP versus male 
rodents. Indeed, estrogen induces synaptogenesis in the primate PFC (Hara et al., 2015). GABA and 1,10-
phenanthroline may contribute to synaptic long-term depression by inhibition of glutamate at the synaptic 
vesicle and protein kinase C, respectively, key molecules in the signaling pathway. Not only is GABA 
negatively correlated with neural activity, 1,10-phenanthroline has been shown to promote apoptosis 
(Maitra et al., 2021). Increased abundance in these metabolites with age are consistent with decreased 
signaling activity in the synaptic long-term depression signaling pathway. Decreased signaling with age in 
these pathways combined with decreased dopamine, GABA, and estrogen signaling indicate decreased 
PFC neuronal activity, even in healthy primate aging, which are likely involved in common declines in 
cognitive function observed with aging.  

Also noteworthy is that previous human studies of molecular changes in PFC with age have reported 
changes related to inflammation and immune function (Zhang and Wong 2022; Tennakoon et al., 2022; 
Wruck and Adjaye 2020), and reported evidence of age associated differences in immune function in 
PFC. However, the analyzed tissue samples were derived from seven studies with high heterogeneity in 
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patient populations, cause of death, and PMI. We did not find these pathways enriched in our dataset 
which was derived from NHPs that consumed a healthy, low-fat, low-cholesterol, largely plant–based diet 
throughout life, and in which PFC was collected rapidly, using the same protocol for all subjects. Thus, it 
is difficult to untangle lifetime diet effects, the use of tissues from healthy subjects, and PMI as factors 
accounting for these differences. 

4.1 Limitations 

Although this study is the first of its kind for cohort size, age span, and integrated omics, there are 
limitations that should be addressed in future work. First, this study included only females, due to the 
difficulty of maintaining large numbers of males in NHP colonies, as non-breeders are typically culled 
prior to aging. Thus, the extent to which the observations reported here are sex-specific remains to be 
determined. Second, all omics methods were “bulk” methods for this heterogeneous brain region – we 
likely were not able to identify all pathways associated with age as molecular signaling in less abundant 
cell types would likely be undetected. We also did not characterize in more detail posttranslational 
modifications in proteins, a future analysis that may be of interest given the key role of several proteins in 
the identified signaling pathways where alterations in phosphorylation may further impact activity of key 
protein regulators identified in our study. Finally, although reproductive status was not characterized, 
previous studies show that baboon females may become peri- or postmenopausal as early as 20 years of 
age, consistent with the decline in estrogen signaling with age (Macrini et al., 2013).  

4.2 Conclusions 

Nonetheless, our unbiased integrated omics analysis of the primate PFC revealed novel neural signaling 
pathways in which activities decrease with age. Analysis of PFC samples collected from animals 
maintained on a healthy diet in social groups throughout lifespan provides a framework for normal 
healthy aging in the PFC at the molecular level. As mentioned previously, integration of metabolomic 
data provides useful inputs and readouts from signaling pathways. In addition, because GABA can be 
quantified by current imaging modalities (Kiemes et al., 2021; Gao et al., 2013), the association of GABA 
with these known and novel age-associated signaling pathways provides one potential biomarker to assess 
PFC changes with age and in response to stressors. These signaling pathways, and their changes with 
aging, are likely to represent critical molecular contributors to age-related cognitive decline and overall 
PFC function, even prior to overt clinical symptoms, and as such may provide novel insights into age-
related disease processes. Future work is required to identify master regulators that mediate the decreased 
activity of these highly interconnected neuronal signaling pathways, and to identify sex differences. 
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Contribution to the Field 

The prefrontal cortex of the brain is central to working memory, decision making, and goal-oriented 
behavior. This brain region is thought to be central to age-related decline in these cognitive skills. 
Previous studies to understand molecular changes that may play roles in cognitive decline have been 
limited to studies of gene expression and selected analysis of proteins in humans, monkeys, and rodents. 
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In addition, they have been limited by use of cadaver tissues in humans, small numbers of subjects in 
monkeys, and significant brain differences between rodents and primates. In this study, we used an 
integrated, unbiased multi-omic (genes, proteins, metabolites) approach to identify molecular changes in 
the prefrontal cortex associated with age. Studying a relatively large number of baboons across the adult 
age span, we confirmed previous studies showing the importance of dopamine signaling. We also found 
novel molecular pathways associated with age. Our discovery of a small number of highly connected 
molecular pathways associated with age-related decline provides specific targets to deter this decline. In 
addition, our findings that the molecule GABA is associated with age-related decline provides a potential 
marker to non-invasively measure cognitive decline due to aging and disease which could inform timing 
of therapeutic treatments. 
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Table 1: Correlations between age and morphometric and clinical measures 
 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Summary of Genes, Proteins and Metabolites Associated with Age 

Molecule Quality 
WGCNA 

Age 
WGCNA 

Age2 
Corr.  
Age 

Corr. 
Age2 

Genes 25,381 587 0 - - 
Proteins 917 13 0 27 30 
Metabolites 324 0 0 0 20 

 

  

Trait 
Age 

Correlation 
Age  

p-value 
Age2 

Correlation 
Age2  

p-value 
Total cholesterol -0.0023 0.9892 -0.3070 0.0773 
HDL cholesterol -0.2113 0.2301 -0.1195 0.5006 
LDL cholesterol 0.0548 0.7578 0.4061 0.0171 
Triglycerides 0.4830 0.0038 0.0025 0.9884 
Glucose 0.3479 0.0437 -0.3129 0.0715 
Leptin 0.0387 0.8276 -0.1048 0.5551 
Body Weight 0.1024 0.5640 -0.1609 0.3633 
Body length -0.3874 0.0235 -0.6358 5.32E-05 
BMI 0.3224 0.0628 0.1468 0.4014 
Brain Weight -0.2226 0.2056 -0.2386 0.1741 
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Table 3: Number of genes, proteins, and metabolites in the top 20 WGCNA modules with statistical results 
for age and age2 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Module 
colors Age Age-squared 

No. 
genes 

per module 

No. 
proteins per 

module 

No. 
metabolites 
per module 

 Pearson 
correlation p-value 

Pearson 
correlation p-value 

   

Light yellow -0.456 0.0077 0.065 0.7199 170 4 - 
White -0.404 0.0197 -0.120 0.5053 417 9 - 
Magenta -0.321 0.0684 0.215 0.2304 1159 32 - 
Turquoise 0.298 0.0915 0.213 0.2329 4043 38 - 
Dark red -0.267 0.1329 0.187 0.2970 966 11 - 
Royal blue -0.264 0.1379 0.215 0.2295 392 4 - 
Dark orange -0.259 0.1461 -0.117 0.5164 175 4 - 
Purple -0.250 0.1612 0.087 0.6296 989 15 - 
Yellow -0.234 0.1907 0.052 0.7728 1978 73 - 
Orange 0.222 0.2146 -0.026 0.8857 327 8 - 
Brown -0.210 0.2412 -0.206 0.2500 2473 63 - 
Dark green -0.203 0.2575 0.169 0.3481 50 262 - 
Cyan -0.177 0.3257 -0.069 0.7009 468 19 - 
Light cyan -0.154 0.3916 -0.170 0.3454 1145 15 - 
Steel blue 0.149 0.4085 -0.032 0.8589 162 - - 
Pink 0.113 0.5308 0.264 0.1376 815 72 323 
Light green -0.100 0.5790 -0.082 0.6514 415 17 - 
Red -0.077 0.6709 -0.174 0.3324 1646 53 - 
Grey60 0.076 0.6762 -0.032 0.8604 441 1 - 
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Figure Legends 
 
Figure 1: Modules associated with age and age-correlated traits. Each row corresponds to a module, the 
bottom column labels indicate each quantitative trait correlated with omic modules. Numbers in each box 
indicate correlations with p-values in parentheses. Positive correlations are indicated with red fill, 
negative with green fill, and significant modules are outlined blue. 
 
Figure 2: Overlapping Pathways. Genes in the lightyellow and white modules were used for pathway 
enrichment analysis. Pathways with enrichment p-values <0.01, absolute z-scores >1.0, and with 5 or 
more molecules in common are shown with blue lines indicating pathway overlap. 
 
Figure 3: Bubble chart of significantly enriched pathways. Genes in the lightyellow and white modules 
were used for pathway enrichment analysis. Pathways with enrichment p-values <0.01 and absolute z-
scores >1.0 are shown. The x-axis shows the -log p-value and y-axis shows categories of pathways. Blue 
fill indicates pathways decreasing with age, orange indicates pathways increasing with age, and size of the 
circle denotes the number of omic molecules in the pathway. 
 
Figure 4: Dopamine DARPP32 Feedback in cAMP Signaling. Genes are indicated by green outline, 
proteins by purple outline, metabolites by gold outline, red fill indicates increased abundance with age, 
green fill decreased abundance with age, and gray fill indicates no change in abundance. Pathway 
enrichment p-value = 2.0-06. 
 
Figure 5: Nitric Oxide Signaling. Genes are indicated by green outline, proteins by purple outline, 
metabolites by gold outline, red fill indicates increased abundance with age, green fill decreased 
abundance with age, and gray fill indicates no change in abundance. Pathway enrichment p-value = 4.0-06. 
 
Supplemental Figure 1: Estrogen Receptor Signaling. Genes are indicated by blue outline, proteins by 
purple outline, metabolites by gold outline, red fill indicates increased abundance with age, green fill 
decreased abundance with age, and gray fill indicates no change in abundance. Pathway enrichment p-
value = 7.9-06. 
 
Supplemental Figure 2: Synaptogenesis Signaling. Genes are indicated by blue outline, proteins by purple 
outline, metabolites by gold outline, red fill indicates increased abundance with age, green fill decreased 
abundance with age, and gray fill indicates no change in abundance. Pathway enrichment p-value =7.9-08. 
 
Supplemental Figure 3: Synaptic Long -Term Depression Signaling. Genes are indicated by blue outline, 
proteins by purple outline, metabolites by gold outline, red fill indicates increased abundance with age, 
green fill decreased abundance with age, and gray fill indicates no change in abundance. Pathway 
enrichment p-value =1.3-08. 
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Figure 1: WGCNA of Omic Data
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Figure 2: 25 Overlapping Pathways: > 5 common molecules
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Figure 3: Pathway Classification
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Figure 4: Dopamine DARPP32 Feedback in cAMP Signaling
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Figure 5: Nitric Oxide Signaling
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Supplemental Figure 1: Estrogen Receptor Signaling
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Supplemental Figure 2: Synaptogenesis Signaling
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Supplemental Figure 3: Synaptic Long -Term Depression
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