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 44 
ABSTRACT (250 words) 45 
 46 
Epigenetic clocks generated from DNA methylation array data provide important insights into 47 
biological aging, disease susceptibility, and mortality risk. However, these clocks cannot be 48 
applied to high-throughput, sequence-based datasets more commonly used to study nonhuman 49 
animals. Here, we built a generalizable epigenetic clock using genome-wide DNA methylation 50 
data from 493 free-ranging rhesus macaques. Using a sliding-window approach that maximizes 51 
generalizability across datasets and species, this model predicted age with high accuracy (± 1.42 52 
years) in held-out test samples, as well as in two independent test sets: rhesus macaques from a 53 
captive population (n=43) and wild baboons in Kenya (n=271). Our model can also be used to 54 
generate insight into the factors hypothesized to alter epigenetic aging, including social status and 55 
exposure to traumatic events. Our results thus provide a flexible tool for predicting age in other 56 
populations and species and illustrate how connecting behavioral data with the epigenetic clock 57 
can uncover social influences on biological age. 58 
 59 
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 87 
INTRODUCTION 88 
 89 
Chronological age is the predominant risk factor for most chronic, non-communicable diseases. 90 

However, chronological age per se cannot capture individual variation in health and disease risk 91 

beyond that which is associated with the passage of time. Measures of biological age aim to 92 

capture this variation to improve predictions of individual morbidity and mortality risk. The 93 

epigenetic clocks constructed independently by Horvath (2013) and Hannum and colleagues 94 

(2013) in humans were the first models of DNA methylation aging (also called epigenetic aging) 95 

to gain widespread use. Work in humans has found that accelerated epigenetic aging–when 96 

predicted biological age exceeds chronological age–is associated with increased risk of death (M. 97 

E. Levine et al., 2018; Marioni et al., 2015, 2016) and increased susceptibility to several hallmark 98 

diseases of aging (Ambatipudi et al., 2017; M. Levine et al., 2015; Wu et al., 2010; Yang et al., 99 

2016; Zheng et al., 2016). Epigenetic clocks are also responsive to socio-environmental 100 

exposures associated with more rapid physiological and/or cognitive aging, such as trauma 101 

incurred during active military combat (Boks et al., 2015), childhood adversity  (Austin et al., 102 

2018; Marini et al., 2020; McCrory et al., 2022), and alcohol and tobacco use (Beach et al., 103 

2015). However, the pathways through which social and environmental factors “get under the 104 

skin” to influence disparities in disease and mortality risk are difficult to investigate in humans 105 

alone. The development of epigenetic clocks in nonhuman animal models can help address this 106 

limitation by linking this promising tool to experimental studies, multigenerational field studies, 107 

and comparative analyses across species. 108 

 109 
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Rhesus macaques (Macaca mulatta) and baboons (Papio spp.) are excellent models for human 110 

aging because they are close evolutionary relatives for whom aging and survival are strongly 111 

dependent on characteristics of the physical and social environment (Blomquist et al., 2011; 112 

Chiou et al., 2020; Ellis et al., 2019). Such parallels are important because the impact of the 113 

environment on the progression of aging may not manifest similarly in short-lived models of 114 

mammalian aging, such as mice and rats. Indeed, questions that have been notoriously 115 

challenging to study in humans can often be addressed in these closely related nonhuman 116 

primates. For example, experimental life course studies in rhesus macaques have expanded our 117 

understanding of the causal effects of dietary restriction on life- and healthspan (Colman et al., 118 

2014; Mattison et al., 2017). In addition, in social nonhuman primates, the association between 119 

social status and indicators of aging and life expectancy mirror some aspects of the social 120 

gradient of health in humans (Snyder-Mackler et al., 2020). Because nonhuman primate social 121 

systems are variable (Abbott et al., 2003), studying different social conditions and positions in the 122 

social hierarchy may point to specific variables that promote or detract from the impacts of 123 

extrinsic challenges on an individual’s health and survival. 124 

 125 

The most extensively applied DNA methylation clocks to date (Hannum et al., 2013; Horvath, 126 

2013) were built using DNA methylation data from humans generated on Illumina Infinium 127 

microarrays. By contrast, many recent studies of DNA methylation in nonhuman organisms have 128 

used high-throughput bisulfite sequencing (BS-seq) approaches (e.g., Chatterjee et al. 2013; Hahn 129 

et al. 2017; Chen et al. 2015; Pegoraro et al. 2016; Platt et al. 2015; Stubbs et al. 2017; Wang et 130 

al. 2017), for at least three reasons. First, while arrays designed for humans can sometimes be 131 
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applied in other nonhuman primates (Hernando-Herraez et al., 2013; Ong et al., 2014), doing so 132 

requires stringent filtering for DNA sequence mismatches and changes in CpG site location, 133 

reducing the amount of usable data relative to studies in humans  (Pichon et al., 2021; 134 

Teschendorff & Relton, 2018). Second, while designing species-specific arrays is also feasible, 135 

such tailored tools are often higher in cost. Third, many researchers have been interested not only 136 

in epigenetic aging, but also in patterns of differential methylation (e.g., age, genotype, or 137 

environment-related), which sometimes occur outside of the regions traditionally  targeted by 138 

DNA methylation arrays (W. Zhang et al., 2015; Y. Zhang et al., 2016). Notably, this limitation 139 

also applies to recently developed multi-species arrays like the HorvathMammalMethylChip 140 

(Arneson et al., 2021). The multi-species array has provided extensive insight into epigenetic 141 

aging across many mammals (e.g., Horvath et al. 2022; Wilkinson et al. 2021) while capturing 142 

DNA methylation at only 38,000 highly conserved, non-randomly distributed CpG sites. 143 

Consequently, generalizable tools to study epigenetic aging using BS-seq data are also needed. 144 

Here, we developed the RheMacAge model, a nonhuman primate epigenetic clock that facilitates 145 

comparisons among Old World monkey species often used as models for human aging. We first 146 

developed a generalizable epigenetic clock model that can predict chronological age using BS-147 

seq data with high accuracy. Next, we applied our model to two independently generated datasets 148 

to demonstrate not only the cross-study but cross-species applicability of our approach in two 149 

nonhuman primates with exceptional research importance, rhesus macaques and baboons. Finally, 150 

we used the model to test whether social status or exposure to an adverse climate event were 151 

associated with variation in epigenetic aging.   152 

 153 
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MATERIALS AND METHODS 154 

 155 

Study Population and Sample Collection 156 

 157 

Our primary dataset consisted of 563 whole blood samples (number of unique individuals=493) 158 

collected from rhesus macaques living on Cayo Santiago, an island 1 km off the coast of Puerto 159 

Rico that is home to over 1,800 free-ranging rhesus macaques. The population is managed by the 160 

Caribbean Primate Research Center (CPRC) as part of a long-term field station in operation since 161 

1938. The macaques are provisioned with food and water but are otherwise allowed to roam 162 

freely, self-organize into social groups, and do not face the threat of predation (Rawlins & 163 

Kessler, 1986). Collectively, these conditions provide opportunities to investigate how 164 

interactions between ecology and behavior influence environmentally-responsive molecular 165 

mechanisms (such as DNA methylation) in the absence of other confounding factors (e.g., 166 

variable nutrition and predation).  167 

 168 

The data in this study were collected from 273 female and 220 male rhesus macaques, aged 1.44 169 

months to 28.82 years (birth dates recorded by CPRC census takers). We collected blood samples 170 

and behavioral data on these animals between 2010 to 2018 (with the exception of 2017, when 171 

sampling was not possible due to Hurricane Maria). On Cayo Santiago, the average age at sexual 172 

maturity for a female is 4 years, and median lifespan for an adult female is 18 years (Chiou et al., 173 

2020). By comparison, human females in the United States reach sexual maturity at an average 174 
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age of 14 years (Susman et al., 2010) and have a median lifespan of 80.5 years (National Center 175 

for Health Statistics 2021) .  176 

 177 

Sixty-six individuals were sampled more than once during this study (see Supplemental File 2 178 

for detailed metadata). Blood was collected into K3 EDTA vacutainer tubes (BD Biosciences, 179 

Franklin Lakes, NJ) and placed on ice until storage at -80°C (within 8 hours of collection). All 180 

work was reviewed and approved by the Institutional Animal Care and Use Committees of the 181 

University of Washington (assurance number A3464-01) and the University of Puerto Rico, 182 

Medical Sciences Campus (assurance number A4001-17). This work also adheres to the 183 

American Society of Primatologists Principles for the Ethical Treatment of Nonhuman Primates.  184 

 185 

RRBS Data Generation 186 

 187 

Genomic DNA was isolated from whole blood using the Qiagen Blood and Tissue DNA kit 188 

(QIAGEN, Hilden, Germany). To measure CpG methylation, we used Reduced Representation 189 

Bisulfite Sequencing (RRBS), a version of bisulfite sequencing (BS-seq) that uses an initial 190 

restriction enzyme digest to concentrate sequencing in and near CpG-rich regions of the genome 191 

(Gu et al., 2011; Meissner, 2005).To prepare RRBS libraries, we followed the library preparation 192 

protocol detailed on the Snyder-Mackler Lab website (https://smack-lab.com/wp-193 

content/uploads/2020/03/SMack_Lab_RRBS-with-Zymo-EZDNA-MagBead.pdf). Briefly, we 194 

digested extracted DNA using the Msp1 restriction enzyme, which cuts at CCGG sites, ligated 195 

NEBNext methylated adapters (Illumina Inc., San Diego, CA), bisulfite converted the DNA using 196 
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the Zymo EZDNA Methylation- LightningTM Kit (Zymo Research, Irvine, CA), and PCR-197 

amplified the final fragments with unique dual molecular indices for each sample. RRBS libraries 198 

were sequenced in two batches. Batch 1 contained 104 samples (2x50bp reads) sequenced on an 199 

Illumina NovaSeq S2 flowcell. Batch 2 was made up of 527 samples (2x100bp reads) and 200 

sequenced on a NovaSeq S4 flowcell. 201 

 202 

Alignment and Preprocessing 203 

 204 

We trimmed adapter and low-quality sequences with TrimGalore! (v0.4.5) (Martin, 2011). We 205 

then aligned trimmed reads to the in silico bisulfite-converted reference genome (Mmul10) using 206 

the default settings in Bismark (v0.20.0) (Krueger & Andrews, 2011) for all but two parameters (-207 

-score-min and -R; see the Methods Supplement). We parallelized sample aggregation with 208 

GNU parallel (Tange, 2018) and BedTools (v2.24.0) (Quinlan & Hall, 2010). Unless otherwise 209 

stated, all subsequent analyses were carried out in RStudio (v1.4.1106) (RStudio Team, 2015). 210 

 211 

Development of a Generalizable Epigenetic Clock 212 

 213 

Site-based modeling approach  214 

To limit the inclusion of invariant or uninformative sites, we first removed CpG sites with 215 

missing data in more than 10% of the training samples and samples missing more than 25% of 216 

CpG sites in the filtered dataset. Next, we removed constitutively hypo- or hypermethylated sites 217 

(those with median percent methylation less than 10% or greater than 90% across samples), and 218 
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sites with less than 5X median coverage, resulting in 196,345 CpG sites in the site-based dataset. 219 

A detailed description of sample filtering criteria can be found in the Methods Supplement. 220 

 221 

Next, we imputed missing and low coverage (< 5X) sites in the 196,345 CpG site dataset using 222 

BoostMe (v0.1.0) (L. S. Zou et al., 2018). On average, 12.5% of sites were imputed per sample. 223 

After removing sites mapping to sex chromosomes and those containing one or more 224 

inadmissible values (non-real numbers that result from when BoostMe attempts to divide by 225 

zero), the dataset contained 185,153 unique CpG sites. 226 

 227 

Sliding window-based modeling approach 228 

To improve model generalizability, we compared the performance of a traditional site-based 229 

model to a 1 Kb, non-overlapping sliding-window based approach that we reasoned might 230 

capture more shared loci across samples and datasets. In each 1 Kb window of the genome, we 231 

calculated the percent methylation for a given sample as the number of reads covering methylated 232 

CpG sites, divided by the total number of reads covering CpG sites in that window. We 233 

implemented the same filtering strategy described above by excluding windows that had missing 234 

data in more than 10% of samples (leaving 279,052 windows), samples that were missing data for 235 

more than 25% of windows in the dataset, windows that were constitutively hypo- or 236 

hypermethylated, and those with less than 5X median coverage, leaving a final set of 161,289 237 

windows. 238 

 239 
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Missing values and those with < 5X coverage at a given site were imputed using BoostMe. The 240 

average proportion of imputed windows was 1.98% per sample and ranged from 0.05% to 23.2%. 241 

Notably, the average proportion of features imputed for the window-based approach was six-fold 242 

lower than that for the site-based dataset (1.98% as compared to 12.5%). Following imputation, 243 

removal of windows containing non-real numbers, and removal of those mapping to sex 244 

chromosomes, 159,472 windows were retained for calibrating the epigenetic clock. 245 

All three datasets used to train, validate, and/or test the model were processed in an identical 246 

manner. 247 

 248 

Model Training and Optimization 249 

 250 

We then generated age-prediction models independently for the site-based and window-based 251 

datasets. We used elastic net regression implemented using the R package glmnet (v4.1-1) 252 

(Friedman et al., 2010) and leave-one-out cross validation (LOOCV) to train our model. To 253 

perform LOOCV, one sample was held out at a time, and ‘proto-models’ were generated on the 254 

remaining N-1 samples using 10-fold internal cross validation. The “best” proto-model (the 255 

proto-model with the lowest mean absolute error) was then used to predict the age of the held-out 256 

sample. This process was repeated for each sample in the dataset. Once all 563 age predictions 257 

were generated, we regressed all predicted age values onto known chronological ages to evaluate 258 

the predictive performance of the dataset in our primary dataset. 259 

 260 
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We defined a measure of age acceleration, termed "residual epigenetic age" (similar to Horvath’s 261 

[2013] "delta age") by taking the residuals from a loess (locally estimated scatterplot smoothing; 262 

span = 0.75) regression of predicted onto chronological age to identify individuals who appear to 263 

be aging more (or less) rapidly than expected given their chronological age. By taking the 264 

residuals from a loess regression, we can detect potentially meaningful deviations from the 265 

expected rate of aging while accounting for systemic effects of the model (e.g., the influence of 266 

chronological age) and non-linear pace of epigenetic aging. We adjusted for a marginally 267 

significant effect of sex on epigenetic age (p = 0.05) by calculating residual epigenetic age for 268 

females and males separately. 269 

 270 

Model Validation in Independent Datasets 271 

 272 

We sought to test the generalizability and performance of both the  site- and window-based 273 

models (“Cayo” models) using two independently generated RRBS datasets (“Yerkes” and 274 

“baboon” datasets). However, the site-based model’s applicability was constrained by the limited 275 

overlap between the site-based RRBS independent datasets (Figure S1). 276 

 277 

To test the generalizability of the window-based model to populations and study systems of the 278 

same species, we used samples from 43 female rhesus macaques, aged 3.1 to 20.1 years, housed 279 

at Yerkes National Primate Research Center. RRBS libraries were generated from purified 280 

classical monocytes (CD3-/CD14+) collected in an unrelated study examining dominance rank 281 

effects on gene regulation and immune function (Snyder-Mackler et al., 2016). Second, to test 282 
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generalizability in another important model for human aging, we applied our model to a second 283 

RRBS dataset generated from 271 whole blood samples collected from wild baboons living in 284 

Amboseli National Park in Kenya (Anderson et al., 2021) (SRA project accession 285 

PRJNA648767). This dataset contains samples collected from 138 females and 133 males, aged 286 

1.93 to 26.34 years. The data processing workflow was identical across the Cayo, Yerkes, and 287 

baboon datasets.  288 

 289 

To generate a single epigenetic clock for predicting age in independent datasets, we quantile 290 

normalized methylation values across features and across samples independently for the Yerkes 291 

macaque and Amboseli baboon datasets. Next, we determined optimal hyperparameter settings 292 

using the caret package (v6.0-86) (Kuhn, 2019, https://topepo.github.io/caret/) by performing a 293 

grid search across two hundred combinations of alpha (the parameter that controls how similar 294 

the model is to lasso versus ridge regression ((H. Zou & Hastie, 2005) and lambda (the 295 

regularization parameter) using repeated (3x) 10-fold cross validation on all 563 Cayo samples. 296 

After LOOCV models were generated, we performed an elastic net regression with the optimized 297 

hyperparameter values on the entire dataset and applied the resulting model to the two external 298 

datasets (Yerkes and baboon). 299 

 300 

Effects of Social and Environmental Adversity on Epigenetic Aging 301 

 302 

To explore how heterogeneity in the social environment is reflected in biological aging, we tested 303 

the relationship between dominance rank and epigenetic aging in the Cayo Santiago rhesus 304 
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macaque samples. First, we quantified dominance rank for 81 males and 116 females from dyadic 305 

win-loss interactions between individuals within a social group using behavioral data collected 306 

prior to each blood draw. The dominance rank of an individual represents the proportion of same-307 

sex individuals in their group that they out-ranked. In 2010-2014, the trap and release season was 308 

Jan-Mar, and rank data were calculated from behavioral data recorded in April-Dec of the 309 

previous year. In late 2014 until 2018, the trap and release season was moved to Oct–Dec. For 310 

samples collected in this time period, rank data were thus calculated from behavioral data 311 

recorded in Jan–Oct of the same calendar year. Next, we tested if dominance rank is associated 312 

with epigenetic age by modeling residual epigenetic age as a function of dominance rank for 313 

females (aged 6.01 – 27.93 years) and males (aged 5.89 – 22.78 years) separately. Additionally, 314 

we tested whether residual epigenetic age was driven by length of tenure in the social group 315 

among males in a larger subset of the Cayo Santiago population (n = 230, aged 3.86– 21.74 316 

years). Rhesus macaque males attain their dominance largely via queueing instead of direct 317 

contest such that longer residency times predict higher rank (Kimock et al., 2019, 2022). Tenure 318 

length is thus a useful proxy of male rank and is advantageous as a measure because demographic 319 

records have been collected over a longer period of time compared to behavioral data.  320 

 321 

Finally, motivated by the observation that Cayo Santiago macaques that survived Hurricane 322 

Maria in 2017 exhibited “aged” blood transcriptomes (Watowich et al., 2022), we tested if 323 

Hurricane Maria had left a similar mark in epigenetic age. To do so, we modeled residual 324 

epigenetic age as a function of exposure to Hurricane Maria for all adult animals (aged at least 4 325 
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years). We excluded infants and juveniles due to previously observed differences in the rate of 326 

aging between human adults versus children and adolescents (Horvath, 2013). 327 

 328 

RESULTS 329 

 330 

RheMacAge is a generalizable epigenetic clock that accurately predicts chronological age. 331 

 332 

Although our site-based model was able to accurately predict age (Pearson’s r = 0.82 MAD = 333 

2.11 years) (Figure 1A), it was significantly outperformed by the window-based model 334 

(Pearson’s r = 0.9, MAD = 1.42 years; 0.69-year difference in MAD between two models, pt-test = 335 

5.36 x 10-8) (Figure 1B). The window-based model performed equally well in males and females 336 

(pt-test = 0.71). While both models predicted chronological age well, their predictions did not scale 337 

linearly with chronological age. Age predictions plateau at older ages (> 20 years among the 338 

macaques in our Cayo sample), as has been reported in other species, including humans (e.g., 339 

Levine et al. 2020; Horvath 2013). 340 

 341 

Although the site- and window-based datasets contained a similar number of loci after filtering 342 

within the Cayo data (~180K and ~160K, respectively), when applying these models to the 343 

external Yerkes data set, the overlap in features retained in both datasets was much higher when 344 

we used the window-based approach. Of the 185,153 CpG sites in the filtered Cayo dataset, 38% 345 

(70,439) of sites also passed the same filters in the Yerkes dataset, compared to 97% (155,347) of 346 

shared features for the window-based dataset (Figure S1). Given that the window-based model 347 
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also showed superior performance in predicting age in the Cayo population, we used the window-348 

based RheMacAge clock for all subsequent analyses.  349 

 350 

The RheMacAge clock included 359 windows, of which 164 decreased in methylation with age 351 

(“hypomethylated windows”) and 195 increased in methylation with age (“hypermethylated 352 

windows”). CpG sites that exhibit age-dependent changes in methylation are often found in 353 

evolutionarily conserved regions of the genome (Mozhui & Pandey, 2017), and certain age-354 

dependent patterns of methylation change are conserved between humans and mice (Spiers et al., 355 

2016; Stubbs et al., 2017). Indeed, windows in the RheMacAge clock were modestly but 356 

significantly more evolutionarily conserved than windows that were not part of the clock (D = 357 

0.09, p = 0.007, two-sample Kolmogorov-Smirnov test) (Figures S2, S3). 358 

 359 

Since we collected repeated samples from 66 individuals, we were able to test if our model 360 

accurately tracked aging within an individual. For these 66 individuals (n=70 paired samples, 361 

because 4 individuals were sampled three times), 88.6% (62/70) exhibited increased biological 362 

age with increased chronological age (Figure 2). Thus, samples collected later in time were 363 

consistently predicted to be older than those collected at earlier points in time (p = 9.13 x 10-12, 364 

one-sided exact binomial test). 365 

 366 

The RheMacAge clock predicts age in two independent datasets, demonstrating cross-study and 367 

cross-species applicability. 368 

 369 
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We evaluated our model (“Cayo”) in an independent macaque sample comprised of 43 female 370 

rhesus macaques from the “Yerkes” dataset (aged 3.1 to 20.1 years). DNA methylation-based age 371 

predictions were significantly correlated with chronological age (Figure 3) (Pearson’s r = 0.69, p 372 

= 2.65 x 10-7), with an MAD of 2.09 years. This suggests the RheMacAge clock can be 373 

generalized to predict age in rhesus macaque data generated from different populations and 374 

different cell types (monocytes versus all white blood cells), and by different laboratories.  375 

 376 

When applied to individuals from our “baboon” dataset (aged 1.93 to 26.34 years), the 377 

RheMacAge clock was also able to predict chronological age surprisingly well, producing the 378 

same sex-specific patterns in the rate of aging described in previous work (Anderson et al., 2021). 379 

Specifically, prediction was better for male baboons than female baboons, especially at older ages 380 

(male Pearson’s r = 0.8, p < 2.2 x 10-16; MAD = 1.34 years, Figure 4A; female Pearson’s r = 381 

0.74, p < 2.2 x 10-16 ; MAD = 2.19 years, Figure 4B). The RheMacAge clock predictions for 382 

baboons were not as accurate as a baboon-specific model (baboon clock: male MAD = 0.85 383 

years, female MAD = 1.6 years). Importantly, the RheMacAge clock captured a similar 384 

biological signal to the baboon clock: residual epigenetic ages calculated from both models were 385 

significantly positively correlated for both sexes (males: r = 0.55, p = 5.28 x 10-12; females: r = 386 

0.41, p =7.49 x 10-7; Figures 4C and 4D). In addition, for male baboons, estimates of residual 387 

epigenetic age generated using the RheMacAge clock replicated the significant association (first 388 

reported in Anderson et al., 2021) between high social status and older epigenetic age (Pearson’s 389 

r = -0.47, p = 4.05 x 10-7, n = 104; the correlation is negative because lower values on an ordinal 390 
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rank measure represent higher status). We found no significant association between rank and 391 

epigenetic age in female baboons. 392 

 393 

Epigenetic age predictions for the Cayo macaques showed no association with social and 394 

environmental variables tested.  395 

 396 

We identified no association between residual epigenetic age and dominance rank in adult male 397 

(n = 60, β = -0.22, p = 0.3) or female (n = 83, β = -0.05, p = 0.77) rhesus macaques from Cayo 398 

Santiago. Residual epigenetic age in males also did not correlate with group tenure length (n = 399 

59, β = -0.23, p = 0.33). Finally, contrary to our prediction, we found no relationship between 400 

hurricane exposure and residual epigenetic age (p = 0.24). 401 

 402 

DISCUSSION 403 

 404 

The RheMacAge clock accurately captures chronological and biological aging in two nonhuman 405 

primate models for human aging and offers a generalizable approach that can be used when 406 

developing epigenetic clock models from BS-seq data. 407 

 408 

Rhesus macaques and baboons are important biomedical models for human aging  (Chiou et al., 409 

2020; Huber et al., 2020). However, there are comparatively fewer ‘omics’ resources available 410 

for either species than for humans or mice (see Meer et al., 2018). To partially address this gap, 411 

here we present genome-wide DNA methylation data from 563 rhesus macaque samples along 412 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514719doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514719
http://creativecommons.org/licenses/by/4.0/


18 

 

with new analyses of previously published data from 43 rhesus macaques and 271 baboons. The 413 

present study thus represents the largest study of DNA methylation carried out to date in 414 

nonhuman primates. 415 

 416 

Our RheMacAge clock produced accurate age estimates from blood in an independent sample of 417 

captive female rhesus macaques and a large sample of wild baboons. We also observed a more 418 

rapid rate of epigenetic change with age in males versus female baboons that is consistent with 419 

results from Anderson et al. (2021), demonstrating that our approach can capture similar aging 420 

signatures across species. As such, the model serves as a useful biomarker of aging in blood that 421 

can facilitate research on the causes and consequences of the aging process. While the 422 

RheMacAge clock was only tested in two species, it may be suitable for application other 423 

primates (e.g., long-tailed macaques, sooty mangabeys) that are closely related to rhesus 424 

macaques and baboons. In addition, we offer a more generalizable approach that can be used 425 

when developing epigenetic clock models from BS-seq data more commonly generated from 426 

nonhuman animals.  427 

 428 

Species-specific socioecology is reflected in variation in epigenetic aging in baboons and 429 

macaques.  430 

 431 

We found no significant relationship between epigenetic aging and dominance rank in female or 432 

male rhesus macaques. This result differs from the effect described in male baboons, where high-433 

ranking males exhibited older relative epigenetic ages compared to lower-ranking males 434 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514719doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514719
http://creativecommons.org/licenses/by/4.0/


19 

 

(Anderson et al., 2021). On the surface, these findings appear discordant, but they may be a 435 

legitimate reflection of differences in dominance rank acquisition between rhesus macaques and 436 

baboons. Specifically, in the Amboseli baboons, male rank is determined by competitive 437 

interactions and mating occurs throughout the year. Maintaining alpha status requires significant 438 

energy expenditure during mate guarding and competition with other males, and alpha males 439 

have the highest glucocorticoid levels across the male status hierarchy (Alberts et al., 2006; 440 

Gesquiere et al., 2011). In contrast, male rhesus macaques obtain high social status through a less 441 

physically competitive queueing system in which males rise in rank as their tenure in a social 442 

group lengthens (Berard, 1999). Rhesus macaques are also seasonal breeders, meaning that direct 443 

male investment in mating effort is restricted to several months of the year (Bercovitch, 1997). 444 

Consequently, high status is not as difficult or energetically expensive to maintain in male rhesus 445 

macaques as it is in male baboons, and status in rhesus males is more predictable. Together, these 446 

species differences in the male competitive regime predict that high rank in male baboons is more 447 

energetically taxing, while high rank in rhesus males may be less stressful and/or demanding 448 

compared to lower ranking positions (Sapolsky, 2005). These differences point to strategies of 449 

mitigating distinct types of social stress as one mechanism that may be involved in dictating the 450 

rate at which the biological clock ‘ticks’.  451 

 452 

Surprisingly, although exposure to Hurricane Maria was associated with accelerated 453 

immunological aging in the Cayo rhesus macaque transcriptome (Watowich et al., 2022), it was 454 

not significantly associated with residual epigenetic age in our study. One possible explanation 455 

for these observations is that the mechanisms underlying the clock are distinct from those that 456 
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regulate age-related changes in the immune response (see Bell et al., 2019 for discussion of 457 

mechanisms). Further, the extent and velocity at which DNA methylation changes at sites 458 

typically captured in epigenetic clocks following exposure to adverse events is not known. Future 459 

studies will help enhance our knowledge of what factors are and are not involved in regulating 460 

the progression of epigenetic aging. 461 

 462 

Future Directions 463 

 464 

The RheMacAge model has the potential to complement and expand aging research in primate 465 

populations. Our model can be used to test the effects of medical interventions intended to delay 466 

age-related physiological decline, such as caloric restriction, rapamycin administration, or other 467 

pharmacological treatments, where studies in macaques or baboons are ongoing (e.g., 468 

Tarandovskiy et al., 2020). It is also particularly well-suited to situations where environment and 469 

behavior intersect. For example, the model could be used to examine whether adversity 470 

experienced early in life is linked to late-life changes in the pace of biological aging. Such 471 

research could uncover molecular mechanisms that regulate how stressors become biologically 472 

embedded and may help identify health or behavioral variables that contribute to increased 473 

resiliency. Finally, our findings highlight the utility of the RheMacAge clock for disentangling 474 

when and to what extent social factors influence the pace of aging. The ability to apply the same 475 

predictive model across species facilitates comparative work, which in turn highlights how 476 

variation in social hierarchies translates into variation in their physiological correlates. 477 

 478 
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Excitingly, the RheMacAge clock comes online at a time when resources for studying epigenetic 479 

aging in nonhuman mammals are expanding more generally. For example, the 480 

HorvathMammalMethylChip has already been deployed to study the effects of hibernation on 481 

epigenetic aging in yellow-bellied marmots (Pinho et al., 2022), to examine postnatal 482 

development of the epigenome in opossums and other marsupials (Horvath et al., 2022), and to 483 

evaluate the potential lifespan-extending effects of partial cell reprogramming in a mouse model 484 

of premature aging (Browder et al., 2022). Our RheMacAge model, which takes a sliding-485 

window approach, provides a useful alternative to the HorvathMammalMethylChip for 486 

researchers who wish to look at how DNA methylation varies across the genome more broadly, 487 

by coupling applications of the clock with differential or allele-specific methylation analyses. In 488 

mammals, RRBS datasets typically profile upwards of ~500,000 CpG sites after quality control, 489 

as opposed to the 38,000 CpG sites on the chip. Additionally, RRBS datasets are more likely to 490 

contain sites that are specific to the species of interest, as CpG sites that are not as tightly 491 

conserved are often the most interesting from an evolutionary perspective. Future work that 492 

calibrates the epigenetic clock using blood chemistry or other relevant biological measures of 493 

aging to predict physiological decline and/or mortality, as the human “next-generation” clocks 494 

have found success in doing (e.g., Belsky et al. 2020; Levine et al. 2018; Lu et al. 2019), has the 495 

potential to further extend the applicability of these models. Together, these methods contribute 496 

to an important and growing analytical toolkit for research in nonhuman primates. 497 

 498 

CONCLUSIONS 499 

 500 
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We have developed a method that overcomes a persistent barrier to comparative analyses using 501 

BS-seq datasets. Our approach is easy to implement and the generalizability of the resulting 502 

model enables cross-study comparison, as demonstrated by the successful application of our 503 

RheMacAge model to independent RRBS datasets to predict age in two distinct species. Our 504 

model recapitulated a previously identified relationship between rank and epigenetic aging in 505 

wild male baboons (Anderson  et al., 2021) but found no such effect in male rhesus macaques, 506 

suggesting the importance of the way dominance hierarchies are formed and maintained in 507 

different species. These results provide proof-of-concept for our model and its capacity to 508 

measure the influence of the social and ecological environment on health, aging, disease and 509 

mortality risk. Despite numerous attempts to decipher the underlying mechanisms of the clock, 510 

they remain largely obscure. However, such knowledge is not required to use the clock to 511 

continue to probe environmental variables that accelerate or decelerate the pace of aging. The 512 

increasingly widespread use of epigenetic clock models has advanced the field towards an 513 

essential goal: quantification of the impact of lived experiences on health and aging. Future 514 

research should aim to identify specific variables that have the greatest impact on health and 515 

longevity. We anticipate that our model will facilitate interrogation of novel socio-environmental 516 

factors and whether they are or are not able to effectively “get under the skin” to engender 517 

epigenetic change, and how these modifications fit into the larger, systemic picture of aging and 518 

longevity across species. 519 

 520 
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FIGURES  843 

 844 
 845 
Figure 1 Comparison of Site-Based and Sliding Window-Based Models 846 
 847 
(A) Site-based model of methylation age successfully predicts known chronological age. 848 
Known chronological age is highly correlated with epigenetic age predictions from our site-based 849 
epigenetic clock (Pearson's r = 0.82, median absolute deviation between predicted and 850 
chronological age [MAD] = 2.11 years). Methylation data used to generate the site- and window-851 
based clocks are from whole blood samples from a cross-sectional sample of rhesus macaques 852 
living on the island of Cayo Santiago (n samples = 549; n unique females = 267, n unique males 853 
= 217). Curved line shows line of best fit from univariate loess regression.  854 
 855 
(B) Window-based model of methylation age successfully predicts known chronological age 856 
and outperforms the site-based model. Known chronological age is more highly correlated 857 
with epigenetic age predictions in the window-based epigenetic clock (Pearson's r = 0.9, MAD = 858 
1.42 years) than the site-based clock. The model was generated using whole blood samples from 859 
rhesus macaque living on the island of Cayo Santiago (n samples = 563; n unique females = 273, 860 
n unique males = 220). Curved line shows line of best fit from univariate loess regression.  861 
 862 
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 864 
 865 
Figure 2 Predicted Aging Trajectories for Repeatedly Sampled Individuals  866 
 867 
Predicted age increased over time in repeatedly sampled individuals (n = 66 individuals). 88.6% 868 
of epigenetic age predictions were higher in the sample collected when the individual was older 869 
(blue lines; 62/70 predictions; p = 9.13 x 10-12, one-sided exact binomial test). Dashed line shows 870 
x=y.  871 
  872 
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 873 
 874 
Figure 3 Predicted DNA Methylation Age for Yerkes Macaques Using RheMacAge Model 875 

 876 
Predicted DNA methylation age for Yerkes rhesus macaques is correlated with chronological age 877 
(r = 0.69, MAD = 2.09 years). Solid line shows line of best fit from a univariate linear regression 878 
of predicted age onto chronological age. 879 
  880 
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 882 
Figure 4 Predicted DNA Methylation Age for Amboseli Baboons Using RheMacAge Model 883 

 884 
RheMacAge successfully predicts interspecies epigenetic ages from baboon DNA methylation 885 
data and recapitulates results from a baboon-specific methylation clock. Predicted age for (A) 886 
male and (B) female baboons using the RheMacAge epigenetic clock are highly correlated with 887 
known chronological age (males: r = 0.8, MAD = 1.34 years; females: r = 0.74, MAD = 2.19 888 
years). The solid line shows the line of best fit from univariate linear regression of predicted onto 889 
chronological age. Dashed line shows x = y. Residual epigenetic age from the RheMacAge (x-890 
axis) recapitulates residual ages from a baboon-specific clock (y-axis) for (C) males (r = 0.55, p = 891 
5.28 x 10-12) and (D) females (r = 0.41, p = 7.49 x 10-7). Points in the bottom left (decelerated 892 
ages) and top right (accelerated ages) quadrants reflect concordance in residual epigenetic ages 893 
between the two clocks. Discordant predictions between the two clocks (i.e., one clock predicts 894 
accelerated age while the other predicts decelerated rate of aging) are in the top left and bottom 895 
right quadrants. 896 
 897 

  


