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Abstract 35 

Combinatoric linguistic operations underpin human language processes, but how meaning is 36 

composed and refined in the mind of the reader is not well understood. We address this puzzle by 37 

exploiting the ubiquitous function of negation. We track the online effects of negation (“not”) and 38 

intensifiers (“really”) on the representation of scalar adjectives (e.g., “good”) in parametrically 39 

designed behavioral and neurophysiological (MEG) experiments. The behavioral data show that 40 

participants first interpret negated adjectives as affirmative and later modify their interpretation 41 

towards, but never exactly as, the opposite meaning. Decoding analyses of neural activity further 42 

reveal significant above chance decoding accuracy for negated adjectives within 600 ms from 43 

adjective onset, suggesting that negation does not invert the representation of adjectives (i.e., “not 44 

bad” represented as “good”); furthermore, decoding accuracy for negated adjectives is found to be 45 

significantly lower than that for affirmative adjectives. Overall, these results suggest that negation 46 

mitigates rather than inverts the neural representations of adjectives. This putative suppression 47 

mechanism of negation is supported by increased synchronization of beta-band neural activity in 48 

sensorimotor areas. The analysis of negation provides a steppingstone to understand how the human 49 

brain represents changes of meaning over time. 50 
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Introduction 69 

A hallmark of language processing is that we combine elements of the stored inventory - informally 70 

speaking, words - and thereby flexibly generate new meanings or change current meanings. The 71 

final representations derive in systematic ways from the combination of individual pieces. The 72 

composed meanings can be extracted in relatively straightforward ways, such as by sequentially 73 

combining individual meanings of words and phrases (e.g., “this theory is correct”) or stem from 74 

more subtle inferential processes, where further operations are required to achieve understanding 75 

(e.g., “this theory is not even wrong”, meaning “this theory is incoherent”). A mechanistic 76 

understanding of the underlying processes requires characterization of how meaning 77 

representations are constructed in real time. There has been steady progress and productive debate 78 

on syntactic structure building [1–6]. In contrast, how novel semantic configurations are 79 

represented over time is less widely investigated. In the experimental approach pursued here, we 80 

build on the existing literature on precisely controlled minimal linguistic environments [7,8]. We 81 

deploy a new, simple parametric experimental paradigm that capitalizes on the powerful role that 82 

negation plays in shaping semantic representations of words. While negation is undoubtfully a 83 

complex linguistic operation that can affect comprehension as a function of other linguistic factors 84 

(such as discourse and pragmatics [9–11]), our investigation specifically focuses on how negation 85 

operates in phrasal structures. Combining behavioral and neurophysiological data, we show how 86 

word meaning is (and is not) modulated in controlled contexts that contrast affirmative (e.g., “really 87 

good”) and negated (e.g., “not good”) phrases. The results identify models and mechanisms of how 88 

negation, a compelling window into semantic representation, operates in real time.  89 

Negation is ubiquitous – and therefore interesting in its own right. Furthermore, it offers a 90 

compelling linguistic framework to understand how the human brain builds meaning through 91 

combinatoric processes. Intuitively, negated concepts (e.g., “not good”) entertain some relation 92 

with the affirmative concept (e.g., “good”) as well as their counterpart (e.g., “bad”). The function 93 

of negation in natural language has been a matter of longstanding debate among philosophers, 94 

psychologists, logicians, and linguists [12]. In spite of its intellectual history and relevance 95 

(interpreting negation was, famously, a point of debate between Bertrand Russell and Ludwig 96 

Wittgenstein), comparatively little research investigates the cognitive and neural mechanisms 97 

underpinning negation. Previous work shows that negated phrases/sentences are processed with 98 

more difficulty (slower, with more errors) than the affirmative counterparts, suggesting an 99 

asymmetry between negated and affirmative representations; furthermore, state-of-the-art artificial 100 

neural networks appear to be largely insensitive to the contextual impacts of negation [13–20]. This 101 

asymmetry motivates one fundamental question: how does negation operate?  102 
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Studies addressing this question suggest that negation operates as a suppression mechanism 103 

by reducing the extent of available information [21–23], either in two steps [18,24–28] or in one 104 

incremental step [12,29–31]; other studies demonstrate that negation is rapidly and dynamically 105 

integrated into meaning representations [10,32], even unconsciously [33]. Within the context of 106 

action representation (e.g., “cut”, “wish”), previous research suggests that negation recruits general-107 

purpose inhibitory and cognitive control systems [34–41].  108 

While the majority of neuroimaging studies focused on how negation affects action 109 

representation, psycholinguistic research shows that scalar adjectives (e.g., “bad-good”, “close-110 

open”, “empty-full”) offer insight into how negation operates on semantic representations of single 111 

words. These studies provide behavioral evidence that negation can either eliminate the negated 112 

concept and convey the opposite meaning (“not good” = “bad”) or mitigate the meaning of its 113 

antonym along a semantic continuum (“not good” = “less good”, “average”, or “somehow bad”; 114 

[11,12,42–44]). Thus, the system of polar opposites generated by scalar adjectives provides an 115 

especially useful testbed to investigate changes in representation of abstract concepts along a 116 

semantic scale (e.g., “bad” to “good”), as a function of negation (e.g., “bad” vs. “not good”).  117 

Here, we capitalize on the semantic continuum offered by scalar adjectives to investigate 118 

how negation operates on the representation of abstract concepts (e.g., “bad” vs. “good”). First, we 119 

track how negation affects semantic representations over time in a behavioral mouse tracking study 120 

(and a replication study; Fig.1A). Next, we use magnetoencephalography (MEG) and a decoding 121 

approach to track the evolution of neural representations of target adjectives in affirmative and 122 

negated phrases (Fig.1B). Mouse tracking and decoding approaches allow us to quantify and 123 

compare dynamic changes in participants’ interpretations and neural representations of adjectives 124 

over time (e.g., [45,46]). We test four hypotheses: (1) negation does not change the representation 125 

of adjectives (e.g., “not good” = “good”), (2) negation weakens the representation of adjectives 126 

(e.g., “not good” < “good”), (3) negation inverts the representation of adjectives (e.g., “not good” 127 

= “bad”), and (4) negation changes the representation of adjectives to another representation (e.g., 128 

“not good” = e.g., “unacceptable”). The combined behavioral and neurophysiological data 129 

adjudicate among these hypotheses and identify potential mechanisms that underlie how negation 130 

functions in online meaning construction. Emerging temporal dynamics clarify how the effect of 131 

negation on adjective meaning unfolds over time, whether incrementally (i.e., in parallel to 132 

adjective processing) or serially (i.e., in a second step after adjective processing). 133 

 134 

 135 

 136 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 22, 2023. ; https://doi.org/10.1101/2022.10.14.512299doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512299


5 
 

 
 

Figure 1. Experimental procedures.  137 

(A) Behavioral procedure. Participants read affirmative or negated adjective phrases (e.g., “really really good”, “### 138 

not bad”) word by word and rated the overall meaning of each phrase on a scale. Each trial consisted of combinations 139 

of “###”, “really”, and “not” in word positions 1 and 2, followed by an adjective representing the low or high pole 140 

across six possible scalar dimensions. Before each trial, participants were informed about the scale direction, e.g., “bad” 141 

to “good”, i.e., 1 to 10. Scale direction was pseudorandomized across blocks. Feedback was provided at the end of each 142 

trial (to which 1 and 0 was assigned to compute the average feedback score). For each trial, we collected continuous 143 

mouse trajectories throughout the entire trial as well as reaction times. (B) MEG procedure. Participants read 144 

affirmative or negated adjective phrases and were instructed to derive the overall meaning of each adjective phrase on 145 

a scale from 0 to 8, e.g., from “really really bad” to “really really good”. After each phrase, a probe (e.g., 6) was 146 

presented, and participants were required to indicate whether the probe number represented the overall meaning of the 147 

phrase on the scale (yes/no answer, using a keypad). Feedback was provided at the end of each trial (green or red cross, 148 

to which 1 and 0 was assigned to compute the average feedback score). While performing the task, participants lay 149 

supine in a magnetically shielded room while continuous MEG data were recorded through a 157-channel whole-head 150 

axial gradiometer system. Panels A and B: “###” = no modifier; IWI = inter-word-interval.  151 

 152 

 153 

Results  154 

Experiment 1: Continuous mouse tracking reveals a two-stage representation of negated 155 

adjectives 156 

Experiment 1 (online behavioral experiment; N = 78) aimed to track changes in representation over 157 

time of scalar adjectives in affirmative and negated phrases. Participants read two-to-three-word 158 
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phrases comprising one or two modifiers (“not” and “really”) and a scalar adjective (e.g., “really 159 

really good”, “really not quiet”, “not ### fast”). The number and position of modifiers were 160 

manipulated to allow for a characterization of negation in simple and complex phrasal contexts, 161 

above and beyond single word processing. Adjectives were selected to represent opposite poles 162 

(i.e., antonyms) of the respective semantic scales: low pole of the scale (e.g., “bad”, “ugly”, “sad”, 163 

“cold”, “slow”, and “small”) and high pole of the scale (e.g., “good”, “beautiful”, “happy”, “hot”, 164 

“fast”, and “big”). A sequence of dashes was used to indicate the absence of a modifier. Fig. 1A 165 

and Table S1 provide a comprehensive list of the linguistic stimuli. On every trial, participants 166 

rated the overall meaning of each phrase on a scale defined by each antonym pair (Fig. 1A). 167 

Feedback was provided at the end of each trial (to which 1 and 0 were assigned to compute the 168 

average feedback score). We analyzed reaction times and continuous mouse trajectories, which 169 

consist of the positions of the participant’s mouse cursor while rating the phrase meaning. 170 

Continuous mouse trajectories offer the opportunity to measure the unfolding of word and phrase 171 

comprehension over time, thus providing time-resolved dynamic data that reflect changes in 172 

meaning representation [15,45,47]. 173 

 174 

Reaction times. To evaluate the effect of antonyms and of negation on reaction times in behavioral 175 

Experiment 1, we performed a 2 (antonym: low vs. high) x 2 (negation: negated vs. affirmative) 176 

repeated-measures ANOVA. The results reveal a significant main effect of antonyms (F(1,77) = 177 

60.83, p < 0.001, ηp2 = 0.44) and a significant main effect of negation (F(1,77) = 104.21, p < 0.001, 178 

ηp2 = 0.57, Fig.2A). No significant crossover interaction between antonyms and negation was 179 

observed (p > 0.05). Participants were faster for high adjectives (e.g., “good”) than for low 180 

adjectives (e.g., “bad”) and for affirmative phrases (e.g., “really really good”) than for negated 181 

phrases (e.g., “really not good”). These results support previous behavioral data showing that 182 

negation is associated with increased processing difficulty [15,16]. A further analysis including the 183 

number of modifiers as factor (i.e., complexity) indicates that participants were faster for phrases 184 

with two modifiers, e.g., “not really”, than phrases with one modifier, e.g., “not ###” (F(1,77) = 185 

16.02, p < 0.001, ηp2 = 0.17; see Table S3A for pairwise comparisons between each pair of 186 

modifiers), suggesting that the placeholder “###” may induce some processing slow-down. To 187 

confirm this hypothesis, further research should investigate the specific effect of placeholders (e.g., 188 

“###” or “xkq”) on word and phrase representation and semantic composition. 189 

 190 
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Figure 2. Behavioral results.  191 

(A) Reaction times results for the online behavioral study (N=78). Bars represent the participants' mean ± SEM and 192 

dots represent individual participants. Participants were faster for high adjectives (e.g., “good”) than for low adjectives 193 

(e.g., “bad”) and for affirmative phrases (e.g., “really really good”) than for negated phrases (e.g., “really not good”). 194 

The results support previous behavioral data showing that negation is associated with increased processing difficulty. 195 

(B) Final interpretations (i.e., end of trajectories) of each phrase, represented by filled circles (purple = low, orange = 196 

high), averaged across adjective dimensions and participants, showing that negation never inverts the interpretation of 197 

adjectives to that of their antonyms. (C) Mouse trajectories for low (purple) and high (orange) antonyms, for each 198 

modifier (shades of orange and purple) and for affirmative (left panel) and negated (right panel) phrases. Zoomed-in 199 

panels at the bottom demonstrate that mouse trajectories of affirmative phrases branch towards the adjective’s side of 200 

the scale and remain on that side until the final interpretation; in contrast, the trajectories of negated phrases first deviate 201 

towards the side of the adjective and subsequently towards the side of the antonym. This result is confirmed by linear 202 

models fitted to the data at each timepoint in D. (D) Beta values (average over 78 participants) over time, separately 203 

for affirmative and negated phrases. Thicker lines indicate significant time windows. Panels C, D: black vertical dashed 204 
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lines indicate the presentation onset of each word: modifier 1, modifier 2 and adjective; each line and shading represent 205 

participants' mean ± SEM; Panels A,B,D: *** p < 0.001; * p < 0.05. 206 

 207 

Continuous mouse trajectories. Continuous mouse trajectories across all adjective pairs and across 208 

all participants are depicted in Fig.2B and Fig.2C (low and high summarize the two antonyms 209 

across all scalar dimensions, see Fig.S1 for each adjective dimension separately).  210 

To quantify how the final interpretation of scalar adjectives changes as a function of 211 

negation, we first performed a 2 (antonym: low vs. high) x 2 (negation: negated vs. affirmative) 212 

repeated-measures ANOVA for participants’ ends of trajectories (filled circles in Fig.2B), which 213 

reveal a significant main effect of antonyms (F(1,77) = 338.57, p < 0.001, ηp2 = 0.83), a significant 214 

main effect of negation (F(1,77) = 65.50, p < 0.001, ηp2 = 0.46), and a significant antonyms by 215 

negation interaction (F(1,77) = 1346.07, p < 0.001, ηp2 = 0.95). Post-hoc tests show that the final 216 

interpretation of negated phrases is located at a more central portion on the semantic scale than that 217 

of affirmative phrases (affirmative low < negated high, and affirmative high > negated low, pholm < 218 

0.001). Furthermore, the final interpretation of negated phrases is significantly more variable 219 

(measured as standard deviations) than that of affirmative phrases (F(1,77) = 78.14, p < 0.001, ηp2 220 

= 0.50). Taken together, these results suggest that negation shifts the final interpretation of 221 

adjectives towards the antonyms, but never to a degree that overlaps with the interpretation of the 222 

affirmative antonym. 223 

Second, we explored the temporal dynamics of adjective representation as a function of 224 

negation (i.e., from the presentation of word 1 to the final interpretation; lines in Fig.2C). While 225 

mouse trajectories of affirmative phrases branch towards either side of the scale and remain on that 226 

side until the final interpretation (lines in the left, gray, zoomed-in panel in Fig.2C), trajectories of 227 

negated phrases first deviate towards the side of the adjective and then towards the side of the 228 

antonym, to reach the final interpretation (i.e., “not low” first towards “low” and then towards 229 

“high”; right, gray, zoomed-in panel in Fig.2C; see Fig.S1 for each adjective dimension separately). 230 

To characterize the degree of deviation towards each side of the scale, we performed regression 231 

analyses with antonyms as the predictor and mouse trajectories as the dependent variable (see 232 

Methods). The results confirm this observation, showing that (1) in affirmative phrases, betas are 233 

positive (i.e., mouse trajectories moving towards the adjective) starting at 300 ms from adjective 234 

onset (p < 0.001, green line in Fig.2D); and that (2) in negated phrases, betas are positive between 235 

450 and 580 ms from adjective onset (i.e., mouse trajectories moving towards the adjective, p = 236 

0.04), and only become negative (i.e., mouse trajectories moving towards the antonym, p < 0.001) 237 

from 700 ms from adjective onset (red line in Fig.2D). Note that beta values of negated phrases are 238 
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smaller than that for affirmative phrases, again suggesting that negation does not invert the 239 

interpretation of the adjective to that of the antonym.  240 

 241 

Replication of Experiment 1: Continuous mouse tracking reveals a two-stage representation of 242 

negated adjectives, in the absence of feedback 243 

We replicated Experiment 1 in a new group of online participants (N=55; Fig.3). The experimental 244 

procedure was the same as that of Experiment 1, except that no feedback was provided to 245 

participants based on the final interpretation, but only if the cursor’s movement violated the 246 

warnings provided during the familiarization phase (e.g., “you crossed the vertical borders”, see 247 

Methods). We performed the same data analyses performed for Experiment 1.  248 

 249 

Reaction times. The 2 (antonym: low vs high) x 2 (negation: negated vs affirmative) repeated-250 

measures ANOVA reveal a significant main effect of antonyms (F(1,54) = 36.90, p < 0.001, ηp2 = 251 

0.40) and a significant main effect of negation (F(1,54) = 73.04, p < 0.001, ηp2 = 0.57). Moreover, 252 

a significant crossover interaction between antonyms and negation was found (F(1,54) = 16.40, p 253 

< 0.001, ηp2 = 0.23, Fig.3A). These results replicate Experiment 1, showing that participants were 254 

faster for high adjectives (e.g., “good”) than for low adjectives (e.g., “bad”) and for affirmative 255 

phrases (e.g., “really really good”) than for negated phrases (e.g., “really not good”). Results on 256 

complexity reveal that participants were faster for phrases with two modifiers, e.g., “not really”, 257 

than phrases with one modifier, e.g., “not ###” (F(1,54) = 28.87, p < 0.001, ηp2 = 0.35, especially 258 

in affirmative phrases: complexity by negation interaction F(1,54) = 6.26, p = 0.015, ηp2 = 0.10), 259 

again replicating results of Experiment 1 (see Table S3B for pairwise comparisons between each 260 

pair of modifiers).  261 

 262 
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 263 

 264 

Figure 3. Replication of Experiment 1, without feedback on interpretation. 265 

(A) Reaction times results for the online behavioral study (N=55). Bars represent the participants' mean ± SEM and 266 

dots represent individual participants. Participants were faster for high adjectives (e.g., “good”) than for low adjectives 267 

(e.g., “bad”) and for affirmative phrases (e.g., “really really good”) than for negated phrases (e.g., “really not good”). 268 

These results replicate Experiment 1. (B) Final interpretations (i.e., end of trajectories) of each phrase, represented by 269 

filled circles (purple = low, orange = high), averaged across adjective dimensions and participants, showing that 270 

negation never inverts the interpretation of adjectives to that of their antonyms. (C) Mouse trajectories for low (purple) 271 

and high (orange) antonyms, for each modifier (shades of orange and purple) and for affirmative (left panel) and negated 272 

(right panel) phrases. Zoomed-in panels at the bottom demonstrate that mouse trajectories of affirmative phrases branch 273 

towards the adjective’s side of the scale and remain on that side until the final interpretation; in contrast, the trajectories 274 

of negated phrases first deviate towards the side of the adjective and subsequently towards the side of the antonym 275 

(except for “not not”). This result is confirmed by linear models fitted to the data at each timepoint in D. These results 276 

also replicate Experiment 1. (D) Beta values (average over 55 participants) over time, separately for affirmative and 277 

negated phrases. Thicker lines indicate significant time windows. Trials with “not not” were not included in this analysis 278 
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as the trajectories pattern was different compared to the other conditions with negation. Panels C, D: black vertical 279 

dashed lines indicate the presentation onset of each word: modifier 1, modifier 2 and adjective; each line and shading 280 

represent participants' mean ± SEM; Panels A,B,D: *** p < 0.001; ** p < 0.01; * p < 0.05. 281 

 282 

Continuous mouse trajectories. The 2 (antonym: low vs high) x 2 (negation: negated vs affirmative) 283 

repeated-measures ANOVA for participants’ final interpretations reveal a significant main effect 284 

of antonyms (F(1,54) = 166.40, p < 0.001, ηp2 = 0.75), a significant main effect of negation (F(1,54) 285 

= 48.62, p < 0.001, ηp2 = 0.47), and a significant interaction between antonyms and negation 286 

(F(1,54) = 210.13, p < 0.001, ηp2 = 0.80). Post-hoc tests show that the final interpretation of negated 287 

phrases was located at a more central portion of the semantic scale than that of affirmative phrases 288 

(affirmative low < negated high, and affirmative high > negated low, pholm < 0.001, Fig.3B), 289 

indicating that negation never inverts the interpretation of adjectives to that of their antonyms. 290 

Results also show that the final interpretations of negated phrases was significantly more variable 291 

(measured as standard deviations) than that of affirmative phrases (F(1,54) = 15.43, p < 0.001, ηp2 292 

= 0.22). These results again replicate Experiment 1. As for Experiment 1, we then performed 293 

regression analyses with antonyms as the predictor and mouse trajectories as the dependent 294 

variable. For this analysis, trials with “not not” were not included as, in this experiment, the 295 

trajectories pattern was different compared to the other conditions with negation (Fig.3C). The 296 

results of the regression analyses show that (1) in affirmative phrases, betas are positive (i.e., mouse 297 

trajectories moving towards the adjective) starting from 400 ms from the adjective onset (p < 0.001, 298 

green line in Fig.3D); and that (2) in negated phrases, betas are positive (i.e., mouse trajectories 299 

moving towards the adjective) between 400 and 650 ms from the adjective onset (p = 0.02), and 300 

only became negative (i.e., mouse trajectories moving towards the antonym) from 910 ms from the 301 

adjective onset (p = 0.003, i.e., red line in Fig.3D). This pattern replicates that of Experiment 1. 302 

The replication of Experiment 1 illustrates the robustness of the behavioral mouse tracking 303 

findings, even in the absence of feedback. Taken together, these results suggest that participants 304 

initially interpreted negated phrases as affirmative (e.g., “not good” interpreted along the “good” 305 

side of the scale) and later as a mitigated interpretation of the opposite meaning (e.g., the antonym 306 

“bad”). 307 

 308 

Experiment 2: MEG shows that negation weakens the representation of adjectives and recruits 309 

response inhibition networks 310 

In this study (MEG experiment, N = 26), participants read adjective phrases comprising one or two 311 

modifiers (“not” and “really”) and scalar adjectives across different dimensions (e.g., “really really 312 
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good”, “really not quiet”, “not ### dark”). Adjectives were selected to represent opposite poles 313 

(i.e., the antonyms) of the respective semantic scales: low pole of the scale (e.g., “bad”, “cool”, 314 

“quiet”, “dark”) and high pole of the scale (e.g., “good”, “warm”, “loud”, “bright”). A sequence of 315 

dashes was used to indicate the absence of a modifier. Fig.1B and Table S2 provide the 316 

comprehensive list of the linguistic stimuli. Participants were asked to indicate whether a probe 317 

(e.g., 6) represented the meaning of the phrase on a scale from “really really low” (0) to “really 318 

really high” (8) (yes/no answer, Fig.1B). Feedback consisted of a green or red cross, to which 1 and 319 

0 was assigned to compute the average feedback score. Behavioral data of Experiment 2 replicate 320 

that of Experiment 1: negated phrases are processed slower and with lower feedback score than 321 

affirmative phrases (main effect of negation for RTs: F(1,25) = 26.44, p < 0.001, ηp2 = 0.51; main 322 

effect of negation for feedback score: F(1,25) = 8.03, p = 0.009, ηp2 = 0.24).  323 

The MEG analyses, using largely temporal and spatial decoding approaches [48], comprise 324 

four incremental steps: (1) we first identify the temporal correlates of simple word representation 325 

(i.e., the words “really” and “not” in the modifier position, and each pair of scalar adjectives in the 326 

second word position, i.e., the head position; see Table S2); (2) we test lexical-semantic 327 

representations of adjectives over time beyond the single word level, by entering low (“bad”, “cool”, 328 

“quiet” and “dark”) and high (“good”, “warm”, “loud” and “bright”) antonyms in the same model 329 

(adjectives in purple vs. orange in Table S2). We then test the representation of the negation 330 

operator over time (modifiers in green vs. red in Table S2); (3) we then ask how negation operates 331 

on the representation of adjectives, by teasing apart four possible mechanisms (i.e., No effect, 332 

Mitigation, Inversion, Change; adjectives in purple vs. orange for modifiers in green and red 333 

separately in Table S2); (4) we explore changes in beta power as a function of negation (motivated 334 

by the literature implicating beta-band neural activity in linguistic processing).  335 

 336 

(1) Temporal decoding of single word processing 337 

The butterfly (bottom) and topography plots (top) in Fig.4A illustrate the grand average of the 338 

event-related fields elicited by the presentation of all words, as well as the probe, regardless of 339 

condition. Results of decoding analyses performed on these preprocessed MEG data (after 340 

performing linear dimensionality reduction; see Methods) show that the temporal decoding of 341 

“really” vs. “not” is significant between 120 and 430 ms and between 520 and 740 ms from the 342 

onset of the first modifier (dark gray shading, p < 0.001 and p = 0.001) and between 90 and 640 ms 343 

from the onset of the second modifier (light gray shading, p < 0.001, Fig.4B). Pairs of antonyms 344 

from different scales (regardless of specific modifier) were similarly decodable between 90 and 410 345 

ms from adjective onset (quality: 110 to 200 ms, p = 0.002 and 290 to 370 ms, p = 0.018; 346 
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temperature: 140 to 280 ms, p < 0.001; loudness: 110 to 410 ms, p < 0.001; brightness: 90 to 350 347 

ms, p < 0.001, Fig.4C), reflecting time windows during which the brain represents visual, lexical, 348 

and semantic information (e.g., [7,49]). These results further show that single words can be decoded 349 

with relatively high accuracy (~70%). 350 

 

 
 

Figure 4. Evoked activity and temporal decoding of modifiers and adjectives as letter strings. 351 

(A) The butterfly (bottom) and topo plots (top) illustrate the event-related fields elicited by the presentation of each 352 

word as well as the probe, with a primarily visual distribution of neural activity right after visual onset (i.e., letter string 353 

processing). We performed multivariate decoding analyses on these preprocessed MEG data, after performing linear 354 

dimensionality reduction (see Methods). Detector distribution of MEG system in inset box. fT: femtoTesla magnetic 355 

field strength. (B) We estimated the ability of the decoder to discriminate “really” vs. “not” separately in the first and 356 

second modifier’s position, from all MEG sensors. We contrasted phrases with modifiers “really ###” and “not ###”, 357 

and phrases with modifiers “### not” and “### really”. (C) We evaluated whether the brain encodes representational 358 
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differences between each pair of antonyms (e.g., “bad” vs. “good”), in each of the four dimensions (quality, 359 

temperature, loudness, and brightness). The mean across adjective pairs is represented as a solid black line; significant 360 

windows are indicated by horizontal solid lines below. For panels B and C: AUC = area under the receiver operating 361 

characteristic curve, chance = 0.5 (black horizontal dashed line); For all panels: black vertical dashed lines indicate the 362 

presentation onset of each word: modifier 1, modifier 2, and adjective; each line and shading represent participants’ 363 

mean ± SEM. 364 

 365 

(2) Temporal and spatial decoding of adjectives and negation  366 

After establishing that single words’ features can be successfully decoded in sensible time windows 367 

(see Fig.4), we moved beyond single word representation and clarified the temporal patterns of 368 

adjective and negation representation independently from their interaction and identified temporal 369 

windows where to expect changes in adjective representation as a function of negation. First, we 370 

selectively evaluated lexical-semantic differences between low (“bad”, “cool”, “quiet” and “dark”) 371 

and high (“good”, “warm”, “loud” and “bright”) adjectives, regardless of the specific scale (i.e., 372 

pooling over quality, temperature, loudness, and brightness) and by pooling over all modifiers. 373 

Temporal decoding analyses (see Methods) reveal significant decodability of low vs. high 374 

antonyms in three time windows between 140 and 560 ms from adjective onset (140 to 280 ms, p 375 

< 0.001; 370 to 460 ms: p = 0.009; 500 to 560 ms: p = 0.044, purple shading in Fig.5A). No 376 

significant differences in lexical-semantic representation between low and high antonyms were 377 

observed in later time windows (i.e., after 560 ms from adjective onset). The spatial decoding 378 

analysis illustrated in Fig.5B (limited to 50-650 ms from adjective onset, see Methods) show that 379 

decoding accuracy for low vs. high antonyms is significantly above chance in a widespread left-380 

lateralized brain network, encompassing the anterior portion of the superior temporal lobe, the 381 

middle, and the inferior temporal lobe (purple shading in Fig.5B, significant clusters are indicated 382 

by a black contour: left temporal lobe cluster, p = 0.002). A significant cluster was also found in 383 

the right temporal pole, into the insula (p = 0.007). Moreover, we found significant clusters in the 384 

bilateral cingulate gyri (posterior and isthmus) and precunei (left precuneus/cingulate cluster, p = 385 

0.009; right precuneus/cingulate cluster, p = 0.037). Overall, these regions are part of the 386 

(predominantly left-lateralized) frontotemporal brain network that underpins lexical-semantic 387 

representation and composition [7,8,46,49–55].  388 
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Figure 5. Temporal and spatial decoding of antonyms across all scales and temporal decoding of negation. 389 

(A) Decoding accuracy (purple line) of lexical-semantic differences between antonyms across all scales (i.e., pooling 390 

over “bad”, “cool”, “quiet” and “dark”; and “good”, “warm”, “loud” and “bright” before fitting the estimators) over 391 

time, regardless of modifier; significant time windows are indicated by purple shading; (B) Decoding accuracy (shades 392 

of purple) for antonyms across all scales over brain sources (after pooling over the four dimensions), between 50 and 393 

650 ms from adjective onset. Significant spatial clusters are indicated by a black contour. (C) Decoding accuracy of 394 

negation over time, as a function of the number of modifiers (1 modifier: dark red line and shading; 2 modifiers: light 395 

red line and shading). 1 modifier: “really ###”, “### really”, “not ###”, “### not”; 2 modifiers: “really really”, “really 396 

not”, “not really”, “not not”. Significant time windows are indicated by dark red (1 modifier) and light red (2 modifiers) 397 
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shading. For all panels: AUC: area under the receiver operating characteristic curve, chance = 0.5 (black horizontal 398 

dashed line); black vertical dashed lines indicate the presentation onset of each word: modifier1, modifier2 and 399 

adjective; each line and shading represent participants' mean ± SEM; aff = affirmative, neg = negated; LH = left 400 

hemisphere; RH = right hemisphere. 401 

 402 

Next, we turn to representations of negation over time. We performed a temporal decoding analysis 403 

for phrases containing “not” vs. phrases not containing “not”, separately for phrases with one and 404 

two modifiers (to account for phrase complexity; see Table S2 for a list of all trials). For phrases 405 

with one modifier, the decoding of negation is significantly higher than chance throughout word 1 406 

(-580 to -500 ms from adjective onset, p = 0.005), then again throughout word 2 (-470 to 0 ms from 407 

adjective onset, p < 0.001). After the presentation of the adjective, negation decodability is again 408 

significantly above chance between 0 and 40 ms (p = 0.034) and between 230 and 290 ms from 409 

adjective onset (p = 0.018; dark red line and shading in Fig.5C). Similarly, for phrases with two 410 

modifiers, the decoding of negation is significantly higher than chance throughout word 1 (-580 to 411 

-410 ms from adjective onset, p = 0.002), throughout word 2 (-400 to 0 ms from adjective onset, p 412 

< 0.001), and for a longer time window from adjective onset compared to phrases with one modifier, 413 

i.e., between 0 and 720 ms (0 to 430 ms, p < 0.001; 440 to 500 ms, p = 0.030; 500 to 610 ms, p < 414 

0.001; 620 to 720 ms, p < 0.001; light red line and shading in Fig.5C). The same analysis time-415 

locked to the onset of the probe shows that negation is once again significantly decodable between 416 

230 and 930 ms after the probe, likely being reinstated when participants perform the task (Fig.S2).  417 

Cumulatively, these results suggest that the brain encodes negation every time a “not” is 418 

presented and maintains this information up to 720 ms after adjective onset. Further, they show that 419 

the duration of negation maintenance is amplified by the presence of a second modifier, highlighting 420 

combinatoric effects [2,6,56]. 421 

 422 

(3) Effect of negation on lexical-semantic representations of antonyms over time 423 

The temporal decoding analyses performed separately for adjectives and for negation demonstrate 424 

that the brain maintains the representation of the modifiers available throughout the presentation of 425 

the adjective. Here we ask how negation operates on the representation of the antonyms at the 426 

neural level, leveraging theoretical accounts of negation [11,12,42–44], behavioral results of 427 

Experiment 1, and two complementary decoding approaches. We test four hypotheses (see 428 

Predictions in Fig.6A): (1) No effect of negation: negation does not change the representation of 429 

adjectives (i.e., “not low” = “low”). We included this hypothesis based on the two-step theory of 430 

negation, wherein the initial representation of negated adjectives would not be affected by negation 431 
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[27]. (2) Mitigation: negation weakens the representation of adjectives (i.e., “not low” < “low”). (3) 432 

Inversion: negation inverts the representation of adjectives (i.e., “not low” = “high”). Hypotheses 433 

(2) and (3) are derived from previous linguistics and psycholinguistics accounts on comprehension 434 

of negated adjectives [42–44]. Finally, (4) Change: we evaluated the possibility that negation might 435 

change the representation of adjectives to another representation outside the semantic scale defined 436 

by the two antonyms (e.g., “not low” = e.g., “fair”). Importantly, these predictions focus on how 437 

negation affects representations rather than on when. Thus, a combination of mechanisms may be 438 

observed over time (e.g., first no effect and then inversion).  439 

To adjudicate between these four hypotheses, we performed two complementary sets of decoding 440 

analyses. Decoding approach (i): we computed the accuracy with which estimators trained on low 441 

vs. high antonyms in affirmative phrases (e.g., “really really bad” vs. “really really good”) 442 

generalize to the representation of low vs. high antonyms in negated phrases (e.g., “really not bad” 443 

vs. “really not good”) at each time sample time-locked to adjective onset (see Methods); decoding 444 

approach (ii): we trained estimators on low vs. high antonyms in affirmative and negated phrases 445 

together (in 90% of the trials) and computed the accuracy of the model in predicting the 446 

representation of low vs. high antonyms in affirmative and negated phrases separately (in the 447 

remaining 10% of the trials; see Methods). Decoding approach (ii) allows for a direct comparison 448 

between AUC and probability estimates in affirmative and negated phrases and to disentangle 449 

predictions (1) No effect from (2) Mitigation. Expected probability estimates (i.e., the averaged 450 

class probabilities for low and high classes) as a result of decoding approach (i) and (ii) are depicted 451 

as light and dark, green and red bars under Decoding approach in Fig.6A.  452 
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Figure 6. Predictions, decoding approaches, and results of the effect of negation on the representation of 453 

adjectives. 454 

(A) We tested four possible effects of negation on the representation of adjectives: (1) No effect, (2) Mitigation, (3) 455 

Inversion, (4) Change (left column). Note that we depicted predictions of (3) Inversion on the extremes of the scale, 456 

but a combination of inversion and mitigation would have the same expected outcomes. We performed two sets of 457 

decoding analyses (right column): (i) We trained estimators on low (purple) vs. high (orange) antonyms in affirmative 458 
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phrases and predicted model accuracy and probability estimates of low vs. high antonyms in negated phrases (light and 459 

dark red bars). (ii) We trained estimators on low vs. high antonyms in affirmative and negated phrases together and 460 

predicted model accuracy and probability estimates in affirmative (light and dark green bars) and negated phrases (light 461 

and dark red bars) separately. (B) Decoding accuracy (red line) over time of antonyms for negated phrases, as a result 462 

of decoding approach (i). Significant time windows are indicated by red shading and horizontal solid lines. (C) 463 

Decoding accuracy of antonyms over time for affirmative (green line) and negated (red line) phrases, as a result of 464 

decoding approach (ii). Significant time windows for affirmative and negated phrases are indicated by green and red 465 

shading and horizontal solid lines. The significant time window of the difference between affirmative and negated 466 

phrases is indicated by a black horizontal solid line. (D) Probability estimates for low (light red) and high (dark red) 467 

negated antonyms averaged across the significant time windows depicted in B. Bars represent the participants' mean ± 468 

SEM and dots represent individual participants. (E) Probability estimates for low (light green) and high (dark green) 469 

affirmative adjectives and for low (light red) and high (dark red) negated adjectives, averaged across the significant 470 

time window depicted as a black horizontal line in C. Chance level of probability estimates was computed by averaging 471 

probability estimates of the respective baseline (note that the baseline differs from 0.5 due to the different number of 472 

trials for each class in the training set of decoding approach (i)). Bars represent the participants' mean ± SEM and dots 473 

represent individual participants. For panels B and C: AUC: area under the receiver operating characteristic curve, 474 

chance = 0.5 (black horizontal dashed line); each line and shading represent participants' mean ± SEM. Panels B,C,D,E: 475 

the black vertical dashed line indicates the presentation onset of the adjective; green = affirmative phrases, red = negated 476 

phrases. 477 

 478 

Temporal decoding approach (i) reveals that the estimators trained on the representation of 479 

low vs. high antonyms in affirmative phrases significantly generalize to the representation of low 480 

vs. high antonyms in negated phrases, in four time windows between 130 and 550 ms from adjective 481 

onset (130 to 190 ms, p = 0.039; 200 to 270 ms: p = 0.003; 380 to 500 ms: p < 0.001; 500 to 550 482 

ms: p = 0.008; red shading in Fig.6B). Fig.6D depicts the probability estimates averaged over the 483 

significant time windows for low and high antonyms in negated phrases. These results only support 484 

predictions (1) No effect and (2) Mitigation, thus invalidating predictions (3) Inversion and (4) 485 

Change. Fig.S3 illustrates a different approach that similarly leads to the exclusion of prediction 486 

(3) Inversion. 487 

Temporal decoding approach (ii) shows significant above chance decoding accuracy for 488 

affirmative phrases between 130 and 280 ms (p < 0.001) and between 370 and 420 ms (p = 0.035) 489 

from adjective onset. Conversely, decoding accuracy for negated phrases is significantly above 490 

chance only between 380 and 450 ms after the onset of the adjective (p = 0.004). Strikingly, negated 491 

phrases are associated with significantly lower decoding accuracy than affirmative phrases in the 492 

time window between 130 and 190 ms from adjective onset (p = 0.040; black horizontal line in 493 

Fig.6C). Fig.6E represents the probability estimates averaged over this 130-190 ms significant time 494 

window for low and high antonyms, separately in affirmative and negated phrases, illustrating 495 
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reduced probability estimates for negated compared to affirmative phrases. No significant 496 

difference between decoding accuracy of affirmative and negative phrases was found for later time 497 

windows (500-1000 ms from adjective onset, p > 0.05). A follow-up analysis where we trained and 498 

tested on low vs. high antonyms in affirmative and negated phrases separately shows similar results 499 

(Fig.S4A). Furthermore, the analysis including all trials, regardless of feedback score, also shows 500 

similar results (Fig.S4B).  501 

Overall, the generalization of representation from affirmative to negated phrases and the 502 

higher decoding accuracy (and probability estimates) for affirmative than negated phrases within 503 

the first 500 ms from adjective onset (i.e., within the time window of lexical-semantic processing 504 

shown in Fig.5A) provide direct evidence in support of prediction (2) Mitigation, wherein negation 505 

weakens the representation of adjectives. The alternative hypotheses did not survive the different 506 

decoding approaches.  507 

 508 

(4) Changes in beta power as a function of negation 509 

We distinguished among four possible mechanisms of how negation could operate on the 510 

representation of adjectives and demonstrated that negation does not invert or change the 511 

representation of adjectives but rather weakens the decodability of low vs. high antonyms within 512 

the first ~300 ms from adjective onset (Fig.6C; with AUC for affirmative and negated adjectives 513 

being significantly different for about 60 ms within this time window). The availability of negation 514 

upon the processing of the adjective (Fig.5A and Fig.5C) and the reduced decoding accuracy for 515 

antonyms in negated phrases (Fig.6C) raise the question of whether negation operates through 516 

inhibitory mechanisms, as suggested by previous research employing action-related verbal material 517 

[35–37]. We therefore performed time-frequency analyses, focusing on beta power (including low-518 

beta: 12 to 20 Hz, and high-beta: 20 to 30 Hz, [57], see Methods), which has been previously 519 

associated with inhibitory control [58] (see Fig.S5 for comprehensive time-frequency results). We 520 

reasoned that, if negation operates through general-purpose inhibitory systems, we should observe 521 

higher beta power for negated than affirmative phrases in sensorimotor brain regions.  522 

Our results are consistent with this hypothesis, showing significantly higher low-beta power 523 

(from 229 to 350 ms from the onset of modifier1: p = 0.036; from 326 to 690 ms from adjective 524 

onset: p = 0.012; red line in Fig.7A) and high-beta power (from 98 to 271 ms from adjective onset: 525 

p = 0.044; yellow line in Fig.7A) for negated than affirmative phrases. Fig.S6 further shows low 526 

and high-beta power separately for negated and affirmative phrases, compared to phrases with no 527 

modifier (i.e., with “### ###”).  528 
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Our whole-brain source localization analysis shows significantly higher low-beta power for 529 

negated than affirmative phrases in the left precentral, postcentral, and paracentral gyri (p = 0.012; 530 

between 326 and 690 ms from adjective onset, red cluster in Fig.7C). For high-beta power, similar 531 

(albeit not significant) sensorimotor spatial patterns emerge (yellow cluster in Fig.7B). 532 

 

 
 
Figure 7. Differences in beta power over time between negated and affirmative phrases. 533 

(A) Differences in low (12-20 Hz, red) and high (21-30 Hz, yellow) beta power over time between negated (i.e., “### 534 

not”, “not ###”, “really not”, “not really”, “not not”) and affirmative phrases (i.e., “### really”, “really ###”, “really 535 

really”). Negated phrases show higher beta power compared to affirmative phrases throughout the presentation of the 536 

modifiers and for a sustained time window from adjective onset up to ~700 ms; significant time windows are indicated 537 

by red (low-beta) and yellow (high-beta) shading; black vertical dashed lines indicate the presentation onset of each 538 

word: modifier1, modifier2 and adjective; each line and shading represent participants' mean ± SEM. (B) Differences 539 

(however not reaching statistical significance, α = 0.05) in high-beta power between negated and affirmative phrases 540 

(restricted between 97 and 271 ms from adjective onset, yellow cluster). (C) Significant differences in low-beta power 541 

between negated and affirmative phrases (restricted between 326 and 690 ms from adjective onset) in the left precentral, 542 

postcentral and paracentral gyrus (red cluster). Note that no significant spatial clusters were found in the right 543 

hemisphere. 544 
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 545 

 546 

Discussion  547 

We tracked changes over time in lexical-semantic representations of scalar adjectives, as a function 548 

of the intensifier “really” and the negation operator “not”. Neural correlates of negation have 549 

typically been investigated in the context of action verbs [29,35–37,40,41,59–63]. Our study 550 

employs minimal linguistic contexts to characterize in detail how negation operates on abstract, 551 

non-action-related lexical-semantic representations. We leveraged (1) psycholinguistic findings on 552 

adjectives that offer a framework wherein meaning is represented on a continuum [42,43], (2) time-553 

resolved behavioral and neural data, and (3) multivariate analysis methods (decoding) which can 554 

discriminate complex lexical-semantic representations from distributed neuronal patterns (e.g., 555 

[62]). 556 

The longer RTs and lower feedback score for negated phases shown in Experiment 1 557 

(Fig.2A), in the replication experiment (Fig.3A), and in Experiment 2, are consistent with data 558 

demonstrating that negation incurs increased processing costs [13–18,27,32]. More significantly, 559 

mouse trajectories show that participants initially interpreted negated phrases as affirmative (e.g., 560 

“not good” is located on the “good” side of the scale, for ~130 ms, Fig.2C and Fig.3C), indicating 561 

that initial representations of negated scalar adjectives are closer to the representations of the 562 

adjectives rather than that of their antonyms. Similarly, participants’ final interpretations of negated 563 

adjectives (e.g., “not good”, “really not good”) never overlapped with the final interpretations of 564 

the corresponding affirmative antonyms (e.g., “bad”, “really bad”, “really really bad”; Fig.2B and 565 

Fig.3B) highlighting how negation never inverts the meaning of an adjective to that of its antonym, 566 

even when participants are making decisions on a binary semantic scale (9,37-40).  567 

Continuous mouse trajectories allowed us to quantify dynamic changes in participants’ 568 

interpretations. MEG provided a means to directly track neural representations over time. We first 569 

identified the temporal correlates of lexical-semantic processing separately for scalar adjectives 570 

and for the negation operator. The time window of adjective representation (~140-560 ms from 571 

adjective onset, Fig.5A) is consistent with previous studies investigating lexical-semantic 572 

processing in language comprehension (130–200 ms up to ~550 ms from adjective onset [64–68]). 573 

Spatial decoding results corroborate temporal results, highlighting the involvement of the left-574 

lateralized frontotemporal brain network in adjective processing (Fig.5B, [7,8,46,49–55]). Our data 575 

further show that negation is processed up to ~700 ms from adjective onset (Fig.5C). Overall, these 576 

data demonstrate that both scalar adjectives and negation are represented between 140 and 560 ms 577 

from adjective onset (compare Fig.5A and Fig.5C), suggesting that they are represented in parallel 578 
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and not serially (i.e., one after the other; see [69,70] for related patterns in the context of negation 579 

+ auxiliary verb and adjective + noun). Finally, they show that the decodability of negation 580 

increases in phrases with two modifiers (e.g., “really not”, “not really”, Fig.5C, Fig.S2), 581 

highlighting compositional effects [6]. 582 

We then evaluated the effects of the negation operator on adjective representation, to 583 

address the question of how negation operates on lexical-semantic representations of antonyms. We 584 

contrasted four hypotheses (Fig.6A): negation (1) does not change the representation of scalar 585 

adjectives (e.g., “not good” = “good”, No effect), (2) weakens the representation of scalar adjectives 586 

(e.g., “not good” < “good”, Mitigation), (3) inverts the representation of scalar adjectives (e.g., “not 587 

good” = “bad”, Inversion), or (4) changes the representation of scalar adjectives to another 588 

representation (e.g., “not good” = e.g., “unacceptable”, Change). These four hypotheses make 589 

predictions about how negation operates on scalar adjectives at any given time. It is thus possible 590 

that multiple mechanisms may unfold over time when looking at time-resolved data (e.g., first no 591 

effect and then inversion). Using two complementary decoding approaches, we demonstrated that, 592 

within the time window of adjective encoding, the representation of affirmative adjectives 593 

generalizes to that of negated adjectives (Fig.6B and Fig.6D). This finding rules out predictions (3) 594 

Inversion and (4) Change. Moreover, these findings complement our behavioral data that show that 595 

negated adjectives are initially interpreted by participants as affirmative. Second, we showed that 596 

the representation of adjectives in affirmative and negated phrases is not identical but is weakened 597 

by negation (Fig.6C and Fig.6E). This result rules out prediction (1) No effect and supports 598 

prediction (2) Mitigation, wherein negation weakens the representation of adjectives. We observed 599 

such a reduction in early representations (i.e., within ~300 ms from adjective onset). This finding 600 

is consistent with previous research that reported effects of negation as soon as lexical-semantic 601 

representations of words are formed [12,29–31,71], and not exclusively at later processing stages 602 

(e.g., P600 [72,73]). In addition, the fact that low vs. high adjectives are decodable ~400 ms after 603 

the adjective onset in negated phrases (Fig.6C, Fig.S4A, Fig.S4B) raises two novel questions: 604 

First, is the mitigation effect of negation stable over time? Second, at what exact stages does it 605 

operate upon (see [64,66])? Using a masked priming paradigm, van Gaal et al. [33] analyzed 606 

participants' EEG responses to sequences of words that were either consciously or unconsciously 607 

perceived. Their findings indicate that the meaning of multiple words, including negation, can be 608 

integrated even when subjects report not seeing them, but that conscious perception is required for 609 

later grammatical integration. Future research remains necessary to more precisely tease apart the 610 

lexical, semantic, and syntactic features that are selectively affected by the negation operator over 611 

time. 612 
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Taken together, our behavioral and neural data jointly point to a mitigation rather than an 613 

inversion effect of negation at early semantic processing stages, and exclude the hypothesis 614 

according to which negation does not change the representation of antonyms. Specifically, these 615 

results show that initial interpretations and early neural representations of negated adjectives are 616 

similar to that of affirmative adjectives, but weakened. The comparison between MEG and 617 

behavioral results also reveals interesting differences. Behavioral data reveal that, in negated 618 

phrases, participants later modify their initial interpretation towards, but never exactly as, the 619 

opposite meaning. Our MEG data do not show an inversion of adjective representation as a function 620 

of negation, at early or later lexico-semantic processing stages. Differences between our behavioral 621 

and neural results could be ascribed to the fact that the behavioral task had to be adapted to the 622 

MEG environment. In the behavioral experiment (and its replication), participants were 623 

continuously and explicitly indicating their interpretation, while in the MEG experiment they were 624 

required to make a decision on their interpretation only after the probe was presented (1850 ms after 625 

the adjective presentation, Fig.2B and Fig.4A), which could have hindered later effects of negation.  626 

While previous fMRI studies on sentential negation have shown that negation reduces 627 

hemodynamic brain activations related to verb processing [40,41], the current study offers novel 628 

time-resolved behavioral and neural data on how negation selectively operates on abstract concepts. 629 

Previous research has highlighted that negation might behave differently depending on the 630 

pragmatics of discourse interpretation, e.g., when presented in isolation as compared to when 631 

presented in context (“not wrong” vs. “this theory is not wrong” [9,10]), or when used ironically 632 

(“they are not really good” said ironically to mean that they are “mediocre”, e.g., [11,71]). Within 633 

this pragmatic framework, it has been suggested that the opposite meaning of a scalar adjective 634 

would be more simply conveyed by the affirmative counterpart than by negation [11,44,74]; thus, 635 

to convey the opposite meaning of “bad”, it would be more appropriate to use “good” as opposed 636 

to “not bad”. Following this logic, negation would be purposefully used (and understood) to convey 637 

a different, mitigated meaning of the adjective (e.g., “not bad” = “less than bad”). Although we did 638 

not directly manipulate sentential or pragmatic contexts, our findings provide behavioral and neural 639 

evidence that negation acts as a mitigator. Here we only tested adjective pairs that form contraries 640 

(which lie on a continuum, e.g., “bad” and “good”); thus inherently different patterns of results 641 

could emerge in the case of contradictories (which form a dichotomy, e.g., “dead” and “alive”, 642 

[44]), where there is no continuum for mitigation to have an effect.  643 

Overall, evidence that negation weakens adjective representations invites the hypothesis 644 

that negation operates as a suppression mechanism, possibly through general-purpose inhibitory 645 

systems [36,37]. To address this, we compared beta power modulations in affirmative and negated 646 
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phrases (Fig.7). In addition to subserving motor processing, beta-power modulation (12-30 Hz) has 647 

been associated with attention and expectancy violation and with multiple aspects of language 648 

processing, such as semantic memory and syntactic binding, as well as feedback processing 649 

([35,75–78]; for a review, see [57,79]). We evaluated differences between negated and affirmative 650 

phrases separately in the low- and high-beta bands. We found greater power for negated than 651 

affirmative phrases in both bands, during the processing of the modifier and throughout the 652 

processing of the adjective up to ~700 ms, localized in left-lateralized sensorimotor areas. The 653 

timing and spatial correlates of beta-power in relation to negation align with studies that examined 654 

the effect of negation on (mental and motor) action representation [36]. Strikingly, we demonstrated 655 

that negation recruits brain areas and neurophysiological mechanisms similar to that recruited by 656 

response inhibition - however in the absence of action-related language material. Within a 657 

framework that recognizes two interactive neural systems, i.e., a semantic representation and a 658 

semantic control system [53], negation would operate through the latter, modulating how activation 659 

propagates through the (ventral) language semantic network wherein meaning is represented. The 660 

precise connectivity that underpins mitigation of lexical-semantic representations remains to be 661 

investigated.  662 

Collectively, we demonstrated that, by characterizing subtle changes of linguistic meaning 663 

through negation, using time-resolved behavioral and neuroimaging methods and multivariate 664 

decoding, we can tease apart different possible representation outcomes of combinatorial 665 

operations, above and beyond the sum of the processing of individual word meanings.  666 

 667 

 668 

Materials and Methods 669 

Participants 670 

Experiment 1 (and replication): continuous behavioral tracking. 101 participants (46 females; 671 

mean age = 29.6 years; range 18-67 years) completed an online mouse tracking experiment. 672 

Participants were recruited via Amazon Mechanical Turk and via the platform SONA (a platform 673 

for students’ recruitment). All participants were native English speakers with self-reported normal 674 

hearing, normal or corrected to normal vision, and no neurological deficits. 97 participants were 675 

right-handed. Participants were paid or granted university credits for taking part in the study, which 676 

was performed online. All participants provided written informed consent, as approved by the local 677 

institutional review board (New York University’s Committee on Activities Involving Human 678 

Subjects). The data of 23 participants were excluded from the data analysis due to (i) number of 679 

“incorrect” feedback (based on the warnings) > 30%, (ii) mean RTs > 2SD from the group mean, 680 
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or (iii) response trajectory always ending within 1/4 from the center of the scale, regardless of 681 

condition (i.e., participants who did not pay attention to the instructions of the task). Thus, 78 682 

participants were included in the analyses. The sample size was determined based on previous 683 

studies using a similar behavioral approach (~30 participants [15,45,80]) and was increased to 684 

account for the exclusion rate reported for online crowdsourcing experiments [81,82].  685 

A new group of 60 participants (37 females; mean age = 19.26 years; range 18-23 years) completed 686 

the online mouse tracking replication experiment. Participants were recruited via the platform 687 

SONA. All participants were native English speakers with self-reported normal hearing and no 688 

neurological deficits. 59 participants were right-handed. Participants were granted university credits 689 

for taking part in the study, which was performed online. All participants provided written informed 690 

consent, as approved by the local institutional review board (New York University’s Committee on 691 

Activities Involving Human Subjects). The data of 5 participants were excluded from the data 692 

analysis due to (i) number of “incorrect” feedback based on the warnings > 30%, (ii) mean RTs > 693 

2SD from the group mean, or (iii) response trajectory always ending within 1/4 from the center of 694 

the scale, regardless of condition (i.e., participants who did not pay attention to the instructions of 695 

the task). Thus, 55 participants were included in the analyses. 696 

 697 

Experiment 2: MEG. A new group of 28 participants (17 females; mean age = 28.7 years; range 19-698 

53 years) took part in the in-lab MEG experiment. All participants were native English speakers 699 

with self-reported normal hearing, normal or corrected to normal vision, and no neurological 700 

deficits. 24 participants were right-handed. They were paid or granted university credits for taking 701 

part in the study. All participants provided written informed consent, as approved by the local 702 

institutional review board (New York University’s Committee on Activities Involving Human 703 

Subjects). The data of 2 participants were excluded from the data analysis because their feedback 704 

scores in the behavioral task was < 60%. Thus, 26 participants were included in the analysis. The 705 

sample size was determined based on previous studies investigating negation using EEG (17 to 33 706 

participants [26,35,37]), investigating semantic representation using MEG (25 to 27 participants 707 

[7,8]), or employing decoding methods with MEG data (17 to 20 participants [83,84]). 708 

 709 

Stimuli, Design, and Procedure 710 

Experiment 1 (and replication): continuous mouse tracking.  711 

Stimuli and Design. The linguistic stimulus set comprises 108 unique adjective phrases (for the 712 

complete list, see Table S1). Adjectives were selected to be antonyms (i.e., low and high poles of 713 

the scale) in the following six cognitive or sensory dimensions: quality (“bad”, “good”), beauty 714 
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(“ugly”, “beautiful”), mood (“sad”, “happy”), temperature (“cold”, “hot”), speed (“slow”, “fast”), 715 

and size (“small”, “big”). These antonyms are all contraries (i.e., adjectives that lie on a continuum 716 

[44]). Lexical characteristics of the antonyms were balanced according to the English Lexicon 717 

Project [85]; mean (SD) HAL log frequency of low adjectives: 10.69 (1.09), high adjectives: 11.51 718 

(1.07), mean (SD) bigram frequency of low adjectives: 1087.10 (374), high adjectives: 1032 719 

(477.2); mean (SD) lexical decision RTs of low adjectives: 566 (37), high adjectives: 586 ms (70)). 720 

Adjectives were combined with zero (e.g., “### ###”), one (e.g., “really ###”), or two modifiers 721 

(e.g., “really not”). Modifiers were either the intensifier “really” or the negation “not” (see [33] for 722 

a similar choice of modifiers; “really” was preferred to “very” as it more strongly intensifies the 723 

meaning of the adjective, e.g., “really hot” > “very hot”). A sequence of dashes was used to indicate 724 

the absence of a modifier, e.g., “really ### good”. Each of the 12 adjectives was preceded by each 725 

of the nine possible combinations of modifiers: “### ###”, “### really”, “really ###”, “### not”, 726 

“not ###”, “really not”, “not really”, “really really” and “not not”, to diversify modifiers’ sequences 727 

and measure how negation affects adjective representation above and beyond the specific effects of 728 

the words “really” and “not”. Note that “not not” was included to achieve a full experimental design, 729 

even if it is not a frequent combination in natural language and its cognitive and linguistic 730 

representations are still under investigation (see [86]). Each dimension (e.g., quality) was presented 731 

in two blocks (one block for each scale orientation, e.g., low to high and high to low) for a total of 732 

12 blocks. Each phrase was repeated three times within each block (note that “### really”/“really 733 

###” were repeated an overall of three times, and so were “### not”/“not ###”). Thus, the overall 734 

experiment comprised 504 trials. The order of phrases was randomized within each block for each 735 

participant. The order of pairs of blocks was randomized across participants. 736 

 737 

Procedure. Behavioral trajectories provide time-resolved dynamic data that reflect changes in 738 

representation [15,45,47]. The online experiment was developed using oTree, a Python-based 739 

framework for the development of controlled experiments on online platforms [87]. Participants 740 

performed this study remotely, using their own monitor and mouse (touchpads were not allowed). 741 

They were instructed to read affirmative or negated adjective phrases (e.g., “really really good”, 742 

“really not bad”) and rate the overall meaning of each phrase on a scale, e.g., from “really really 743 

bad” to “really really good”. Participants were initially familiarized with the experiment through 744 

short videos and a short practice block (18 trials with feedback). They were instructed that the poles 745 

of the scale (e.g., “bad” and “good”) would be reversed in half of the trials and warned that (i) they 746 

could not cross the vertical borders of the response space, (ii) they had to maintain a constant 747 

velocity, by following an horizontal line moving vertically, and (iii) they could not rate the meaning 748 
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of the phrase before the third word was presented. At the beginning of each trial, a response area of 749 

600 (horizontal) x 450 (vertical) pixels and a solid line at the top of the rectangle were presented 750 

(Fig.1A). Participants were informed about the scale (e.g., quality) and the direction of the scale 751 

(e.g., “bad” to “good” or “good” to “bad”, i.e., 1 to 10 or 10 to 1). Participants were instructed to 752 

click on the “start” button and move the cursor of the mouse to the portion of the scale that best 753 

represented the overall meaning of the phrase. The “start” button was placed in the center portion 754 

of the bottom of the response space (i.e., in a neutral position). Once “start” was clicked on, 755 

information about the scale and scale direction disappeared, leaving only the solid line on screen. 756 

Phrases were presented at the top of the response space, from the time when participants clicked on 757 

“start”, one word at a time, each word for 250 ms (inter-word-interval: 50 ms). After each trial, 758 

participants were provided the “incorrect” feedback if the cursor’s movement violated the warnings 759 

provided during the familiarization phase, and an explanation was provided (e.g., “you crossed the 760 

vertical borders”). To keep participants engaged, we provided feedback also based on the final 761 

interpretation: “negative” if the response was in the half of the scale opposite to the adjective (for 762 

the conditions: “### ###”, “#### really”, “really ###” and “really really”), or in the same half of 763 

the scale of the adjective (for the conditions: “### not” or “not ###”), or in the outer 20% left and 764 

right portions of the scale (for the conditions: “really not”, “not really” and “not not”); feedback 765 

was “positive” otherwise. In case of a trial with negative feedback, the following trial was delayed 766 

for 4 seconds. For each trial, we collected continuous mouse trajectories and RTs. The overall 767 

duration of the behavioral experiment was approximately 90 minutes. To verify that the feedback 768 

did not affect our results, we ran a replication study with a new group of 55 online participants 769 

where no feedback was provided based on the final interpretation. 770 

 771 

Experiment 2: MEG.  772 

Stimuli and Design. The linguistic stimulus set comprised 72 unique adjective phrases (for the 773 

complete list, see Table S2). Similar to Experiment 1, adjectives were selected for being antonyms 774 

(and contraries) in the following cognitive or sensory dimensions (touch, audition, vision): quality 775 

(“bad”, “good”), temperature (“cool”, “warm”), loudness (“quiet”, “loud”), and brightness (“dark”, 776 

“bright”). The number of semantic scales (4) represents a tradeoff between stimulus variability, 777 

number of stimuli within each condition - which is essential to achieve a reliable decoding accuracy 778 

-, and experiment duration for attention maintenance. Lexical characteristics of the antonyms were 779 

balanced according to the English Lexicon Project ([85]; mean (SD) HAL log frequency of “low” 780 

adjectives: 10.85 (1.03), “high” adjectives: 10.55 (1.88); mean (SD) bigram frequency of “low” 781 

adjectives: 1196.5 (824.6), “high” adjectives: 1077.5 (376.3); mean (SD) lexical decision RTs of 782 
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“low” adjectives: 594 ms (39), “high” adjectives: 594 (33)). Adjectives were combined with zero 783 

(e.g., “### ###”), one (e.g., “really ###”) or two modifiers (e.g., “really not”). Modifiers were either 784 

the intensifier “really” or the negation “not”. A sequence of dashes was used to indicate the absence 785 

of a modifier, e.g., “really ### good”. Each of the eight adjectives was preceded by each of the nine 786 

possible combinations of modifiers: “### ###”, “#### really”, “really ###”, “### not”, “not ###”, 787 

“really not”, “not really”, “really really” and “not not” (“not not” was included to achieve a full 788 

experimental design, even if it is not a frequent combination in natural language. See Fig.S4C, 789 

Fig.S4D and Fig.S4E where we speculate that two “not”, i.e., double negation, do not cancel each 790 

other out but rather have mitigation effects similar to that of “really not”). To avoid possible 791 

differences in neural representation of phrases with and without syntactic/semantic composition, 792 

the condition with no modifiers (“### ###”) was exclusively employed as a baseline comparison in 793 

the time-frequency analysis and was excluded from all other analyses. Each dimension (e.g., 794 

quality) was presented in two blocks, one block for each yes/no key orientation (8 blocks in total, 795 

see Procedure). Each phrase (e.g., “really really bad”) was repeated four times within one block. 796 

Thus, the overall experiment comprised 576 trials. The order of phrases was randomized within 797 

each block for each participant. The order of blocks was randomized across participants within the 798 

first and second half of the experiment. The yes/no order was randomized across participants. 799 

 800 

Procedure. Participants were familiarized with the linguistic stimuli through a short practice block 801 

that mimicked the structure of the experimental blocks. They were instructed to read affirmative or 802 

negated adjective phrases (e.g., “really really good”, “really not bad”) and derive the overall 803 

meaning of each adjective phrase, on a scale from 0 to 8, e.g., from “really really bad” to “really 804 

really good”. Each trial started with a fixation cross (duration: 750 ms), followed by each phrase 805 

presented one word at a time, each word for 100 ms (inter-word-interval: 250 ms, Fig.1B). After 806 

each phrase, a fixation cross was presented for 1500 ms. A number (i.e., probe) was then presented. 807 

To keep the task engaging, participants were required to indicate whether the probe number 808 

represented the meaning of the phrase on the scale (yes/no answer). The order of the yes/no response 809 

keys was swapped halfway through the experiment. Responses had no time limit. If matching (+/- 810 

one step on the scale from a likely predefined value), a green fixation cross was presented; if not, a 811 

red fixation cross was presented, and feedback was provided.  812 

While performing the experiment, participants lay supine in a magnetically shielded room while 813 

continuous MEG data were recorded through a 157-channel whole-head axial gradiometer system 814 

(Kanazawa Institute of Technology, Kanazawa, Japan). Sampling rate was 1000 Hz, and online 815 

high-pass filter of 1 Hz and low-pass filter of 200 Hz were applied. Five electromagnetic coils were 816 
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attached to the forehead of the participants and their position was measured twice, before the first 817 

and after the last block. Instructions, visual stimuli and visual feedback were back-projected onto a 818 

Plexiglas screen using a Hitachi projector. Stimuli were presented using Psychtoolbox v3 ([88]; 819 

www.psychtoolbox.org), running under MATLAB R2019a (MathWorks) on an Apple iMac model 820 

10.12.6. Participants responded to the yes/no question with their index finger of their left and right 821 

hand, using a keypad. For each trial, we also collected feedback scores and RTs. The overall 822 

duration of the MEG experiment was approximately 60 minutes. 823 

 824 

 825 

Data analysis 826 

Experiment 1 (and replication): RTs and mouse trajectories data. 827 

The RTs and mouse trajectory analyses were limited to trials with positive feedback (group mean 828 

feedback scores: 82%, SD: 13%), and RTs were limited within the range of participant median RTs 829 

± 2 SD.  830 

To evaluate differences in RTs between antonyms (“small”, “cold”, “ugly”, “bad”, “sad” vs. “big”, 831 

“hot”, “beautiful”, “good”, “happy”, “fast”, i.e., low vs. high poles in each scalar dimension), and 832 

between negated and affirmative phrases (e.g., “really really good” vs. “really not good”), and their 833 

interactions, median RTs of each participant were entered into 2 (antonym: low vs. high) x 2 834 

(negation: negated vs. affirmative) repeated-measures ANOVA.  835 

To evaluate differences in the final interpretations between antonyms in each scale, between 836 

negated and affirmative phrases, and their interactions, mean and standard deviation of the final 837 

responses of each participant were entered into a 2 (antonym: low vs. high) x 2 (negation: negated 838 

vs. affirmative) repeated-measures ANOVA. Post-hoc tests were conducted for significant 839 

interactions (correction = Holm). Effect sizes were calculated using partial eta squared (ηp2). 840 

To compare mouse trajectories over time across participants, we resampled participants’ mouse 841 

trajectories at 100 Hz using linear interpolation, up to 2 seconds, to obtain 200 time points for each 842 

trial. Furthermore, trajectories were normalized between -1 and 1. For visualization purposes, we 843 

computed the median of trajectories across trials for each participant, dimension (e.g., quality), 844 

antonym (e.g., “bad”) and modifier (e.g., “really not”), and at each timepoint.  845 

Finally, to quantitatively evaluate how the interpretation of each phrase changed over time, for 846 

every participant we carried out regression analyses per each time point, for affirmative and negated 847 

phrases separately (for a similar approach, see [45]). Note that, for the replication of Experiment 1, 848 

trials with “not not” were not included in this analysis, as the trajectories pattern was different 849 

compared to the other conditions with negation. The dependent variable was the mouse coordinate 850 
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along the scale (the scale which was swapped in half of the trials was swapped back for data analysis 851 

purposes), and the predictor was whether the adjective was a low or high antonym (e.g., “bad” vs. 852 

“good”). To identify the time windows where predictors were significantly different from 0 at the 853 

group level, we performed permutation cluster tests on beta values (10,000 permutations) in the 854 

time window from the onset of the adjective up to 1.4 s from adjective onset (i.e., 2 s from the onset 855 

of word 1). 856 

 857 

Experiment 2: Feedback scores and RTs data. 858 

To evaluate differences in feedback scores between low and high antonyms (“bad”, “cool”, “quiet”, 859 

“dark” vs. “good”, “warm”, “loud”, “bright”), and between negated and affirmative phrases (e.g., 860 

“really really good” vs. “really not good”), and their interactions, mean feedback score in the yes/no 861 

task of each participant, computed as an average of 0 (red cross) and 1 (green cross), were entered 862 

into 2 (antonym: low vs. high) x 2 (negation: negated vs. affirmative) repeated-measures ANOVA. 863 

The response time analysis was limited to trials with positive feedback. RTs outside the 864 

range of participant median RTs ± 2 SD were removed. To evaluate differences in RTs between 865 

low and high antonyms in each scale and between negated and affirmative phrases, and their 866 

interactions, median RTs of each participant in the yes/no task were entered into a 2 (antonym: low 867 

vs. high) x 2 (negation: negated vs. affirmative) repeated-measures ANOVA.  868 

 869 

Experiment 2: MEG data. 870 

Preprocessing. 871 

MEG data preprocessing was performed using MNE-python [89] and Eelbrain 872 

(10.5281/zenodo.438193). First, bad channels (i.e., below the 3rd or above the 97th percentile 873 

across all channels, for more than 20% of the entire recording) were interpolated. The MEG 874 

responses were denoised by applying least square projections of the reference channels and 875 

removing the corresponding components from the data [90]. Denoised data were lowpass-filtered 876 

at 20 Hz for the decoding analyses and at 40 Hz for the time-frequency analyses. FastICA was used 877 

to decompose the signal into 20 independent components, to visually inspect and remove artifacts 878 

related to eye-blinks, heartbeat, and external noise sources (removed components across blocks and 879 

participants: mean = 5.98, SD = 1.73). MEG recordings were then epoched into epochs of -300 ms 880 

and 2550 ms around the onset of the first, second, or third word (or probe) for the decoding analyses, 881 

and into epochs of -800 and 3000 ms around the onset of the first word for the time-frequency 882 

analyses (and then cut between -300 and 2550 ms for group analyses). Note that, for visualization 883 

purposes, only 1700 ms from the onset of the first word (i.e., 1000 ms from adjective onset) were 884 
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included in most figures (as no significant results were observed for control analyses run for later 885 

time windows). Finally, epochs with amplitudes greater than an absolute threshold of 3000 fT were 886 

removed and a baseline between -300 to 0 ms was applied to all epochs. 887 

 888 

Source reconstruction. 889 

Structural magnetic resonance images (MRIs) were collected for 10 out of 26 participants. For the 890 

remaining 16 participants, we manually scaled and co-registered the “fsaverage” brain to the 891 

participant’s head-digitized shape and fiducials [89,91].  892 

For every participant, an ico-4 source space was computed, containing 2562 vertices per hemisphere 893 

and the forward solution was calculated using the Boundary Element Model (BEM). A noise 894 

covariance matrix was estimated from the 300 ms before the onset of the first word up to the onset 895 

of the first word presentation. The inverse operator was created and applied to the neuromagnetic 896 

data to estimate the source time courses at each vertex using dynamic statistical parametric mapping 897 

(dSPM: [92]). The results were then morphed to the ico-5 “fsaverage” brain, yielding to time 898 

courses for 10242 vertices per hemisphere. We then estimated the magnitude of the activity at each 899 

vertex (signal to noise ratio: 3, lambda2: 0.11, with orientation perpendicular to the cortical 900 

surface), which was used in the decoding analyses (Spatial decoders).  901 

 902 

Decoding analyses. 903 

Decoding analyses were limited to trials with positive feedback and were performed with the MNE 904 

[89] and Scikit-Learn packages [48]. First, X (or the selected principal components) were set to 905 

have zero mean and unit variance (i.e., using a standard scaler). Second, we fitted an l2-regularized 906 

logistic regression model as estimator to a subset of the epochs (training set, Xtrain) and estimated y 907 

on a separate group of epochs (test set, ŷtest). We then computed the accuracy (AUC, see below) of 908 

the decoder, by comparing ŷtest with the ground truth y. For this analysis, we used the default values 909 

provided by the Scikit-Learn package and set the class-weight parameter to “balanced”.  910 

 911 

Temporal decoders. Temporal decoding analyses were performed in sensor-space. Before fitting 912 

the estimators, linear dimensionality reduction (principal component analysis, PCA) was performed 913 

on the channel amplitudes to project them to a lower dimensional space (i.e., to new virtual channels 914 

that explained more than 99% of the feature variance). We then fitted the estimator on each 915 

participant separately, across all selected components, at each time-point separately. Time was 916 

subsampled to 100 Hz. We then employed a 5-fold (for analyses in Fig.4B and Fig.4C) or 10-fold 917 

stratified cross-validation (for analyses in Fig.5A, Fig.5C, and Fig.6C) that fitted the estimator to 918 
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80% or 90% of the epochs and generated predictions on 20% or 10% of the epochs, while keeping 919 

the distributions of the training and test set maximally homogeneous. To investigate whether the 920 

representation of antonyms was comparable between affirmative and negated phrases, in a different 921 

set of analyses (i.e., decoding approach (i), Fig.6B) we fitted the estimator to all epochs 922 

corresponding to affirmative phrases and generated predictions on all epochs corresponding to 923 

negated phrases. In both decoding approaches, accuracy and probability estimates for each class 924 

were then computed. Decoding accuracy is summarized with an empirical area under the curve 925 

(rocAUC, 0 to 1, chance at 0.5).  926 

At the group level, we extracted the clusters of time where AUC across participants was 927 

significantly higher than chance using a one-sample permutation cluster test, as implemented in 928 

MNE-python (10000 permutations [93]). We performed separate permutation cluster tests for the 929 

following time windows: -700 to -350 ms from adjective onset (i.e., word 1), -350 to 0 ms from 930 

adjective onset (i.e., word 2), 0 to 500 ms from adjective onset (i.e., time window for lexical-931 

semantic processes [65,66]) and 500 to 1000 ms from adjective onset (i.e., to account for potential 932 

later processes).  933 

 934 

Expected outcome for the effect of negation on the representation of antonyms. Temporal decoding 935 

approach (i) and (ii) described above allow us to make specific predictions about the effect of 936 

negation on the representation of antonyms (Fig.6A).  937 

Approach (i) train set: affirmative phrases (in green in Table S2); test set: negated phrases 938 

(in red in Table S2). For our results to support predictions (1) No effect or (2) Mitigation, this 939 

decoding approach should show probability estimates of high and low adjectives significantly 940 

above the computed chance level and in the direction of the respective classes, indicating that the 941 

initial representation of adjectives in negated phrases is similar to that in affirmative phrases (left 942 

column, first and second row under decoding approach in Fig.6A). Conversely, for our results to 943 

support prediction (3) Inversion, this decoding approach should show probability estimates of high 944 

and low adjectives significantly above the computed chance level but in the direction of the opposite 945 

classes (i.e., swapped), as adjective representations would be systematically inverted in negated 946 

phrases (left column, third row under decoding approach in Fig.6A). Finally, we should observe at 947 

chance probability estimates in the case of (4) Change, where adjective representations in negated 948 

phrases are not predictable from the corresponding representations in affirmative phrases (left 949 

column, fourth row under decoding approach in Fig.6A).  950 

Approach (ii) train set: affirmative and negated phrases together (in green/red in Table S2); 951 

test set: affirmative and negated phrases separately (in green and red in Table S2). This decoding 952 
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analysis allows us to disentangle predictions (1) No effect from (2) Mitigation. For the results of 953 

this analysis to support prediction (1) No effect, we should observe quantitatively comparable 954 

probability estimates in affirmative and negated phrases, suggesting that negation does not change 955 

the representation of adjectives (right column, first row under decoding approach in Fig.6A). 956 

Conversely, in support of prediction (2) Mitigation, we should observe significantly reduced 957 

probability estimates for negated relative to affirmative phrases, suggesting less robust differences 958 

between low and high antonyms in negated phrases (right column, second row under decoding 959 

approach in Fig.6A). The outcome of predictions (3) Inversion would be at chance probability 960 

estimates for affirmative and negated phrases (as the model is trained on opposite representations 961 

within the same class; right column, third row under decoding approach in Fig.6A) and the outcome 962 

of (4) Change would be at chance probability estimates for negated phrases (as the model is trained 963 

on different representations within the same class; right column, fourth row under decoding 964 

approach in Fig.6A).  965 

Spatial decoders. Spatial decoding analyses were performed in source-space. We fitted each 966 

estimator on each participant separately, across 50 to 650 ms time samples relative to the onset of 967 

the adjective (to include the three significant time windows that emerge from the temporal decoding 968 

analysis in Fig.4B), at each brain source separately, after morphing individual participant’s source 969 

estimates to the ico-5 “fsaverage” common reference space. We employed a 5-fold stratified cross-970 

validation, which fitted the estimator to 80% of the epochs and generated predictions on 20% of the 971 

epochs, while keeping the distributions of the training and test set maximally homogeneous. 972 

Decoding accuracy is summarized with an empirical area under the curve (AUC, 0 to 1, chance at 973 

0.5). At the group level, we extracted the brain areas where the AUC across participants was 974 

significantly higher than chance, using a one-sample permutation cluster test as implemented in 975 

MNE-python (10000 permutations; adjacency computed from the “fsaverage” brain [93]).  976 

 977 

Time-frequency analysis. 978 

We extracted time-frequency power of the epochs (-800 to 3000 ms from the onset of word 1) using 979 

Morlet wavelets of 3 cycles per frequency, in frequencies between 3.9 and 37.2 Hz, logarithmically 980 

spaced (19 frequencies overall). Power estimates where then cut between -300 and 2550 ms from 981 

onset of word 1 and baseline corrected using a window of -300 to -100 ms from the onset of word 982 

1, by subtracting the mean of baseline values and dividing by the mean of baseline values (mode = 983 

‘percent’). Power in the low-beta frequency range (12 to 20 Hz) and in the high-beta frequency 984 

range (21 to 30 Hz [57,79]) was averaged to obtain a time course of power in low and high-beta 985 

rhythms. We then subtracted the beta power of affirmative phrases from that of negated phrases. At 986 
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the group level, we extracted the clusters of time where this difference in power across participants 987 

was significantly greater than 0, using a one-sample permutation cluster test as implemented in 988 

MNE-python (10000 permutations [93]). We performed separate permutation cluster tests in the 989 

same time windows used for the decoding analysis: -700 to -350 ms, -350 to 0 ms, 0 to 500 ms, and 990 

500 to 1000 ms from the onset of the adjective (note that no significant differences were observed 991 

in analyses ran for time windows after 1000 ms). We then computed the induced power in source 992 

space (method: dSPM and morphing individual participant’s source estimates to the ico-5 993 

“fsaverage” reference space) for the significant clusters of time in the low- and high-beta range 994 

separately and averaged over time. At the group level, we extracted the brain areas where the power 995 

difference across participants was significantly greater than 0, using a one-sample permutation 996 

cluster test as implemented in MNE-python (10000 permutations; adjacency computed from the 997 

“fsaverage” brain [93]). 998 

 999 

 1000 
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Supplementary Materials 1265 

Tables 1266 

 1267 

List of linguistic stimuli employed in Experiment 1 (behavior) 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### really 
### really 
### really 
### really 
### really 
### really 
### really 
### really 
### really 
### really 
### really 
### really 
really ### 
really ### 
really ### 
really ### 
really ### 
really ### 
really ### 
really ### 
really ### 
really ### 
really ### 
really ### 

small 
big 
cold 
hot 
ugly 
beautiful 
bad 
good 
sad 
happy 
slow 
fast 
small 
big 
cold 
hot 
ugly 
beautiful 
bad 
good 
sad 
happy 
slow 
fast 
small 
big 
cold 
hot 
ugly 
beautiful 
bad 
good 
sad 
happy 
slow 
fast 

really really 
really really 
really really 
really really 
really really 
really really 
really really 
really really 
really really 
really really 
really really 
really really 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 

small 
big 
cold 
hot 
ugly 
beautiful 
bad 
good 
sad 
happy 
slow 
fast 
small 
big 
cold 
hot 
ugly 
beautiful 
bad 
good 
sad 
happy 
slow 
fast 
small 
big 
cold 
hot 
ugly 
beautiful 
bad 
good 
sad 
happy 
slow 
fast 

not not 
not not 
not not 
not not 
not not 
not not 
not not 
not not 
not not 
not not 
not not 
not not 
really not 
really not 
really not 
really not 
really not 
really not 
really not 
really not 
really not 
really not 
really not 
really not 
not really 
not really 
not really 
not really 
not really 
not really 
not really 
not really 
not really 
not really 
not really 
not really 

small 
big 
cold 
hot 
ugly 
beautiful 
bad 
good 
sad 
happy 
slow 
fast 
small 
big 
cold 
hot 
ugly 
beautiful 
bad 
good 
sad 
happy 
slow 
fast 
small 
big 
cold 
hot 
ugly 
beautiful 
bad 
good 
sad 
happy 
slow 
fast 

 1268 

Table S1. Comprehensive list of the 108 stimuli used in the behavioral experiment, color coded for 1269 

each experimental condition; purple: low adjectives, orange: high adjectives; green: affirmative 1270 

phrases, red: negated phrases.  1271 
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List of linguistic stimuli employed in Experiment 2 (MEG) 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### really 
### really 
### really 
### really 
### really 
### really 
### really 
### really 
really ### 
really ### 
really ### 
really ### 
really ### 
really ### 
really ### 
really ### 

quiet 
loud 
cool 
warm 
dark 
bright 
bad 
good 
quiet 
loud 
cool 
warm 
dark 
bright 
bad 
good 
quiet 
loud 
cool 
warm 
dark 
bright 
bad 
good 

really really 
really really 
really really 
really really 
really really 
really really 
really really 
really really 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 

quiet 
loud 
cool 
warm 
dark 
bright 
bad 
good 
quiet 
loud 
cool 
warm 
dark 
bright 
bad 
good 
quiet 
loud 
cool 
warm 
dark 
bright 
bad 
good 

not not 
not not 
not not 
not not 
not not 
not not 
not not 
not not 
really not 
really not 
really not 
really not 
really not 
really not 
really not 
really not 
not really 
not really 
not really 
not really 
not really 
not really 
not really 
not really 

quiet 
loud 
cool 
warm 
dark 
bright 
bad 
good 
quiet 
loud 
cool 
warm 
dark 
bright 
bad 
good 
quiet 
loud 
cool 
warm 
dark 
bright 
bad 
good 

 1272 

Table S2. Comprehensive list of the 72 stimuli used in the MEG experiment, color coded for each 1273 

experimental condition; purple: low adjectives, orange: high adjectives; green: affirmative phrases, 1274 

red: negated phrases. Note that the condition with no modifiers (“### ###”) was only employed as 1275 

a baseline condition in the time-frequency analysis. 1276 
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 1294 
A. Experiment 1: Post Hoc Comparisons for RTs - Modifiers 
 95% CI for Mean Difference  

  Mean Difference Lower Upper SE t ptukey  
# #  # not  -0.120  -0.214  -0.026  0.030  -3.956  0.003  
   # really  -0.025  -0.119  0.069  0.030  -0.817  0.996  
   not #  -0.110  -0.204  -0.016  0.030  -3.642  0.009  
   not not  -0.079  -0.173  0.015  0.030  -2.617  0.181  
   not really  -0.087  -0.181  0.007  0.030  -2.876  0.096  
   really #  -0.006  -0.100  0.089  0.030  -0.182  1.000  
   really not  -0.090  -0.185  0.004  0.030  -2.988  0.071  
   really really  0.020  -0.074  0.114  0.030  0.654  0.999  
# not  # really  0.095  8.348e-4  0.189  0.030  3.139  0.046  
   not #  0.010  -0.085  0.104  0.030  0.314  1.000  
   not not  0.041  -0.054  0.135  0.030  1.338  0.920  
   not really  0.033  -0.061  0.127  0.030  1.080  0.977  
   really #  0.114  0.020  0.208  0.030  3.774  0.005  
   really not  0.029  -0.065  0.123  0.030  0.968  0.989  
   really really  0.140  0.045  0.234  0.030  4.610  < .001  
# really  not #  -0.086  -0.180  0.009  0.030  -2.825  0.110  
   not not  -0.055  -0.149  0.040  0.030  -1.801  0.682  
   not really  -0.062  -0.157  0.032  0.030  -2.059  0.502  
   really #  0.019  -0.075  0.113  0.030  0.634  0.999  

   really not  -0.066  -0.160  0.028  0.030  -2.171  0.426  
   really really  0.045  -0.050  0.139  0.030  1.470  0.869  
not #  not not  0.031  -0.063  0.125  0.030  1.024  0.984  
   not really  0.023  -0.071  0.117  0.030  0.766  0.998  
   really #  0.105  0.011  0.199  0.030  3.460  0.017  
   really not  0.020  -0.074  0.114  0.030  0.654  0.999  

   really really  0.130  0.036  0.224  0.030  4.296  < .001  
not not  not really  -0.008  -0.102  0.086  0.030  -0.258  1.000  
   really #  0.074  -0.020  0.168  0.030  2.435  0.266  
   really not  -0.011  -0.105  0.083  0.030  -0.371  1.000  
   really really  0.099  0.005  0.193  0.030  3.271  0.031  
not really  really #  0.082  -0.013  0.176  0.030  2.693  0.152  

   really not  -0.003  -0.098  0.091  0.030  -0.112  1.000  
   really really  0.107  0.013  0.201  0.030  3.529  0.013  
really #  really not  -0.085  -0.179  0.009  0.030  -2.806  0.115  
   really really  0.025  -0.069  0.120  0.030  0.836  0.996  
really not  really really  0.110  0.016  0.204  0.030  3.642  0.009  

 1295 
 1296 
 1297 
 1298 
 1299 
 1300 
 1301 
 1302 
 1303 
 1304 
 1305 
 1306 
 1307 
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B. Replication of Experiment 1: Post Hoc Comparisons for RTs - Modifiers 
 95% CI for Mean Difference  

  Mean Difference Lower Upper SE t ptukey  
# #  # not  -0.122  -0.265  0.020  0.046  -2.669  0.162  
   # really  -0.027  -0.170  0.116  0.046  -0.589  1.000  
   not #  -0.115  -0.258  0.028  0.046  -2.512  0.229  
   not not  -0.095  -0.238  0.048  0.046  -2.069  0.496  
   not really  -0.123  -0.266  0.019  0.046  -2.692  0.153  
   really #  -0.016  -0.159  0.127  0.046  -0.352  1.000  

   really not  -0.123  -0.266  0.020  0.046  -2.689  0.154  
   really really  0.022  -0.121  0.164  0.046  0.474  1.000  
# not  # really  0.095  -0.047  0.238  0.046  2.079  0.489  
   not #  0.007  -0.136  0.150  0.046  0.157  1.000  
   not not  0.027  -0.115  0.170  0.046  0.600  1.000  
   not really  -0.001  -0.144  0.142  0.046  -0.023  1.000  

   really #  0.106  -0.037  0.249  0.046  2.317  0.334  
   really not  -9.364e-4  -0.144  0.142  0.046  -0.020  1.000  
   really really  0.144  0.001  0.287  0.046  3.143  0.046  
# really  not #  -0.088  -0.231  0.055  0.046  -1.922  0.599  
   not not  -0.068  -0.211  0.075  0.046  -1.479  0.865  
   not really  -0.096  -0.239  0.046  0.046  -2.102  0.473  

   really #  0.011  -0.132  0.154  0.046  0.238  1.000  
   really not  -0.096  -0.239  0.047  0.046  -2.100  0.475  
   really really  0.049  -0.094  0.191  0.046  1.063  0.979  
not #  not not  0.020  -0.122  0.163  0.046  0.443  1.000  
   not really  -0.008  -0.151  0.135  0.046  -0.180  1.000  
   really #  0.099  -0.044  0.242  0.046  2.160  0.434  

   really not  -0.008  -0.151  0.135  0.046  -0.178  1.000  
   really really  0.137  -0.006  0.280  0.046  2.986  0.072  
not not  not really  -0.029  -0.171  0.114  0.046  -0.623  0.999  
   really #  0.079  -0.064  0.221  0.046  1.717  0.736  
   really not  -0.028  -0.171  0.114  0.046  -0.620  0.999  
   really really  0.117  -0.026  0.259  0.046  2.543  0.214  
not really  really #  0.107  -0.036  0.250  0.046  2.340  0.320  
   really not  1.182e-4  -0.143  0.143  0.046  0.003  1.000  
   really really  0.145  0.002  0.288  0.046  3.166  0.043  
really #  really not  -0.107  -0.250  0.036  0.046  -2.338  0.322  
   really really  0.038  -0.105  0.181  0.046  0.826  0.996  
really not  really really  0.145  0.002  0.288  0.046  3.163  0.043  

 1308 
 1309 

Table S3. We performed a one-way ANOVA and Tukey post-hoc tests on the average RTs across 1310 

trials per subject and per each modifier condition. Each line represents pairwise comparisons 1311 

between each pair of modifiers, for Experiment 1 (i.e., behavioral experiment, A) and its replication 1312 

(B). p-value and confidence intervals are adjusted for comparing a family of 9 estimates. Significant 1313 

p-values are highlighted in bold.  1314 
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Figures 1315 

 1316 

 1317 
 1318 

Figure S1. Trajectories for each scalar dimension. 1319 

Behavioral trajectories for low (purples) and high (oranges) antonyms over time, for each scalar 1320 

dimension (i.e., quality, beauty, mood, temperature, speed and size), for each modifier (shades of 1321 

orange and purple), and for affirmative and negated phrases. Black vertical dashed lines indicate 1322 

the presentation onset of each word: modifier1, modifier2 and adjective.  1323 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 22, 2023. ; https://doi.org/10.1101/2022.10.14.512299doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512299


47 
 

 1324 
 1325 

Figure S2. Temporal decoding of negation as a function of number of modifiers (i.e., 1326 

complexity), time-locked to the onset of the probe. 1327 

Decoding accuracy of negation over time, as a function of the number of modifiers (1 modifier: 1328 

dark red line and shading; 2 modifiers: light red line and shading). Significant time windows are 1329 

indicated by dark red (1 modifier) and light red (2 modifiers) shading. These results show that we 1330 

could significantly decode the difference between affirmative and negated phrases between 230 and 1331 

930 ms after the onset of the probe, especially when the phrase included two modifiers (1 modifier: 1332 

between 790 and 930 ms: p < 0.001; 2 modifiers: between 230 and 840 ms: p < 0.001). This suggests 1333 

that the representation of modifiers is reactivated at the stage when participants have to perform the 1334 

yes/no task. 1 modifier: “really ###”, “### really”, “not ###”, “### not”; 2 modifiers: “really 1335 

really”, “really not”, “not really”, “not not”. AUC = area under the receiver operating characteristic 1336 

curve, chance = 0.5 (black dashed horizontal line); the black vertical dashed line indicates the 1337 

presentation onset of the probe; aff = affirmative, neg = negated; each line and shading represent 1338 

participants mean ± SEM. 1339 

  1340 
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 1341 
 1342 

Figure S3. Temporal decoding of composed meaning. 1343 

We trained estimators on phrases where the predicted composed meaning was “low” vs. “high” in 1344 

90% of the trials and computed the accuracy of the model in predicting the representation of the 1345 

meaning “low” vs. “high” in the remaining 10% of the trials. For instance, for the quality dimension, 1346 

classes are: [0: bad] “### really bad”, “really ### bad”, “really really bad”, “### not good”, “not 1347 

### good”, “not not good”, “really not good”, “not really good”; and [1: good] “### really good”, 1348 

“really ### good”, “really really good”, “### not bad”, “not ### bad”, “not not bad”, “really not 1349 

bad”, “not really bad”. The composed meaning was derived from the behavioral results of 1350 

Experiment 1. (A) Temporal decoding analyses time-locked to the onset of the adjective do not 1351 

reveal any significant temporal cluster, suggesting that negation does not invert the representation 1352 

of the adjective to that of its antonym (e.g., “bad” to “good”), as would be predicted by prediction 1353 

(3) Inversion. (B) Temporal decoding analyses time-locked to the onset of the probe do not reveal 1354 

any significant temporal cluster, suggesting that negation does not invert the representation of the 1355 

adjective to that of its antonym (e.g., “bad” to “good”) after the presentation of the probe number. 1356 

For all panels: AUC = area under the receiver operating characteristic curve, chance = 0.5 (black 1357 

horizontal dashed line); black vertical dashed lines indicate the presentation onset of the adjective 1358 

in A and the probe in B; each line and shading represent participants' mean ± SEM. 1359 
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 1369 

 1370 

 1371 

Figure S4. Follow-up analyses of Fig.6C. 1372 

A. We conducted a follow-up analysis where we trained and tested on “low” vs. “high” antonyms 1373 

in affirmative and negated phrases separately, to further investigate lowering in decoding accuracy 1374 

when representations are closer on the semantic scale, as predicted by the mitigation hypothesis for 1375 

negated phrases. We found similar patterns to our main analysis. Results show that affirmative 1376 

phrases (green line) are associated with significantly above-chance decoding accuracy between 150 1377 

and 190 ms (p = 0.026; green shading and horizontal solid line) from adjective onset. No significant 1378 

above-chance decoding accuracy was found for negated phrases before ~400 ms from adjective 1379 

onset (390 to 440 ms, p = 0.009; red shading and horizontal solid line). B. We conducted a follow-1380 

up analysis where no trials were removed due to the feedback score. We found similar patterns to 1381 

our main analysis. Results show that affirmative phrases (green line) are associated with 1382 

significantly above-chance decoding accuracy between 100 and 190 ms and 230 and 280 ms from 1383 

adjective onset (p = 0.001 and p = 0.032 respectively, green shading and horizontal solid lines). 1384 

Negative phrases (red line) are associated with significantly above-chance decoding accuracy 1385 

between 350 to 440 ms from adjective onset (p < 0.001, red shading and horizontal solid line). 1386 

C.D.E. We conducted a series of follow-up analyses where we removed one condition (i.e., one 1387 

modifiers combination) at a time to evaluate its specific effect on adjective representation. C. “not 1388 

not” is removed from the analysis: affirmative phrases (green line) are associated with significantly 1389 

above-chance decoding accuracy between 130 and 280 ms from adjective onset (p < 0.001, green 1390 

shading and horizontal solid line), negative phrases (red line) are associated with significantly 1391 
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above-chance decoding accuracy between 200 to 250 ms and between 380 to 430 ms from adjective 1392 

onset (p = 0.011 and p = 0.049, red shading and horizontal solid lines). D. “really not” is removed 1393 

from the analysis: affirmative phrases (green line) are associated with significantly above-chance 1394 

decoding accuracy between 140 and 280 ms and between 370 and 420 ms from adjective onset (p 1395 

= 0.001 and p = 0.038, green shading and horizontal solid lines), negative phrases (red line) are 1396 

associated with significantly above-chance decoding accuracy between 190 to 260 ms from 1397 

adjective onset (p = 0.009, red shading and horizontal solid lines). E. “really really” is removed 1398 

from the analysis. affirmative phrases (green line) are associated with significantly above-chance 1399 

decoding accuracy between 150 and 190 ms from adjective onset (p = 0.025, green shading and 1400 

horizontal solid line), no significant above-chance decoding accuracy was found for negated 1401 

phrases. Overall, these results suggest that “not not” and “really not” have similar mitigation effects. 1402 

Conversely, and as expected, “really really” does not have mitigation effects on adjective 1403 

representation. 1404 
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 1426 

Figure S5. Differences between negated and affirmative phrases across time and frequencies. 1427 

Time-frequency spectrum of the differences between negated and affirmative phrases averaged 1428 

across all sensors and all participants. Frequencies are between 3.9 and 37.2 Hz, logarithmically 1429 

spaced. Black vertical dashed lines indicate the presentation onset of each word: modifier1, 1430 

modifier2 and adjective; colors indicate % differences in change relative to a baseline of -300 to -1431 

100 ms from the onset of word 1 (modifier1).  1432 
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 1433 

 1434 

Figure S6. Low- and high-beta power for negated and affirmative phrases across time.  1435 

The mean beta power for the no modifier condition was subtracted from the mean beta power of 1436 

affirmative and negated phrases, separately for low-beta (12-20 Hz, (A)) and high-beta (21-30 Hz, 1437 

(B)). The horizontal solid black line represents the no modifier condition (i.e., ### ###) after 1438 

subtraction (thus = 0), and the green and red lines represent beta power over time for affirmative 1439 

and negated phrases, respectively. Relative change (%) was obtained by subtracting the mean of 1440 

baseline values (-300 to -100 ms from the onset of word1) and dividing by the mean of baseline 1441 

values. Black vertical dashed lines indicate the presentation onset of each word: modifier1, 1442 

modifier2 and adjective; each line and shading represent participants' mean ± SEM. 1443 

 1444 
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