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Abstract1

Bacteria dynamically regulate cell size and growth rate to thrive in changing environments. While much2

work has been done to characterize bacterial growth physiology and cell size control during steady-state3

exponential growth, a quantitative understanding of how bacteria dynamically regulate cell size and growth4

in time-varying nutrient environments is lacking. Here we develop a dynamic coarse-grained proteome5

sector model which connects growth rate and division control to proteome allocation in time-varying en-6

vironments in both exponential and stationary phase. In such environments, growth rate and size control7

is governed by trade-offs between prioritization of biomass accumulation or division, and results in the8

uncoupling of single-cell growth rate from population growth rate out of steady-state. Specifically, our9

model predicts that cells transiently prioritize ribosome production, and thus biomass accumulation, over10

production of division machinery during nutrient upshift, explaining experimentally-observed size control11

behaviors. Strikingly, our model predicts the opposite behavior during downshift, namely that bacteria12

temporarily prioritize division over growth, despite needing to upregulate costly division machinery and13

increasing population size when nutrients are scarce. Importantly, when bacteria are subjected to pulsatile14

nutrient concentration, we find that cells exhibit a transient memory of the previous metabolic state due to15

the slow dynamics of proteome reallocation. This phenotypic memory allows for faster adaptation back to16

previously-seen environments when nutrient fluctuations are short-lived.17

18

Introduction19

In their natural environment, bacteria must be able to sense and adapt rapidly to time-varying environmen-20

tal stressors to survive and proliferate. Not surprisingly, bacteria exhibit tight regulatory control over their21

growth physiology and cell morphology [1, 2], and alter both in response to fluctuating nutrient perturba-22

tions, resulting in dynamic growth rate and cell size changes in time-varying environments [3–6].23

Significant research has gone into understanding how bacterial cell size is coupled to growth rate [7],24

DNA replication [8, 9], and gene expression [10] at steady-state, and how size homeostasis is maintained25
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despite division and growth rate noise [11, 12]. In addition, characterization of a large portion of the steady-26

state bacterial proteome across different growth conditions has improved understanding of the resource27

allocation strategies employed by bacteria in different environments [13–15]. Motivated by experimental28

data, various coarse-grained models of cell physiology have been developed in recent years, which explain29

the regulation of cellular growth rate and cell size control from underlying proteome allocation strategies at30

steady-state [10, 16–19]. However, bacteria do not exist naturally in such conditions, but instead thrive in31

rapidly changing environments. As a result, it remains unclear how cells sense changes in the environment32

and dynamically regulate division and growth in response.33

Bacteria reallocate their proteome to relieve metabolic or translational bottlenecks and increase growth34

rate under a given nutrient limitation [20], but do not always allocate resources in order to optimize steady-35

state growth rate [21]. For example, bacteria maintain a fraction of inactive ribosomes at steady state36

regardless of nutrient condition, presumably as a reserve which can be deployed to quickly increase growth37

rate during nutrient upshift [4, 22]. This apparent strategy highlights the challenges of resource allocation38

in dynamic environments, specifically that organisms must weigh the trade-offs between optimizing growth39

rate at steady-state and employing mechanisms that are costly at steady-state but that hasten adaptation40

to environmental changes [4, 23]. In addition, the molecular mechanisms connecting dynamic resource41

allocation to division control in bacteria are not clear, nor is our understanding of how these allocation42

strategies are affected by the temporal pattern of environmental fluctuations. Furthermore, it is not clear if43

bacterial size modulation is simply a byproduct of the complex cellular response to changing environmental44

conditions, or if it serves as an adaptive mechanism employed by the cell to improve fitness in time-varying45

environments.46

To understand the dynamics of bacterial growth physiology and size control in dynamic nutrient en-47

vironments, we have developed a coarse-grained proteome sector model which connects gene expression48

to growth rate and division control, and accurately predicts the cell-level E. coli response to nutrient per-49

turbations in both exponential and stationary phase seen in experimental data [5, 24]. This is done by50

integrating the dynamics of biochemical elements such as amino acids, ribosomes, and metabolic enzymes51

with decision-making rules for cell division. We applied this model to study how cells allocate intracellular52

resources dynamically in response to time-varying nutrient conditions, and found that growth rate and cell53

size control is governed by dynamic trade-offs between biomass accumulation and cell division. Specif-54

ically, our model predicts that bacteria temporarily divert resources to ribosome production over division55

protein production during nutrient upshift, resulting in a temporary delay in division and an overshoot in56

added cell volume per generation as cells prioritize biomass accumulation. Conversely, in response to57

nutrient downshift, cells prioritize division over growth, resulting in a rapid decrease in added volume58
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and interdivision time before relaxing to their steady-state values. As a result, population and single-cell59

growth rates uncouple outside of steady-state, potentially serving as an adaptive mechanism in time-varying60

environments. Lastly, when simulating pulsatile nutrient conditions, we find that growth rate and cell size61

recovery time after pulse cessation both increase with increasing pulse duration. Our model suggests that62

this transient memory of previous environments is a result of the slow dynamics of proteome reallocation,63

and provides a passive mechanism for faster adaptation in fluctuating environments.64

65

Results66

Dynamic proteome allocation in time-varying nutrient environment67

Bacterial cells integrate time-varying environmental information through a complex set of regulatory net-68

works to control gene expression. Despite this complexity, steady-state proteomics reveals that the expres-69

sion of proteins with similar function are regulated reciprocally in response to growth rate perturbations,70

such that various proteome sectors can be defined which coarse-grain the cellular milieu into a limited71

number of collective state variables [13–15]. To investigate E. coli cell size and growth rate control in time-72

varying nutrient environments, we developed a dynamic model which coarse-grains the proteome into four73

sectors: ribosomal, metabolic, division, and ”housekeeping” (Figure 1A). In this framework, the environ-74

ment contains time-varying nutrients with concentration c, which the cell imports and converts into amino75

acids using metabolic proteins with protein mass fraction φP. We assume that the kinetics of protein transla-76

tion are limited by the abundance of multiple metabolites, and so coarse-grain amino acid abundance into a77

single group of amino acid precursors, with mass fraction a. These precursors are consumed by translating78

ribosomes, with mass fraction φR, to synthesize each of the four proteome sectors. As a result, the ribosome79

mass fraction sets the cellular exponential growth rate, κ = dlnM/dt = dlnV/dt, such that growth rate is80

defined as81

κ = κt(a)(φR−φ
min
R )−µns , (1)82

where φ min
R denotes the fraction of ribosomes which are not actively engaged in translation, and κt(a) is83

the translational efficiency, which is dependent on amino acid availability such that translation becomes84

significantly attenuated at low intracellular amino acid levels (see Supporting Information Section I). Here85

we also coarse-grain the effects of protein turnover and assume that it is governed by a constant, nonspecific86

degradation rate constant, µns.87

In response to changes in nutrient availability, the cell reallocates its proteome by altering the fraction88

of translational flux, Jt(t) = κt(φR(t)−φ min
R ), devoted to each sector, such that the time dynamics of each89
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Figure 1. Dynamic resource allocation model for cell growth and division control in dynamic environments. (A)

Schematic of coarse-grained model of bacterial cell size control and growth physiology. Nutrients (c) are imported

by metabolic proteins (P) and converted to amino acid precursors (a), which are then consumed by ribosomes (R)

to produce proteins via translation. Division occurs once a threshold amount of division proteins (X) have been

accumulated. (B) By dynamically regulating the fraction of the total translational flux devoted to each proteome sector

i, fi(a(t)), in response to changes in a triggered by environmental changes, the cell alters its proteome composition,

and thus its size and growth rate. (C) The dependence of fR on a is the given by their steady-state relationship. The

path of fR in response to a nutrient-rich pulse is shown with colored circles corresponding to the timepoints shown

in (D). fR is initially given by its steady-state value in poor media (purple, closed). A shift to rich media results in a

transient increase in fR close to its maximum value (green, open), before relaxing back to its new steady-state value

(green, closed). The path during upshift is given by the dashed line. A shift back to poor media results in a temporary

drop in fR close to its minimum value (purple, open), before relaxing back to the original steady-state value (purple,

closed). The path during downshift is given by the dotted line. (D) Representative dynamics of amino acid mass

fraction (top) and proteome allocation fractions (bottom) during a nutrient pulse. See Table I for a list of parameters.

fX is calculated by assuming that division timing is set by the protein FtsZ (see Supporting Information section V).
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sector can be written as90

d
dt

φφφ(t) = Jt(t)( fff (t)−φφφ(t)) , (2)91

where the vectors φφφ(t) = [φR(t),φP(t),φX(t),φQ(t)] and fff (t) = [ fR(t), fP(t), fX(t), fQ(t)] denote the protein92

mass fraction and translational flux allocation fraction of each sector at time t, respectively. Proteomics data93

from E. coli reveal that a significant fraction of the proteome is invariant to environmental perturbations94

[13]. As a result, we define the ”housekeeping” sector such that it contains all the proteins whose proteome95

allocation is not growth rate dependent. Consequently, the mass fraction, φQ, and allocation fraction, fQ,96

are equal and remain constant. This assertion constrains the dynamics of flux allocation such that fR(t)+97

fP(t)+ fX(t) = 1− fQ = φ max.98

To model division control, we employ a threshold accumulation model of cell division in which division99

is triggered after a cell accumulates a fixed number of division proteins (collectively referred to as X pro-100

teins) [10, 17, 25, 26]. Since the total protein abundance per cell scales with growth rate [7, 8] and if the101

threshold remains constant [5], the average protein mass fraction of division proteins per cell necessarily102

decreases to maintain the constancy of the threshold, and thus must be part of the metabolic sector [12, 17].103

Consequently, we assume that allocation to the division sector, fX(t), is given by a linear combination of104

a basal allocation fraction, β , and a time-dependent fraction, f α
X (t), whose expression is co-regulated as105

part of a larger metabolic sector, f ∗P(t) = φ max
R − fR(t). As a result, the flux allocation constraint can be106

simplified such that φ max
R = φ max−β , where φ max

R represents the upper limit to allocation fraction devoted107

to ribosomal proteins. Using the simplified constraint, fX(t) can be expressed such that its time dependence108

is solely through fR(t), yielding109

fX(t) = α(φ max
R − fR(t))+β , (3)110

where α is the fraction of the co-regulated sector f ∗P(t) made up of division proteins. From Eq. (3), we111

see that when the fraction of cellular resources allocated to ribosome production increases, metabolic and112

division protein translational flux is necessarily downregulated, and vice versa (Figure 1B). This highlights113

the trade-off that cells must make between biomass accumulation and division in dynamic environments.114

Critically, as all other proteome sectors are defined in terms of fR(t), the time-dependence of fR must115

be specified. To do so, we assume that dynamic reallocation is driven by gene-regulatory networks which116

are dependent on the amino acid pool, such that the time dependence of fR is given through its dependence117

on the time-varying amino acid mass fraction a, thus fR(t) = fR(a(t)). The dynamics of a are coupled to118

Eq. (2) and are given by the difference in the metabolic and translational fluxes, such that da/dt = Jn− Jt ,119

where the metabolic flux, Jn, is proportional to the metabolic sector mass fraction, φP. Using the proteome120
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constraint relationship above, the dynamics of a can be written in terms of the proteome mass fractions,121

such that122

da
dt

= κn(a)(φ max−φR−φX)+µns−κt(a)(φR−φ
min
R ) , (4)123

where κn(a) is the nutritional efficiency (see Supporting Information Section I), and is dependent on a such124

that nutrient import becomes significantly attenuated at high values of a to reflect end-product inhibition of125

biosynthesis pathways and inactivation of nutrient importers at high intracellular amino acid concentrations126

[27].127

Changes in environmental nutrient availability result in a flux imbalance which alters the size of the128

amino acid pool. In this way, a acts as a read-out of flux imbalance, and so by altering proteome allocation129

in response to a, the cell can dynamically respond to nutrient changes. To obtain the functional form of130

fR(a(t)), we assume that a(t) sets the allocation fraction fR(a(t)) via the steady-state relation f ∗R(a), such131

that fR(a(t)) = f ∗R(a(t)). Furthermore, we assume that the cell maximizes translational flux at steady-state,132

which allows us to express fR solely in terms of the amino acid mass fraction, a. f ∗R(a) is shown graphically133

in Figure 1C, and predicts that proteome allocation is altered to reduce growth bottlenecks. Namely, when134

a is high, ribosome synthesis is prioritized in order to increase translation flux, but when a is low, metabolic135

protein synthesis is prioritized to increase nutrient import. Mathematically, any monotonically increasing136

function for fR(a) will produce this type of regulatory behavior. However, by choosing fR(a) to be given by137

f ∗R(a), we also ensure that translational flux is maximized at steady-state. This assumption of growth-rate138

maximization at steady-state has proved fruitful in previous theoretical models to explain bacteria growth139

laws [16, 27–31], and has been observed experimentally to be the case for many nutrient-limiting conditions140

[21]. Furthermore, it has been experimentally observed that E. coli cells evolve their metabolism towards a141

state that maximizes growth rate [32–34].142

Using the above framework, the dynamics of proteome allocation can be simulated in time-varying143

nutrient environments by numerically solving the coupled Eqs. (2) and (4) (Figure 1D). In response to a144

pulse of nutrients, allocation to ribosome synthesis increases drastically to its maximum value before slowly145

relaxing to its steady-state value in rich nutrients (Figure 1D). In contrast, allocation to division protein syn-146

thesis drops significantly before slowly relaxing to a lower steady-state value. Following cessation of the147

nutrient-rich pulse, the opposite trends occur for each allocation fraction, resulting in an overshoot in fX and148

undershoot in fR before both returning to their initial values (Figure 1D). Mechanistically, this regulation149

of ribosome expression is carried out by the signaling molecule guanosine tetraphosphate (ppGpp). ppGpp150

is synthesized when charged tRNA levels are low [35, 36]. As charged tRNA abundance is proportional151

to amino acid levels, ppGpp thus indirectly acts as a sensor of the amino acid pool. As a result, amino152
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acid abundance is inversely proportional to ppGpp concentration, such that [ppGpp] ∝ 1/a. In response to153

decreased amino acid levels, ppGpp levels increase and repress rRNA expression [35, 36]. Free ribosomal154

proteins, which can no longer bind rRNA, bind to their own mRNA and suppress additional ribosome155

translation [37]. Conversely, when amino acids are abundant, ppGpp levels decrease which de-represses156

ribosome production. In this way, the cell is able to regulate gene expression, and thus translational flux, by157

responding to changes in amino acid concentration.158

159

Growth-rate dependent increase in cell size arises from trade-off between biomass accumu-160

lation and division protein synthesis161

To test the validity of our resource allocation model, we first examined if the model can reproduce ex-162

perimentally observed steady-state physiological behaviors of bacterial cells, in particular the increase in163

average cell size with growth rate under nutrient perturbations (Figure 2A) [1, 7, 8]. To model cell size164

control, the dynamics of proteome allocation must be connected to the dynamics of the total number of165

division proteins per cell, X(t), as cells divide at t = τ after accumulating a fixed number of X proteins,166

X(τ) = X0. Using the relation X = φXV ρc/mX , where ρc is the protein mass density of the cell and mX is167

the mass of division molecule X, the dynamics of φX can be used to identify the dynamics of the fraction of168

the total number of division proteins required to trigger cell division, X̃ = X/X0,169

dX̃
dt

= γ fX JtV −µX X̃ , (5)170

where γ = ρc/X0mX and µX is the degradation rate of the division protein. We thus identify the division171

protein synthesis rate per unit volume as kP(t) = γ fX(t)Jt(t). By numerically solving proteome allocation172

and volume dynamics in conjunction with the division rules given by Eq. (5), single cell size and growth173

rate dynamics can be simulated in fluctuating nutrient environments.174

At steady-state, fR = φR (Eq. 2), allowing the rate of division protein synthesis kP to be written solely175

as a function of growth rate. In moderate to fast exponential growth conditions, the effects of protein176

degradation are negligible. Thus assuming κ � µX and κ � µns, we arrive at177

kP(κ) = γ(α(∆φ −κ/κt)+β )κ , (6)178

where ∆φ = φ max
R −φ min

R . When κ � µX , this model recapitulates the adder principle employed by E. coli179

to achieve size homeostasis [12], in which a constant amount of volume, ∆V , is added each generation180

irrespective of birth size, ∆V ≈ V0 ≈ κ/kP. We discuss deviations from this size control behavior in slow181

growth conditions, when degradation effects become important, in the last Results section. Substituting Eq.182

(6) into the expression for birth size yields a novel formulation of the size law [7], which links nutrient-183
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Figure 2. Growth-rate dependent tradeoff between biomass accumulation and division protein synthesis sets

steady-state bacterial cell size. (A) Steady-state relationship between population average cell size at birth and growth

rate. Solid line shows best fit of Eq. (7), yielding parameters γα , γβ , and κt , which are given in Table I. Experimental

data are taken from Refs. [8, 12]. (B) Non-monotonic dependence of the division protein production rate, kP, on

growth rate, where kP is estimated from experimental data as 〈κ〉/〈V0〉. Solid line given by Eq. (6), with parameters

given by best fit from (A). The allocation fractions to the division protein sector is shown by dotted lines.

limited growth rate to cell size (Figure 2A), such that184

V0(κ) =
1

γα(∆φ −κ/κt)+ γβ
. (7)185

By fitting Eq. (7) to experimental data [8, 12] (Figure 2A), we determine the unknown model parameters γα ,186

γβ , and κt (see Table I), which allows us to numerically predict the dependence of kP on κ . Interestingly,187

Eq. (6) predicts a non-monotonic dependence of the division protein production rate on growth rate, which188

is seen in experimental data when considering a wide range of growth rates (Figure 2B). This behavior can189

be understood by considering the effects of both fX and Jt , where here Jt = κ when degradation effects190

are negligible. As growth rate decreases, translational flux allocation to division protein production, fX ,191

increases while overall translational flux, Jt , decreases (Figure 2B). As such, at fast growth rates, decreasing192

κ results in an increase in kP due to an increase in fX . Conversely, at slow growth rates this increase in fX193

is dominated by the decrease in Jt , resulting in a reduction in kP. At intermediate growth rates translational194

flux and allocation are simultaneously moderately high, consequently yielding the maximum kP value.195196

The expression for cell volume given in Eq. (7) predicts a maximum growth rate given by κmax =197

κt(∆φ +β/α). This theoretical maximum, however, is nonphysical as it assumes that fX = φX = 0, which198

is never the case (Eq. 3). Growth rate is maximum when φR = φ max
R , thus giving an upper limit to the199

physical growth rate at κmax = κt∆φ . Eq. (7) also implies that there is no bound on cell size. However, our200

expression for fX constrains cell size to a finite value. When allocation to ribosomes is maximal, φX = β ,201

such that the maximum birth volume V0 is given by V max
0 = 1/γβ .202
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203

Cells transiently prioritize biomass accumulation over division during nutrient upshifts204

Recent experimental results show that in response to nutrient upshift, bacteria transiently delay division205

before increasing to a faster division rate in nutrient-rich media [5]. This behavior is seen clearly in the206

overshoot in the average interdivision time (τ) and added volume (∆) (Figure 3C-D). We hypothesized207

that this delay in cell division upon nutrient upshift results from cells prioritizing ribosome production208

over production of division proteins and metabolic proteins. Using our four-component proteome sector209

model, we simulated single-cell growth and size dynamics in response to nutrient upshift, and were able to210

quantitatively capture the experimental results (Figure 3A), as well as predict the dynamics of flux allocation211

and proteome composition. Importantly, our model was also able to capture growth rate dynamics during212

both upshift and downshift in many other experimental conditions examined recently by Erickson et al. [18]213

(Supplementary Figure 3).214

We simulated stochastic single-cell volume trajectories by introducing both growth rate and division215

noise during the cell cycle, in which only one daughter cell was tracked after each division event (Figure216

3A, bottom panel; see Supporting Information Section III). The single-cell level simulations quantitatively217

capture the average value and noise profile of added volume (∆), volume ratio (∆/V0), and the interdivision218

time (τ) dynamics seen experimentally (Figure 3B-D). In particular, the simulations reproduce the over-219

shoot in added volume and interdivision time following the nutrient upshift. As hypothesized, our model220

predicts that in response to increased nutrient availability, bacteria transiently divert resources away from221

division and metabolic protein production and instead prioritize ribosome production. This regulatory be-222

havior occurs because an increase in nutrient availability transiently causes a mismatch in the translational223

and metabolic fluxes, yielding a significant increase in the size of the amino acid pool, a. In response to224

the increase in a, the cell allocates translational flux to ribosome production at the expense of division and225

metabolic protein production (Figure 1C-D). This is seen in the temporary drop in division protein produc-226

tion rate, kP, and overshoot in ribosomal flux allocation, fR, during the time period during which growth227

rate increases, before both kP and fR relax to their new steady-state values (Figure 3A). Consequently, dur-228

ing this transitional period, bacteria delay division and add significantly more biomass than their birth size229

(Figure 3B). Importantly, a model in which division protein allocation is constant could not reproduce the230

observed experimental results, and instead predicted that cell size is invariant to nutrient perturbations (Sup-231

plementary Figure 4).232

233234

Growth-rate and cell size recovery time increases with nutrient pulse duration235

In order to predict bacterial growth rate and cell size control in more complex time-varying environments,236
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Figure 3. Cell size and division dynamics during nutrient upshift. (A) Simulation dynamics of average amino

acid mass fraction, proteome composition, allocation fraction, and division protein production for E. coli cells expe-

riencing nutrient upshift. Model parameters obtained by fitting growth rate dynamics to experimental data [5], and

are provided in Table I. Bottom: Single-cell volume trajectories were simulated using the model by implementing

division rules appropriate for E. coli. (B-D) Generation-averaged dynamics of cell volume ratio (B), added volume

(C), and interdivision time (D) from single-cell volume trajectories agree well with experimental data. Error bars

indicate the standard deviation of the time-binned mean for all time series.

we simulated single-cell trajectories experiencing a pulse of nutrient-rich media with duration τfeast. For237

each trajectory with pulse-length τfeast, we measured the time required (τrecovery) for both the growth rate238

and cell volume added per generation to return to the pre-shift level following downshift (Figure 4A,B). In-239

terestingly, in both cases τrecovery increased with increasing τfeast until saturating at a constant value (Figure240

4D), showing that bacteria transiently retain memory of the previous nutrient environment across gener-241

ations, allowing for quicker recovery to optimal steady-state growth when experiencing short timescale242

perturbations in nutrient quality. As cellular growth rate is determined by ribosome abundance (Eq. 1), we243

hypothesized that this phenotypic memory is conferred by the slow dynamics of proteome reallocation and244

thus ribosome accumulation, which occur on a significantly slower timescale than translational flux reallo-245
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Figure 4. Proteome reallocation and cell size regulation in pulsatile nutrient environment. (A) Average single-

cell growth rate simulations of bacteria experiencing a nutrient-rich pulse of duration τfeast. For each trajectory with

pulse-length τfeast, the time required following downshift for the growth rate to return to within 99% of the pre-shift

level was measured, given by τrecovery. (B) Average dynamics of added volume, ∆, for 300 single-cell trajectories

experiencing a nutrient-rich pulse as shown in (A). The time required to stabilize at the initial added volume after

pulse cessation is again given by τrecovery. (C) Example dynamics of simulation where τfeast = 0.75 h, and τfeast = 4 h.

In both cases, the top four panels are deterministic simulations of average intracellular dynamics, whereas the bottom

panel is the average dynamics of 300 single-cell stochastic simulations. (D) Quantification of the relationship of τfeast

and τrecovery from the simulations in (A) for two different degradation rates. (E) Quantification of the relationship of

τfeast and τrecovery from the simulations in (B). See Table I for a list of model parameters.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.03.510720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.03.510720
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

cation due to the half-life of proteins far exceeding that of mRNA [38]. As such, even though translation246

proceeds largely at the same rate as transcription in bacteria [39], the stability of previously translated genes247

allows for transmission of previous metabolic information across time by increasing the time required to248

reshape proteome composition [23]. In agreement with this hypothesis, we found that the time period over249

which cells maintain a memory of the previous state is equal to the time required to reshape the proteome to250

become optimal in the new environment (Figures 3A and 4D). In addition, simulations were repeated while251

including the nonspecific degradation rate, µns, and the increase in protein turnover resulted in a reduction in252

the recovery time and the duration of the phenotypic memory (Figure 4D). These results show that the delay253

between translational flux reallocation and reorganization of the proteome incurs a short term fitness cost254

by slowing adaptation, but confers a fitness advantage in fluctuating conditions as it allows cells to quickly255

return to optimal growth in the previous condition if the nutrient perturbation is short-lived. This phenotypic256

memory is also predicted to occur during starvation (Supplemental Figure 5), and is seen experimentally257

[40].258

As with τrecovery, the overshoot in added volume, δ∆, is also dependent on nutrient pulse length, such that259

increasing τfeast increases δ∆ before saturating at a constant value (Figure 4E). This again is a consequence260

of the slow dynamics of proteome reallocation and stems from the prioritization of ribosome production261

over production of division machinery in response to nutrient upshift. This dynamic allocation strategy262

results in delayed division events, and thus an overshoot in added volume.263

264

Cell division is prioritized over biomass accumulation during nutrient downshift265

Following the cessation of the nutrient-rich pulse, our model makes the interesting prediction that division266

protein synthesis is prioritized over ribosome production and biomass accumulation during downshift, as267

allocation to division protein synthesis transiently becomes maximal at the expense of ribosome allocation268

(Figure 1D). This behavior can be understood by recalling that fX and fP are co-regulated, and that an in-269

crease in fX necessarily requires a decrease in fR (Eq. 3). As a result, there is temporary increase in division270

rate (undershoot in τ) caused by an overshoot in kP (Figure 4C), while biomass accumulation temporarily271

slows (undershoot in κ , Figure 4C), leading to a rapid reduction in cell size (undershoot in ∆, Figure 4B).272

This prioritization of division protein synthesis is a surprising prediction given that following downshift273

cells are experiencing harsher environmental conditions. We propose explanations for this behavior in the274

Discussion section.275

Remarkably, our model predicts distinctly different recovery behavior in interdivision time following276

cessation of the nutrient-rich pulse, which is dependent on the time period of the nutrient pulse. This277

can be seen clearly by comparing the simulation dynamics of bacteria experiencing nutrient-rich pulses278
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of 0.75 and 4 hrs (bottom panel, Figure 4C). Specifically, cells experiencing longer pulse lengths exhibit279

a non-monotonic recovery of interdivision time, τ , which is not observed at shorter pulse durations. This280

behavior can be understood by considering the impacts of both the overall translational flux (Jt = κ) and the281

division protein allocation fraction ( fX ) on division protein synthesis rate, given by kP = γJt fX . Under both282

conditions, fX behaves similarly immediately following downshift, namely that allocation to division pro-283

tein production transiently increases before relaxing to its steady-state value (third panel from top, Figure284

4C). As kP is proportional to fX , at short pulse lengths the increase in fX causes an overshoot in kP follow-285

ing downshift (fourth panel from top, Figure 4C). Importantly, there is a temporary undershoot in growth286

rate following downshift under both conditions, however the magnitude of this growth rate undershoot is287

significantly larger at longer pulse lengths (second panel from top, Figure 4C) due to a greater mismatch288

in metabolic and translational fluxes. As kP is also proportional to κ , at longer pulse lengths the initial289

drop in kP is due to a temporary halt of translation. This is followed by a translation flux ramp-up in which290

division is prioritized, resulting in a temporary overshoot in kP, and an overall non-monotonic recovery291

behavior in τ . Importantly, when the quality of the nutrient-rich media is reduced but the pulse length292

remains long, there is a reduced growth rate undershoot following pulse cessation, and the non-monotonic293

recovery in τ is not seen (Supplemental Figure 6). Thus, this pulse length-dependent division control is a294

direct consequence of the dependence of kP on both fX and κ .295

296

Cell size-dependent protein synthesis regulates recovery from stationary phase under pulsed297

nutrient supply298

When the environmental nutrient supply has been exhausted, bacteria halt growth and enter stationary phase.299

Bacterial division control and size homeostasis behavior is markedly different in stationary phase compared300

to exponential phase, and a robust mechanistic model which captures size control dynamics in both phases301

of growth is still lacking. As such, we were interested if our model for dynamic proteome allocation would302

successfully predict cell size and division control upon exit from stationary phase. Under such conditions,303

the effects of protein turnover on cell physiology become crucial [41]. From Eq. (1) we see that although304

bacterial growth vanishes in stationary phase (κ = 0), protein production does not cease completely, but305

is balanced by the degradation rate such that the translational flux is given by Jt = µns = κt(φR− φ min
R ).306

This implies that a small fraction of ribosomes remain active and that amino acid supply comes solely307

from protein turnover. Importantly, division protein production scales with cell volume and persists in308

stationary phase, with kP = γ fX µns. As a result, the concentration of division proteins, cX , at steady-state in309310

stationary phase is set by the relative rates of protein production and degradation, namely cX = kPX0/µX ,311

predicting that cells maintain a constant concentration of division proteins in stationary phase, regardless of312
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Figure 5. Cell size and division control during exit from stationary phase. (A) Single-cell simulation dynamics of

ribosome allocation fraction, division protein production, growth rate, volume, and normalized X protein abundance

for E. coli experiencing pulses of nutrients with delay τpulse starting from stationary phase. In response to an influx of

nutrients, the cell temporarily decreases kP in order to produce ribosomes. (B) Cell volume and normalized division

protein abundance dynamics for a feed rate of 12 h−1. (C) Using the simulation setup shown in (A), the time from

pulsing onset until the first division event, Tlag (example trajectory shown in (B)), was measured as a function of

pulse frequency (feed rate) for several initial volumes, degradation rates, and division protein production rates. For

increased degradation, µX = 1 h−1. For increased kP, γα = 2.875 µm−3 and γβ = 0.875 µm−3. (D) Example single-

cell trajectories of cells with randomized initial volumes exited stationary phase via a single nutrient shift (dotted

line). (E) Negative correlation between birth volume and added volume shows that E. coli exhibit sizer dynamics

when exiting stationary phase, which is in agreement with experimental observations [42]. See Table I for a list of

model parameters.
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cell size. Because division is dependent on the total number of division proteins and not its concentration,313

we therefore expect larger cells to divide faster upon nutrient exposure.314

To examine if our model was able to capture cell division dynamics in different growth regimes, we315

simulated cell size dynamics of bacterial cells exiting stationary phase (i.e. starting at steady-state when316

κ = 0 and c = 0) through pulsatile nutrient exposure of constant duration with a variable separation time,317

τpulse (Figure 5A). As an increase in available nutrients results in an increase in the intracellular amino318

acid mass fraction (Supplemental Figure 7) [24], our model predicts that bacteria transiently prioritize ribo-319

some production over division immediately following pulse exposure, similar to nutrient upshift behavior320

predicted in exponential phase (Figure 5A, Figure 3, Supplemental Figure 7). Consequently, immediately321

following nutrient influx, kP drops and the degradation rate dominates, resulting in a sharp decrease in the322

division protein number, X . Importantly, in the time between pulses, X increases significantly due to an323

increase in the division protein production rate caused by an increase in cell volume. This stands in contrast324

to a previous model for division control in stationary phase [24], which assumed that bacteria immediately325

allocate resources to division during nutrient upshift, causing the division protein production rate to tran-326

siently increase before falling to some basal value if the pulse rate is of insufficient frequency. Despite the327

stark differences in molecular details between these models, we find that the time from pulse onset to first328

division, Tlag (Figure 5B), monotonically decreases with increasing feedrate (decreasing τpulse, Figure 5C),329

which is observed experimentally [24]. This behavior occurs because although bacteria initially prioritize330

ribosome production over division when exiting stationary phase, once the ribosome bottleneck is relieved,331

cells then upregulate division machinery. As a faster feedrate relieves this bottleneck quicker, a faster fee-332

drate results in a shorter lag time until division. Also consistent with experimental results [24], we find that333

increasing the division protein degradation rate (µx) increases Tlag, while increasing the protein production334

rate (kP) decreases Tlag (Figure 5C), highlighting the importance of the degradation and volume-specific335

protein synthesis rates in controlling division timing.336

As cells in stationary phase maintain a constant concentration of division proteins regardless of size, our337

model predicts that Tlag is dependent on initial volume in stationary phase, V0, such that larger cells divide338

faster (Figure 5C). Importantly, this dependence of division timing on initial cell size is seen experimen-339

tally [42], and is not captured by the model proposed in Ref. [24]. To more specifically investigate size340

control mechanisms when exiting stationary phase, we simulated single-cell volume trajectories of bacteria341

exiting stationary phase via a single nutrient upshift (Figure 5D; see Supporting Information Section III).342

Importantly, we found that the adder model for cell size control did not hold under this growth regime,343

but rather cells exhibited sizer-like behavior, which is characterized by the added volume being negatively344

correlated with birth volume (Figure 5E). This behavior has been observed experimentally [42], and again345
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can be understood from our threshold accumulation model, now considering the limit when µX � κ . In346

such environments, bacteria divide once reaching a set size given by Vd = µX/kP.347

348

Discussion349

We have developed a coarse-grained proteome sector model which quantitatively captures experimentally350

observed growth rate and size control dynamics in response to nutrient upshift in both exponential (Figure 3)351

and stationary phases (Figure 5). Our model highlights an important resource allocation trade-off that cells352

must make between optimizing for biomass accumulation or division in dynamic nutrient environments. In353

response to nutrient upshift, we predict that bacteria prioritize ribosome production in both exponential and354

stationary phase, resulting in faster biomass accumulation but delayed division. At the single-cell level, this355

results in a transient overshoot in both added volume and interdivision time. Interestingly, when simulating356

population level growth dynamics (see Supporting Information Section IV), we find that upshift results in a357

temporary reduction in population growth rate (Figure 6). This raises the question, in response to increased358

nutrient availability, why do bacteria temporarily slow proliferation? One possible explanation is that by359

delaying division, cellular resources are freed up which can be reallocated to quickly alleviate the growth360

bottleneck caused by a lack of ribosomes. As a result, cells are optimized for biomass accumulation instead361

of population growth, which allows for individual cells to adapt quickly to new environments. A second ex-362

planation is that because bacteria can quickly inactivate ribosomes [22] and recycle the amino acids through363

degradation, cells prioritize ribosome production as a method of energy storage when the environment is364

transiently nutrient-rich. Thus by producing ribosomes in response to nutrient upshift, bacteria simultane-365

ously relieve the growth bottleneck caused by lack of ribosomes, while also being able to quickly convert366

metabolites into proteins which can be reallocated in the future after the nutrients have been exhausted. This367

strategy could allow for bacterial survival in harsher fluctuating environments, when nutrients are few and368

far between.369

With our model able to capture nutrient upshift dynamics, we simulated bacterial growth rate and size370

control dynamics in response to pulsatile nutrient exposure to predict how resources are allocated in more371

complicated time-varying environments. In such conditions, growth rate recovery time following nutrient372

downshift, increased with increasing pulse length (Figure 4), showing that bacteria exhibit a transient mem-373

ory of the previous metabolic state. This phenotypic memory arises from the slow dynamics of proteome374

reallocation, and although it incurs a short term fitness cost, this passive mechanism can confer a fitness375

advantage in fluctuating conditions, as it allows cells to quickly return to optimal growth in the previous376

condition if the nutrient perturbation is short-lived.377

Our simulations also yielded surprising predictions for the size control dynamics following cessation378
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Figure 6. Cell proliferation dynamics during nutrient up-shift. Comparison of single-cell growth rate (black) and

population growth rate (blue) dynamics in response to nutrient-rich pulse, where the population growth rate is given

by the number of cell divisions per time. Dotted lines correspond to the start and end of the nutrient-rich period. See

Table I for a list of model parameters.

of nutrient-rich exposure (Figure 4C). In particular, our model predicts that bacteria transiently prioritize379

production of division proteins over production of ribosomes, resulting in a temporary undershoot in in-380

terdivision time and added volume. This result in striking, because it predicts that in response to onset of381

harsher environmental conditions, bacteria transiently upregulate the production of costly division machin-382

ery instead of prioritizing energy storage. In addition, this prioritization of division results in a temporary383

overshoot in population growth rate (Figure 6), meaning that the number of cells that must compete with384

each other for nutrients sharply increases in the new, less-favorable, environment. Several potential ex-385

planations for this behavior warrant exploration in future experimental and theoretical studies. First, by386

increasing division events, cells rapidly decrease cell size and thus increase surface-to-volume ratio [3, 43].387

As a higher surface-to-volume ratio results in greater nutrient influx [44, 45], decreasing cell size may388

confer an important fitness advantage despite the metabolic coast associated with upregulating division389

protein production. Second, bacteria may employ this increased rate of division as a population bet-hedging390

strategy which facilitates adaptation to fluctuating environments. Previous work has shown that partitioning391

of cellular contents at division is a major determinant of phenotypic heterogeneity [46]. Thus, by transiently392

increasing the number of division events, a bacterial population temporarily will exhibit a broader range393

of phenotypes. Phenotypic heterogeneity increases in adverse environments in both prokaryotic and eu-394

karyotic populations, and previous work has shown that heterogeneity promotes adaptation to time-varying395

stress by facilitating development of resistance-conferring mutations and/or by alleviating the fitness cost396

of constitutive expression of unnecessary proteins [47–50]. These results suggest that bacterial cells utilize397
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Table I. Model parameters. See Supporting Information for more details.

Parameter Description Value Growth condition Figure number

φ min
R inactive ribosome fraction [16] 0.049 all all

φ max
R maximum flux allocation to ribosome produc-

tion [16]

0.55 all all

at translation attenuation threshold [27] 10−4 all all

an feedback inhibition threshold [27] 10−3 all all

κ0
t (h−1) translational efficiency rate constant 2.6 all 1, 3-6

5.1 all 2

κ0
n,low (h−1) nutritional efficiency rate constant in nutrient-

poor media

5.29 exponential 1, 3, 4, 6

0 stationary 5

κ0
n,high (h−1) nutritional efficiency rate constant in nutrient-

rich media

10 all 1

62.8 all 3-6

µns (h−1) nonspecific degradation rate 0 exponential 1, 2-4, 6

0.1 stationary 5

µX (h−1) division protein degradation rate 0.6 all 1, 3-6

γα (µm−3) fitting parameter, contribution to kP from co-

regulated portion of fX

2.3 all 1, 3-6

3.6 all 2

γβ (µm−3) fitting parameter, contribution to kP from basal

allocation fraction of fX

0.7 all 1, 3-6

0.2 all 2

division control to increase population heterogeneity in response to harsh environmental perturbations, thus398

facilitating adaptation to new environments and conferring increased population fitness in time-varying399

environments.400
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