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Abstract 

Rapid advances in single-cell-, spatial-, and multi-omics, allow us to profile cellular 

ecosystems in tissues at unprecedented resolution, scale, and depth. However, both 

technical limitations, such as low spatial resolution and biological variations, such as 

continuous spectra of cell states, often render these data imperfect representations of 

cellular systems, best captured as continuous mixtures over cells or molecules. Based on 

this conceptual insight, we build a versatile framework, TACCO (Transfer of Annotations 

to Cells and their COmbinations) that extends an Optimal Transport-based core by 

different wrappers or boosters to annotate a wide variety of data. We apply TACCO to 

identify cell types and states, decipher spatio-molecular tissue structure at the cell and 

molecular level, and resolve differentiation trajectories. TACCO excels in speed, 

scalability, and adaptability, while successfully outperforming benchmarks across diverse 

synthetic and biological datasets. Along with highly optimized visualization and analysis 

functions, TACCO forms a comprehensive integrated framework for studies of high-

dimensional, high-resolution biology. 
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INTRODUCTION 

Single cell and spatial genomics methods provide high-dimensional measurements of biological 

systems at unprecedented scale and resolution (Stuart and Satija 2019; Xing et al. 2020). One of 

the key challenges is attaching meaningful and interpretable representations of the experimental 

measurements to denote cellular features, such as types, states, cell-cycle stages, or position 

within tissues (Wagner et al.  2016; Lähnemann et al. 2020) in order to decipher cellular 

dynamics, communication, and collective behavior. For several biological systems, annotated 

reference datasets exist that can be leveraged for annotating new, more complex and 

information-rich datasets. 

 

However, when the new dataset varies substantially from the reference, transferring annotations 

is a challenging task. A prime example is the transfer of annotations from scRNA-seq to spatial 

transcriptomics with supra-cellular spatial resolution. For instance, Slide-seq (Rodriques et al. 

2019; Stickels et al. 2020) uses spatially scattered beads to measure the combined expression of 

multiple neighboring cells, possibly of different types. Transferred annotations, like cell type, 

thus become compositional annotations, such as cell type fractions per bead (Fig. 1a). Similarly, 

for spatial data with sub-cellular or even single-molecule resolution (Zhuang 2021), 

compositional annotations of local neighborhoods allow segmentation-free annotation and cell 

assignment of single molecules. Furthermore, compositional annotations can arise not only from 

cell mixtures but also from ambiguity of categorical annotations (Fig. 1b). For example, 

technical noise, caused by dropout or contamination of ambient RNA can mask the true identity 

of an individual cell. Finally, biological continua as observed in cell differentiation or regulatory 

cellular spectra, also require probabilistic cell type assignments (Fig. 1b). 
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While different decomposition or mapping methods have been developed for specific use cases 

such as decomposition of spatial measurements (Cable et al. 2021; Achim et al. 2015; Satija et 

al. 2015; Rodriques et al. 2019; Elosua-Bayes et al. 2021), spatial single-cell mapping 

(Biancalani et al.; Nitzan et al.; Halpern et al.), or resolving trajectories (Wang and Klein 2021; 

Schiebinger et al. 2019; Aran et al. 2019; Herman et al. 2018), they are in fact conceptually 

similar. In particular, in each of these cases, proximity in expression space translates to higher 

contributions in the annotation, suggesting that it should be possible to develop a general 

unifying framework across these tasks.  

 

To tackle these challenges, we developed TACCO (Transfer of Annotations to Cells and their 

COmbinations), a fast and flexible computational decomposition framework (Fig. 1c). TACCO 

takes as input an unannotated dataset consisting of observations (e.g., the expression profiles of 

Slide-seq beads) and a corresponding reference dataset with annotations in a reference 

representation (e.g., single-cell expression profiles with cell-type annotations), and computes a 

compositional annotation of the unannotated observations (e.g., cell-type fractions of the Slide-

seq beads). Working in a common high dimensional space (e.g., gene expression space), TACCO 

determines these compositions using a variation of the Optimal Transport (OT) algorithm 

(Methods). At its core, OT creates a probabilistic map between the unannotated observations 

(e.g., Slide-seq beads) and the means of the classes in the reference representation (e.g., mean 

cell-type profiles) according to their relative similarity. Through the OT framework, users can set 

the similarity metric, constrain or bias the marginals of the mapping, and control the entropy of 

the annotation distributions (Methods). By default, TACCO uses Bhattacharyya coefficients as a 
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similarity metric (Methods), which are formally equivalent to the overlaps of probability 

amplitudes in quantum mechanics, and closely related to expectation values of measurements.  

 

To address concrete biological perturbations and experimental variations between the new and 

reference data, TACCO provides a set of generic boosters (Supp. Fig. 1), including: (1) Platform 

normalization (as in RCTD (Cable et al. 2021)), which introduces scaling factors in the 

transformation between experimental platforms (e.g., Drop-seq (Macosko et al. 2015) to Slide-

seq (Rodriques et al. 2019)); (2) Sub-clustering with multiple-centers to capture within-class 

heterogeneity; and (3) Bisectioning for recursive annotation, assigning only part of the 

annotation in each step and working with the residual in the next step to increase sensitivity to 

sub-dominant annotation contributions (Methods). 

 

TACCO is also equipped with different analysis tools that leverage the obtained compositional 

annotations (Fig. 1d). It adapts categorical annotation analyses to be applicable to mixture 

annotations across multiple samples, like the quantification of spatial co-occurrence (Palla et al. 

2021) of annotations to analyze long and short range spatial structure, and calculates enrichments 

of annotations. For spatial data, TACCO can combine spatial and annotation information to 

define regions with similar annotation compositions across samples. Moreover, TACCO can split 

compositionally annotated expression data (e.g., cell-type annotated Slide-seq beads) into 

categorically annotated expression data (e.g., split beads per cell-type) using a matrix-scaling 

algorithm, yielding a data that is amenable to standard downstream single cell analysis 

workflows. 
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We evaluated TACCO on four different use cases: (1) decomposing cell-type fractions from 

spatially convoluted gene expression (in-silico mixing scRNA-seq profiles for benchmarking, 

and decomposing colon Slide-seq (Stickels et al. 2020) bead measurements); (2) inferring the 

source cell types of imaged single molecules (without requiring segmentation of cell boundaries 

from images) for the somatosensory cortex imaged with osmFISH (Codeluppi et al. 2018); (3) 

recovering cell type for scRNA-seq data with harsh dropout and with ambient RNA 

contamination (on simulated data); and (4) predicting differentiation fates of early hematopoietic 

progenitor cells. As we show below, TACCO consistently achieved performance comparable to 

or better than other benchmarked methods, and excelled especially in speed and memory 

consumption.  
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Figure 1: TACCO, a flexible framework for the annotation and analysis of cells and cell-like objects. (a) TACCO 

generates annotations for new datasets of mixtures (top left) using an annotated single-cell reference (top right) and 

provides methods for downstream analysis of the resulting compositional annotations (bottom left). (b) Compositional 

annotations. Illustrative embeddings of cells and cell-like objects annotated (left) for mixtures (pie charts) of idealized 

pure contributions (triangles); (middle) as ambiguous annotations (triangles with colored borders) for technical artifacts 

like high ambient contributions or dropout levels; and (right) continuous annotations (circles) along biological continua. 

(c) Annotation process. Far left: A labeled reference dataset (e.g., scRNA-seq data, colored triangles) and a new dataset 

(e.g., Slide-seq beads, circles) is first presented in a common high dimensional space (e.g., expression space) optionally 

using platform normalization to make the datasets comparable. Near left: TACCO represents the reference categories by 

one or multiple representative profiles (large colored triangles). Near right: TACCO uses semi-unbalanced entropic 

optimal transport to transfer annotations from the reference categories to the new dataset (arrows), generating 

compositional annotations for the new datapoints (colored piecharts). To improve the capture of subdominant 

contributions, this process is iterated. Far right: TACCO provides as output compositional annotations for the new dataset. 

(d) TACCO analysis tools for compositional annotations, especially for spatial data. From left: spatial relationship analysis 

on long (tissue) and short (cellular neighbourships) length scales; inferring spatial regions by both spatial and annotation 

information; enrichment of compositional annotations; and splitting compositionally annotated count data into pure 

contributions for downstream analysis with single-cell analysis tools.  
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RESULTS 

We first validated TACCO on simulated Slide-seq data that were generated from an annotated 

(real) scRNA-seq atlas of the mouse colon as reference (Avraham-Davidi et al. 2022) (Fig. 2a) 

as weighted mixtures of cells drawn from the reference with Gaussian weights parameterized by 

bead size (Fig. 2a, Methods). We measured the L2 error between the ground-truth weights and 

the cell-type fractions inferred by TACCO for varying bead sizes. TACCO matched in 

reconstruction accuracy with RCTD (Cable et al. 2021), and consistently outperformed all other 

tested state-of-the-art methods (Fig. 2a). Moreover, TACCO was much faster and had lower 

memory consumption than RCTD, because RCTD fits a detailed model dense in parameters. For 

example, at bead size 1 (i.e., bead and cells are of comparable size), the L2 errors are 0.081, 0.23, 

and 0.084 for TACCO, NMFreg (Rodriques et al. 2019), and RCTD, respectively, while TACCO 

and RCTD runtimes were 84s and 1469s, and memory consumption was 2.7GB and 10.4GB, 

respectively. Post annotation, TACCO uses the mean reference profiles and the compositional 

annotation to distribute the actual counts per gene and observation between the cell types and 

thereby generates separate observations per cell type, keeping the full gene space intact. A 

subsequent dimensionality reduction then recovers the low-dimensional structure of the reference 

data (Fig. 2a, Supp. Fig. 2). 

 

We also applied TACCO to the annotation of real Slide-seq data from mouse colon with 

matching scRNA-seq (Avraham-Davidi et al. 2022) (Fig. 2b, Supp. Fig. 3). The different 

characteristics of scRNA-seq and Slide-seq data present annotation challenges. For example, cell 

composition can vary substantially, due to selection bias (much larger region assayed for 
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scRNA-seq than Slide-seq), or because of differential capture efficiencies (e.g., lower capture of 

fibroblasts by scRNA-seq(Slyper et al. 2020) compared to their true tissue prevalence). 

Moreover, Slide-seq’s low RNA capture rate yields much sparser data than scRNA-seq. Despite 

these challenges, TACCO recovered the expected layered structure of the colon along the 

muscularis-apical axis, short-range neighborship relations (closeness of stromal and immune 

cells with segregating epithelial cells), and long-range gradients on tissue structure scale from 

muscularis to apical plasma membrane (Fig. 2b, Supp. Fig. 3). 

 

Next, for single-molecule high resolution spatial imaging data (e.g. MERFISH (Xia et al. 2019) 

or osmFISH (Codeluppi et al. 2018)), TACCO includes a wrapper for annotating individual, 

spatially-imaged molecules to cell types, without prior cell segmentation. Standard procedures 

first segment the captured molecules either based on an image of the cells (Xia et al. 2019; 

Codeluppi et al. 2018; Eng et al. 2019; Littman et al. 2021) or by finding local maxima in 

spatially blurred expression fields (Park et al. 2021). Both can be challenging due to high cellular 

density, irregular cell shapes, and misplaced molecules (Palla et al. 2022; Prabhakaran et al. 

2021). TACCO circumvents these limitations by annotating each molecule. To this end, TACCO 

bins molecules using a Cartesian grid into spatial neighborhoods, computes cell-type annotations 

for each neighborhood using the reference profiles (as for Slide-seq above), and assigns each 

molecule an annotation in a manner that recapitulates the neighborhood’s annotation fractions 

(Methods). Applied to a mouse brain osmFISH (Codeluppi et al. 2018) dataset, TACCO 

successfully accounted for each molecule (Fig. 2c), compared to only 36% of molecules 

annotated following cell segmentation and cell-type classification (Codeluppi et al. 2018) (Fig. 

2c). Moreover, TACCO matched 59% of the molecular annotations in the original study, 
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compared to only 35% matched by Baysor (Petukhov et al. 2021), a recent single-molecule 

annotation method based on Bayesian Mixture Models (Fig. 2c, Supp. Fig. 4), and was 

substantially faster (TACCO: 2 mins; Baysor: 19 mins). For cells with non-spheroid shapes, such 

as astrocytes, single-molecule annotation is especially advantageous: While TACCO and Baysor 

annotate all molecules, the baseline segmentation and classification approach only accounts for 

17% of astrocyte marker molecules (Fig. 2c). Subsequent image-free segmentation to cell-like 

objects based on spatial and annotation information allowed TACCO to recover expression 

profiles with cell-type annotations, thus utilizing more of the available data and better 

representing distinct cell types than the baseline as indicated by a higher silhouette score for 

TACCO than the baseline (0.24 compared to -0.07; Methods, Fig. 2d, Supp. Fig. 4). Applying 

the TACCO segmentation on the Baysor annotation yields an even higher silhouette score (0.45) 

but at the cost of missing three categories in the annotation (Hippocampus, Inhibitory IC, 

Inhibitory Pthlh) and a large fraction of molecules in very small segmented objects (28.7% of 

molecules in objects with less than 20 molecules, compared to 8.3% for TACCO) resulting from 

a less spatially homogeneous single molecule annotation of Baysor compared to TACCO (Fig. 

2c, Supp. Fig. 4).  

 

TACCO’s downstream analyses can use this image-free segmented single-molecule dataset to 

evaluate short- and long-range spatial patterns by computing the cell type composition as a 

function of the distance to specific annotated cells. For example, we demonstrate this by 

recovering the layered structure of the mouse brain by calculating the distance to annotated 

hippocampal cells (Fig. 2e). Thus, TACCO’s spatial analyses efficiently bridge spatial scales 

from single-molecule data to tissue scale. 
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Figure 2: TACCO compositional annotation, cell segmentation and analysis of spatial expression data. (a) Analysis 

of in-silico mixtures. UMAP embedding of scRNA-seq profiles (dots) of mouse colon (i) (Avraham-Davidi et al. 2022), 

and of in-silico mixed scRNA-seq data before (ii) and after (iv) applying TACCOs splitting procedure into pure 

contributions. (iii) L2 error (y axis) of cell type annotations for each simulated bead size (x axis). Dashed lines: categorical 
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annotation methods. (b) Mapping cell annotations, expression regions and neighborhoods in Slide-seq data with spatial 

mixtures. (i-ii) a Slide-seq puck of normal mouse colon (Avraham-Davidi et al. 2022) colored by TACCO cell type 

annotations (i, colors are weighted and summed per bead) or by TACCO-defined regions (ii) (Methods, Supp. Fig. 3); 

(iii) short-range (up to 20µm) neighbourship enrichment z-scores over a background of randomly permuted annotation 

assignments (color bar) for each pair of cell annotations (rows, columns); (iv) long-range (up to 500µm) dependence of the 

composition of cell types around beads (log2(p(annotations|center)), y axis) at different distances from region 2 

(muscularis) (x axis) for each cell type annotation (color). (c) Comparison of TACCO and Baysor for single-molecule cell-

type-of-origin annotation performance based on single-molecule FISH: (i-iii) Entire section profiled by osmFISH 

(Codeluppi et al. 2018) (left) and zoom-in of a small region (right) with the positions and cell-type-of-origin annotation of 

each measured molecule (color, gray molecules are unannotated) using (i) the published annotation of cells from 

watershed-based segmentation of the poly(A) signal or (ii,iii) the segmentation-free single molecule annotation for cell-

type-of-origin by TACCO (ii) or Baysor (iii); (iv) Measured astrocyte marker gene expression on the zoom-in as ground 

truth for the astrocyte annotation in (i-iii). (d) Effective cell segmentation of osmFISH data by TACCO. tSNE embeddings 

of RNA profiles in cell-like objects from the published watershed-based segmentation (as in c (i)) colored by the published 

annotation (i), from TACCOs annotation-based segmentation (using the annotations in c (ii)) (ii-iii), colored by either 

TACCOs single molecule annotations summed per cell (ii) or by the published segmented cell annotation pulled back to 

single molecules (as in c(i)) and summed per cell (iii) (Methods, Supp. Fig. 4). (e) Recovery of layered tissue structure in 

osmFISH data. Long-range (up to 2000µm) dependence of the composition of cell types 

(p(annotations|center=hippocampus), y axis) recovered by TACCO for TACCO segmented objects at different distances 

from the hippocampus region annotation (x axis) for each cell type annotation (color). 

 

While TACCO is primarily a compositional annotation algorithm, it can be used as a cell type 

classifier by interpreting the compositional annotation as probabilities and quoting the class with 

maximum probability as the classification result. Indeed, TACCO performed well in recovering 

the ground-truth cell type classification of simulated data with either high dropout rates or high 

levels of ambient RNAs, as compared to bona-fide classifiers, SingleR (Aran et al. 2019) and 

SVM, and other compositional annotation methods turned into classifiers (Fig. 3a). Specifically, 

for data with high dropout rates, we simulated a reference dataset of distinct cell types using 

scsim (Kotliar et al. 2019), where the probability of dropout is a function of log mean expression 

(Zappia et al. 2017). Although each cell’s type is preserved, increasing this technical noise leads 

to increasingly “fuzzy” cell-type-specific signals. Based on the fraction of correctly labeled cells, 

TACCO outperformed both the classification methods and other compositional methods used as 
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classifiers, with larger performance margins in TACCO’s favor for higher dropout rates. In 

particular, SVM, a top-performing cell-type classification method (Abdelaal et al. 2019), 

performed poorly when the test data shifted in gene expression. For example, on the same in 

silico dataset with mild dropout rate (dropmidpoint=-1), TACCO correctly assigned 99.9% of 

cells, whereas SVM only captured 44.7% correctly. For ambient RNA contributions (Fig. 3b), 

we simulated a reference dataset of distinct cell types using scsim (Kotliar et al. 2019) with the 

ambient RNA model from CellBender(Fleming et al. 2019). TACCO outperformed all other 

baseline methods, based on the fraction of correctly labeled cells (Fig. 3b). 

 

TACCO also resolved continuous biological variability in the context of cell differentiation. To 

this end, we used a recent dataset (Weinreb et al. 2020) based on the LARRY method, where 

hematopoietic stem and progenitor cells were clonally barcoded, and clones were followed 

through subsequent cell division and differentiation, for cells profiled by scRNA-seq at 2, 4 and 

6 days. Most early cells (day 2) (96%) were undifferentiated (Weinreb et al. 2020), while day 4 

and 6 cells were mostly (61%) differentiated with distinct profiles, thus, for early progenitor cells 

we construct a proxy of their fate identities based on the distribution of the annotations of their 

clonal relatives (linked via a shared barcode)  (Fig. 3c). We then challenged TACCO to predict 

the fates of early day 2 cells (test data) from the cell-type labeled expression of later, more 

differentiated cells (reference). TACCO’s predictions are most correlated with the proxy clonal 

fates (Pearson’s r=0.73), outperforming five other available methods (r=0.19-0.59) (Fig. 3c). 
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Figure 3: TACCO addresses dropouts, ambient RNA and continuous annotations. (a) Dropout task. (i) UMAP 

embedding of the simulated scRNA-seq profiles without dropout; (ii) schematic of the probability of dropout (y axis) for 

genes with different mean expression (x axis); (iii) UMAP embedding of the simulated data from (i) but with dropout; (iv) 

Fraction of correctly annotated cells (y axis, defined by agreement of annotated type with maximal probability and the 

cell’s true annotation) at different dropout rate (x axis) for different methods (colors). Dashed lines: categorical annotation 

methods. (b) Ambient RNA task: (i) UMAP embedding of simulated scRNA-seq profiles without ambient contribution; 

(ii) schematic of test data generation, where ambient RNA is added to the cell’s profile; (iii) UMAP embedding of 

simulated of simulated scRNA-seq profiles from (i) but with additional ambient contribution; (iv) Fraction of correctly 

annotated cells (y axis, defined by agreement of annotated type with maximal probability and the cell’s true annotation) at 

different levels of ambient RNA contamination (x axis) for different methods (colors). Dashed lines: categorical 

annotation methods. (c) Differentiation task: (i-iii) Spring plot of scRNA-seq profiles from hematopoiesis(Weinreb et al. 

2020) colored by cells types at 4 and 6 day differentiation (i); eventual clonal fate of day 2 cells (ii), TACCO-predicted 

clonal fate of day 2 cells (iii);  (iv) Pearson correlation coefficient (y axis) of predicted and actual fate (as evaluated in 

(Weinreb et al. 2020)) for each method (colors). 

 

We designed TACCO with a focus on practical usability. In addition to its broad applicability to 

many use cases, TACCO has a modest resource footprint in terms of computing time, memory 
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requirements, and specialized hardware needs. We benchmarked TACCO’s computational 

requirements relative to those of baseline methods on standard x86 hardware on the “Dropout”, 

“Mixture”, and “Differentiation” tasks with a range of datasets sizes (103 to 106 observations) 

(Fig. 4). Among all compositional annotation methods in the comparison, TACCO has the 

lowest runtime and memory requirements, often outperforming the other methods by an order of 

magnitude or more. Only plain SVM, a categorical annotation method, achieved comparable or 

better runtime and memory requirements depending on the problem size. However, for 

categorical annotation, TACCO can also run without the bisectioning booster which improves 

TACCO’s runtime even further. TACCO achieves all that while maintaining a stable and very 

competitive L2 error of the annotated compositions with respect to the ground truth across tasks 

and dataset sizes.  
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Figure 4: Benchmarking TACCO’s runtime, memory requirement and accuracy of annotation transfer. Runtime 

(top), Memory (middle) and L2 error (bottom) of each method (colors) in the “Mixture” (left; with beadsize=1.0), 

“Dropout” (middle; with dropmidpoint=-1.00) and “Differentiation” (right) use cases, at different numbers of observations 

(cells or beads, x axis), ranging from 210 ≈ 1𝑘 to 220 ≈ 1𝑀, which are up/down sampled from the datasets in Fig. 2. 

Reference size is fixed at 214 ≈ 16𝑘. The maximum compute resources per run are 8 CPU cores for 8 hours with 8 GB 

memory each. Missing data points indicate that either compute time or memory was insufficient to complete the 

annotation. Methods with an asterisk (*) do not natively return (fractional) annotations of spatial measurements, which 

leaves the total annotation fractions in the spatial measurement as degrees of freedom. The wrapper fills that using the 

reference type fractions. Categorical annotation methods are dashed. 
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DISCUSSION 

In conclusion, TACCO is a compositional annotation approach and broader analysis package 

rooted in the realization that multiple tasks in high-dimensional biological representations rely on 

successfully resolving continuous mixtures over cells or molecules, either due to biological or 

technical reasons. To leverage annotations of a reference dataset to annotate another dataset, 

TACCO integrates core, interpretable annotation methods, such as OT, and computational 

manipulations addressing concrete data perturbations. Together, these yield a top-performing 

framework in terms of accuracy, scalability, speed, and memory requirements, making TACCO 

applicable for a wide range of annotation tasks. TACCO could be further extended by modeling 

continuous reference annotations (e.g., interpolating/extrapolating along a linear reference), by 

integrating additional priors such as spatial smoothness for annotating spatial transcriptomic 

data, and by integrating manifold learning techniques to better approximate expression distances 

from reference profiles. The analytical form of interpretable methods like OT also opens the door 

to theoretical work on the limitations and guarantees of projecting annotations from one data to 

another, leading to more informed method selection. While showing here several examples of 

compositional and categorical annotations, we anticipate that TACCO will help in deciphering 

many other datasets, such as in decomposing expression of overloaded scRNA-seq experiments 

(e.g., MIRACL-seq (Drokhlyansky et al. 2020), which overloads single nuclei in order to capture 

more rare cells) and in deciphering cells with complex continuous states, such as T cell spectra. 
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METHODS 

Overview of TACCO framework 

TACCO is based on three guiding principles: modularity, interpretability, and efficiency. 

TACCOs compositional annotation algorithm is built from a single fast core method, which is 

then supplemented by a diverse set of wrappers and "boosters", each providing additional 

functionality and features. The framework is completed by a set of downstream analysis tools, 

some of which are especially optimized for analysis involving compositional annotations. 

TACCO relies on Anndata and seamlessly integrates with the Scanpy (Wolf et al. 2018) 

ecosystem. 

Compositional annotation 

TACCO aims to annotate single cells and cell-like objects, like Slide-seq beads or Visium spots, 

with compositional annotations. In cases with discrete ground truth (e.g. a B cell vs. a fibroblast) 

we interpret the compositional annotation as probabilities of belonging to a category. Both 

objects 𝑏 and categories 𝑡 are in a common high dimensional data space, e.g. expression space. 

Generally, objects that are close to a category in that space, should have a high contribution of 

that category in the compositional annotation. 

 

The goal of the annotation is to find a matrix 𝜌𝑡𝑏 which gives the distribution of annotation over 

objects 𝑏 and categories 𝑡. Some applications imply certain natural choices for the “units” of 𝜌𝑡𝑏. 

For example, in the case of count data, the natural units are counts as well, such that 𝜌𝑡𝑏 gives 

the counts in object 𝑏 which is attributed to category 𝑡. The marginal distribution over categories 

is just the total number of counts ∑ 𝜌𝑡𝑏
 
𝑡 = 𝜌𝑏 per object 𝑏 and is known. The marginal 

distribution over objects ∑ 𝜌𝑡𝑏
 
𝑏 = 𝜌𝑡 is not known beforehand and is an output of the annotation 

process. As the marginals per object are known in general, it is equivalent to cite only the 

normalized distributions 𝜌̂𝑡𝑏 = 𝜌𝑡𝑏/𝜌𝑏 with ∑ 𝜌̂𝑡𝑏
 
𝑡 = 1 as an annotation result. 

Core annotation method by optimal transport 

TACCO’s core method is entropically regularized, partially balanced optimal transport (OT), an 

intrinsically fast variant of OT). Balanced OT solves the optimization problem 𝛾𝑡𝑏 =
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𝑎𝑟𝑔𝑚𝑖𝑛𝛾𝑡𝑏
∑ 𝛾𝑡𝑏𝑀𝑡𝑏

 
𝑡𝑏  under the positivity constraint 𝛾𝑡𝑏 ≥ 0 and the marginal constraints 

∑ 𝛾𝑡𝑏
 
𝑡 = 𝑐𝑏 and ∑ 𝛾𝑡𝑏

 
𝑏 = 𝑐𝑡 with the transport cost ∑ 𝛾𝑡𝑏𝑀𝑡𝑏

 
𝑡𝑏 =< 𝛾, 𝑀 >𝐹 given by the 

Frobenius inner product of a mapping matrix 𝛾𝑡𝑏 and a constant matrix 𝑀𝑡𝑏. 𝑀𝑡𝑏 encodes the 

cost of “transporting” or mapping an object 𝑏 to an annotation 𝑡 and must be chosen sensibly to 

yield a “good” mapping 𝛾𝑡𝑏. The annotation problem is solved if the marginals 𝑐𝑏 and 𝑐𝑡 and the 

cost 𝑀𝑡𝑏 can be tuned such that 𝛾𝑡𝑏 = 𝜌𝑡𝑏. 

 

The marginal over annotations is known from the data 𝑐𝑏 = 𝜌𝑏, while 𝑐𝑡 = 𝜌𝑡 is not. This can be 

used to encode prior knowledge about the data, e.g. from a reference distribution. To support the 

general case when such a reference distribution is not available, partially balanced OT is used: 

instead of fixing the type marginal exactly, a Kullback-Leibler divergence penalty is imposed 

scaled with a parameter 𝜆. This can be used to tune the amount of trust put in the prior 

distribution.  

 

Choosing a well performing cost function is more ambiguous. The cost function uses the 

information in data space and assigns a dissimilarity to each object-category combination. A 

straightforward choice is the cosine distance, or, for expression count data, the cosine distance on 

normalized and log1p-transformed data. In our benchmarks, the cosine distance on transformed 

data led to better results (Supp. Fig. 1), but the transformation is rather specific for count data. 

Inspired by the overlap of states in quantum mechanics, a different measure, the Bhattacharyya 

coefficients, is generally used, with similar performance and without direct reference to counts. 

Bhattacharyya coefficients are a general measure of the overlap of probability distributions and 

defined as 𝐵𝐶(𝑝, 𝑞) = ∑ √𝑝𝑔𝑞𝑔
 
𝑔  for two probability distributions 𝑝 and 𝑞 in the data space. To 

allow the user to adapt the method to the needs of their particular application, TACCO 

implements several other metrics, as well as making all scipy metrics available. 

 

OT’s optimization problem is in general non-convex and numerically expensive. However, using 

entropic regularization makes it strictly convex and efficiently solvable by using the Sinkhorn-

Knopp matrix scaling algorithm. For entropic regularization, the tunable entropy regularization 

term 𝜖 𝛺(𝛾𝑡𝑏) = 𝜖 ∑ 𝛾𝑡𝑏𝑙𝑜𝑔(𝛾𝑡𝑏) 
𝑡𝑏  is added to the objective function. This term favors mappings 

that do not map a given object to a single annotation.  
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Alternative annotation methods 

The core, optimal transport based annotation method can be swapped by a number of other built-

in methods, including non-negative least squares (NNLS) or SVM, or by wrapped external 

methods from both Python and R, including NMFreg(Rodriques et al. 2019) or RCTD(Cable et 

al. 2021). Custom core methods can also be added using a functional interface. The wrapped 

external and custom functions may already include “booster” functionality (below). For example, 

RCTD already contains platform normalization. Many of the simple built-in methods are 

amenable to hand optimization, for example by supporting data sparsity consistently, which 

makes them even faster. All of the built-in methods are generally optimized for standard x86 

hardware, but wrapped external methods may use for example GPU acceleration (e.g., 

Tangram(Biancalani et al. 2020)). 

 

Overview of boosters 

Boosters can improve the performance of the core method or provide support for ‘missing 

features’ e.g., for platform normalization, for using sub-type variability to enhance the type 

representation in single-cell data, for creating a deconvolution method from a categorical 

annotation method and the other way round (Supp. Fig. 1). They can be combined flexibly to 

adapt to special requirements for specific applications. The modularity introduced by boosters 

makes it straightforward to "unbox" TACCO and understand what each part does. While most 

boosters do have some overhead in runtime, in the end they all do the heavy lifting by calling the 

fast core method one or several times and transforming its inputs and/or outputs. 

Platform normalization 

Dramatic differences in datasets can arise solely from differences in experimental technique that 

impact the profiled cellular compartments (e.g., single-cell vs. single-nucleus), cellular 

compartments (due to differential capture of cells of different types), or gene biases. Annotation 

of data from one platform using a reference of another platform is much more difficult without 

accounting for these platform-dependent biases(Cable et al. 2021). This booster can be safely 

disabled if no platform effects are expected. 
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A platform normalization step mitigates platform-specific effects by rescaling data from one 

platform to make it comparable to data from a different platform, separately in each dimension 𝑔 

of the data space, e.g. separately per gene. The necessary rescaling factors are estimated from 

data. A related but simpler approach compared to (Cable et al. 2021) is pursued, making less 

assumptions and therefore usable across a broader range of applications. 

 

The representations of the categories 𝑡 as sets of vectors in data space 𝜋𝑔𝑡
𝐴  and 𝜋𝑔𝑡

𝐵  on the two 

platforms 𝐴 and 𝐵 are linked to each other via the platform normalization factors 𝑓𝑔
𝐴𝐵 as 𝜋𝑔𝑡

𝐴  =

 𝑓𝑔
𝐴𝐵 𝜋𝑔𝑡

𝐵 . If the category representations 𝜋𝑔𝑡
𝐵  for platform 𝐵 and the (pseudo-bulk) category 

marginals 𝜌𝑡
𝐴 for platform 𝐴 are known, the data space marginals 𝜌𝑔

𝐴 can be written as 𝜌𝑔
𝐴  =

∑ 𝜋𝑔𝑡
𝐴  𝜌𝑡

𝐴 
𝑡  = 𝑓𝑔

𝐴𝐵 ∑  𝜋𝑔𝑡
𝐵  𝜌𝑡

𝐴 
𝑡 , and therefore 𝑓𝑔

𝐴𝐵  =  𝜌𝑔
𝐴/ ∑ 𝜋𝑔𝑡

𝐵  𝜌𝑡
𝐴 

𝑡 . The category marginals 𝜌𝑡
𝐴 

are themselves usually a result of the annotation procedure and used here as input to a 

preprocessing step for the procedure. However, an iterative scheme can also be used. Starting 

with the assumption that the annotation marginals are identical to the reference (which is 

reasonable for example if matched spatial and single cell data are available), most of the gene-

wise platform effect can be already captured. Next, platform normalization is re-run after a first 

round of cell-typing using improved type fractions, and the process is iterated until the 

normalization factors are stable. In practice, this procedure converges very rapidly with the 

initial step being by far the most relevant one. 

 

After determining the gene-wise platform normalization factors 𝑓𝑔
𝐴𝐵, they are used to rescale the 

data space in either the reference or the test data, or equivalently to work in the units of the test 

or the reference data. As the probabilities and the resulting annotation distribution are given in 

terms of these units, choosing test data units or reference data units can lead to quite different 

results. Which option should be preferred depends on the use case and downstream analyses. 

Here, test data units are chosen to retain integer count data for object splitting. 

Multicenter 

In many cases, there are multiple observations per annotation category in the reference dataset, 

as is the case in single-cell data. To integrate the variability of these observations while 

maintaining speed, the observations per category are subclustered with k-means clustering to get 
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multiple mean profiles per category. The annotation function is then called with this sub-

annotation and its result is summed over the sub-annotations to give an annotation in terms of the 

original categories. When the reference was already finely annotated, no improvement is 

expected from this booster, which could then lead to a worse performance, because less data is 

available per sub-annotation to average noise and the reference gets overfitted. 

Bisectioning 

Some annotation methods can be biased towards low entropy annotations, such that they may 

overweigh dominant categories in mixtures (the extreme case is a categorical classifier). Such 

methods can be adapted to compositional annotation by running the annotation method 

iteratively. In each iteration, the annotation is not used as the final result, but instead a certain 

fraction of it is used to subtract a reconstructed approximation of the data from the original data. 

The residual is again subjected to the annotation method, while a fraction of the annotation result 

is added to the final annotation result. This procedure is very similar to gradient boosting. 

Bisectioning is useful when the objects are additive mixtures of the annotations in the data space. 

If the data consist (mainly) of objects which are best described by a single annotation, this 

booster can decrease performance, for example by resolving the ambient contribution in single 

cell data. 

Object splitting 

The annotation method generates an assignment of a composition of annotation categories to 

every observation. Generally, each observation is associated with more than one category with 

non-zero contribution. When the categories are cell types, this can be problematic for 

downstream applications that require the expression profiles of single cells as input, i.e. pure 

profiles that can be attributed to a single cell. For example, as cell-type-related expression 

constitutes a strong signal, analysis of expression programs is easier across cells of shared type. 

Thus it is desirable to derive several “virtual” observations for every real observation, which 

correspond to the pure contribution of each annotation category. 

 

A similar idea was proposed in (Cable et al. 2021), where the expected contribution of each cell 

type to the expression of one Slide-seq bead is approximated. In that approach, cell type fractions 

that were reconstructed for every bead are taken as input in a Bayesian analysis, along with type-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.02.508471doi: bioRxiv preprint 

https://paperpile.com/c/VnupR0/9k3Er
https://doi.org/10.1101/2022.10.02.508471
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

specific expression profiles and the bead-count matrix to yield expected reads per gene, bead, 

and cell-type. The result, however, lacks consistency with the annotation and the measured count 

matrix in the sense that the marginal over genes is not recovered. Here, we follow a similar 

strategy, but we directly integrate marginals as constraints of a matrix equivalence scaling 

problem in a data-driven frequentist approach. 

 

In this approach, data generation is modeled as drawing single molecules labeled with gene 𝑔, 

cell type 𝑡, and observation/bead 𝑏 from the sample, which constitutes the central object: the 

joint probability 𝑝(𝑔𝑡𝑏) for a given molecule to be of gene 𝑔, cell type 𝑡, and bead 𝑏. In the 

actual experiment only 𝑔 and 𝑏 are measured, yielding 𝑝(𝑔𝑏)  = ∑ 𝑝(𝑔𝑡𝑏) 
𝑡 , the “t-marginal”. 

From the reference data, the reference profiles 𝑝(𝑔|𝑡) = ∑ 𝑝(𝑔𝑡𝑏)/𝑝(𝑡) 
𝑏  are available, and from 

the annotation process the annotation result 𝑝(𝑡𝑏)  = ∑ 𝑝(𝑔𝑡𝑏) 
𝑔 , the “g-marginal” is obtained. 

𝑝(𝑔𝑡𝑏) is modeled with a Bayesian-inspired product ansatz: 𝑝(𝑔𝑡𝑏)  = 𝑝(𝑔𝑡) 𝑛(𝑔𝑏) 𝑛(𝑡𝑏), with 

free parameters 𝑛(𝑔𝑏) and 𝑛(𝑡𝑏). These are fixed by enforcing the t- and g-marginals.1 The 

ansatz can be interpreted as adjusting the cell-type profiles and pseudo-bulk annotation with 

object-wise scaling factors per data dimension 𝑔 and annotation category 𝑡, such that the 

measurement and the annotations are reproduced exactly. To determine the parameters from the 

marginals we have to solve a separate matrix equivalence scaling problem per object 𝑏. 

 

Matrix equivalence scaling problems are guaranteed to have a solution if the matrix to be scaled, 

i.e. 𝑝(𝑔𝑡), has only positive entries. Therefore, a small positive number is added to all the 

elements of 𝑝(𝑔𝑡) to make the problem well-defined. These problems can be solved by iterative 

normalization of the columns and rows of 𝑝(𝑔𝑡). This simple algorithm is known under many 

names, e.g. the RAS algorithm or for doubly stochastic matrices as the Sinkhorn-Knopp 

algorithm, and it is also the algorithm used to solve OT efficiently. In contrast to OT, where there 

is a single matrix scaling problem, here a separate problem is solved for every object. Although 

this initially seems like a practical performance problem, these problems can be solved in 

parallel and use the same data, leading to speedups by reducing memory accesses. Moreover, the 

                                                
1 Setting n(tb) to p(tb) one can reproduce the result from Cable et al. by determining n(gb) from the t-
marginal, ignoring the g-marginal i.e. the annotation result.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.02.508471doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.02.508471
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

sparsity of the count frequency matrix 𝑝(𝑏𝑔) can be used to implement the RAS algorithm very 

efficiently for the problem at hand. 

 

By rescaling the resulting 𝑝(𝑔𝑡𝑏) with the total weight per object (e.g., total counts per cell for 

sequencing data) a consistent annotation-resolved split of the measurement is obtained, 

consisting of floating point numbers. For expression count data, this split generally includes 

many values much smaller than 1. To optimize sparsity and obtain integer counts, an option is 

available to round this result by flooring and re-distributing the remaining reads (via multinomial 

sampling from the remainders). The resulting split count matrix retains biological signal and can 

be used in standard downstream analyses (Supp. Fig. 2). 

 

Single molecule annotation 

To annotate single molecules by cell type assignment, TACCO first bins the single molecule data 

in space to generate aggregate cell-like objects. TACCO then annotates them either using an 

internal or wrapped external methods. Subsequently, TACCO maps the resulting compositional 

annotation back to the single molecules, as follows. First, object splitting is used to distribute 

molecules to annotations, resulting in a probability for every molecule species in the bin to have 

a certain annotation. This annotation is then distributed randomly among the molecules of that 

molecular species, such that each molecule has only a single annotation and the population of 

molecules reproduces the annotation probability. Because spatial binning can introduce arbitrary 

boundary artifacts in the definition of local neighborhoods for molecules, TACCO repeats the 

binning and annotation for 𝑁 (usually 2-3) spatial shifts of the cartesian grid in steps of 1/𝑁 of 

the grid spacing per spatial dimension. For 𝑑 spatial dimensions this results in 𝑁𝑑 annotations 

per molecule. The final annotation of each molecule is then determined by a majority vote. This 

simple single-molecule annotation is only feasible with fast annotation methods, which can be 

run multiple times on differently binned data in a reasonable amount of time. 

Image-free segmentation 

An image-free, density-based cell segmentation approach uses the per-molecule annotation to 

determine molecule assignments at critical cross category boundaries. We assume that the exact 

assignment of boundaries within a category is not very important as long as it gives rise to a 
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reasonable size of the segmented objects. The segmentation is implemented as graph-based 

hierarchical spectral clustering. 

 

As the number of single molecules can easily be of the order of 10
9
, an efficient Euclidean sparse 

distance matrix computation is required. As scipy’s sparse distance matrix calculation is serial 

and too slow for this application, a custom, fast, parallel, and still generally applicable algorithm 

was developed and implemented. After calculating the distances 𝑑𝑖𝑗
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

 between molecules 𝑖 

and 𝑗 in position space, a distance contribution is added in quadrature which is derived from the 

single-molecule annotation 𝑑𝑖𝑗
𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 to get a combined distance: 𝑑𝑖𝑗

𝑡𝑜𝑡𝑎𝑙 =

√(𝑑𝑖𝑗
𝑠𝑝𝑎𝑡𝑖𝑎𝑙)

2

+ (𝑑𝑖𝑗
𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

2
. The annotation contribution can be either 0 within an annotation 

and infinity between annotations, automatically derived using distances between the expression 

profiles of the annotations, or manually specified. As the clustering works on affinities and not 

on distances, the distances have to be transformed to affinities, which is done by a Gaussian 

kernel with a subcellular distance scale. 

 

As the number of molecules is so large, the clustering algorithm has to be fast and scalable, work 

entirely on sparse matrices, and cut the neighbourship graph at sensible places to generate 

reasonable cells-like objects. For this, a hierarchical clustering scheme was developed based on 

the spectral clustering implementation of scikit-learn: It can handle sparse matrices, can use 

algebraic multigrid solvers for speed, and, for only two clusters, it solves the normalized graph 

cut problem (_spectral.py at 15a949460dbf19e5e196b8ef48f9712b72a3b3c3 · Scikit-

Learn/scikit-Learn). The best cuts are found iteratively in top-down fashion (binary splitting the 

data at each iteration). To keep the dataset tractable for the initial cuts, the spatial structure of the 

data is used to generate super-nodes in the graph prior to clustering. When the clustering comes 

down into the size regime of a few single cells, several heuristics are employed to determine 

whether to accept a proposed cut based on the shape and size of the clusters, and on comparing 

the affinity loss of the proposed cut to the expected cost for cutting a homogeneous bulk graph of 

corresponding size and dimension. The final result is another column of annotation for the 

molecules containing unique object ids. 
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For visualization, these objects are filtered to include at least 20 molecules, and the associated 

expression profiles are normalized as in (Codeluppi et al. 2018), and embedded by a tSNE. To 

evaluate the self-consistency of annotation and segmentation, the silhouette score of the cell type 

annotations is evaluated on identically filtered and normalized profiles using the silhouette_score 

function from scikit-learn. 

Region definition 

For spatially-convoluted expression data, such as in spatial transcriptomics methods including 

Slide-seq and Visium, clustering (of beads or spots) in expression space is less meaningful as 

individual cells are mixed. “Regions” which are defined both in position and expression or 

annotation space can be a meaningful alternative. TACCO implements a method to define such 

regions (Supp. Fig. 3a), consisting of two steps: (1) Construction of one k-nearest neighbors 

graph based on expression (or annotation) distances and another k-nearest neighbors graph based 

on physical distances; and (2) Combination of the two graphs as a weighted sum of the graphs’ 

adjacencies. Putting more weight on the position space adjacency gives contiguous regions in 

position space, while more weight on the expression adjacency leads to separated islands of 

similar expression being annotated with the same region and can connects regions across 

different spatial samples (e.g., Slide-seq pucks). To account for the missing links from the 

position graph between samples, the cross-sample adjacency is scaled up by a balancing weight 

factor. The combined adjacency matrix is then subjected to standard Leiden clustering(Traag et 

al. 2019) which assigns consistent region annotation across samples. 

Colocalization and neighborhood analysis  

To score co-localization or co-occurrence of annotations (Palla, Giovanni, et al. 2021), TACCO 

calculates 𝑝(𝑎𝑛𝑛𝑜|𝑐𝑒𝑛𝑡𝑒𝑟; 𝑥)/𝑝(𝑎𝑛𝑛𝑜), the probability to find an annotation 𝑎𝑛𝑛𝑜 at a distance 

𝑥 from a center annotation 𝑐𝑒𝑛𝑡𝑒𝑟 normalized by the probability to find 𝑎𝑛𝑛𝑜 regardless of a 

𝑐𝑒𝑛𝑡𝑒𝑟. This is well-defined also for non-categorical annotations, which are commonplace for 

the compositional annotations created with TACCO and for pairs of unrelated annotations.  

 

As the most time-consuming computations for co-occurrence are the same as for neighborhood 

enrichment analyses, TACCO also calculates neighborhood-enrichment z-scores (Keren et al. 

2018) for a set of distance bins (as opposed to the set of direct neighbors on a graph), and again 
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supports non-categorical annotation, pairs of unrelated annotations for 𝑎𝑛𝑛𝑜 and 𝑐𝑒𝑛𝑡𝑒𝑟, and 

multiple samples, while being competitive performance-wise (Supp. Fig. 5). 

Annotation coordinates 

To analyze a given annotation (e.g. cell-type composition) with respect to its spatial distance 

from a reference annotation (e.g. histological annotation, Supp. Fig. 3b,c), TACCO implements 

an algorithm that determines a stable “annotation coordinate” in position space by regularizing 

the minimum distance by a critical neighborhood size determined at the weights level and 

afterwards correcting for the regularization bias. (This is required because for noisy spatial data 

and/or non-categorical reference annotations, simply taking the minimal distance between 

objects of certain annotations is unstable and/or not well defined.) 

 

Specifically, TACCO first generates a matrix 𝑛𝐴,𝑥(𝑑) of occurrence histograms vs. spatial 

distance 𝑑 for every annotation category 𝐴 and spatial position 𝑥, counting fractional annotations 

as fractional occurrence counts. The distance 𝑑𝐴,𝑥
1  where its cumulative sum over distance 

𝑁𝐴,𝑥(𝑑) = ∑ 𝑛𝐴,𝑥(𝑑′) 
𝑑′  will be over a certain threshold 𝑁1 is a robust measure for the radius of 

the sphere centered at 𝑥 and containing a total of 𝑁1 occurrences of annotation 𝐴. Even for data 

homogeneously annotated with 𝐴, the minimal possible value of 𝑑𝐴,𝑥
1  is however larger than 0 as 

the threshold 𝑁1 will in general be larger than 1 to have a stabilizing effect. In order to allow for 

a minimum value of 0 and obtain a measure for the distance from 𝑥 to a significant amount of 

category 𝐴, 𝑑𝐴,𝑥
1  is corrected using a fictitious homogeneous annotation category 𝐻, the value of 

𝑁𝐻,𝑥(𝑑𝐴,𝑥
1 ) is found, followed by solving for the distance 𝑑𝐴,𝑥

0  at which 𝑁1 less occurrences 

appeared: 𝑁𝐻,𝑥(𝑑𝐴,𝑥
0 ) = 𝑁𝐻,𝑥(𝑑𝐴,𝑥

1 ) − 𝑁1. 𝑑𝐴,𝑥
0  is now both consistent with the regular minimum 

distance for noise-free categorical annotations, stable against noise and well defined for 

compositional annotations. 

. 

Enrichments  

TACCO supports various approaches to visualize compositional differences in the spatial 

structure of a sample and estimate the statistical significance of these differences / enrichments 

(Supp. Fig. 3d-g). In particular, TACCO uses sample information to calculate enrichments not 
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across observations (single cells/spatial beads, which are no independent observations and can 

lead to p-value inflation), but across multiple samples, which gives meaningful and reasonable p-

values.  

 

When there is just a single (or few) spatial sample(s) but with considerable size, different parts of 

that sample are treated as semi-independent biological replicates, by splitting the sample along a 

selection of coordinate axes to create a statistical ensemble for enrichment analysis. Increasing 

the number of splits to parts which cannot be regarded as independent replicates interpolates 

smoothly to where every observation is considered as independent.  
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Datasets 

Mouse colon scRNA-seq and in-silico spatial mixing 

Mouse colon scRNA-seq data (Avraham-Davidi et al. 2022) in raw counts format after basic 

quality filtering, with the provided cell-type annotations, was used to simulate spatial mixing by 

sampling uniformly spatial coordinates for cells and for simulated beads on a square. To make 

boundary effects smaller, periodic boundary conditions were employed. On the resulting torus, 

the minimal Euclidean distance was taken between cells and beads. To factor in the “shape” of 

the beads, that distance was plugged into a kernel to compute the weights of contributions of 

each cell to a bead. From these weights, expression counts of cells, and cell-type annotation of 

cells, expression counts of beads, cell-type fractions, and count fractions belonging to each type 

were computed.  

 

A Gaussian kernel was used to determine the weight of cell 𝑐 in bead 𝑏 as follows: 

(𝑤𝑔𝑎𝑢𝑠𝑠)
𝑐𝑏

= 𝑟 𝑒𝑥𝑝 (−
1

2
(

𝑑𝑐𝑏

𝑙
)
2

)   

where 𝑑𝑐𝑏 is the Euclidean distance between the centers of cell 𝑐 and bead 𝑏, 𝑙 =

1

2
𝑏𝑒𝑎𝑑_𝑠𝑖𝑧𝑒 √1/𝑛, and 𝑛 cells. To capture the higher sparsity of the spatial data, the weight was 

scaled by a capture rate parameter 𝑟, such that a cell contributes a fraction of 𝑟 of its counts to a 

bead with distance 0. 𝑟 = 1.0 was used everywhere except where explicitly stated. 

Mouse colon scRNA-seq and Slide-seq data 

scRNA-seq (as in the section above) and raw counts for Slide-seq data (Puck 2020-09-

14_Puck_200701_21) of normal mouse colon were obtained from (Avraham-Davidi et al. 2022).  

Single-molecule osmFISH of the mouse cortex  

osmFISH data was obtained from http://linnarssonlab.org/osmFISH/availability/ (Codeluppi et 

al. 2018). Reference expression profiles and their corresponding annotations were obtained from 

osmFISH-segmented cell profiles, provided in 'osmFISH_SScortex_mouse_all_cells.loom'.  

Raw mRNA locations were obtained from 'mRNA_coords_raw_counting.hdf5'.  
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Preprocessing was performed using the procedure in 

https://github.com/HiDiHlabs/ssam_example/blob/master/osmFISH_SSp.ipynb. This includes: 

(1) Shifting and rescaling cell/RNA coordinates to match each other (with an RNA coordinate 

system); (2) Removing RNA molecules of bad quality; (3) Correcting incorrect gene names; (4) 

Removing molecules outside the intended imaged frame.  

'polyT_seg.pkl', which contains a mapping of osmFISH's segmented cell to molecule, was used 

to project osmFISH's cell annotation onto individual molecules (approximating the ground truth). 

To visualize annotations at single-molecule level (Fig. 2c) a window of x range (1150,1400) and 

y range (1000,1600) was used. 

For TACCO annotation, bin_size=10, n_shifts=3, bisections=4, bisection_divisor=3, 

platform_iterations=None were used.  

For Baysor annotations, an adjacency graph was computed with build_molecule_graph, and cell 

types' mean expression profiles (equivalent to the information used in TACCO) were provided 

for molecule annotation with cluster_molecules_on_mrf (do_maximize=false, max_iters=1000, 

n_iters_without_update=20).  

scRNA-seq simulations with scsim with enhanced dropout 

Scsim(Kotliar et al. 2019) with its corresponding default parameters (changing deloc=5.0)2 was 

used to simulate scRNA-seq data. The dropout step described in Splatter(Zappia et al. 2017) was 

implemented in Python, by fitting a sigmoid curve through genes’ log mean count and their cell 

fraction with zero reads, where the sigmoid is characterized by shape and midpoint parameters. 

To enhance dropout, the sigmoid was shifted (decrease its midpoint) and the adjusted dropout 

probability was computed. This probability was then used to binomially sample the observed 

counts. 

 

scRNA-seq simulations with scsim with ambient RNA 

To simulate expression profiles with ambient RNA, scsim(Kotliar 2019)’s simulation of mean 

expression per cells and genes (termed “updatedmean” in scsim and denoted in Splatter(Zappia 

et al. 2017) as 𝜆, a matrix of the means for each gene and each cell) was combined with 

                                                
2Taken from https://codeocean.com/capsule/6314882/tree/v1, 
code/analysis/Part1_Simulations/Step1_Simulate.ipynb 
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CellBender(Fleming et al. 2019)’s model of ambient RNA contamination and downstream 

sampling of counts.  

 

Specifically, the mean expression of gene 𝑔 and cell 𝑛 (or here, the cell in drop 𝑛) was obtained 

from scsim as 𝜆𝑛𝑔. For CellBender’s probabilistic model, the probability of having a cell in the 

drop 𝑦𝑛 is set to 1 (because empty drops are not considered), and 𝜌𝑛 is set to 0, because zero 

reads are exogenous to the drop as we account only for ambient RNA (pumped into the drop) 

and not for barcode swapping. Thus, the CellBender model simplifies to: 

𝐶𝑛𝑔  ∼  𝑁𝐵(𝑑𝑛
𝑐𝑒𝑙𝑙𝜒𝑛𝑔  +  𝑑𝑛

𝑑𝑟𝑜𝑝 𝜒𝑔
𝑎, 𝛷) 

 

The two models were combined as follows: 

 

𝜆𝑛𝑔 = 𝑑𝑛
𝑐𝑒𝑙𝑙𝜒𝑛𝑔 is the mean expression (similar to CellBender, scsim also uses a log-normal 

distribution of cell size) 

 

𝜆𝑔̄ = 𝑎𝑣𝑔𝑛𝜆𝑛𝑔 =  𝜒𝑔
𝑎 is the mean true count of gene 𝑔, that is, the ambient contribution of the 

gene 

 

Given the fraction of ambient RNA, 𝑓𝑑𝑟𝑜𝑝, and the library size, 𝑑𝜇
𝑐𝑒𝑙𝑙, and scale, 𝑑𝜎

𝑐𝑒𝑙𝑙, used for 

sampling the cell size, 𝑑𝑛
𝑐𝑒𝑙𝑙, 𝑑𝑛

𝑑𝑟𝑜𝑝 ∼ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝑑𝜇
𝑐𝑒𝑙𝑙 + 𝑙𝑜𝑔(𝑓𝑑𝑟𝑜𝑝) , 𝑑𝜎

𝑐𝑒𝑙𝑙) is sampled (that 

is, the same variance is employed as used for sampling the cell content and the mean is set to 

𝑙𝑜𝑔(𝑒𝑑𝜇
𝑐𝑒𝑙𝑙

𝑓𝑑𝑟𝑜𝑝)). 

 

𝛷 is sampled as defined in CellBender 

 

Thus, we sample: 

𝐶𝑛𝑔 ∼ 𝑁𝐵(𝜆𝑛𝑔 + 𝑑𝑛
𝑑𝑟𝑜𝑝𝜆𝑔̄, 𝛷) 

 

For comparability, the reference is generated in the same way (using negative binomial sampling 

instead of scsim’s Poisson sampling), but without adding ambient RNA. 

 

scRNA-seq of clone-labeled, differentiating hematopoiesis cells 

Normalized counts ('stateFate_inVitro_normed_counts.mtx', together with the corresponding 

gene names and cell metadata) and cells' clone matrix ('stateFate_inVitro_clone_matrix.mtx') 
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were obtained from the github repository https://github.com/AllonKleinLab/paper-

data/blob/master/ (Weinreb et al. 2020). Cells were filtered to those belonging to clones with 

cells in day 2 and in days 4 or 6. The fate bias for each cell in day 2, was computed from the 

fates of its clone in days 4 and 6 (normalized to 1). Differentiated cells captured in days 4 and 6 

were then used as a reference for annotating cells of differentiated fate from day 2. 

 

TACCO configuration 

For all datasets, TACCO was applied with basic platform normalization, entropy regularization 

parameter epsilon 0.005, marginal relaxation parameter lambda of 0.1, 4 iterations of boosting 

with a divisor of 3 and using 10 representing means for each type. The only exception is Fig. 4 

where in addition to TACCO with these parameters, TACCO was also applied without boosting, 

using only the maximum annotation per observation as categorical annotation, and all other 

parameters identical as an optimized categorical annotation method “TACCO (cat)”. 

 

 

Code Availability 

 

TACCO is available as the open-source python package tacco, with source code freely available 

at https://github.com/simonwm/tacco and corresponding documentation at 

https://simonwm.github.io/tacco/.  
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Supplementary Figures 

 

 
Supp. Figure 1: Effect of choice of cost matrix metric in OT and several booster options (platform normalization, 

multicenter, bisection) on annotation quality. L2 error (y axis, top; relevant for mixture annotations) and fraction of 

objects where the maximum annotation disagrees with the reference (y axis, bottom; relevant for classification problems) 

for different methods (colors) on different use cases (x axis). Baseline TACCO used the Bhattacharyya metric, platform 

normalization, multicenter, and bisection. Single cell: annotation of mouse colon scRNA-seq with itself as reference; 

Mixture: Gaussian mixtures of mouse colon scRNA-seq (Fig. 2a); Dropout: simulated Dropout dataset (Fig. 3a); Ambient: 

simulated ambient dataset (Fig. 3b), Differentiation: hematopoiesis scRNA-seq (Fig. 3c). 
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Supp. Figure 2: TACCO splitting of mixed expression profiles into pure constituents. UMAP embeddings of in-silico 

mixed mouse colon scRNA-seq profiles  (top four rows: real or balanced type composition and with and without 

downscaling the count-yield per cell by a factor of 10) or Slide-seq beads (bottom row), based on ground truth (far left, 

where available), TACCO annotation (second left), reference data (second right) and mixed expression data split using 

TACCOs annotation as input embedded in a joint UMAP of the concatenated reference-split dataset (rightmost). The in 

silico mix uses a beadsize of 1.0. For the joint embedding data was filtered to include only observations with at least 30 
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counts in genes which were annotated highly variable in the reference dataset, except for capture_rate=1.0 where a 

threshold of 100 is used. 
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Supp. Figure 3: Example workflow and visualizations for spatial data analysis in TACCO for the mouse colon 

dataset from the “Spatial mixture” task (Fig. 2b): (a) Slide-seq puck with beads colored by regions defined by joint 

expression space and position space clustering. (b) Fraction of cells (y axis) of each type (color) in each region (x axis). (c) 

Slide-seq puck colored by the effective distance of each bead from each region. (d) Density (y axis) of cell type 

annotations at different effective distance from region 2 (x axis). (e) Slide-seq puck colored by spatial split of the puck 

along a selected coordinate axis into multiple biological replicates for statistical enrichment analysis. (f) Geometric mean 
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normalized cell type fractions (y axis) for each cell type (x axis) from each region (1-4) and subregion (per spatial split as 

in e; individual bars). (g) Enrichment p-values (colors) of the normalized cell fractions in (f) (Benjamini-Hochberg-

corrected one-sided Mann-Whitney-U test across spatial splits). 
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Supp. Figure 4: Comparisons of single-molecule annotations for osmFISH(Codeluppi et al. 2018). (a) tSNE 

embeddings of the expression profiles for objects (dots) resulting from TACCO segmentation using either TACCO 

annotation (top row) or Baysor single molecule annotations as input (bottom row) with objects colored by the aggregated 

single-molecule annotation from either TACCO (left) or Baysor (right); (b) distribution of reference annotation and 

Baysor single-molecule annotation over the TACCO single-molecule annotations; (c) distribution of TACCO single-

molecule annotation over the Baysor single-molecule annotations. 
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Supp. Figure 5: Runtime comparison of TACCO and Squidpy(Palla et al. 2021). Run time (y axis) co-occurrence (a) 

and neighbourhood enrichment (b) analyses for TACCO (blue) and Squidpy (orange). Datasets “imc” and “seqfish” are 

example datasets provided with Squidpy. 
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