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Abstract 28 

COVID-19 severity has been associated with alterations of the gut microbiota. However, the 29 

relationship between gut microbiome alterations and COVID-19 prognosis remains elusive. 30 

Here, we performed a genome-resolved metagenomic analysis on fecal samples collected from 31 

300 in-hospital COVID-19 patients at time of admission. Among the 2,568 high quality 32 

metagenome-assembled genomes (HQMAGs), Redundancy Analysis identified 33 HQMAGs 33 

which showed differential distribution among mild, moderate, and severe/critical severity 34 

groups. Random Forest model based on these 33 HQMAGs classified patients from different 35 

severity groups (average AUC = 0.79). Co-abundance network analysis found that the 33 36 

HQMAGs were organized as two competing guilds. Guild 1 harbored more genes for short-chain 37 

fatty acid biosynthesis, and fewer genes for virulence and antibiotic resistance, compared with 38 

Guild 2. Random Forest regression showed that these 33 HQMAGs at admission had the 39 

capacity to predict 8 clinical parameters, which are predictors for COVID-19 prognosis, at Day 7 40 

in hospital. Moreover, the dominance of Guild 1 over Guild 2 at admission predicted the 41 

death/discharge outcome of the critical patients (AUC = 0.92). Random Forest models based on 42 

these 33 HQMAGs classified patients with different COVID-19 symptom severity, and 43 

differentiated COVID-19 patients from healthy subjects, non-COVID-19, and pneumonia 44 

controls in three independent datasets. Thus, this genome-based guild-level signature may 45 

facilitate early identification of hospitalized COVID-19 patients with high risk of more severe 46 

outcomes at time of admission. 47 

 48 

 49 
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Introduction 50 

Coronavirus disease 2019 (COVID-19), caused by novel severe acute respiratory syndrome 51 

coronavirus 2 (SARS-CoV-2), has been a worldwide pandemic with heavy toll to human health 52 

and economy. Over 576 million people have been infected by SARS-CoV-2, with over 6 million 53 

deaths globally 
1
. Angiotensin-converting enzyme 2 (ACE-2), which is distributed in multiple 54 

tissues and widely expressed on the luminal surface of the gut, has been identified as a vital 55 

entry receptor of SARS-CoV-2 for promoting viral infection and replication
2
. This can impair gut 56 

barrier and induce inflammation, which may disrupt the gut microbiome, contributing to 57 

cytokine storm and sepsis in already compromised patients with COVID-19
2
.   58 

 Recent studies have showed that dysbiosis of the gut microbiome and its related 59 

metabolites are closely associated with COVID-19 diseases. These studies reveal the overall 60 

difference in the gut microbial composition between COVID-19 patients and healthy controls
3-11

, 61 

association of microbial taxa and metagenomic functions with disease severity
3,8,9,11

 and 62 

persistent dysbiosis of the gut microbiota after recovery
3
. The enrichment of pathobionts and 63 

depletion of beneficial microbes have been reported to be related to the disease severity in 64 

COVID-19
4,7

. However, these studies have suffered from small sample size, lack of cross study 65 

validation and missing microbiome signature at admission for prognosis of COVID-19 in 66 

hospitalized patients
4,8-11

. In addition, the reported findings are constrained by analyzing the 67 

microbiome at low resolution levels, such as species, genus or even phylum or broad 68 

metagenomic functional categories
3-11

. In the gut microbial ecosystem, the strains/genomes are 69 

the minimum responding units to environmental perturbations and their response and 70 

contributions to the host are not constrained by taxonomy, even in the same species
12

. 71 
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 In this study, we obtained high-quality metagenome-assembled genomes (HQMAGs) 72 

from metagenomically sequenced fecal samples collected from 300 in-hospital COVID-19 73 

patients with mild, moderate, severe, and critical severities at time of admission. We identified 74 

a guild-level microbiome signature of 33 HQMAGs. This signature classified patients with 75 

different severity, predicted clinical parameters related with prognosis after 1 week in hospital, 76 

and the death/discharge outcome of critical patients. The capacity of this signature for 77 

classifying COVID-19 patients with different level of severity and differentiating COVID-19 78 

patients from healthy individuals, non-COVID-19 and pneumonia control was validated in three 79 

independent datasets. 80 

 81 

Results 82 

Overall structural changes of the gut microbiome were associated with disease severity in 83 

COVID-19 patients at admission  84 

From May to September 2020, we collected 330 stool samples from 300 in-hospital 85 

patients with COVID-19 confirmed by positive SARS-CoV2-2 RT-qPCR result. Among the 330 86 

samples, 297 were collected from 297 patients at admission, and 33 samples were collected 87 

from 29 patients during their hospitalization (Table S1). To profile the gut microbiome, 88 

metagenomic sequencing was performed on all the 330 stools samples. To achieve 89 

strain/subspecies level resolution, we reconstructed 2,568 non-redundant HQMAGs (two 90 

HQMAGs were collapsed into one if the average nucleotide identity (ANI) between them was > 91 

99%) from the metagenomic dataset. The HQMAGs accounted for more than 77.17% ± 0.23% 92 
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(mean ± S.EM.) of the total reads and were used as the basic variables in the further 93 

microbiome analysis. 94 

The 296 patients with metagenomic dataset at admission (one sample was discarded 95 

due to low mapping rate of the reads against HQMAGs) were classified into the mild (N=88), 96 

moderate (N=196), severe (N=5) and critical (N=7) groups based on their symptoms. Due to the 97 

limited sample size of severe and critical patients, we combined these two groups as one group 98 

in the following analysis. There were significant differences in age between the patients with 99 

mild, moderate, and severe/critical symptoms (Kruskal-Wallis test, P = 1.6×10
-14

) i.e., the more 100 

severe symptoms the patients had, the older they were (Fig. S1). There was no difference in 101 

gender among the 3 groups (chiq-square test, P = 0.22).  102 

At admission, in the context of beta-diversity based on the Bray-Curtis distance, 103 

Principal Coordinate Analysis (PCoA) revealed separations of the gut microbiota along PC1, 104 

which was in accord with the severity of symptoms (Fig. 1A-C). A marginal PERMANOVA test, 105 

including disease severity and age, showed that disease severity was significantly associated 106 

with the overall gut microbial composition (R
2 

= 0.012, P = 0.0002,) but age was not (R
2
 = 0.0032, 107 

P = 0.50). This showed that in our dataset when disease severity was held constant, the age 108 

effect on gut microbiome was not significant. The pairwise comparisons between the 3 109 

different severity groups via PERMANOVA test showed that gut microbial composition of the 110 

patients was significantly different from each other (mild vs. moderate: R
2
 = 0.0081, P = 0.0001; 111 

mild vs. severe/critical: R
2
 = 0.026, P = 0.0001; moderate vs. severe/critical: R

2
 = 0.0079, P = 112 

0.0099). The distance between the mild and moderate groups was significantly smaller than 113 

that between the mild and the severe/critical groups (Fig. S2), which showed that the gut 114 
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microbiota of severe/critical group was more different from the mild group as compared with 115 

the moderate group. Regarding to alpha-diversity, Shannon index was highest in the mild group, 116 

followed by the moderate group and lowest in the severe/critical group (Fig. 1D, mild vs. 117 

moderate: P = 0.0046, mild vs severe/critical: P = 0.0046, moderate vs. severe/critical: P = 118 

0.086), which showed a continuous reduction in gut microbial diversity with the increase of 119 

symptom severity. These results showed that the overall gut microbial structure was associated 120 

with the severity of symptoms of COVID-19 patients. 121 

 122 

Two competing guilds were associated with disease severity of hospitalized COVID-19 123 

patients at admission 124 

Specific HQMAGs that were associated with the COVID-19 symptom severity were 125 

identified by redundancy analysis (RDA) (Fig. S3). Out of the 2,568 HQMAGs, we found that 48 126 

HQMAGs had at least 5% of their variability explained by the constraining variable, i.e., the 127 

three severity groups. Among the 48 HQMAGs, 17 were significant higher in the mild group as 128 

compared with the moderate and severe/critical groups and they showed a continuous 129 

decrease along the symptom severity (Fig. 2A). These 17 HQMAGs included 5 from 130 

Faecalibacterium prausnitzii, 3 from Romboutsia timonensis, 2 each from Ruminococcus, 131 

Clostridium and 1 each from Acutalibacteraceae, Allisonella histaminiformans, Coprococcus, 132 

Lachnospiraceae and Negativibacillus. The abundance of 31 out of the 48 RDA identified 133 

HQMAGs were higher in the severe/critical group as compared with the mild and the moderate 134 

groups. Among these 31 HQMAGs, 16 showed significant difference between the three groups. 135 

These 16 HQMAGs included 4 from Enterococcus, 2 from Lactobacillus, 1 each from 136 
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Acutalibacteraceae, Akkermansia muciniphila, Anaerotignum, Barnesiella intestinihominis, 137 

Clostridium_M bolteae, Dore, Intestinibacter bartlettii, Lachnospiraceae ,Phascolarctobacterium 138 

faeciu and Ruthenibacterium lactatiformans. We then focused on the 33 HQMAGs which were 139 

both identified by RDA analysis and were significantly different between the 3 severity groups. 140 

Next, we developed a machine learning classifier based on Random Forest (RF) algorithm to see 141 

if we could classify patients from different severity groups based on the 33 HQMAGs. Receiver 142 

operating characteristic curve analysis showed a power with area under curve (AUC) of 0.76, 143 

0.84 and 0.76 to classify mild vs. moderate, mild vs. sever/critical, and moderate vs. 144 

severe/critical (Fig. 2B). These results showed that these 33 HQMAGs had the capacity to 145 

differentiate the different symptom severity groups of COVID-19 patients. 146 

As bacteria in the gut ecosystem are not independent but rather form coherent 147 

functional groups (a.k.a “guilds”) to interact with each other and affect host health
14

, we 148 

applied co-abundance analysis on these 33 HQMAGs to explore the interactions between them 149 

and to find potential guilds structure. Interestingly, the 33 HQMAGs organized themselves into 150 

two guilds——the 17 HQMAGs with significantly higher abundance in mild group were 151 

positively interconnected with each other and formed as Guild 1. The 16 severe/critical group 152 

enriched HQMAGs were positively correlated with each other as Guild 2 (Fig 3A). Meanwhile, 153 

there were only negative correlations between the two guilds, suggesting a potentially 154 

competitive relationship between the two guilds.  155 

To explore the genetic basis underling the associations between the two guilds and the 156 

symptom severities, we performed genome-centric analysis of the metagenomes of the two 157 

competing guilds. A previous study showed that the lack of short chain fatty acids (SCFAs) 158 
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significantly correlated with disease severity in COVID-19 patients
15

. Regarding to the terminal 159 

genes for the butyrate biosynthetic pathways (i.e., but, buk, atoA/D and 4Hbt)
16

, 7 HQMAGs in 160 

Guild 1 harbored but genes while only 1 HQMAGs in Guild 2 had this gene (Fisher’s exact test P 161 

= 0.039) (Fig. S4). Four HQMAGs in Guild 1 harbored buk genes while no HQMAGs in Guild 2 had 162 

this gene (Fisher’s exact test P = 0.10). The other butyrate biosynthetic terminal genes were not 163 

found in the HQMAGs in both guilds. The numbers of HQMAGs encoding genes for acetate and 164 

propionate production were similar in the 2 guilds (Fig. S4). From the perspective of 165 

pathogenicity, although in both guilds there were 12 HQMAGs encoding virulence factor (VF) 166 

genes, the number of VF genes (17 in Guild 1, 58 in Guild2) and the VF categories (3 in Guild 1, 5 167 

in Guild 2) were higher in Guild 2 as compared with Guild 1 (Fig. S5A). In terms of antibiotic 168 

resistance genes (ARGs), 3 genomes in Guild 1 encoded 10 ARGs and 5 genomes in Guild 2 169 

encoded 14 ARGs (Fig. S5B). Taken together, these data showed that the two competing guilds 170 

had different genetic capacity with Guild 1 being more beneficial and Guild 2 more detrimental. 171 

Thus, the genetic difference between the two guilds may help explain their associations with 172 

the disease severity of COVID-19 patients.  173 

We then calculated the Guild-level microbiome index (GMI) based on the average 174 

abundance difference between Guild 1 and Guild 2 to reflect the dominance of Guild 1 over 175 

Guild 2. At admission, the GMI was highest in the mild group, followed by the moderate group 176 

and was lowest in the severe/critical group (Fig. 3B, mild vs. moderate: P = 2.46×10
-7

, mild vs 177 

severe/critical: P = 6.57×10
-9

, moderate vs. severe/critical: P = 1.59×10
-4

). The GMI reached 178 

an AUC of 0.7 to differentiate mild and moderate groups, an AUC of 0.94 to differentiate mild 179 

and sever/critical groups and an AUC of 0.86 to differentiate moderate and severe/critical 180 
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groups (Fig. 3C). This result indicates the feasibility to use the GMI as a biomarker to 181 

differentiate the different symptom severity groups of COVID-19 patients.  182 

 183 

Gut microbiome signature was associated with the prognosis of COVID-19 in hospitalized 184 

patients 185 

To explore whether our microbiome signature at admission is associated with the 186 

prognosis of COVID-19 patients during hospitalization, we applied RF algorithm to regress the 187 

abundance of the 33 HQMAGs at admission with 72 different clinical parameters at Day 7 in 188 

hospital. Nine clinical parameters at day 7 were significantly associated with the abundances of 189 

the 33 HQMAGs at admission as evidenced by significantly positive correlations between the 190 

measured values and the predicted values from the regression model (Pearson correlation: BH 191 

adjusted P < 0.1 and R > 0) (Fig 4A). In addition, 9 and 11 clinical parameters at Day 7 showed 192 

significantly (Spearman correlation: BH adjusted P < 0.1) positive and negative correlations with 193 

the GMI values at admission, respectively (Fig. 4A). Regarding immune indicators, interleukin 194 

(IL)-5 is secreted chiefly by Th2 cells and essentially anti-inflammatory but also involved in 195 

several allergic responses
17

. Some studies have revealed a higher level of IL-5 in severe cases 196 

compared with mild cases
18,19

. However, some studies have showed that IL-5 have no 197 

correlations with COVID-19 and showed no differences between different severity groups
20,21

. 198 

Like IL-5, the association between IL-12p70 and COVID-17 remain elusive as some studies have 199 

revealed elevated IL-12p70 in COVID-19 but others not
22-24

. Here, we found positive 200 

correlations between the GMI at admission and these two ILs after 1 week. The effects of 201 

microbiome on particular cytokines and the subsequent influences on COVID-19 need further 202 
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studies. Coagulation disorder occurred at the early stage of COVID-19 infection
25

. D-Dimer, 203 

Fibrinogen (Fg) and fibrin degradation product (FDP) increased in COVID-19 patients and were 204 

correlated with clinical classification
25,26

. Moreover, elevated D-Dimer, Fg and FDP are 205 

significant indictors of severe COVID-19 and poor prognosis
25-28

. Here, a higher GMI at 206 

admission was correlated with lower D-Dimer, Fg and FDP after 1 week. Regarding hemogram 207 

indicators, the degree of lymphopenia is an effective and reliable indicator of the severity and 208 

hospitalization in COVID-19 patients
29,30

. Both blood lymphocyte percentage (LYMPH%) and 209 

absolute count (LYMPH #) are strong prognostic biomarkers in hospitalized patients with severe 210 

COVID-19
31

. Blood LYMPH% has been reported to be inversely associated with severity and 211 

poor prognosis in COVID-19
30

. In contrast to LYMPH%, neutrophils percentage (Neu %) were 212 

higher in COVID-19 patients with severer symptoms and directly associated with poor 213 

prognosis
31,32

. Here, the GMI at admission was positively correlated with LYMPH % and LYMPH 214 

#, and negatively correlated with Neu % after 1 week. Regarding biochemical indicators, 215 

compared with health subjects, total cholesterol (TC) was significant lower in COVID-19 patients 216 

and decreased with increasing severity
33,34

. A Meta-analysis showed that the reduction of TC 217 

was significantly associated with the increased mortality in COVID-19 patients and TC might 218 

assist with early risk stratification
34

. Hypocalcemia has been reported to be common in COVID-219 

19 patients
35

. Total calcium (CA) at admission showed an inversely relationship with the 220 

mortality rate in COVID-19 patients
35

. Among the abnormal liver biochemical indictors at 221 

admission, abnormal albumin (ALB) was the most common
36

. A declined ALB level was 222 

associated with the disease severity of COVID-19
36

.  Higher total bilirubin (TBIL) were associated 223 

with a significant increase in the severity of COVID-19 infection
37

. Moreover, COVID-19 patients 224 
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with an elevated TBIL at admission had a higher mortality
37

. In addition to TBIL, increased direct 225 

bilirubin (DBIL) has been reported as an independent indicator for complication and mortality in 226 

COVID-19 patients
38

. Particularly, DBIL levels at Day 7 of hospitalization are advantageous in 227 

predicting the prognosis of COVID-19 in severe/critical patients
38

. Lactate dehydrogenase (LDH) 228 

have been associated with worse outcomes in viral infection. A meta-analysis showed that LDH 229 

could be used as a COVID-19 severity marker and a predictor of survival
39

. In COVID-19, 230 

elevation in glucose level has been linked with major steps of the life cycle of the virus, 231 

progression of the disease, and presentation of symptoms
40

. It has been reported that during 232 

hospitalization patients with well-controlled glucose had markedly lower mortality compared to 233 

individuals with poorly controlled glucose
41

. Here, the GMI at admission was positively 234 

correlated with TC, CA and ABL, and negatively correlated with TBIL, DBIL, LDH and glucose 235 

after 1 week. These results suggest that gut microbiome signature in early stage may reflect the 236 

clinical outcomes of COVID-19 in hospitalized patients.  237 

Moreover, in our cohort, 3 patients were dead, and they were all in the critical group at 238 

admission. Compared with the other 4 discharged critical patients, the 3 dead patients were 239 

significantly younger (Fig. S6). To explore if the microbiome signature at admission can predict 240 

the outcome of the critical COVID-19 patients, we applied RF algorithm to classify 241 

death/discharge with the abundance of the 33 HQMAGs at admission, and the model reached 242 

an AUC of 0.92 (Fig. 4B). In addition, we found that the GMI values at admission of the 3 dead 243 

patients were significantly lower than those of the 4 discharged critical patients (Fig. 4C). This 244 

suggests an association between the microbiome signature with the final outcome in critical 245 
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hospitalized COVID-19 patients. Although interesting, this result should be interpreted with 246 

caution given the small sample size.  247 

 248 

The microbiome signature was validated in independent studies 249 

 We then asked that whether this genome-based microbiome signature would be 250 

applicable in other COVID-19 cohorts. To answer this question, we used the genomes of the 33 251 

HQMAGs as reference genomes to perform read recruitment analysis, which is a commonly 252 

used way to estimate abundances of reference genomes from metagenomes
42,43

.  In an 253 

independent study, which included 24 mild/moderate and 14 severe/critical COVID-19 patients
9
, 254 

we validate the associations between the microbiome signature and the different COVID-19 255 

severity. In this validation dataset, the two groups of patients had even distributions of age, 256 

gender, and comorbidities, which avoid potential biases for our validation. On average, the 33 257 

HQMAGs accounted for 4.39 % ± 0.90% (mean ± S.E.M) of the total abundance of the gut 258 

microbial community. In the context of beta-diversity measured via the Bray-Curtis distance, 259 

the composition of the microbiome signature between the mild/moderate and severe/critical 260 

COVID-19 patient were significantly different (Fig. 5A). Next, we developed a classifier based on 261 

RF algorithm to see if we could classify patients from different severity groups based on the 33 262 

HQMAGs. ROC curve analysis showed a power with AUC of 0.89 to classify mild/moderate and 263 

severe/critical groups (Fig. 5B). In addition, regrading GMI and the abundance of the 2 guilds, 264 

we found that GMI and the abundance of Guild 1 were significantly higher in the 265 

mild/moderate patients, while the abundance of Guild 2 was significantly higher in the 266 
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severe/critical patients (Fig. 5C). These results validated our findings of the associations 267 

between the genome-resolved microbiome signature and the COVID-19 disease severity.   268 

 269 

 Since this microbiome signature was associated with COVID-19 disease and was able to 270 

classify COVID-19 severity, we are interested to find out if it would be able to classify COVID-19 271 

and non-COVID-19 controls as well. We included metagenomic sequencing data from 66 COVID-272 

19 patients (first sample after admission), 69 age- and sex-matched non-COVID-19 controls and 273 

9 community-acquired pneumonia controls but were negative for COVID-19 from the study 274 

conducted by Zhang et al.
7
. The genomes of the 33 HQMAGs were used as reference genomes 275 

to perform read recruitment analysis. On average, the 33 HQMAGs accounted for 3.47% ± 0.40% 276 

(mean ± S.E.M) of the total abundance of the gut microbial community. Based on the Bray-277 

Curtis distance, the PCoA plot revealed separations between non-COVID-19 control and the 278 

other two groups (Fig. 6A and B). Though no significant separation were found between COVID-279 

19 and pneumonia control along PC1, PERMANOVA test showed significant differences 280 

between the 3 groups pair-wisely (Fig. 6C). These results suggest that the SARS-COV-2 infection 281 

is associated with altered composition of the 33 HQMAGs. Next, we developed a classifier 282 

based on RF algorithm to see if we could classify the subjects from the 3 groups based on the 283 

abundance of the 33 HQMAGs. ROC curve analysis showed a power with AUC of 0.81, 0.8 and 284 

0.91 to classify COVID-19 vs. non-COVID-19, COVID-19 vs. pneumonia control and non-COVID-285 

19 vs. pneumonia control (Fig. 6D). In addition, we found that GMI were highest in non-COVID-286 

19, followed by COVID-19 and lowest in the pneumonia control (Fig. 6E, COVID-19 vs. non-287 

COVID-19: P = 0.11, COVID-19 vs. pneumonia control: P = 0.018, non-COVID-19 vs. pneumonia 288 
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control: P = 0.0016). Non-COVID-19 had highest abundance of Guild 1 and pneumonia control 289 

had highest abundance of Guild 2 (Fig. 6E). The abundance of Guild 1 and Guild 2 in the COVID-290 

19 group were in the middle across the 3 groups. Such differences of GMI across the 3 groups 291 

are supposed to validate our finding that the higher GMI the better healthy condition because 292 

subjects from non-COVID-19 are supposed to be the healthiest, most of the COVID-19 subjects 293 

(47 out of 66) were mild and moderate, and subjects from pneumonia control are supposed to 294 

be the least healthy.  In addition to this dataset, we included metagenomic sequencing data 295 

from 46 COVID-19 patients and 19 age- and sex-matched healthy controls from the study 296 

conducted by Li et al.
44

. On average, the 33 HQMAGs accounted for 1.61 % ± 0.12% (mean ± 297 

S.E.M) of the total abundance of the gut microbial community. Based on the Bray-Curtis 298 

distance, the PCoA plot revealed a separation between COVID-19 and healthy subjects (Fig. 299 

S7A). The classifier based on RF algorithms with the abundance of the 33HQMAGs as input 300 

variables showed a power with AUC of 0.75 to classify COVID-19 and healthy controls (Fig. S7B). 301 

Compared with healthy controls, COVID-19 patients had significantly lower GMI and abundance 302 

of Guild 1 but higher abundance of Guild 2. These showed that the microbiome signature is 303 

relevant with the host health and has the capacity to be used as biomarkers to differentiate the 304 

COVID-19 subjects from healthy subjects, non-COVID-19 and pneumonia controls. 305 

 306 

Discussion 307 

In the current study, a genome-based microbiome signature, which was composed of 33 308 

HQMAGs at time of admission, was found to be associated with the severity and prognosis of 309 
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COVID-19 in hospitalized patients. With these 33 genomes as reference, we were also able to 310 

validate the microbiome signature in datasets collected from three independent studies.  311 

We came to this finding by way of a unique analytical strategy on the microbiome 312 

dataset. Previous studies relied on reference database to profile gut microbial composition at 313 

taxonomic levels and explored the relationships between different taxa and COVID-19
3-11

. Our 314 

strategy took a reference-free, discovery approach which does not need any prior knowledge. 315 

This allowed us to keep the novel part of the dataset intact. In addition, the use of high-quality 316 

draft genomes in our study ensured the highest possible resolution for identifying microbiome 317 

signature associated with COVID-19, which overcame the pitfalls of taxon-based analysis
14

. In 318 

the previous studies based on taxa-level, Enterococcus faecium, Enterococcus avium and 319 

Akkermansia muciniphila have been reported to be enriched in severe/critical COVID-19 320 

patients and positively correlated with symptom seveity
3,9

. In our results, totally 28 A. 321 

muciniphila, 2 E. avium and 5 E. faecium HQMAGs were assembled in our dataset, but only 3 E. 322 

faecium and 1 each from A. muciniphila and E. avium enriched in severe/critical group, 323 

suggesting that not all strains from the 3 species were associated with COVID-19 severity. 324 

Another example is that Faecalibacterium prausnitzii, a key producer of SCFAs, is consistently 325 

depleted in COVID-19 patients and negatively correlated with disease severity
3,4

, but  in our 326 

results, only half of the F. prausnitzii HQMAGs in our dataset were negatively associated with 327 

COVID-19 symptom severity. These indicate that the associations between gut microbiota and 328 

COVID-19 are strain/genome-specific. This means that even species does not have the 329 

necessary resolution to reveal associations of gut microbiome with COVID-19. 330 
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In our study cohort, RF classification models using the abundance of the 33 HQMAGs as 331 

input variables were able to discriminate the different symptom severity groups of COVID-19 332 

patients at admission. Such a capacity of the 33 HQMAGs for discriminating COVID-19 symptom 333 

severities and distinguishing COVID-19 subjects from healthy subjects, non-COVID-19 and 334 

pneumonia controls was further validated in independent Chinese cohorts
7,9,44

. These indicate 335 

the feasibility to use this microbiome signature risk stratification of COVID-19 patients at least 336 

for Chinese cohorts. It will be worth validating the applicability of the microbiome signature in 337 

COVID-19 diagnosis in cohorts across ethnicity and geography. 338 

 In addition to identify COVID-19 associated gut microbiota at genome level, we used 339 

guild-based analysis to reveal potential interactions among key gut bacteria via co-abundance 340 

network. We found that genomes enriched in the mild/moderate group and genomes enriched 341 

in severe/critical group formed as two guilds, Guild 1 and Guild 2, respectively. The genomes in 342 

Guild 1 had higher SCFA producing genetic capacity while Guild 2 had more VF and ARG 343 

encoding genes. Reduced abundance of SCFA producing pathways has been correlated with 344 

more adverse clinical outcomes in COVID-19 patients
7
. The expression levels of VF and ARG, as 345 

measured by metatranscriptomic sequencing, were significantly higher in COVID-19 patients as 346 

compared with healthy controls and non-COVID-19 pneumonia controls
45

. Higher abundance of 347 

Guild 1 and lower abundance of Guild 2 was associated with reduced severity of our COVID-19 348 

patients. Such a two competing guilds structure, in which one beneficial guild and one 349 

detrimental guild competed with each other and influenced host health, has been reported as a 350 

core microbiome signature associated with various chronic diseases
46

. The findings here 351 
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suggest that such two competing guilds microbiome signature may be also applicable to 352 

infectious diseases.    353 

 The microbiome signature found in the current study was also associated with COVID-19 354 

prognosis. The two competing guilds microbiome signature at admission was associated with 355 

several immune, coagulation, hemogram and biochemical indicators of hospitalized patients 356 

after 1 week. These indicators included D-Dimer, Fg, FDP, LYMPH%, LYMPH#, Neu%, TC, CA, ALB, 357 

TBIL, DBIL, LDH and glucose, which have been reported to play the essential role in the host 358 

immune response to  COVID-19 infection and disease progression
25-41

. The microbiome 359 

signature may server as an early predictor of COVID-19 prognosis as it was positively associated 360 

with bio-clinical parameters that have inverse relationship with poor prognosis, and negatively 361 

associated with those that have direct relationship with poor prognosis. More importantly, 362 

early time point variations of the two competing guilds microbiome signature were correlated 363 

with the later changes of these prognosis related bio-clinical parameters. These results suggest 364 

that the dysbiosis of gut microbiota may play an essential role in trigging severe symptoms after 365 

patients are infected by SARS-CoV-2.   366 

Early identification and treatment of high-risk patients is critical for improving prognosis 367 

of COVID-19 when the end of the pandemic is not in sight due to emerging of SARS-CoV-2 368 

variants such as Omicron. At time of admission, screening hospitalized COVID-19 patients with 369 

our genome-based guild-level microbiome signature may facilitate early identification of those 370 

patients with high risk of more severe outcomes and put them under intensive surveillance and 371 

preventive care. 372 

 373 
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Methods 374 

Ethics statement 375 

This study procedure was reviewed and approved by the Ethics Committee of Shanghai Public 376 

Health Clinical Center ((SHPHC, NO. YJ-2020-S080-02), and informed written consents were 377 

signed from all subjects according to with the Declaration of Helsinki. All experimental 378 

procedures were performed in strict accordance with the guidelines for biosafety operation of 379 

SARS-CoV-2 Laboratories of the National Health and Family Planning Commission (No. 2020 [70]) 380 

and the Shanghai Municipal Health and Family Planning Commission (No. 2020 [8]). Table S1 381 

sample collection and severity information. 382 

Subject recruitment and sample collection 383 

This study was retrospectively conducted in Shanghai Public Health Clinical Center, a designated 384 

hospital for COVID-19 treatment in East China. In total of 337 COVID-19 patients were recruited 385 

in this study, all patients were typed and grouped based on clinical symptoms by senior 386 

clinicians in strict accordance with the criteria following Diagnosis and Treatment Plan for SARS-387 

CoV-2 (Trial Version 7) issued by the General Office of the National Health Commission. The 388 

clinical data of the study subjects, including patient epidemiology (age, gender, disease 389 

classification, length of hospital stay, duration of disease, clinical outcomes), and respective 390 

clinical laboratory test results (hematologic, clinical chemistry, coagulation, immune 391 

inflammatory indices, and radiographic indications) were stored in a computerized database in 392 

the hospital medical record system. Stool sampling was collected within 48 hours after 393 

admission in all patients from May to September 2020, ensuring that all patients did not receive 394 

intervention from antiviral, antibiotic, probiotic, hormone and other drug interventions. About 395 
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100 mg of patient's feces were collected in a stool collection tube and frozen immediately in a -396 

80 °C freezer until processing. 397 

Clinical laboratory examination and data collection 398 

All laboratory tests were conducted in the department of laboratory medicine in the Shanghai 399 

Public Health Clinical Center. Sysmex XN-1000 automated hematology analyzer (Hisense 400 

Meikang medical electronics, Shanghai Co., Ltd) and its supporting test reagents were used to 401 

analyze blood routine tests including white blood cell count (WBC), lymphocyte count (LPC), 402 

platelet count (PLT), Neutrophil (%), monocyte (%), lymphocyte (%), hemoglobin (HGB), 403 

Hypersensitive C-reactive protein (hs-CRP), etc. Biochemical parameters such as albumin (ALB), 404 

Amylase (AMY), cholinesterase (CHE), lactate (LACT), lactate dehydrogenase (LDH) alkaline 405 

phosphatase (ALP), glucose (GLU), creatinine (CRE), uric acid (UA), prealbumin (PA) were 406 

measured by a biochemical immunoassay workstation (ARCHITECT 3600J, Abbott Laboratories 407 

Co., USA). Urine routine (pH value, specific gravity, urobilinogen, leukocyte esterase, nitrite, 408 

urine protein, glucose, ketone body, bilirubin and occult blood) was measured by Cobas6500 409 

urine dry chemical analysis system and supporting test strips (Roche, Switzerland). For the 410 

Coagulation indicators, The STA Compact Max was used to measure fibrinogen, DD-dimer, 411 

fibrinogen degradation products (FDP), prothrombin time (PT), activated partial thromboplastin 412 

time (APTT), thrombin time (TT), etc.   413 

Plasma cytokine measurements 414 

FACS Canto II Flow cytometer (BD Biosciences, USA) was employed to the Lymphocyte analysis, 415 

CD3+ cell counts, CD4+ cell counts, CD8+ cell counts, CD19+ cell counts, CD16+ CD56+ cell 416 

counts, and CD4+/CD8+ percentage were detected. Plasma cytokine-related parameters 417 
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including IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12P70, IL-17, tumor necrosis factor alpha (TNF-418 

α), interferon-alpha (IFN-α), and interferon-gamma (INF-γ) were measured using a microsphere 419 

array kit by FACS Canto II cytometer (Raisecare Biotechnology, China). 420 

Gut microbiome analysis 421 

DNA extraction and metagenomic sequencing.  The laboratory procedure in this section was 422 

performed by trained laboratory personnel under the condition of tertiary protection in the 423 

bio-safety level laboratory-2 (BSL-2) qualified laboratory. The DNA was extracted from fecal 424 

samples using the bead-beating method as previously described 
50

, QIAamp PowerFecal 425 

Pro DNA Kit (Germany, QIAGEN) was employed to perform DNA extraction according to 426 

manufacturer’s instructions. Briefly, fecal sample (~ 100 mg) were dissolved by Powerlyzer 427 

lysate in PowerBead Pro Tube, vigorous shaking for 10 minutes, centrifugation. Total genomic 428 

DNA was captured on a silica membrane in spin-column. DNA is then washed and eluted, The 429 

A260/A280 ratio near 1.8, concentration and curve observations were used to identify DNA 430 

extraction quality assessment. Qualified DNA sample ready for downstream applications. 431 

Metagenomic sequencing was performed using Illumina Hiseq 3000 at GENEWIZ Co. (Beijing, 432 

China). Cluster generation, template hybridization, isothermal amplification, linearization, and 433 

blocking denaturing and hybridization of the sequencing primers were performed according to 434 

the workflow specified by the service provider. Libraries were constructed with an insert size of 435 

approximately 500 bp followed by high-throughput sequencing to obtain paired-end reads with 436 

150 bp in the forward and reverse directions. Table S2 shows the number of raw reads of each 437 

sample. 438 
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Data quality control.  Trimmomatic
51

 was used to trim low quality bases from the 3^ end, 439 

remove low quality reads and remove reads < 60bp, with parameters: LEADING:6 TRAILING:6 440 

SLIDINGWINDOW:4:20 MINLEN:60. Reads that could be aligned to the human genome (H. 441 

sapiens, UCSC hg19) were removed (aligned with Bowtie2
52

 using --reorder --no-hd --no-contain 442 

--dovetail). Table S2 shows the number of high-quality reads of each sample for further analysis. 443 

De novo assembly, abundance calculation and taxonomic assignment of genomes.  De novo 444 

assembly was performed for each sample by using MEGAHIT
53

 (--min-contig-len 500, --presets 445 

meta-large). The assembled contigs were further binned using MetaBAT 2
54

 and MaxBin 2
55

. A 446 

refinement step was then performed using the bin_refinement module from MetaWRAP
56

 to 447 

combine and improve the results generated by the 2 binners. The quality of the bins was 448 

assessed using CheckM
57

. Bins had completeness > 95%, contamination < 5% and strain 449 

heterogeneity = 0 were retained as high-quality draft genomes (Table S3). The assembled high-450 

quality draft genomes were further dereplicated by using dRep
58

. DiTASiC
59

, which applied 451 

kallisto for pseudo-alignment
60

 and a generalized linear model for resolving shared reads 452 

among genomes, was used to calculate the abundance of the genomes in each sample, 453 

estimated counts with P-value > 0.05 were removed, and all samples were downsized to 30 454 

million reads (One sample at admission with read mapping ratio ~32%, which could not be well 455 

represented by the high quality genomes, were removed in further analysis). Taxonomic 456 

assignment of the genomes was performed by using GTDB-Tk
61

 (Table S4).  457 

Gut microbiome functional analysis.  Prokka
62

 was used to annotate the genomes. KEGG 458 

Orthologue (KO) IDs were assigned to the predicted protein sequences in each genome by 459 

HMMSEARCH against KOfam using KofamKOALA
63

. Antibiotic resistance genes were predicted 460 
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using ResFinder
64

 with default parameters. The identification of virulence factors were based 461 

on the core set of Virulence Factors of Pathogenic Bacteria Database (VFDB
65

, download July 462 

2020). The predicted proteins sequences were aligned to the reference sequence in VFDB using 463 

BLASTP (best hist with E-value < 1e-5, identity > 80% and query coverage > 70%). Genes 464 

encoding formate-tetrahydrofolate ligase, propionyl-CoA:succinate-CoA transferase, propionate 465 

CoA-transferase, 4Hbt, AtoA, AtoD, Buk and But were identified as described previously
66

.  466 

Gut microbiome co-abundance network construction and analysis Fastspar
67

, a rapid and 467 

scalable correlation estimation tool for microbiome study, was used to calculate the 468 

correlations between the genomes with 1,000 permutations at each time point based on the 469 

abundances of the genomes across the patients and the correlations with BH adjusted P < 0.05 470 

were retained for further analysis. The co-abundance network was visualized using Cystoscape 471 

v3.8.1
68

 472 

Definition of guild-level microbiome index (GMI) We define the GMI using the abundance of 473 

the 33 MAGs and their relationships. For each individual samples, the GMI of sample j that was 474 

donated by GMIj was calculated as below: 475 

�
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�����

� ∑ ������  476 

�������
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 �
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Where ���  is the relative abundance of HQMAG i in sample j. N and M are subsets of HQMAGs 478 

in guild 1 and guild 2 respectively. |N| and |M| are the sizes of these two sets.  479 

Validation in an independent cohort The metagenomic sequencing data from 24 480 

mild/moderate and 14 severe/critical COVID-19 patient from the study was download from ENA 481 

database under PRJNA792726 (Table S5). The metagenomic sequencing data from 66 COVID-19 482 
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patients (first sample after admission), 69 age- and sex-matched non-COVID-19 controls and 9 483 

community-acquired pneumonia controls but were negative for COVID-19 from the study 484 

conducted by Zhang et al.
7
 were download from ENA database under PRJNA689961 (Table S5). 485 

The metagenomic sequencing data from 46 COVID-19 patients and 19 healthy controls was 486 

download from ENA database under PRJEB4355 (Table S5). KneadData 487 

(https://huttenhower.sph.harvard.edu/kneaddata/) was applied to perform quality control of 488 

the raw reads with parameters: --decontaminate-pairs strict, --run-trim-repetitive, --bypass-trf, 489 

--trimmomatic-options= “SLIDINGWINDOW:4:20 MINLEN:60”.  Reads that could be aligned to 490 

the human genome were identified and removed in KneadData by aligning reads against Homo 491 

sapiens hg37 genome. The abundance of the 33 MAGs were estimated by using Coverm v0.6.1 492 

(https://github.com/wwood/CoverM) with parameters: coverm genome --min-read-aligned-493 

percent 90 --min-read-percent-identity 99 -m relative_abundance. 494 

 Statistical Analysis 495 

 Statistical analysis was performed in the R environment (R version4.1.1). Kruskal-Wallis 496 

test followed by Dunn’s post hoc (two-sided) was applied to compare the different severity 497 

groups. Redundancy analysis was conducted based on the Hellinger transformed abundance to 498 

find Specific gut microbial members associated with COVID-19 severity. A marginal 499 

PERMANOVA test including both age and symptom severity was used to compare the overall 500 

gut microbial composition. Random Forest with leave-one-out cross-validation was used to 501 

perform regression and classification analysis based on the microbiome signature and clinical 502 

parameters/groups.    503 

 504 
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 710 

 711 

 712 

 713 

 714 
Figure 1. The overall structural variations of gut microbiota at admission associated with 715 

disease severity in hospitalized COVID-19 patients. (A) Principal Coordinate Analysis based on 716 

Bray-Curtis calculated from abundance of the 2,568 genomes. (B) and (C) Comparison of the 717 

PC1 and PC2. (D) Comparison of alpha-diversity as indicated by Shannon index. Data points not 718 

sharing common compact letters were significantly different from each other (p < 0.05). Boxes 719 

show the medians and the interquartile ranges (IQRs), the whiskers denote the lowest and 720 

highest values that were within 1.5 times the IQR from the first and third quartiles, and outliers 721 

are shown as individual points. Kruskal-Wallis test followed by Dunn’s post hoc (two-sided) was 722 

applied to compare the groups. Compact letters reflect the significance of the test (P < 0.05). 723 

Mild: n = 88; moderate n = 196, severe/critical n = 12.  724 
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 727 

 728 

 729 

 730 
 731 

Figure 2. Differentially abundant gut microbial genomes classify patients with different 732 

COVID-19 symptom severity. (A) The heatmap of 48 high quality metagenome-assembled 733 

genomes (HQMAGs) identified by redundancy analysis (RDA). RDA analysis was conducted 734 

based on the Hellinger transformed abundance of all the HQMAGs and use the three symptom 735 

severity groups as environmental variables. HQMAGs with at least 5% of the variability in their 736 

abundance explained by constrained axes were selected.  The heatmap shows the mean 737 

abundance of each HQMAGs in each group. The abundance was scaled across each row. The 738 

HQMAGs were clustered based on Euclidean distance and complete linkage. Kruskal-Wallis test 739 

followed by Dunn test (two-sided) was used to test the differences between the 3 severity 740 

groups. Compact letters reflect the significance as P < 0.05. (B) The area under the ROC curve 741 

(AUC) of the Random Forest classifier based on the 33 HQMAGs to classify different COVID-19 742 

symptom severity. Leave-one-out cross validation was applied. 743 

 744 

 745 

 746 
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 747 
Figure3. Two competing guilds associated with the symptom severity of COVID-19 patients. (A) 748 

Co-abundance network of the HQMAGs reflects two competing guilds. The co-abundance 749 

correlation between the HQMAGs were calculated using Fastspar, n= 296 subject. All significant 750 

correlations with BH-adjusted p < 0.05 were included. Edges between nodes represent 751 

correlations. Red and blue colors indicate positive and negative correlations, respectively. Node 752 

size indicates the average abundance of the HQMAGs in 296 samples. Node color indicates 753 

Guild 1 (orange) and Guild 2 (purple), respectively. (B) Comparison of guild-level Microbiome 754 

Index (GMI). Data points not sharing common compact letters were significantly different from 755 

each other (p < 0.05). Boxes show the medians and the interquartile ranges (IQRs), the whiskers 756 

denote the lowest and highest values that were within 1.5 times the IQR from the first and third 757 

quartiles, and outliers are shown as individual points. Kruskal-Wallis test followed by Dunn’s 758 

post hoc (two-sided) was applied to compare the groups. Compact letters reflect the 759 

significance of the test (P < 0.05). Mild: n = 88; moderate n = 196, severe/critical n = 12.  (C) The 760 

Guild-level Microbiome Index (GMI) supports classification for different COVID-19 symptom 761 

severity. Leave-one-out cross validation was applied for each model. 762 

 763 
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 764 
Figure4. The two competing guilds at admission associated with severity of COVID-19 in 765 

hospitalized patients at Day 7 after admission and outcome in critical patients.  (A) The 766 

network shows the correlations between the microbiome signature at admission and clinical 767 

parameters of COVID-19 in hospitalized patients at Day 7. Random Forest (RF) regression with 768 

leave-one-out cross-validation was used to explore the associations between the 33 genomes 769 

at admission and the clinical parameters at Day 7. Edges in gray show the clinical parameters 770 

with significantly positive Pearson’s correlations between the measured values and the 771 

predicted value from the RF model. Spearman correlation was used to explore the associations 772 

between the Guild-level Microbiome Index (GMI) at admission and the clinical parameters at 773 

day 7. Edges in red and blue show the significantly positive and negative correlations, 774 

respectively. The color of the nodes: blue: biochemical indicators, green: coagulation indicators; 775 

red: immune indicators; yellow: hemogram indicators. Line type: solid: BH adjusted P < 0.05, 776 

dashed: BH adjusted P < 0.1. CHE: serum cholinesterase, GLB: globulin, LDH: lactate 777 

dehydrogenase, DBIL: direct bilirubin, NEUT%: neutrophils percentage, LYMPH #: lymphocyte 778 

count, LYMPH %: lymphocyte percentage, ALP: Alkaline phosphatase, ALB: albumin; GR: 779 
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glutathione reductase; TC: total cholesterol, TBIL: total bilirubin, CA: total calcium, Glu: glucose, 780 

TT: thrombin time; IL-12p70: Interleukin -12p70, FDP: fibrin degradation products, Fg: 781 

fibrinogen(B) The area under the ROC curve (AUC) of the Random Forest classifier based on the 782 

33 HQMAGs at admission to classify the outcome (death/discharge) of critical COVID-19 in 783 

hospitalized patients. Leave-one-out cross validation was applied. (C) Guild-level Microbiome 784 

Index (GMI) at admission associate with the ends of critical COVID-19 patients. Two-sided 785 

Mann-Whitney test was applied. Death n =3, discharge n = 4. * P < 0.05. 786 

 787 

 788 

 789 
Figure 5. The genome-based microbiome signature enables to classify COVID-19 patient from 790 

different severity groups in an independent dataset. (A) Principal Coordinate Analysis based 791 

on Bray-Curtis distance calculated from the abundance of the 33 HQMAGs. PERMANOVA test 792 

showed significant differences in the composition of the 33 HQMAGs between the two 793 

groups(B) The area under the ROC curve (AUC) of the Random Forest classifier based on the 33 794 

HQMAGs to classify mild/moderate and severe/critical COVID-19 patients. Leave-one-out cross 795 

validation was applied.  (C) Significant differences in Guild-level Microbiome index (GMI) and 796 

abundances of Guild 1 and Guild 2 between mild/moderate and severe/critical COVID-19 797 

patients. The barplot summarized the mean and S.E.M. Mann-Whitney test (two-sided) was 798 

applied to compare the groups. Mild/Moderate n = 24, Severe/Critical n =14. * P < 0.05, ** P < 799 

0.01 800 
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 802 
Figure 6. The genome-based microbiome signature enabled classification between COVID-19, 803 

non-COVID-19 and pneumonia in an independent dataset. (A) Principal Coordinate Analysis 804 

based on Bray-Curtis distance calculated from the abundance of the 33 HQMAGs. (B) 805 

Comparison of the PC1. Data points not sharing common compact letters were significantly 806 

different from each other (p < 0.05). Boxes show the medians and the interquartile ranges 807 

(IQRs), the whiskers denote the lowest and highest values that were within 1.5 times the IQR 808 

from the first and third quartiles, and outliers are shown as individual points.  (C) PERMANOVA 809 

test showed significant differences in the composition of the 33 HQMAGs between COVID-19, 810 

non-COVID-19 and pneumonia subjects. *** P < 0.001 (D) The area under the ROC curve (AUC) 811 

of the Random Forest classifier based on the 33 HQMAGs to classify COVID-19, non-COVID-19 812 

and pneumonia subjects. Leave-one-out cross validation was applied.  (E) Significant differences 813 

in Guild-level Microbiome index (GMI) and abundances of Guild 1 and Guild 2 between COVID-814 

19, non-COVID-19 and pneumonia subjects. The barplot summarized the mean and S.E.M. 815 

Kruskal-Wallis test followed by Dunn’s post hoc (two-sided) was applied to compare the groups. 816 

Compact letters reflect the significance of the test (P < 0.05).  COVID-19 n = 66, non-COVID-19 n 817 

= 69 and pneumonia n = 9. 818 

 819 
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