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Abstract 
Gene duplications are common in biology and are likely to be an important source of 
functional diversification and specialization. The yeast Saccharomyces cerevisiae 
underwent a whole genome duplication event early in evolution, and a substantial 
number of duplicated genes have been retained. We identified more than 3,500 
instances where only one of two paralogous proteins undergoes post-translational 
modification despite having retained the same amino acid residue in both. We also 
developed a web-based search algorithm (CoSMoS.c.) that scores conservation of 
amino acid sequences based on 1011 wild and domesticated yeast isolates and used it 
to compare differentially-modified pairs of paralogous proteins. We found that the most 
common modifications – phosphorylation, ubiquitylation and acylation but not N-
glycosylation – occur in regions of high sequence conservation. Such conservation is 
evident even for ubiquitylation and succinylation, where there is no established 
‘consensus site’ for modification. Differences in phosphorylation were not associated 
with predicted secondary structure or solvent accessibility, but did mirror known 
differences in kinase-substrate interactions. By integrating data from large scale 
proteomics and genomics analysis, in a system with such substantial genetic diversity, 
we obtained a more comprehensive understanding of the functional basis for genetic 
redundancies that have persisted for 100 million years. 
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Introduction 
 
It has long been appreciated that the yeast Saccharomyces cerevisiae has multiple 
paralogous gene pairs. However, their origins were only recognized after sequencing the 
complete genome, the first for any eukaryotic organism. That effort, completed in 1997, 
revealed a whole-genome duplication event dating back roughly 100 million years (1). Of 
the 6,604 open reading frames (ORFs) in this organism there are 550 paralogous pairs 
(2-4), as annotated in the SGD YeastMine database 
(https://yeastmine.yeastgenome.org/yeastmine/begin.do). These duplicated genes are 
strongly enriched for components of the ribosome complex (4, 5) as well as of the 
glucose sensing pathway, including proteins involved in glycolysis and gluconeogenesis 
(6, 7). Thus, duplicated genes appear to be especially important for processes related to 
glucose utilization, and are likely to have enabled the ability of this organism to ferment 
glucose to ethanol even under oxygen-rich conditions.  

The prevalence of paralogous genes in Saccharomyces cerevisiae led to broader 
questions about the evolutionary and selective pressures that favor their retention. Some 
discussions of gene paralogs have focused on their potential contributions to genetic 
robustness and phenotypic plasticity (8). Robustness refers to a number of different 
mechanisms that stabilize phenotype against genetic or environmental perturbations 
(e.g. changes in glucose or oxygen availability). An extreme example of robustness is 
where one of the genes is inactivated and the remaining copy provides enough of the 
original function to compensate for the loss and ensure survival. In support of this model, 
several studies in yeast have found that about a third of duplicate gene pairs exhibit 
negative epistasis (9-12), meaning that deleting both copies produces a significantly 
larger defect than that of the individual deletions. An alternative scenario is where the 
activity of a duplicated gene product is temporarily disabled in response to changing 
environmental circumstances, for example through substrate inhibition or feedback 
phosphorylation. In that case the remaining paralog might compensate for the loss by 
modifying its activity through transcriptional reprograming (13), changes in protein 
stability, or redistribution within the cell (8, 14, 15). Another feature of duplicated genes 
is phenotypic plasticity, which refers to the potential of new genes to evoke new 
phenotypes, new metabolic functions, increased biological complexity and – ultimately – 
the emergence of new species ((16, 17); reviewed in (18-21)). These processes are not 
mutually exclusive; that is to say, paralogs may allow for adaptation of a given species to 
a broader set of environmental circumstances and at the same time help to accelerate 
genetic evolution. 

Underlying any changes in cellular fitness are the biochemical changes that occur within 
the cell. Most prominently, changes in protein function are driven by chemical 
modifications such as phosphorylation, glycosylation, acylation and peptidylation (e.g. 
ubiquitylation). A subset of these changes occurs dynamically and allows the cell to 
react quickly to internal and external perturbations. Here we sought to determine how 
paralogs in yeast differ with regard to posttranslational modifications. This was done with 
the expectation that chemical changes confer functional differences to otherwise 
structurally similar proteins, and may account for the retention of duplicated gene pairs. 
To facilitate our analysis, we built a web-based tool that allows detailed sequence 
comparisons across 1012 Saccharomyces cerevisiae strains, and used this to 
investigate how sequence conservation near the sites of modification could account for 
the observed differences between paralogous protein pairs. While our analysis is limited 
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to duplicated genes in yeast, the approach could be adapted to study other closely-
related protein isoforms in other organisms, and thereby reveal some of the evolutionary 
forces responsible for their existence. 

 
Results 
 
I. Development of CoSMoS.c. 

Our initial objective was to determine if closely related proteins undergo distinct chemical 
modifications, and if those changes are associated with unique amino acid sequence 
motifs near the sites of modification. To that end we analyzed sites of post-translational 
modifications in S288C and compared the sequence of this strain with 1011 additional 
isolates of Saccharomyces cerevisiae (22). These represent multiple clades from 
multiple geographical regions and from multiple sources in the wild, in clinical settings, in 
the laboratory, or used commercially in the dairy and brewing industries. In comparison 
to many other genomes of interest, including humans, there is much greater genetic 
diversity within the species Saccharomyces cerevisiae. In contrast to other yeasts, 
including commonly studied species such as Candida albicans and 
Schizosaccharomyces pombe, Saccharomyces cerevisiae has a substantial number of 
paralogous gene pairs.  

To begin our analysis we first performed Multi-Sequence Alignment (using Clustal 
Omega 1.2.4) for 5,776 open reading frames shared among the 1012 strains (see 
Materials and Methods) (22). We then used these alignments to identify and analyze 
specific sites of interest (described below), which were the foundation for subsequent 
conservation score calculations.  

We then created an interactive website, CoSMoS.c. (Conserved Sequence Motifs in 
Saccharomyces cerevisiae, https://shiny-server-dept-yeast-
cosmos.apps.cloudapps.unc.edu/) that allows users to identify, either by sequence motif 
or by position within the sequence, and score the conservation of aligned regions of any 
protein (Figures 1, S1 and S2). To address multiple potential applications we included 
five widely-used algorithms to calculate conservation scores (see Materials and Methods 
for details): Shannon Entropy, which reports the average level of uncertainty (or 
“information” or “surprise”) inherent in the possible outcomes of the variable and thereby 
quantifies amino acid diversity at a given position (23); Stereochemically Sensitive 
Entropy, which is based on Shannon Entropy but groups amino acids into nine 
categories based on similarities in their physiochemical properties (24); PhyloZOOM, 
which weights evolutionary relatedness on top of chemical identity (22, 25); Jensen-
Shannon Divergency (JSD), which compares amino acid frequencies with the 
background distribution, assuming no evolutionary constraint, and thereby emphasizes 
selection pressure rather than chemical similarity (26); and Karlin Substitution Matrix, 
which quantifies the likeliness of observed substitutions, rather than the chemical or 
biological properties of a given amino acid (27). Thus, each algorithm considers a 
different aspect of amino acid sequence, which when used together provides a more 
comprehensive representation of protein conservation. 

II. Statistical analysis using CoSMoS.c. 
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Proteins can undergo any of dozens of post-translational modifications, and these 
changes in chemical structure can have important biological consequences. Soon after 
the completion of the yeast genome sequencing project, many large-scale investigations 
of protein modifications were conducted using mass spectrometry. These experiments 
have shown that the vast majority of proteins are modified. Other proteins are likely to be 
expressed and/or modified, but may have been missed because of low abundance or 
because of difficulties with protein isolation or peptide detection. 

One potential, and particularly powerful, use of CoSMoS.c. is to determine whether 
specific modifications occur in regions of high sequence conservation. To that end we 
aligned the sequences of paralogous protein pairs and selected those amino acid sites 
that are the same in both paralogs, but where only one of the two sites is modified. We 
then used CoSMoS.c. to calculate the conservation scores for those sites of interest and 
their flanking regions. Our underlying hypothesis was that if there are sequences that 
favor a given modification, such sequences are likely to flank the site of interest, and 
those sequences are likely to be conserved.  

To maximize statistical power we focused on the five most common modifications in 
Saccharomyces cerevisiae: phosphorylation, with 38,684 occurrences present in 4,120 
ORFs (62.39%), ubiquitylation, with 5,299 occurrences in 1,872 ORFs (28.35%), 
monoacetylation, with 968 occurrences in 333 ORFs (5.04%), N-glycosylation, with 587 
occurrences in 239 ORFs (3.62%), and succinylation, with 577 occurrences in 356 ORFs 
(5.39%) (Table 1 and Dataset S1), as annotated for strain S288C in the SGD database 
(https://yeastmine.yeastgenome.org/yeastmine/begin.do). All of these modifications can 
affect protein activity, location or protein-protein interactions. 

Phosphorylation is the addition of a phosphate group from ATP to the hydroxyl group of 
serine, threonine or tyrosine. Protein phosphorylation was first documented by Krebs 
and Fischer, who showed that this modification is responsible for the interconversion of 
active (“a”) and inactive (“b”) forms of the enzyme glycogen phosphorylase (reviewed in 
(28)). Their investigations led to the establishment of the first hormonal cascade of 
successive enzymatic reactions, kinases acting on kinases, initiated by cAMP and 
leading to glycogenolysis (28). In Saccharomyces cerevisiae, phosphorylation of serine, 
threonine and tyrosine has been documented 30,029, 7,723, and 932 times, respectively 
(Table 1). The abundance of phosphorylated tyrosines was unexpected given that in 
yeast there are no dedicated tyrosine kinases and only a small number of dual-specificity 
kinases. We did not include rare non-canonical events, including phosphorylation of 
other amino acids or events annotated as “dephosphorylation” or “autophosphorylation”.   

First discovered in the late 1970s, ubiquitylation entails the conjugation of a 76 amino 
acid protein, ubiquitin, to lysine residues in substrate proteins. This process is mediated 
by three distinct enzymes (E1, E2 and E3), the last of which defines substrate specificity 
and the timing of the modification (29). The first use of mass spectrometry to map a 
protein ubiquitylation site was done for the yeast G protein Gpa1 (30). In this example, a 
protein complex containing the E3 Cdc53 and F-box adapter Cdc4 is necessary and 
sufficient for poly-ubiquitylation of Gpa1, resulting in degradation by the proteasome 
protease complex (31, 32). Another E3, Rsp5, is necessary and sufficient for mono-
ubiquitylation (33). The monoubiquitylated protein is then internalized by a cascade of 
ubiquitin-binding domain proteins and degraded in the vacuole (31, 34). 
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The two acylation reactions, representing the addition of a succinyl or acetyl group to 
lysine. The first documented, and best characterized, substrates are histones. In this 
instance, Lys acetylation disrupts DNA binding, owing to the resulting charge reversal 
from +1 to −1, and alterations in chromatin structure (35). Acetylation is carried out by 
lysine acetyltransferases and reversed by histone deacetylases. Past computational 
studies suggest that these enzymes prefer to modify substrates at sites rich in Lys, Ser, 
Thr, Gly, and Ala (36).  

Finally, N-glycosylation is the attachment of an oligosaccharide moiety to 
the amide nitrogen of asparagine. This modification usually occurs on proteins destined 
for the cell surface, either as secreted or as integral membrane proteins. In contrast to 
the other modifications, N-glycosylation is considered irreversible and occurs during, 
rather than after, protein synthesis. Oligo-saccharyltransferases transfer a preassembled 
oligosaccharide from a lipid-linked donor to Asn residues within glycosylation acceptor 
“sequons”: Asn-X-Thr/Ser/Cys, where X is any residue other than Pro. Not all sequons 
are glycosylated however, reflecting the importance of other primary and secondary 
structural features (37, 38). Once conjugated, these N-linked oligosaccharides undergo 
further processing, the products of which are specifically recognized by ER-localized 
lectins. Collectively these events facilitate proper protein folding and transport to the cell 
surface (Reviewed in (37)).  

We next identified pairs of sites in which one of the two proteins is known to be modified 
and the amino acid residue is the same in both (“site of interest”). These sites were 
identified by aligning sequences using the Needleman algorithm (39). We did not 
consider substitutions of any kind even if they are potentially modified (e.g. serine for 
threonine). Then we sought to determine whether the modifications occurred within a 
region of high amino acid conservation, or conserved sequence motif. To that end we 
examined the flanking region of each site of interest using three methods of analysis and 
five different scoring algorithms within CoSMoS.c (see Materials and Methods). We are 
not inferring any causal relationship between a particular modification and the sequence 
context of that modification, particularly since different substrates may undergo the same 
chemical reaction but are carried out by different modifying enzymes. Further 
experimentation is needed to determine if a particular sequence helps to direct a specific 
enzyme to the site of modification, or if a given modification favors retention of 
sequences that are functionally compatible with a given post-translational modification. 

The first method, which we call Symmetric Average Score, considers the conservation 
scores for sets of amino acids upstream and downstream of the site of interest. That is 
to say, we obtained mean scores for sets of amino acids that include, and bracket on 
both sides, the sites of interest. These scores are represented as mean1 (3 amino 
acids), mean2 (5 amino acids), mean3 (7 amino acids) and mean4 (9 amino acids) 
(Figure S3A). We then compared the Symmetric Average Score for each paralog pair. 
To determine whether the modified target site had a higher context sequence 
conservation than that of the unmodified paralog we first separated the scores into five 
groups, one for each modification type. We then performed two statistical tests: the 
Distribution Mean Test, which determines whether target protein conservation score 
distribution is significantly larger than that of its paralog, and the Paralog Pairing Test, 
which tests whether the pairing structure confers an advantage for the target proteins 
(Figure 2). We also list how these two tests are expected to perform under all possible 
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scenarios in regard to the relationships between modified target proteins and unmodified 
paralogs (see Materials and Methods). 

The second method we call One-sided Average Score. In contrast to Symmetric 
Average Score, which simultaneously considers sequences on both sides, this 
alternative method considers up to four amino acids either upstream or downstream (but 
not both) of the site of interest (Figure S3B). As with the first method we compared the 
score for each paralog pair, separated the scores into the five modification types, and 
performed the same statistical tests on the score distribution. 

The third method, which we call Chemical Similarity Average Score, calculates the mean 
conservation score based on chemical classifications assigned to residues immediately 
adjacent to a site of interest. That is to say, we obtained a mean score for amino acids, 
comprised of the site of interest and the residue immediately before (“meanb1”) or 
immediately after (“meana1”). We then placed each of these amino acids into five 
separate bins based on the chemical classification of the adjoining residue, as follows: 
aliphatic (G,A,V,L,I,M,P), aromatic (F,Y,W), polar uncharged (S,T,C,N,Q), acidic (E,D) 
and basic (K,R,H). We then compared the modified target proteins and their unmodified 
paralogs, by calculating the average of meanb1 and of meana1, for each classification. 
Because the residues of a given target and its paralog could fall into two different 
chemical classifications, the paralog pairing structure cannot be maintained in this 
analysis. Therefore, we only applied the Mann-Whitney-Wilcoxon Test to compare the 
means for the target and paralog distribution of a certain chemical classification. In this 
way we determined whether there was a significant difference in conservation scores 
between modified target proteins and unmodified paralogs for each chemical group. 
Thus, we could determine if the occurrence of a specific modification depends on the 
physiochemical properties of nearby amino acids. 

III. Analysis of sequence conservation near sites of post-translational modification 

Having established our analytical approach, we next sought to apply it to specific post-
translational modifications. To that end we focused on five major modifications, 
representing those with more than 500 documented occurrences in the proteome of 
Saccharomyces cerevisiae, as annotated in the SGD YeastMine database 
(https://yeastmine.yeastgenome.org/yeastmine/begin.do): phosphorylation, N-
glycosylation, monoacetylation, succinylation and ubiquitylation. More specifically, we 
sought to identify patterns of sequence conservation near each modification site, and to 
determine how any such sequence motifs differ depending on the type of modification.  

We first applied the Mann-Whitney-Wilcoxon (Distribution Mean) and Monte Carlo 
Simulation (Paralog Pairing) tests to the Symmetric Average Score. Figures 3 and 4 
show the adjusted p values (Benjamini-Hochberg, same method used for all adjusted p 
values) for each of the five modifications, one per column, as applied to all four 
sequence lengths, one per row. For the Distribution Mean Test we found significant 
differences (adjusted p < 0.05) in conservation scores comparing modified target 
proteins and unmodified paralog proteins, for all modifications except N-glycosylation 
(Figure 3 and Dataset S2). We also found significant differences for all sequence 
lengths, from one to four amino acids, flanking the site of interest. This suggests that 
there is a functional relationship between these modifications and their adjoining 
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sequences. Once again, we are not inferring any mechanistic relationship between any 
modification and the sequence context of that modification.  

We then applied the Paralog Pairing Test to each modification type using all five 
algorithms (Figure 4 and Dataset S3). Once again, conservation scores for 
phosphorylation and ubiquitylation were significantly different for all four sequence 
lengths and for all five algorithms. Succinylation had borderline adjusted p values for 
mean1 scores obtained using Shannon Entropy and Karlin Substitution Matrix.  

Monoacetylation had high adjusted p values for three of five mean1 scores (all but JSD 
and PhyloZOOM). JSD reports how much we expect the amino acid sequence to 
change assuming no evolutionary constraint. The JSD value is greater for modified 
targets than unmodified paralogs. Therefore, the significant adjusted p value suggests 
that selection pressure is greater near modified sites than unmodified sites. In contrast to 
the other algorithms, PhyloZOOM penalizes mutations according to phylogenetic 
distance. We found that for mean1 of monoacetylation the modified target proteins are 
more likely to have a PhyloZOOM score that is equal to or greater than that of 
unmodified paralogs. Accordingly, the sequences of unmodified paralogs exhibit 
substitutions in strains closely related to S288C, while modified proteins harbor 
substitutions in distantly related strains. In summary, JSD indicates that there is 
selection pressure to ensure the conservation of sequences flanking sites of 
modification, and these forces are relaxed for corresponding sites in unmodified 
paralogs. PhyloZOOM indicates the selection pressure for modified regions is greater in 
strains most closely related to S288C. Such differences are less likely to be detected 
when using other algorithms such as Shannon Entropy. Finally, for most algorithms 
monoacetylation had a significant adjusted p value for mean2, mean3 and mean4.  

Based on these data we infer that the pairing structure helps to amplify differences 
between target proteins and their paralogs, and these differences are evident for 
phosphorylation, ubiquitylation, succinylation and monoacetylation, but not for N-
glycosylation. We obtained similar results using the One-sided Average Score, which 
considers up to four amino acids either upstream or downstream of the site of interest, 
but not both. For both Distribution Mean Test and Paralog Pairing Test, adjusted p 
values were significant for segments upstream and downstream of the sites of 
phosphorylation, succinylation, ubiquitylation, and monoacetylation, but not N-
glycosylation (Figures S4, S5 and Datasets S4, S5).  

Finally, we determined the Chemical Similarity Average Score, which calculates the 
mean conservation score based on chemical classifications assigned to amino acid 
residues. We used the Mann-Whitney-Wilcoxon Test to compare modified target 
proteins and unmodified paralogs for each chemical classification. Once again, we 
observed significant differences for all modifications except N-glycosylation (Figure 5 
and Dataset S6). In particular, we found high conservation of aliphatic residues flanking 
sites of phosphorylation and ubiquitylation, and immediately after sites of succinylation. 
In addition, we found high conservation of basic residues flanking sites of ubiquitylation, 
and of polar uncharged residues flanking sites of phosphorylation. Notably, we observed 
a significant difference for all five amino acid classifications upstream of the sites of 
phosphorylation. This result indicates the importance of conservation at this position, 
one that is independent of the chemical properties of the amino acids at that position. 
One possibility is that protein kinases share the ability to recognize amino acids 
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immediately before the site of modification, but that dependence may differ for different 
kinases. More broadly, we conclude that a subset of amino acids is conserved near sites 
of protein phosphorylation, succinylation, and ubiquitylation. This is true even when there 
is no obvious ‘consensus site’ for a given modification. This pattern of conservation 
could indicate regions that are functionally important and happen to undergo post-
translational modification. Alternatively, flanking sequences could favor recognition by 
the enzymes that confer these modifications, or disfavor recognition by the enzymes that 
remove them. Further studies are needed to establish a cause-effect relationship 
between each modification, modifying enzymes, and the sequence context of the various 
modifications. 

IV. Analysis of sequence motifs near sites of post-translational modification 

We next examined specific features of amino acids flanking the sites of modification, and 
paid particular attention to motifs unique to modified target proteins (Table 2). In this 
analysis we focused on phosphorylation, since it is well established that many protein 
kinases recognize specific amino acid residues at positions near the site of 
phosphorylation (40, 41) (https://services.healthtech.dtu.dk/service.php?NetPhos-3.1;  
(https://scansite4.mit.edu/#home). To that end we used the Chi-square test, to determine 
whether the amino acid distribution for a specific site differs between modified targets 
and unmodified paralogs, and performed post-hoc analysis to determine which amino 
acid underlies this difference (see Materials and Methods) (42-44). Not surprisingly, 
most of the statistically significant differences were observed for serine phosphorylation, 
which is by far the most common. In this instance we detected significant or marginally 
significant enrichment of arginine at position b3, glycine at position b1 and proline at 
position a1. Conversely, certain amino acids were disfavored at positions b3 
(asparagine) and a1 (serine, threonine, tyrosine and lysine). There is good agreement 
with the sequence features identified in our analysis and that of a recent analysis using 
combinatorial peptide library screening methods to determine substrate specificity 
determinants for 303 purified serine-threonine kinases in humans.1 Nearly half of the 
kinases could be assigned to sequence motifs enriched either in basic residues at the b3 
and b2 positions or a proline at the a1 position. 

For the other types of modifications we did not observe any significant differences 
between target and paralog (Table 2). However, we did observe some differences in 
amino acid abundances, compared to that of BLOSUM62, which is denoted as the 
background amino acid frequencies approximating those with no selection pressure (see 
Materials and Methods) (45). Therefore, significant difference from BLOSUM62 
distributions can be viewed as being constrained by evolution or having functional 
importance. For sites of monoacetylation, positively-charged amino acids (lysine and 
arginine) were rarely present at the preceding (b1) position (Figure S6A). For 
succinylation the subsequent (a1) site was enriched for lysine, aspartic acid and cysteine 
(Figure S6B). As with monoacetylation, the b1 position lacked arginine (Figure S6C). N-
glycosylation, like phosphorylation, occurred in regions with an abundance of serines 
and threonines; these residues were almost exclusively found at the a2 position, in 
accordance with the known consensus site for N-glycosylation, as noted above (Figure 
S6D). 

 
1 bioRxiv 2022.05.22.492882; doi: https://doi.org/10.1101/2022.05.22.492882 
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V. Analysis of structural and interactome differences at sites of phosphorylation 

Above we identified several thousand instances where one of two paralogous proteins 
undergoes a unique post-translational modification, and developed an algorithm that 
scores the conservation of sequences in modified targets and their unmodified paralogs. 
We then considered two possible mechanisms by which these differences might arise. 
First, we considered secondary structure. Modifications such as phosphorylation often 
occur in regions that lack obvious secondary structure; previous estimates indicate that 
80% or more of phosphorylation sites lie within disordered regions of proteins, 
particularly proteins expressed in the cytoplasm (46, 47). The lack of structure is thought 
to provide increased accessibility to modifying enzymes. Second, we considered protein 
interaction partners. Any such differences could account for the differences in 
phosphorylation reported here. 

In order to determine the role of secondary structure, we mapped phosphorylation sites 
onto predicted protein three-dimensional structures available through AlphaFold (48, 49). 
This algorithm provides highly accurate structure prediction by incorporating novel neural 
network architectures and training procedures based on the evolutionary, physical and 
geometric constraints of protein structures. We downloaded all available AlphaFold 
protein structure predictions for Saccharomyces cerevisiae and used STRIDE to assign 
residue solvent accessible area and secondary structure for each amino acid (50). We 
then matched secondary structure predictions to each of the modified target sites and 
the corresponding unmodified paralog pairs (Dataset S7). As shown in Figure S7, the 
most frequently observed structures for the target-paralog pairs are Coil-Coil (1363), 
AlphaHelix-AlphaHelix (712), Turn-Turn (400), and Strand-Strand (243), accounting for 
more than 80% of the total (3343). Therefore, there are no substantial differences in 
secondary structure type comparing targets and paralogs. We then examined each 
paralog pair for differences in secondary structure length or residue solvent accessible 
area. For these four most common secondary structure pairings, the distribution of the 
difference between target vs paralog of secondary structure length (Figure S7A), and 
residue solvent accessible area (Figure S7B) all centered near 0 with sides that were not 
significantly skewed in either direction. We conclude that secondary structure and 
residue solvent accessible area are unlikely to account for the functional differences 
between target and paralog. 

We next considered the possibility that the paralogous proteins have distinct binding 
partners and these differential interactions could account for the different modifications 
observed. To that end, we interrogated the Yeast KID-kinase interaction database 
(http://www.moseslab.csb.utoronto.ca/KID/index.php) (51), representing a total of 31,155 
documented interactions between protein kinases and potential substrates. Of these, 
7,142 are interactions of protein kinases with paralogs. Because of limitations of the data 
source, we cannot assign a specific kinase to any particular amino acid modification. 
Therefore, we performed our analysis with all 550 paralogous protein pairs instead of 
individual sites in the modified target vs unmodified paralog. For each of the paralog 
pairs, we counted the number of kinases that interacted with both proteins (double 
interaction) and the number that interacted with only one of the two proteins (single 
interaction). We then calculated the single interaction ratio as the number of kinases with 
the single interaction divided by the sum of kinases with either single or double 
interactions. From this analysis, we identified 250 paralogous protein pairs (out of 550) 
having a single interaction ratio of 1 (Figure 6 and Dataset S8), meaning that these 
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kinase interactions are exclusively with one of the two paralogous proteins, but not both. 
In comparison, if kinases interacted equally with both paralogous proteins, we would 
have a single interaction ratio of 0. These results indicate that most kinases regulate one 
or the other of the protein paralogs. They suggest further that differential modifications 
reported here may be the result of differential interactions with modifying enzymes.  

 
Discussion  
 
Here we have identified several thousand instances where one of two paralogous 
proteins undergoes a unique post-translational modification. Source datasets were 
organized and analyzed using our custom algorithm (CoSMoS.c.) that quantifies 
sequence conservation, in an automated fashion, across 1012 unique strain isolates. By 
integrating multiple complementary datasets in this way, we determined that post 
translational modifications are associated with nearby differences in amino acid 
sequences, and that these modifications occur in regions of comparatively high 
sequence conservation. Such conservation is evident even for ubiquitylation and 
succinylation, where there is no established ‘consensus site’ for modification. We 
postulate that sequence differences confer differences in post-translational 
modifications, and that these modifications allow otherwise similar proteins to be 
differentially regulated. 

Our analysis of differentially-modified pairs of paralogous proteins revealed that the most 
common modifications – phosphorylation, ubiquitylation and acylation but not N-
glycosylation – occur within regions of high sequence conservation. In this regard, our 
analysis builds on past efforts to elucidate the sites and sequence determinants of 
protein post-translational modification. The first to be identified was the phosphorylation 
site in glycogen phosphorylase, in 1959 (52). In this instance, a single phosphoserine 
was identified after digestion with a series of proteases, followed by paper 
electrophoresis and end-group analysis of 32P-labeled peptides. That effort led to the 
concept of “consensus sequences” for protein modification, and was first validated using 
synthetic peptide substrates for cAMP dependent protein kinase (53-55). It would be 
another four decades before mass spectrometry would be used to survey the 
phosphoproteome of yeast S. cerevisiae (56). Subsequent studies have documented 
nearly 40,000 sites of phosphorylation, comprising more than 60% of the yeast proteome 
(Table 1). This is likely to be an underestimate, since some proteins will have been 
missed due to inefficient protein extraction, poor protein expression, or a low 
stoichiometry of phosphorylation.  

Soon after the discovery of dynamic protein phosphorylation, Phillips et al. first reported 
the modification of histones by acetylation (57). It would be another 25 years before the 
first acetylation site was mapped however, in this case by epitope mapping with a 
monoclonal antibody specific for acetylated α-tubulin (58, 59). Acetylation-specific 
antibodies were later used to identify 388 acetylation sites in 195 proteins (60). Mass 
spectrometry was then used to identify 3,600 acetylation sites in 1,750 proteins (61). The 
first report of protein ubiquitylation was in the 1970s, but it was not until 2002 that a 
ubiquitylation site, in this case for the yeast G protein Gpa1, was mapped by mass 
spectrometry (30). This approach was later adopted to map more than 1000 sites of 
ubiquitylation in yeast (62), and is now used routinely in large scale proteomics analysis.  
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A particular advantage of working with Saccharomyces cerevisiae is the existence of 
several hundred paralogous gene pairs, most with well-annotated functions. However, 
their persistence over millions of years has remained a puzzle. Duplicated genes are 
inherently unstable, and one or the other copy is likely to accumulate mutations and 
become a pseudogene or be eliminated entirely (63-65). Despite these countervailing 
forces, a substantial number of paralogs has been retained, presumably because these 
duplication events confer some fitness advantage to the organism. One potential benefit 
of gene duplication is to increase protein expression and metabolic flux (66, 67). In 
support of this dosage amplification model, many paralogous gene pairs exhibit 
substantial functional redundancy, as indicated by the high frequency of shared protein 
interaction partners (68, 69). On the other hand, it has been difficult to identify any 
growth or metabolic phenotypes following deletion of individual paralogs (9-12, 70). Even 
a combined deletion of 13 single paralogs, each involved in the conversion of glucose to 
ethanol, revealed no defect with respect to gene expression, the formation of glycolytic 
products or growth in a variety of conditions (6). Similarly, a combined deletion of 24 
single paralogs associated with 40S ribosomes led to only mild loss of translation activity 
and cellular fitness (71). One possibility is that differences in fitness exist, but are evident 
only under highly specialized (non-laboratory) circumstances. Another possibility is that 
deletion of a given paralog leads to a compensating change in the remaining paralog, 
through alterations in gene transcription (13, 17), protein half-life (72) or protein 
abundance (73). Given this complication, and in contrast to most prior studies which 
examined the functional consequences of individual gene deletions, we focused our 
analysis on events that occur in an otherwise wildtype background.  

Another potential benefit of gene duplication is the acquisition of new functions, or 
neofunctionalization. In this scenario, one copy might retain the original function while 
the second is free to acquire novel functions that are genetically favored (3). In support 
of the model, an analysis of published fitness data revealed that combined deletion of 
paralogous pairs in Saccharomyces cerevisiae exhibit a stronger defect than that of the 
corresponding singletons in Schizosaccharomyces pombe, which did not undergo the 
same whole genome duplication event (74). The expanded functionality of duplicates 
appears to include a larger number of protein binding partners and increased presence 
within multi-protein complexes (75-80). We propose that the many of the 3,500+ unique 
modifications – those occurring in one of two duplicated proteins – are the consequence 
of differential binding to protein kinases (as shown in Figure 6), ubiquitin ligases, acyl 
transferases, and other regulatory enzymes. 

A third potential outcome of gene duplication is subfunctionalization, where the function 
of a single ancestral protein becomes distributed among two descendant proteins. It has 
been argued, based on analysis of genetic and protein interactions as well as directed 
evolution studies, that subfunctionalization is associated with whole-genome duplications 
while neofunctionalization is most characteristic of small-scale duplications (12, 75, 79). 
By this mechanism, duplicates can be maintained in the genome by acquiring reciprocal 
loss-of-function mutations, such that both duplicates become necessary to perform the 
combined functions of a common ancestor. These functions are likely to include distinct 
regulation by phosphorylation (81, 82) and changes in catalytic activity (83) or 
subcellular localization (84, 85). However, nearly all prior studies of subfunctionalization 
have focused on differences in transcriptional regulation (7, 68, 70, 86-91). In contrast, 
we focused our analysis on changes that occur later, through post-translational 
modifications of the encoded proteins. 
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By working with yeast we circumvent many of the challenges associated with more 
complex biological systems. Nevertheless, our investigations in yeast could help to 
explain the prevalence of seemingly redundant protein isoforms in humans. To use one 
example from our own prior studies (92), there are hundreds of G proteins and G 
protein-coupled receptors, many of which appear to be functionally interchangeable (93). 
For example, of the nine adrenergic receptors, all of which bind to epinephrine 
(adrenaline), three activate the Gi subfamily of G proteins. Gi consists of a heterotrimer 
comprised of one (out of three) α subunits, one (out of four) β subunits and one (out of 
twelve) γ subunits. Gi in turn regulates nine isoforms of adenylyl cyclase (94), all of 
which produce the second messenger cAMP. This single example represents 3,888 
possible combinations of effector, G protein heterotrimer, and receptor. Based on our 
findings, we postulate that post-translational modifications may be an important source 
of neo- or sub-functionalization in this and other cell signaling pathways.  

In conclusion, we have shown that closely related proteins can undergo very different 
modifications. Whereas some paralogous pairs have partitioned their functions through 
changes in protein sequence alone, others are likely to have acquired new roles through 
post-translational modifications. These observations provide a possible explanation for 
the retention of functionally similar proteins throughout evolutionary history. 
 
 
Materials and Methods 
 
Multi-Sequence Alignment  

Multi-sequence alignments were performed using the reference strain S288C as well as 
1011 other strains provided by the “1002 Yeast Genome” website 
(http://1002genomes.u-strasbg.fr/files/) (22). Gene sequences comprising 6015 non-
redundant ORFs were downloaded from the 
allReferenceGenesWithSNPsAndIndelsInferred.tar.gz file. To simplify our analysis the 
239 intron-containing genes were not considered, leaving 5776 ORFs. The S288C and 
“1002” datasets were combined for a total of 1012 strain sequences. These gene 
sequences were translated into protein sequences with the ‘translate’ function in seqinr 
package in R (https://cran.r-project.org/web/packages/seqinr/index.html). The translated 
protein sequences were used as input for Clusto Omega (version 1.2.4), with the 
arguments ‘--seqtype=Protein --infmt=fasta --outfmt=fasta --guidetree-
out=user_defined_routes --use-kimura --iter=2 --force’, to produce multi-sequence 
alignments. The output was 5776 files, one for each protein, each containing an 
alignment for the 1012 strains.  

For each site of modification the Needleman-Wunsch global alignment was performed to 
identify corresponding regions in each paralogous protein pair (39). The function 
'pairwiseAlignment' in the R package 'Biostrings (v3.14)' and the following arguments 
were used: type='global',substitutionMatrix = 'BLOSUM62', 
gapOpening=10,gapExtension=0.5, scoreOnly=F. 

Conservation score calculation 

To calculate conservation scores we applied five commonly used algorithms. Each 
algorithm considers a different aspect of amino acid sequence, which when used 
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together provides a more comprehensive representation of protein conservation. The 
code used to calculate the scores is available for download (https://github.com/Shuang-
Plum/YeastMotifConserv).  

In CoSMoS.c., ShannonEntropy was calculated as described previously (23), and was 
defined as (1-entropy) to be consistent with other scores. It reports the average level of 
uncertainty (or “information” or “surprise”) inherent in the possible outcomes of the 
variable, and thereby quantifies amino acid diversity at a given position. 

Stereochemically Sensitive Entropy was calculated as for ShannonEntropy except that 
amino acids were grouped based on the rules  (['V','L', 'I','M'], ['F','W','Y'], ['S','T'], ['N','Q'], 
['H','K','R'], ['D','E'], ['A','G'], ['P'], ['C']), as described previously (24). Amino acids within 
the same group are treated as a single entity. Variation is only considered when an 
amino acid from one of these groups is replaced with an amino acid from another group. 
Therefore, Stereochemically Sensitive Entropy quantifies physiochemical similarity 
rather than chemical identity. 

Jensen-Shannon Divergency (JSD) was calculated as first applied in (26), and as 
summarized as Capra07 (see Table 4 in (95)). JSD quantifies the similarity between two 
probability distributions. In CoSMoS.c. we used BLOSUM62 (BLOcks SUbstitution 
Matrix62) as the background amino acid distribution, which approximates the distribution 
of amino acid sites subject to no evolutionary pressure. This matrix is built using 
sequences with less than 62% similarity (sequences with ≥ 62% identity are clustered). 
BLOSUM62 is the default matrix for protein BLAST. This is also the designated 
background distribution in Capra07 and was shown to have broad applicability (26). 
Therefore JSD reports how much we expect the amino acid sequence to change 
assuming no evolutionary constraint. If the observed changes differ substantially from 
expectation (BLOSUM62), this suggests the presence of selection pressure and 
functional importance. Thus JSD emphasizes selection pressure rather than chemical 
similarity. 

PhyloZOOM was calculated using the ‘zoom’ method, as described in (25). It is based 
on Shannon Entropy and uses a prebuilt phylogenetic tree based on the biallelic SNPs 
of the 1012 strains (22). This algorithm integrates strain phylogeny information into the 
Shannon Entropy conservation score calculation and in this way corrects for relatedness 
among strains. It imposes a high penalty if a mutation occurs in a comparison strain 
closely related to the reference strain (in our case, S288C), and imposes a low penalty if 
it occurs in a distantly related comparison strain. Therefore, PhyloZOOM weights 
evolutionary relatedness on top of chemical identity. 

Karlin Substitution Matrix was calculated with Karlin Normalization as described in (27). 
The range of the score is (-1,1). This was then re-ranged to (0,1) to be consistent with 
other scores. The Karlin Substitution Matrix algorithm emphasizes the probability of 
amino acid substitutions. Karlin Substitution Matrix sums the weights set for each 
possible substitution pair based on a background distribution, which sets the rules for 
how a substitution is penalized. CoSMoS.c. uses BLOSUM62 to be consistent with 
protein BLAST, wherein a rare substitution is penalized more than a common 
substitution. However, the background distribution can be substituted, for example with 
PAM30 (96), if another set of penalty rules is preferred. Therefore, Karlin Substitution 
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Matrix quantifies the likeliness of observed substitutions, rather than quantifying 
chemical or biological properties of a given amino acid. 

Thus, all scores were normalized to (0,1) with 0 being random and 1 being perfectly 
conserved. If gap penalty was applied, Conservation Score was calculated as 
Score*(non-gap amino acids percentage). Gaps were defined as noncanonical amino 
acids X,B,Z or “–“ produced from multi-sequence alignment. Gap penalty is inherent in 
the Karlin Substitution Matrix algorithm; therefore, no additional gap penalty was applied. 

Statistical tests for sequence conservation scores 

We performed two different statistical tests because the underlying distribution has a 
pairing structure for each modified target protein and its unmodified paralog. One 
possibility is that the target protein score distribution is much larger than that of its paralog, 
and the distributions do not overlap (Figure S8A). In this situation the pairing structure 
does not matter and the target protein score is unambiguously larger than that of its 
paralog (Figure S8D). In this instance we applied a one-sided, paired Mann-Whitney-
Wilcoxon Test (97), which determines whether the target protein conservation score 
distribution is significantly larger than that of unmodified paralog, without assuming that 
they follow a normal distribution. Hereafter we refer to this as Distribution Mean Test. 

A second possibility is that modified target proteins and unmodified paralogs have 
conservation score distributions that overlap substantially (Figure S8B), but with a pairing 
structure such that the target protein score is usually higher than that of its paralog 
(Figures 2A, 2B and S8D). Another possibility is that the pairing structure could 
disadvantage the target protein, such that the target protein score is usually lower than 
that of its paralog (Figures 2C and 2D). To test whether the pairing structure matters we 
applied the Monte Carlo Simulation. We first calculated the percentage of pairings for 
which the modified target protein scores were greater than that of their unmodified 
paralogs, using established paralog gene pairs (“authentic pairs”). We then shuffled the 
pairings of target proteins and paralogs and calculated the percentage as before and 
repeated this 10,000 times. Lastly, we calculated the frequency for which “authentic pairs” 
was greater than that of the simulations. This method allowed us to determine if the 
authentic pairing structure confers an advantage for the target proteins. Hereafter we refer 
to this as “Paralog Pairing Test”.  

A third possibility is that a modified target protein and unmodified paralog have 
conservation score distributions that overlap partially (Figure S8C). In this case, the 
Distribution Mean Test will reveal whether the mean difference is statistically significant. 
Under these same circumstances the results of the Paralog Pairing Test might not be 
significant, which would indicate that the pairing structure is not contributing to the 
advantage of the target protein (Figure S8D). 

If the mean conservation score distribution of modified target proteins is substantially 
larger than that of the unmodified paralogs, such that the distributions do not overlap, the 
result of the Distribution Mean Test would undoubtedly be statistically significant. In this 
situation the result of the Paralog Pairing Test will not be significant, as no matter how the 
pairing is structured all target proteins will have a higher mean conservation score than 
that of the paralogs. Therefore, in this scenario, the target protein has a significantly higher 
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mean conservation score than its paralog, but the pairing structure does not contribute to 
the significance of that difference. 

If the mean conservation score distribution of the modified target proteins is larger but 
overlapping with that of the unmodified paralogs, the results of both the Distribution Mean 
Test and the Paralog Pairing Test could be statistically significant. In this situation, while 
the mean distribution of target proteins is significantly larger than that of the unmodified 
paralogs, the pairing structure could also contribute to the significance of the difference. If 
the mean conservation score distribution of the modified target protein is substantially 
overlapping with that of the unmodified paralog, the results of the Paralog Pairing Test 
could still be statistically significant, while the results of the Distribution Mean Test will 
undoubtedly not be significant. Although the distributions are similar, the pairing structure 
can still result in the modified target protein having a significantly larger mean conservation 
score than that of the unmodified paralog (See Figures 2 and S8). 

Analysis of sequence motifs near sites of post-translational modification 

We made two comparisons, 1) whether there are significant differences in amino acid 
distribution, for a specific site, between target and paralog, and 2) whether the target or 
paralog distributions are significantly different from the background frequencies based 
on BLOSUM62. Amino acid frequencies for each of the four positions upstream and 
downstream of each target modification site, and the corresponding regions of the 
unmodified paralog protein were counted. The Chi-square test (chisq.test in stats 
package of R, with arguments: simulate.p.value = T, B=10000) was used to determine 
whether the categorized distributions, i.e. amino acid counts, were significantly different 
comparing 1) target proteins and paralogs, and 2) either target proteins or paralogs with 
BLOSUM62. To further determine which category (amino acid) contributes to the 
significant differences if any, post-hoc analysis was performed using the standardized 
residuals (stdres from chisq.test results, using pnorm to get the cumulative probability at 
the value of stdres, then using Benjamini-Hochberg for multi-comparison correction).  

Analysis of post-translation modifications 

Modifications in the proteome of Saccharomyces cerevisiae were obtained from 
annotated lists in the SGD database 
(https://yeastmine.yeastgenome.org/yeastmine/begin.do) on September 27, 2021, and 
were assigned to 550 paralog sequences also obtained from SGD YeastMine on July 
14, 2020. 

Analysis of structural motifs near sites of post-translational modification 

AlphaFold protein structure prediction for Saccharomyces cerevisiae was downloaded 
from AlphaFold website (https://alphafold.ebi.ac.uk/download) (48, 49). The 
uncompressed .pdb files generated by AlphaFold were used as input data for protein 
secondary structure assignment with STRIDE as a stand-alone program (July 7th, 2022) 
(http://webclu.bio.wzw.tum.de/stride/) (50). STRIDE assignments of secondary structure 
and residue solvent accessible area were extracted from “Detailed secondary structure 
assignment section”. These secondary structure predictions were then matched to each 
of the modified target and unmodified paralog pairs. Secondary structure length is 
defined as the number of amino acids with an uninterrupted stretch of secondary 
structure, for a given site of modification or for the corresponding site of the unmodified 
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paralog. For each modified target and unmodified paralog pair, the difference between 
the residue solvent accessible area and secondary structure length was calculated and 
presented as a boxplot for each set of target and paralog secondary structures (e.g. 
turn-turn, turn-coil, etc.).  

Analysis of kinase-substrate interactions  

Kinase and substrate interaction data were downloaded from the Yeast KID-kinase 
interaction database (http://www.moseslab.csb.utoronto.ca/KID/index.php) on May 27, 
2022 (51). A total of 31,155 interactions were downloaded for all substrates and 
including all types of experimental evidence. The dataset included 127 kinases in total. 
For each of the 550 paralog pairs, the number of kinases that interacted with both 
proteins (double interaction) and the number that interacted with only one of the two 
proteins (single interaction) was counted. The single interaction ratio was then defined 
as (number of kinases with single interaction)/(number of kinases with single interaction 
+ number of kinases with double interaction).   
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Figures and Tables 
 

 
 
Figure 1. The landing page for the CoSMoS.c. website contains input and output display panels. 
(A) The input panel contains options for search type, ORF name, reference strain name, and 
whether or not to apply a gap penalty. The reference strain is used for the PhyloZOOM algorithm. 
The gap penalty, when applied, decreases the score if there are non-standard amino acids at the 
target site. The search type can be either by motif or by position within the sequence. The output 
panel contains three sections (top, middle, bottom). (B) The top section shows the standard gene 
name and contains a hyperlink to the corresponding page of the SGD website. (C) The middle 
section shows the numbered amino acid sequence. A position or motif that matches the input is 
indicated by highlighting. The highlighted region is interactive; that is to say, clicking on a 
highlighted amino acid will display the Frequency Table and Conservation Score table under the 
“Selected Site” tab (D). The bottom panel contains five additional tabs. “User Tips” provides brief 
instructions on how to input data and what to expect in terms of output. “Support Info” provides 
details on how to interpret the output statistics and a hyperlink to a detailed user manual. 
“Citation” tab shows how to reference the CoSMoS.c. website. “Symbol Frequency” and 
“Conservation Score” provide statistics for all matched sites, as detailed in Figures S1 and S2, 
respectively. 
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Figure 2. Schematic illustrating how pairing structure can advantage or disadvantage target 
proteins. In all panels, target and paralog proteins have the same conservation scores, but the 
pairing structure is such that target proteins have higher scores in four out of five instances (A 
and B) or target proteins have higher scores in only one out of five instances (C and D). 
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Figure 3. Results of Distribution Mean Test for Symmetric Average Score. Displayed is a 
heatmap of adjusted p values for all five algorithms with different flanking range (mean1 to 
mean4, rows) for each modification type (columns). Gray, p > 0.05; white, p = 0.05; red, p < 0.05. 
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Figure 4. Results of Paralog Pairing Test for Symmetric Average Score. Displayed is a heatmap 
of adjusted p values for all five algorithms with different flanking range (mean1 to mean4, rows) 
for each modification type (columns). Gray, p > 0.05; white, p = 0.05; red, p < 0.05. 
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Figure 5. Results for Chemical Similarity Average Score. Displayed are adjusted p values for all 
five algorithms (column pairs) and all five modifications (rows). For each modification type, amino 
acid categories immediately adjacent to the site of interest (first column, upstream-b1; second 
column, downstream-a1) are plotted separately. Gray, p > 0.05; white, p = 0.05; red, p < 0.05. 
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Figure 6. Histogram of single interaction ratio for all paralog pairs. Single interaction ratio, the 
number of kinases that interact with one but not both paralogs, divided by the sum of the number 
of kinases that interact with one or both paralogs.  
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Table 1. Most-common modifications in the complete proteome (all gene counts) of 
Saccharomyces cerevisiae were obtained from annotated lists in the SGD database and 
assigned to 550 paralogs (paralog gene counts). Instances where a modified residue is not 
conserved (FALSE) or conserved (TRUE), regardless of modification status, in its paralog were 
identified after aligning paralogous protein sequences using the Needleman algorithm (needle 
conserved). 
 

  
all gene counts paralog gene counts 
  needle conserved     

Modification Type amino acid Total FALSE TRUE Total conserved 
phosphorylation S 30029 4997 3290 8287 39.70% 
phosphorylation T 7723 1329 797 2126 37.49% 
phosphorylation Y 932 147 109 256 42.58% 
phosphorylation S/T/Y 38684 6473 4196 10669 39.33% 
ubiquitylation K 5299 632 1160 1792 64.73% 
(mono)acetylation K 968 49 306 355 86.20% 
N-glycosylation N 587 48 91 139 65.47% 
succinylation K 577 77 471 548 85.95% 
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Table 2. Analysis of sequence motifs near sites of post-translational modification. Shown are 
flanking amino acids before (b3, b1) and after (a1) favored (green) or disfavored (red) in modified 
target proteins, as compared to their unmodified paralog. Dark colors, adjusted p < 0.05; light 
colors, adjusted p < 0.10. 
 

modification relative position amino acid relative abundance  adjusted p value 
phosphorylated S b3 R Target > Paralog < 0.0001 
phosphorylated S b3 N Target < Paralog 0.0007 
phosphorylated S b1 G Target > Paralog 0.0641 
phosphorylated S a1 S Target < Paralog 0.0442 
phosphorylated S a1 K Target < Paralog 0.0262 
phosphorylated S a1 T Target < Paralog 0.0262 
phosphorylated S a1 Y Target < Paralog 0.0949 
phosphorylated S a1 P Target > Paralog < 0.0001 
phosphorylated T a1 P Target > Paralog 0.0675 
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