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Abstract
Pharmacokinetics and pharmacodynamics are key considerations in any study of molecular therapies. It is thus imperative tofactor their effects in to any in silico model of biological tissue involving such therapies. Furthermore, creation of a standardizedand flexible framework will benefit the community by increasing access to such modules and enhancing their communicability.PhysiCell is an open source physics-based cell simulator, i.e. a platform for modeling biological tissue, that is quickly beingadopted and utilized by the mathematical biology community. We present here PhysiPKPD, an open source PhysiCell-basedpackage that allows users to include PKPD in PhysiCell models.
Availability & Implementation. The source code for PhysiPKPD is located here: https://github.com/drbergman/PhysiPKPD.
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Statement of Need

Agent-based modeling has become a common tool for research in systems biology. However, it is still a relatively new tool and the communityremains in need of standardized models that promote accessibility and extensibility. The PhysiCell platform is one such effort to achievethis [1, 2]. It is open-source, actively maintained, and has taken large steps towards being widely adopted as evidenced by the releaseof PhysiBoSS, an independently-developed integration of PhysiCell with intracellular signaling using Boolean modeling. New add-onsto PhysiCell will further broaden its appeal and facilitate the use of standards that will achieve the aforementioned community goals ofaccessibility and extensibility.Many agent-based models (ABMs) have been developed to study diseases, including cancer [3, 4, 5, 6, 7, 8], COVID-19 [9], tuberculosis[10, 11], and more, with a core purpose being to determine the best means to treat a patient with the given disease. This involves modelingtherapeutics alongside the cells in a given microenvironment. There are two key pieces of including drugs: how much gets to the cells and
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Figure 1. How to implement PhysiPKPD. A: Using the sample projects that come with PhysiPKPD. B: Using the model builder to PhysiPKPD modifications to the model builder
to create a wide variety of models. C: Editing the C++ code in custom modules to further refine the model, e.g. making cell chemotax along an oxygen gradient.

what they then do to the cells. These two pieces are referred to as pharmacokinetics and pharmacodynamics, respectively. Together, theyare often called PKPD.
The dynamics involved in PKPD are generalizable to many different drugs acting in many different ways. This makes it an appealingtarget for a single module that can flexibly handle these processes on a platform such as PhysiCell. Features on both the PK side–such asdosing schedules, loading doses, elimination and distribution rates–and the PD side–such as mechanisms of action (MOA), effect, EC50,and hill coefficients–are amenable to this level of abstraction.
We present here PhysiPKPD, a standardized framework to incorporate these PKPD processes in PhysiCell. We also provide severalexamples demonstrating PhysiPKPD and providing users with two template projects to aid in the model-building process. In this firstversion, we provide the three options for modeling PK dynamics: 1-compartment and 2-compartment models with linear clearance ratesand the ability to supply an SBML-defined model. On the PD side, substrates cause damage to cells based on the internalized substrate. Asthis damage accumulates within a cell, the associated MOA-associated rate parameter(s) tend towards a user-defined saturation rate. BothPK and PD dynamics can be added independently to any substrate in the simulation. Substrates can target any cell type with PD dynamics.

Implementation

We provide two ways to create and run PhysiPKPD models, shown in Figure 2. First, the sample projects that come with PhysiPKPDdemonstrate the MOAs implemented in PhysiPKPD (Figure 2A). Second, the user can use the template projects to jumpstart the model-building process with the full range of possible parameters and code present throughout the PhysiCell repository (Figure 2B). We nowexplain how PhysiPKPD achieves these dynamics. In what follows, S will stand for the name of a substrate, C will stand for the name of a celltype, and X will stand for a MOA.

Pharmacokinetics

For pharmacokinetics, the user must first specify which substrates in the model follow PK dynamics. This is done by adding these substratenames to the comma-separated string user parameter PKPD_pk_substrate_names.
PKmodels
For each of these substrates, the user should specify a PK model (see Table 1). If this is not specified, PhysiPKPD will attempt to use atwo-compartment model. In addition, the user should also specify a Biot number, which PhysiPKPD uses to set the ratio of perivascularsubstrate concentration to that in the blood vessel [12]. PhysiPKPD will default to a value of 1, indicating equal concentrations inside andoutside of the capillary walls.
One-compartment models. The PhysiPKPD one-compartment model obeys the differential equation

dC
dt

= –λC (1)
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Table 1. PK model specifications. The specification column indicates the string value to be used in the configuration file for the parameter S_pk_model.
Model Description Specification
One-compartment Circulation compartment with linear elimination 1CTwo-compartment Circulation and peripheral compartments with linear clearance rates 2CSBML-defined Any SBML-defined model with one species named circulation_concentration SBML

For example, add the following to User Parameters in the configuration file: <S_pk_model type="string">2C</S_pk_model>

Table 2. PK parameters for 1- and 2-compartment models.
Parameter Description Type Units
S_central_elimination_rate (λ) Rate of elimination of the drug in systemic circulation double min–1
S_central_to_periphery_volume_ratio* (R) Ratio of volumes of central and peripheral compartments to conservemass of drug during distribution and redistribution double None
S_central_to_periphery_clearance_rate* (k12) Rate of change in concentration in central compartment due todistribution double min–1

S_periphery_to_central_clearance_rate* (k21) Rate of change in concentration in periphery compartment due toredistribution double min–1

Replace S with the name of the substrate.*Parameter is not necessary for 1-compartment models.

where C represents the circulation concentration of the substrate and λ is the elimination rate (see Table 2). PhysiPKPD uses the value of Cto update the Dirichlet conditions in the PhysiCell microenvironment after multiplying by the Biot number.
Two-compartment models. The PhysiPKPD two-compartment model obeys the differential equation

dC
dt

= k21RP – k12C – λC

dP
dt

= k12RC – k21P
(2)

Here, C and λ are as above. P is the periphery concentration. The parameters k12 and k21 are the intercompartmental clearance rates and
R is the ratio of the volumes of the central and peripheral compartments (see Table 2). PhysiPKPD uses the value of C to update the Dirichletconditions in the PhysiCell microenvironment after multiplying by the Biot number. The inclusion of the periphery compartment allows forbiphasic elimination in the central compartment.
SBML-defined models. If the above two models are inadequate for a user’s purposes, an SBML file can be used to specify a PK model. Wehave used Copasi [13] to build such models, but any program that outputs an SBML file will work, e.g., sbmlutils [14]. PhysiPKPD will usethe first state variable of the model to update Dirichlet conditions in the PhysiCell microenvironment after multiplying by the Biot number.
Dosing schedulesFor the one- and two-compartment models, all parameters and dosing events must be specified within the configuration file (see Table 3).For any missing parameters, PhysiPKPD will issue warnings and use default values where it can, and it will throw errors where it must.All substrates are assumed to be given intravenously so that the concentration in the central compartment has a one-time increase upondosing, S_central_increase_on_dose. These doses are given on regular intervals, S_dose_interval, until either the simulation ends or untilthe maximum number of doses has been administered. The first dose can be given at a fixed time or based on confluence in 2D in the entirerectangular microenvironment. A loading dose can also be set with a fixed number of doses. Future releases can include other methods ofadministration, e.g. oral, and also include finer-grained control such as more sophisticated timings for doses, e.g. M-F dosing.For SBML-defined models, the user must include dosing events in the SBML file itself. In Copasi, this can be done by creating Eventsthat increase the concentration of a compartment(s) at certain times. In the future, we hope to allow the user to specify a CSV file withthe dosing times and amounts for a substrate along with an SBML-defined system of ODEs (without dosing events) that PhysiPKPD thencombines into a new SBML with dosing events.
Pharmacodynamics

Analogous to identifying substrates following PK dynamics, the user must specify which substrates follow PD dynamics. This is done byadding these substrate names to the comma-separated string user parameter PKPD_pd_substrate_names. The list of PK substrates and thelist of PD substrates need not have any relationship.
Damage accumulationFor each cell type affected by a particular substrate, a damage-accumulation model should be specified. If this is not specified, PhysiPKPDwill default to the concentration-based model. The two options are the concentration-based model and the amount-based model (see Table4). Both of these models use the area under the curve (AUC) of the internalized substrate to determine the current damage by the substrateon the cell. Future releases of PhysiPKPD may allow for SBML-defined damage accumulation functions. The experienced PhysiCell user canopt to use the already-implemented Intracellular features of PhysiCell to achieve this already.
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Table 3. Dosing parameters for 1- and 2-compartment models.
Parameter Description Type Units
S_max_number_doses Max number of doses to administer, including loading int #
S_number_loading_doses Of the max number of doses, number of which are loading doses int #
S_dose_interval Time between consecutive doses of S double min
S_central_increase_on_dose Increase to systemic circulation concentration of substrate when a new dose isgiven double a.u.
S_central_increase_on_loading_dose Increase to systemic circulation concentration of substrate when a newloading dose is given double a.u.
S_set_first_dose_time Whether the user will set the time of the first dose or rely on confluence tobegin dosing bool None
S_first_dose_time Time of first dose (if setting) double min
S_confluence_condition Proportion of microenvironment filled with cells when first dose given (if notsetting first dose time) double Proportion

Replace S with the name of the substrate.
a.u. = arbitrary units.

Figure 2. Cartoon of integration of PK and PD modules with PhysiCell. PK: (1) Administration of drug in central compartment. (2) Elimination of drug. (3) Distribution of drug
into peripheral compartment. (4) Redistribution of drug back into central compartment. (5) Extravasation of drug into microenvironment. PhysiCell: Diffusion and cellular
uptake of drug in the microenvironment. PD: Drug causes damage to cells over time. Cells can catabolize the drug and repair the damage. Damage determines the effect of the
drug on its MOA.

For either model, let A represent the internalized substrate, concentration or amount. Cells metabolize the substrate at a rate m. Cellsthen accumulate damage proportional to the internalized substrate. This damage is repaired at a linear rate r1 and a constant rate of r0. Asdamage is an abstract quantity, the proportionality constant for the internalized substrate causing damage is set to 1. All three of theseparameters (Table 5) must be included in the custom data for C, the cell type affected by substrate S. The differential equations are thengiven by
dA
dt

= –mA

dD
dt

= A – r1D – r0
(3)

This equation is solved by default at the mechanics time step. The user can change this by setting the parameter S_dt_C. PhysiPKPD usesthe analytic solution to solve these dynamics. By default, PhysiPKPD does this by pre-computing the relevant quantities. However, incases where the above parameters can vary by cell type, the user should set the parameter PKPD_precompute_all_pd_quantities to false.
Table 4. Damage accumulation model specifications. The specification column indicates the string value to be used in the configuration file for theparameter S_on_C_pd_model.

Model Description Specification
Concentration-based Damage accumulates in a cell based on the concentration of the internalized substrate AUCAmount-based Damage accumulates in a cell based on the amount of the internalized substrate AUC_amount

For example, add the following to User Parameters in the configuration file: <S_on_C_pd_model type="string">AUC</S_on_C_pd_model>
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Table 5. Damage accumulation parameters.
Parameter Description Units
S_metabolism_rate (m) Metabolism rate of internalized substrate min–1
S_repair_rate_constant (r0) Zero-order repair rate of damage damage/min
S_repair_rate_linear (r1) First-order repair rate of damage min–1

Set all in Custom Data of the cell definition of C.

Table 6. Cell effect parameters.
Parameter Description Units
S_moa_is_X Identifies whether the MOA of S on C is X None (Values > 0.5 trigger the MOA)
S_X_saturation_rate Limiting rate of X as damage from S grows towards infinity min–1
S_X_EC50 Damage from S at which the rate of X is halfway between the base andsaturation rates damage
S_X_hill_power Hill power None

Replace X with one of the following: prolif, apop, necrosis, or motility.

Finer-grained control can be set by S_precompute_pd_for_C, which overrides PKPD_precompute_all_pd_quantities on a case-by-case basis.
Cell effect parametersTo apply the desired MOA of S on C, the damage variable S_damage is used as the input to a Hill-type function. The user must specify threeparameters for this Hill-type function in addition to identifying this MOA (see Table 6). The four MOAs currently implemented in PhysiPKPDare proliferation (prolif), apoptosis (apop), necrosis (necrosis), and motility (motility). Replace X in Table 6 with the parenthetical name ofthe desired MOA. By default, all MOAs are assumed off, so including S_moa_is_X in the custom data is only necessary if set to true. Note thatcustom data in PhysiCell must be of type double, so “true” means a value > 0.5.
Multiply-targeted MOAs. In the case that two or more substrates have the same MOA on a given cell type, we compute the drug effects asmultipliers or factors. That is, the algorithm computes the saturation factor, fsat, based on the user-supplied saturation rate and uses thedamage to compute a factor, f, between 1 (no change) and the saturation factor (max change):

f = 1 +
(

fsat – 1) (D/EC50))n

1 + (D/EC50)n , fsat = saturation ratebase rate (4)
Then, when multiple substrates affect proliferation, for example, the factors for each are multiplied to give the final factor for the cell. Inthe case of necrosis, it is often the case that the base rate for necrosis is set to 0, which causes problems in computing fsat above. Thus, weinstead add the effects of multiple substrates targeting necrosis.
Resetting to base rates. The implementation of PD dynamics is often done in the context of other dynamics. Typical examples used inthe PhysiCell community include extracellular oxygen concentration and overcrowding (sometimes determined by simple pressure).PhysiPKPD therefore does not reset the MOA-targeted rates to their base value before applying the output of the Hill-type function. Thus, itis incumbent on the user to make sure the effects on these rates do not stack each time these effects are computed. See the custom.cpp filesin any of the PhysiPKPD sample projects or the template projects to see how this can be done.
Example Results

We provide several examples of implementations of PhysiPKPD: one for each MOA, one combination therapy with one anti-proliferativedrug and one pro-apoptotic drug (Figure 1A), and one using a confluence condition to start dosing. Follow the README.md file instructionsto get PhysiPKPD set up in the root PhysiCell directory. The output will go to the output folder. There are many parameters that can bechanged to explore various behaviors, even restricted to just one MOA. See Tables 2, 3, 5, and 6 for parameters and their descriptions thatare unique to PhysiPKPD. In Figure 3, we show results from the anti-proliferative drug sample project, including creating an IC50 curve byvarying the dose over several orders of magnitude.

Discussion

A PKPD model that is ready to use “out of the box” with PhysiCell will greatly benefit those seeking to use PhysiCell as a platform foragent-based modeling. It will also create a standard which can be applied across any modelers looking to incorporate PKPD dynamics intotheir PhysiCell models.There are many improvements and additions we hope to make to PhysiPKPD in the near future. With regards to PK, we hope to make iteasier to include dosing events in an SBML file by allowing the user to supply a PK model and a CSV with the dosing information. Withregards to PD, there are many features that can be added to allow for greater flexibility in terms of mechanisms of action, effect models, andintegration with intracellular signaling. We have so far assumed that the AUC of a substrate inside a given cell, what we called damage,can be used to determine the effect of a drug on that cell. This is similar to irreversible effects models which use the AUC of the drugconcentration to determine the response [15]. Many other effects models have been used, including simple direct effect, indirect response,
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Figure 3. Results of PhysiPKPD moa_proliferation example. An anti-proliferative drug enters the microenvironment from the bottom boundary (y=-400 µm) and diffuses
up towards the tumor. A: Snapshot of the simulation after 3 hours. Drug concentration shown by contour plot. Cells colored by the current effect of drug damage on their
proliferation rates. B: Drug concentration in the microenvironment over time. The average is taken over the x dimension. C: Average logarithm of cell damage over time.
Average is taken only over cells with positive damage. Gray area represents +/- SD of the log-transformed damage. D: IC50 curve generated from running this example with
just one dose of drug given at time t=0 over 16 different doses including a control with no drug. Mean and SD for each dose computed from 5 samples. Tumor size at t=48
hours relative to the control shown. Note: analysis and initial plotting of A-D were done in MATLAB using the output from the PhysiCell simulation. The code that that
produces these figures is not part of PhysiPKPD.

and signal transduction models [16]. Recent work has used Bayesian inference to determine the distribution of delay times in response totherapeutic agents [17], making stochastic effects models an appealing next step as well. This could be added directly into previously-studiedintracellular models or be used as a means to coarse-grain such complex models while still allowing for heterogeneity within cell types.
We are also working with the makers of PhysiCell to further simplify and standardize the integration of PhysiPKPD into PhysiCell. A keygoal of this partnership will be to allow the user to include PKPD dynamics while only needing to specify the relevant parameters and notdirectly interact with the C++ code.
We look forward to continuing to develop this tool as the community uses it and seeks new features.

Availability of source code and requirements

• Project name: PhysiPKPD• Project home page: https://github.com/drbergman/PhysiPKPD• Operating system(s): Platform independent• Programming language: C++• Other requirements: PhysiCell 1.10.4 or higher, libRoadRunner• License: e.g. BSD 3-clause license
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