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ABSTRACT 

The true accuracy of a machine learning model is a population-level statistic that cannot be 

observed directly. In practice, predictor performance is estimated against one or more test datasets, 

and the accuracy of this estimate strongly depends on how well the test sets represent all possible 

unseen datasets. Here we present paired evaluation, a simple approach for increasing the 

robustness of performance evaluation by systematic pairing of test samples, and use it to evaluate 

predictors of drug response in breast cancer cell lines and of disease severity in patients with 

Alzheimer's Disease. Our results demonstrate that the choice of test data can cause estimates of 

performance to vary by as much as 30%, and that paired evaluation makes it possible to identify 

outliers, improve the accuracy of performance estimates in the presence of known confounders, 

and assign statistical significance when comparing machine learning models.  

INTRODUCTION 

Effectively evaluating the performance of predictive computational models is a crucial 

aspect of machine learning. Knowing when a model is accurate allows for reliable predictions 

on new data and provides valuable insights about which features in the training data carry 

predictive information. However, the true accuracy of a model is a population level statistic 

that is generally unknown, because it is impossible to consider all — potentially infinitely 

many — datasets to which a model will be applied. Model performance must therefore be 

estimated by appropriately sampling available data, and reliable estimates require a sufficient 

number of points to adequately represent the population. The presence of systematic biases 

and confounding variables can lead to incorrect accuracy estimates and inflated confidence 

in machine learning models that are subsequently found to perform poorly in deployment1. 

This is closely related to the well-known issue of overfitting2, whereby a model trained on one 

set of data points fails to generalize to a new set of data. Conventional methods for 

performance evaluation can fail to detect overfitting when the same biases are present in 

training and test data. Robust performance estimates must therefore detect and account for 
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these biases to accurately represent how the model would behave in the larger space of all 

possible data points. 

When data are limited (as they commonly are in biomedicine), model performance is 

routinely evaluated using cross-validation, which involves withholding a portion of the 

available data and using the remainder to train a model, which is then evaluated against the 

withheld portion3,4. A widely used variant is k-fold cross-validation, which partitions available 

data into k equivalent fragments and rotates which fragment is withheld during training and 

used for evaluation. A specific and common example of this is leave-one-out cross-validation 

(LOOCV), where k is set to the number of data points. Other common approaches to cross-

validation include Monte Carlo methods, in which a fixed proportion of data are repeatedly 

sampled and withheld for evaluation; and bootstrap methods, in which sample data with 

replacement are used to generate a training set, thus automatically defining the withheld 

partition based on the data points not sampled5. In their standard formulations, none of these 

methods explicitly account for the presence of systematic biases and confounders in the 

data, and model accuracy estimates obtained by these methods may not always reflect true 

predictor performance, particularly when dataset sizes are small. 

The limitation of data availability is particularly prominent in -omics datasets, which 

commonly contain many molecular measurements (ca. 104 for genome-scale data) from a 

relatively small number of samples (10-100). While conducting more experiments to increase 

sample size is sometimes possible, the small-sample issue is insurmountable in other cases 

due to the limited availability of biological material (number of available patient specimens for 

example) and the significant cost associated with molecular profiling. For example, cell 

culture studies focused on breast cancer are generally limited to the ∼75 commercially 

available breast cancer cell lines. While deriving new cell lines is possible, it is time 

consuming and expensive6. Moreover, new lines potentially suffer from the same limitations 

as existing lines with respect to confounders. The discrepancy between the low number of 

samples and the large number of molecular features available for any one sample introduces 

low signal scenarios. For example, the availability of deep gene expression data that cover 
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thousands of expressed genes in a small number of samples makes it difficult to detect 

relevant transcriptional changes in the overall expression variance7. A low number of 

samples can also lead to stratification bias, because it is not always possible to partition a 

small but discrete number of data instances into cross-validation folds in a way that preserves 

the statistical properties of the entire dataset in each fold8. Together, these issues represent 

a substantial challenge in making accurate estimates of performance for models trained on -

omics and similar datasets. 

In addition to challenges arising when sample number is low, biological and clinical 

datasets often contain both known and unknown confounding relationships among variables. 

For example, a recent study found that the dominant signal in a prototypical large multi-center 

drug-response screen aligned with the location at which the data was collected and not the 

drug or cell line9. Knowing when a machine learning model inadvertently learns to recognize 

such a lurking variable can help prevent spurious correlations and erroneous conclusions. A 

popular approach for dealing with confounding and lurking variables is to modify the input 

data in a way that removes or reduces their effect, as implemented by ComBat10, Surrogate 

Variable Analysis7, Removal of Unwanted Variation11, and linear models for microarray 

data12. However, modification of the original data can inadvertently introduce new artifacts 

that erroneously amplify differences between data groups and inflate estimates of model 

performance13. Some batch-correcting methods also assume an underlying statistical 

distribution for the data, making them inappropriate for scenarios in which the data 

distribution is unknown. 

In this work, we describe paired evaluation, a simple approach to model evaluation 

that systematically examines how a predictive model scores pairs of test data samples to 

generate a detailed decomposition of performance estimates. We demonstrate that paired 

evaluation can identify potential data outliers, assign statistical significance when comparing 

machine learning methods, and serve as a non-parametric method to accurately estimate 

model performance in the presence of known confounders without requiring modification of 

the underlying data. We consider two prediction tasks that leverage real-world datasets with 
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known confounders: prediction of drug sensitivity in breast cancer cell lines, which is 

confounded by subtype (clinical: hormone receptor positive, HER2 amplified, triple negative; 

and molecular: luminal, basal); and prediction of Alzheimer’s Disease (AD) severity in post-

mortem brain specimens, which is confounded by an individual’s chronological age. We show 

that minor variations in how the test data are paired for evaluation can reveal significant 

effects hidden by traditional approaches to model evaluation, and that the exclusion of 

outliers detected by paired evaluation can impact model interpretation. Lastly, we address the 

potentially prohibitive quadratic complexity of paired evaluation by proposing formulations 

that scale linearly with the number of test data points. 

 

Figure 1: A schematic representation of paired evaluation. a. Individual samples in a test 

dataset are represented by squares, colored according to their true labels in binary 

classification and linear regression settings. The test dataset is broken up into rankable pairs, 

and a predictor is asked to score each pair separately. The scores are used to determine 

whether a given pair was ranked correctly () or incorrectly (X), and the AUC is determined 

by the fraction of correctly ranked pairs. b. The criteria for a valid rankable test pair. In binary 

classification, two samples are considered rankable if they belong to the opposite classes; in 

linear regression, a rankable pair of samples requires that the difference between their labels 

is greater than a predefined meta-parameter δ. c. An example comparison of two models, A 

and B. A 2 × 2 contingency table tallies the correctly and incorrectly ranked pairs by each 
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model. Statistical significance of the difference in method performance is assessed by 

Fisher’s exact test and McNemar’s test. 

RESULTS 

Throughout this work, we quantify model accuracy using a popular metric, the area 

under the receiver operating characteristic curve (AUC)14. In binary classification, the AUC 

can be interpreted as the probability that a randomly chosen positive sample is correctly 

ranked above a randomly chosen negative sample15. Motivated by this interpretation, we 

developed paired evaluation, an approach in which a test dataset is broken up into pairs of 

samples, and a predictor is evaluated based on whether it ranks each pair correctly. We 

define a pair of samples to be rankable if their labels can be ordered – given experimental 

error and other uncertainty – by the corresponding data representation, e.g., the temporal 

arrangement of events (disease progression or death) in a survival dataset. The fraction of 

pairs ranked correctly is a direct estimate of AUC (Figure 1a). Paired evaluation is agnostic 

to the underlying machine learning method and can be applied in any cross-validation setting 

that withholds at least two data points in each fold. A special case of this is leave-pair-out 

cross-validation (LPOCV), in which a separate model is trained for each test pair16. LPOCV is 

particularly relevant for small-sample datasets with low signal-to-noise ratios, because it has 

been shown to be less susceptible to stratification bias than other popular cross-validation 

schemes15–17. 

Paired evaluation is not limited to binary classification and can be applied to any 

machine learning task that allows for an ordering of sample labels, including linear and 

ordinal regression, recommender systems, and survival analysis. To account for instrument 

error and other sources of uncertainty in -omics datasets, we introduce an optional meta-

parameter δ that sets a minimum required distance of separation in the label space for a pair 

of samples to be considered rankable (Figure 1b). In all settings, AUC is estimated as the 

fraction of rankable pairs that are ranked correctly by a model. This estimate can be viewed 

as the average number of successes in a series of Bernoulli trials. While the trials are not 
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independent and identically distributed (i.i.d.), the resulting AUC values will often follow a 

binomial distribution in practice and, based on the Central Limit Theorem, can be reasonably 

modeled with a Gaussian distribution when the number of pairs is sufficiently large. 

The primary advantage of paired evaluation is that it provides a more detailed 

landscape of model performance than an AUC value alone since it allows models A and B to 

be compared against each other based on their ability to correctly rank individual pairs of 

datapoints. Specifically, paired evaluation enables assessment of statistical significance by 

simple construction of a two-by-two contingency table and utilization of the Fisher’s exact test 

(Figure 1c). Similarly, use of McNemar’s test makes it possible to detect instances in which 

two models perform differently even when their AUC values are comparable, which often 

signals that the models are complementary and suggests that aggregating their output with 

an ensemble model may lead to improved accuracy18. 

 

The choice of test data has a profound effect on estimates of model performance 

Breast cancer is a heterogeneous disease that is clinically subtyped based on the 

levels of expression of three receptors: tumors expressing estrogen and/or progesterone 

receptors are classified as hormone-receptor positive (HR+), tumors overexpressing and/or 

amplified for the HER2 receptor tyrosine kinase are classified as HER2-positive, and those 

lacking expression of these three genes are classified as triple negative (TNBC). In practice, 

clinical subtype determines how a cancer will be treated. Breast cancers are also classified 

based on gene expression profiles into four intrinsic molecular subtypes: luminal A, luminal B, 

basal and HER2-enriched19,20. Molecular and clinical subtypes overlap but are non-identical. 

Given the high concordance between clinical and molecular subtypes in our cell line data 

(Figure S5), we followed the common practice of separating lines into luminal (HR+, HER2+) 

and basal (TNBC) molecular subtypes as a potential confounding variable 21–24. 

We considered a dataset recently collected in our laboratory that characterizes the 

sensitivity of 63 breast cancer cell lines of different subtypes to 72 small molecule drugs, with 
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a focus on kinase inhibitors. The dataset comprises growth rate-corrected measures of drug 

sensitivity (GR values25), determined using a microscopy-based assay of cell proliferation 

and death26, and pre-treatment transcriptional and proteomic27 profiles for each cell line. To 

demonstrate the effectiveness of paired evaluation, we considered a simple machine learning 

setup, in which random forest regression models were trained to predict drug sensitivity — 

measured as area over the growth rate curve (GRAOC) — from the baseline mRNA 

expression of a set of pre-selected genes (FigureS1). 

To maximally utilize the small number of data points (cell lines), we applied paired 

evaluation using LPOCV, where a separate model was trained for each test pair. To account 

for possible measurement error, we considered a pair of cell lines to be rankable if the 

difference in the corresponding GRAOC labels was greater than a specified value of the meta-

parameter δ (Figure 1b). We observed that the value of this meta-parameter had a dramatic 

impact on the estimate of model performance, with some estimates varying by as much as 

30% (Figure 2a). This finding reinforces the importance of choosing a test set that accurately 

represents potential future data that would be encountered by the predictor. Here, a large 

value of δ presents an "easy" prediction task, in which it is necessary only to distinguish cell 

line pairs having large differences in drug sensitivity. Such scenarios produce higher 

perceived model performance, but these estimates are artificially inflated relative to observed 

differences between cell lines in general and may not represent the true accuracy of the 

model.  

To establish a reasonable value for δ, we required that a corresponding model 

correctly ranks pairs of cell lines for which separation of GRAOC values (labels) was greater 

than experimental error. For a given drug-cell line combination, the experimental error was 

taken to be the standard deviation of GRAOC across three or four technical replicates. For any 

pair of cell lines, the larger of the two standard deviations was then used as the value for δ to 

determine if that pair was rankable. For most rankable pairs, this corresponded to a 

difference in GRAOC of δ < 0.3 (the full range of GRAOC  values in our data was -0.7 to 1.9), 
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with the total number of rankable pairs on the order of hundreds for each drug (Figure 2b, 

Suppl. Table 1). 

 

Figure 2: The composition of the set of rankable pairs plays a crucial role in evaluating 

predictive models of drug response in breast cancer cell lines. a. The parameter δ defines 

the set of rankable cell line pairs, which are then used to estimate AUC of random forest 

models in LPOCV. Each model was trained to predict drug sensitivity from baseline mRNA 

expression. Shown are estimates of performance for six select compounds b. The 

distribution of standard deviation in GRAOC across technical triplicates for 3,400 drug-cell 

combinations. Predictive models are not expected to be able to distinguish two cell lines with 

GRAOC values that lie within the corresponding standard deviation since it represents 

measurement error.  

Effect of breast cancer subtype on model performance 

In our dataset, the dominant variance in gene expression data and drug sensitivity for 

multiple drugs was observed to align with molecular subtype (Figure S5), consistent with 

previous studies21,28. Thus, subtype represents a known complication in the analysis of breast 

cancer drug response, and we sought to evaluate its impact on estimates of model 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2022. ; https://doi.org/10.1101/2022.09.07.507020doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.07.507020
http://creativecommons.org/licenses/by-nd/4.0/


10 

performance. To accomplish this, we broadly classified cells as either luminal or basal and 

compared AUC estimates computed with all rankable pairs against estimates derived using 

only those rankable pairs for which both cell lines were of the same subtype. For many drugs, 

we observed a decrease in estimated AUC when the evaluation was performed on subtype-

matched pairs (Figure 3a), suggesting that the corresponding predictors had learned to 

recognize molecular subtype as a confounder. Next, we estimated the correlation between 

drug sensitivity and subtype using one-way ANOVA and observed that the resulting F-

statistic was a good indicator of the difference between AUC estimates (Figure 3b). Our 

results confirm that learned models place more emphasis on the molecular subtype when it is 

indeed a good predictive feature of drug sensitivity. However, when prediction is limited to a 

single subtype, the models are frequently less accurate. The balance between accuracy 

across subtypes vs. within a subtype must therefore consider the way in which a model will 

be used. For example, if a drug is approved only for one subtype, then a subtype-specific 

model may be what is required. 

 

Figure 3: Effect of breast cancer subtype on the estimates of prediction accuracy. a. AUC 

estimates calculated using subtype-matched (y axis) and all (x axis) rankable pairs. The 

dashed line represents all hypothetical scenarios where the two AUC estimates agree. Each 
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dot corresponds to one of 72 drugs. A subset of drugs is highlighted for closer examination. 

b. The difference between AUC estimates in panel b., computed as ∆AUC = AUCall − 

AUCsubtype and plotted against matching one-way ANOVA to contrast GRAOC distributions 

across breast cancer subtypes (as in panel a.). Each dot corresponds to one of 72 drugs. 

To get a better understanding of the effect breast cancer subtype has on performance 

estimation, we considered six clinically relevant breast cancer drugs for closer examination 

(Table 1). Of these, alpelisib is currently approved for the treatment of HR+/HER2- 

metastatic breast cancers29 and is in clinical trials for HER2+ patients. Palbociclib and 

abemaciclib are approved for use in the same metastatic HR+ breast cancers with current 

attempts to expand the indication to TNBC and HER2+ disease30. Consistent with these 

clinical indications, we found that basal and luminal cell lines responded differently to 

alpelisib, pictilisib, taselisib, and Torin2, while no significant difference in response was 

observed for palbociclib and abemaciclib (Figure S7). 

In paired evaluation, the estimate of AUC was substantially lower for subtype-

matched pairs when predicting sensitivity to alpelisib, pictilisib, taselisib, and Torin2 (Table 1, 

Figure S6a), suggesting that the corresponding predictors had at least partially learned to 

recognize the molecular subtype. In contrast, no statistically significant difference was 

observed when comparing AUC estimates made using all pairs and subtype-matched pairs 

for palbociclib or abemaciclib (Table 1, Figure S6b), two drugs whose sensitivity was more 

weakly correlated with subtype (Figure S7). Taken together, these findings suggest that 

when drug sensitivity is correlated with subtype, predictors implicitly learn features of the 

underlying subtypes. This may represent a desirable property in a setting where molecular 

subtype closely informs drug response. 
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Drug  All rankable 
pairs 

Subtype 
matched pairs 

p-value 

 
alpelisib 

✓ 337 80  
8.81✕10-5 

✕ 30 24 

AUC 0.92 0.77 

 
pictilisib 

✓ 315 66  

2.89✕10-4 

✕ 43 26 

AUC 0.88 0.72 

 
taselisib 

✓ 604 192  
8.99✕10-9 

✕ 110 91 

AUC 0.85 0.68 

 
torin2 

✓ 273 68  
6.63✕10-8 

✕ 116 84 

AUC 0.70 0.45 

 
palbociclib 

✓ 367 176  
0.90 

✕ 61 30 

AUC 0.86 0.85 

 
abemaciclib 

✓ 382 187  
0.75 

✕ 177 82 

AUC 0.68 0.70 

Table 1: Effect of breast cancer subtype on model performance 

 

Detection and removal of outliers impacts model interpretation 

In the current setting, model interpretation primarily involves inspecting feature 

importance scores to pinpoint genes that play a crucial role in determining drug response and 

resistance. Since the presence of outliers in the training data can skew feature importance 

scores, we investigated the effects of outlier removal on model interpretation. We asked if 
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any rankable pair was more likely to be ranked incorrectly by a model if it included specific 

data samples. We were specifically concerned about outliers that arose from measurement 

error, or that were biologically very different from the norm. When predicting the sensitivity of 

breast cancer cell lines to Torin2, a polyselective mTOR/PIKK inhibitor31, we found that 526 

out of 673 rankable pairs were ranked correctly by a random forest model (AUC estimate = 

0.78). However, pairs containing the ZR7530 cell line were consistently ranked incorrectly 

(Figure 4a,b), suggesting that the cell line is an outlier. ZR7530 is a luminal cell line, and its 

gene expression profile clusters with profiles of other luminal cells (Figure S2). However, the 

cell line was more resistant to Torin2 than other luminal cell lines with a GRAOC value more 

similar to that of TNBC lines, explaining the observed misranking of pairs containing ZR7530. 
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Figure 4: Paired evaluation detects outlier cell lines in the context of sensitivity to torin2. 

a. A performance landscape over all possible pairs of cell lines. A pair is colored blue if it was 

correctly ranked by the predictor and orange otherwise. Pairs that were not considered 

rankable because the corresponding GRAOC values were not separated by the δ threshold are 

shown in gray. b. A 2×2 contingency table tallying correctly and incorrectly ranked pairs with 

and without the cell line ZR7530. The corresponding p value was computed with a Fisher’s 

exact test. c. Feature importance scores associated with a predictor trained on all cell lines. 

Shown are the top 20 features. d. Feature importance scores computed after removing the 

outlier ZR7530 and retraining the predictor on the remaining cell lines. 

 Removing ZR7530 from the dataset reduced the total number of rankable pairs to 

652, of which 524 were ranked correctly (Figure 4b), leading to a small improvement in 

estimated model accuracy (AUC estimate = 524 / 652 = 0.8). When we compared feature 

importance scores before and after the removal of ZR7530, we observed that ERRB2 

(HER2), increased in importance (Figure 4c,d), reconfirming that receptor status is heavily 

correlated with Torin2 response (Table 1). Similarly, we found that MTOR, which encodes a 

known target of Torin232, also gains importance. More generally, these findings show that the 

feature importance of genes know to play an important role in breast cancer biology change 

when outliers are detected and removed in paired evaluation, and at least in some cases this 

increases interpretability.   

We repeated the outlier analysis for all other drugs in our dataset and identified two 

other cases, corresponding to drugs E17 and palbociclib, for which sensitivity predictors 

consistently mis-ranked pairs containing a specific cell line. In both cases, removing the 

outlier led to a higher estimate of AUC, but the effect on feature importance varied. In the 

case of E17, the removal of outlier cell line MGH312 led to a substantial drop in the 

importance CDKN2C (Figure S3). However, removing the outlier cell line HCC202 from a 

predictor of palbociclib sensitivity did not have any substantial impact on feature importance 

(Figures S4). These results demonstrate that the presence of outliers in a dataset can lead 

to a consistently incorrect ranking of pairs, and the removal of these outlier can increase, 
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decrease, or have no effect on feature importance, making paired evaluation a useful tool for 

model interpretation. 

Disease severity in Alzheimer’s decedents 

Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder that leads to 

memory loss and dementia. The disease is characterized by extracellular aggregates of the 

β−amyloid peptide and intracellular accumulation of hyperphosphorylated tau leading to 

neurofibrillary tangles (NFT). Several recent studies – those from the Accelerating Medicines 

Partnership - Alzheimer’s Disease (AMP-AD) program for example33 – have attempted to 

obtain molecular insight into disease mechanism using diverse omic datasets obtained from 

patient specimens; these data include whole genome sequencing, DNA methylation, mRNA 

and protein expression, and detailed clinical annotation.  

Here, we consider the task of predicting disease severity from mRNA expression. We 

make use of the data collected by two joint longitudinal cohort studies, the Religious Orders 

Study (ROS) and the Memory and Aging Project (MAP), that comprise over two hundred bulk 

RNAseq profiles of postmortem brain specimens, along with matching pathology 

annotations34,35. We group data points into three categories based on Braak staging36,37: mild 

(Braak 1–2), moderate (Braak 3–4), and severe (Braak 5–6).   

AD progression takes place on a timescale of years, and disease severity is strongly 

correlated with a patient’s age of death (AOD) (Figure 5a). An important question is whether 

a predictor trained to recognize disease severity has instead learned to predict age, a 

situation that can lead to an overinflated estimate of performance and affect the interpretation 

of the genes and weights that make up the model. To address this, we used paired 

evaluation as a non-parametric way of evaluating the effect of a known confounder on 

performance estimates; this involved contrasting confounder-matched and confounder-

mismatched rankable pairs. As with breast cancer data above, we used paired evaluation in a 

LPOCV setting, training a separate model for each rankable pair to make the most use of the 

limited amount of data. 
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In our breast cancer analysis, the labels were continuous (varying from 0-1 GRAOC), 

and the confounder was represented by a discrete variable (basal or luminal subtype). The 

opposite is true of ROSMAP data; the labels are discrete, resulting in a straightforward 

definition of rankable pairs: two brain specimens are rankable, if they have distinct Braak 

stage ranges. Conversely, age is a continuous variable that is censored at 90 years old (y.o.). 

The censoring provides a natural inflection point for determining whether two data points are 

matched in age, giving rise to two evaluation scenarios (Figure 5b). In a scenario focused on 

mild disease (a mild-centric scenario), each individual who passed away before the age of 90 

with mild disease was paired with individuals who had severe disease and was either closest 

in age (AOD-matched) or was chosen at random from the censored category of 90+ y.o. 

(AOD-confounded). Similarly, a severe-centric scenario pairs each 90+ y.o. patient who 

passed away with severe AD with a patient who had mild disease and was either randomly 

selected from the same 90+ y.o. category (AOD-matched) or the youngest patient in the 

cohort (AOD-mismatched). As a reference point, we also considered all possible rankable 

pairs. 

In both mild-centric and severe-centric scenarios, each data point was associated 

with two rankable pairs that represent the minimal and maximal separation along the 

confounding variable (Figure 5b). We trained logistic regression models to recognize disease 

severity from the corresponding mRNA expression profiles and applied paired evaluation to 

estimate model performance with each set of rankable pairs. We found that the models 

performed similarly for AOD-matched and AOD-confounded pairs (Figure 5c), and that both 

performance estimates were consistent with the one derived on all rankable pairs (mild-

centric AUC = 0.87, severe-centric AUC = 0.85). Similar performance trends were also 

observed for the mild-vs-moderate and moderate-vs-severe classification tasks. 

The analysis reveals that the presence of confounders does not necessitate that a 

predictor will learn to recognize them instead of the variable of interest. Paired evaluation 

provides a simple way to detect whether such situations occur and can facilitate decisions 

about when it is necessary to correct for confounding variables. 
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Figure 5: a The distribution of age of death (AOD) for patients who were diagnosed with mild, 

moderate or severe AD during postmortem pathology analysis. b Schematic representation 

of rankable pairs, selected to be either confounder-matched (red) or -mismatched (black). 

Each patient is represented by a square, colored according to the corresponding pathology 

annotation. The value of AOD is censored at 90 years of age in the dataset. c 2×2 

contingency tables showing the correctly and incorrectly ranked test pairs for AOD 

confounded and AOD matched scenarios. 

DISCUSSION 

We present paired evaluation, a method for deriving detailed landscapes of predictor 

performance for machine learned models based on the concept of rankable pairs of 

datapoints. We show how systematic pairing of data points can account for known 

confounders and identify outliers. We also show that statistical significance of model 

comparison can be assessed using contingency tables. While we made use of LPOCV in the 

current work due to the limited number of samples in our datasets, paired evaluation can be 

applied in any cross-validation setting that withholds at least two samples for testing in each 

fold. 
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The choice of test data can have a dramatic effect on estimates of model 

performance1. To get an accurate performance estimate, a test set must be a faithful 

representation of future data that a predictor might encounter in deployment. We therefore 

recommend that rankable pairs be defined using experimental knowledge and domain 

expertise. For example, in regression problems, the choice of a minimal difference (in a 

continuous variable) for a pair to be rankable (δ) could be based on variance across 

biological or technical replicates (Figure 1b); two data points that fall within this variance are 

routinely indistinguishable. Confounding and lurking variables are ubiquitous, but their 

presence may not be a drawback if they are biologically relevant and can assist in model 

interpretation. In the case of breast cancer cell lines, the difference between HR+, HER2+ and 

TNBC status confounds modeling of drug sensitivity but is informative for drugs that inhibit 

HR and HER228. Conversely, a predictor that unintentionally learns to recognize what 

institution a subset of data was collected at in a multi-center study9 is unlikely to produce 

meaningful biological insight. Because confounders can have either positive or adverse 

effects on model interpretation, it is imperative to know when predictors have learned to 

recognize confounders. We show that paired evaluation is an effective, non-parametric 

method to detect this through simple comparison of performance values computed on 

confounder-matched vs. confounder-mismatched pairs. Importantly, paired evaluation 

achieves this without modifying the original data. 

Our study has several limitations. In its present formulation, defining confounder-

matched rankable pairs requires that the confounder values are known; however, many 

datasets may have unknown or unmeasured lurking variables that introduce unwanted batch 

effects7. To evaluate the effect of these hidden variables on the estimate of performance 

using paired evaluation, a user would first have to detect them using an external method. We 

also expect that information about hidden batch effects may be encoded in pairwise 

comparison of data points. Our future work will extend the outlier detection to identify groups 

of samples that exhibit similar misranking patterns as a method for approximating shared 

unobserved characteristics. While paired evaluation can detect situations in which 
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confounders affected model training, the method provides no intrinsic means to correct for 

this effect, since the original training data is not modified. Furthermore, it is not trivial to 

delineate what aspect of model interpretation (e.g., feature importance) aligns with a 

confounder versus the variable of interest, even when paired evaluation signals that a 

predictor learned to recognize that confounder. Thus, paired evaluation represents the initial 

step in identifying potentially problematic confounder variables and outlier samples, but 

resolution of these may require other methods. 

 

METHODS 

Estimation of AUC 

We consider a pair of samples i and j to be rankable if their labels (yi and yj, respectively) 

satisfy 

 f(yi,yj) ≥ δi,j (1) 

where f is a distance function and δi,j is the minimum necessary threshold of label separation. 

In classification, f was set to be an indicator function returning 0 if the arguments are identical 

and 1 otherwise, while δi,j was set to 0.5 for all (i,j). In linear regression, f was the L1-norm 

distance |yi −yj| in the label space, and δi,j = max(σi,σj) was taken to be the expected 

measurement error, estimated by the standard deviations σi and σj computed across 

biological replicates. 

Given the space of rankable pairs R, AUC is estimated by 

 

  (2) 

where pij is an indicator variable that takes on the value of 1 when the pair of samples i,j is 

correctly ranked by the predictor, and 0 otherwise. 
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Outlier detection 

We define the sample-specific AUC for the k-th sample as, 

  (3) 

where Rk ⊂ R is the subset of all rankable pairs that include the sample k, and pi,j has the 

same interpretation as in equation (2). Samples with significantly lower AUCk than the overall 

AUC were considered to be potential outliers and inspected in more detail to decide whether 

they warrant an exclusion from the study. As with method comparison (Figure 1c), statistical 

significance was assessed by constructing a two-by-two contingency table cataloguing 

whether a given pair of samples is in Rk and whether that pair was ranked correctly by the 

corresponding model. Fisher’s exact test was used to determine whether pairs in Rk were 

ranked correctly significantly more often than pairs not in Rk. 

Robust evaluation of predictors in the presence of confounders 

To measure the effect of known confounders on the estimate of model performance, we 

considered a subset of rankable pairs where the difference in the confounder values was 

minimal. For discrete confounding variables (e.g., breast cancer subtype), the values were 

matched exactly. For continuous variables, we selected a single rankable pair per sample, 

such that the difference between the two values of the confounder was minimized. A possible 

unexplored alternative was to consider all samples that fell within a certain predefined 

"match" window for a given index sample. In all cases, we refer to resulting subsets of 

rankable pairs as confounder-matched, and the remaining rankable pairs as confounder-

mismatched. 

If AUC estimated on confounder-matched pairs was significantly lower than its equivalent 

derived from confounder-mismatched pairs, then this was interpreted as a strong indication 

that the corresponding predictor has learned to recognize the confounder instead of the 

variable of interest. Statistical significance was again assessed with a Fisher’s exact test 
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applied to a two-by-two contingency table cataloguing whether rankable pairs were more 

likely to be ranked correctly if they are confounder-matched or confounder-mismatched. 

Combinatorial complexity considerations 

While it is rare that all  possible pairs of n samples will be rankable, the worst 

case complexity is nevertheless quadratic in n (Figure S8a). In small-sample studies, the 

O(n2) number of performance measurements produced by paired evaluation offers higher 

statistical power than the O(n) equivalent produced by traditional evaluation of applying a 

model to the entire test set at once. However, the quadratic complexity of paired evaluation is 

potentially prohibitive for evaluating predictive models on large-scale datasets, especially if 

LPOCV is employed. In such situations, the lack of statistical power is not usually a concern, 

and we propose to limit the total number of pairs considered in model evaluation by randomly 

selecting a single rankable pair for each sample (Figure S8b). A similar sampling procedure 

can also be used to define O(n) confounder-matched subsets (Figure S8c). 

Data availability 

The results published here are in part based on data obtained from the AD Knowledge Portal 

(https:// adknowledgeportal.org). We used the data available at 

https://github.com/labsyspharm/brca-profiling to train and evaluate predictors of drug sensitivity in 

breast cancer cell lines. 

Code availability 

To employ paired evaluation in a LPOCV settings, we introduce a Python module lpocv that 

provides a flexible, automated way to identify sets of rankable pairs across a wide variety of 

machine learning settings and in the presence of known confounders. The rankable pairs can 

then be used to evaluate predictors, compare algorithms and identify outliers. The module is 

implemented following the object oriented programming paradigm and is compatible with 
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algorithms in the scikit_learn package38, which is commonly used for machine learning tasks 

in Python. The implementation is open-source, with code publicly available on GitHub 

(https://github.com/labsyspharm/lpocv). 
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Supplementary information

Figure S1: Random forest models are trained to predict the response of breast cancer cell lines to a panel

of drugs. The response is measured as area over the growth rate curve. All models are given the expression

of pre-selected genes as inputs. The expression is measured in baseline (i.e., pre-treatment) transcriptomic

profiles.
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a b

Figure S2: a Growth rates curves for torin2 across all breast cancer cell lines. b Principal components

analysis of the baseline RNA-seq data, computed in the space of the top 20 most important genes (Figure

3). The “outlier” cell line ZR7530 is highlighted in red, all other cell lines are colored by their subtypes.
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Figure S3: Outlier detection for E17. The interpretation of all panels is analogous to Figure 3.
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Figure S4: Outlier detection for palbociclib. The interpretation of all panels is analogous to Figure 3.
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Figure S5: Principal components analysis of baseline RNAseq expression. The points represent

individual breast cancer cell lines, shaped according to clinical subtype and colored by molecular subtype.
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Figure S6: Effect of subtype in model prediction for torin2 and palbociclib .
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Figure S7: The distribution of GRAOC for selected drugs. The values are plotted separately for basal (blue)

and luminal (orange) cell lines.
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 Si sample IDs  classes  confounder

All rankable pairs
O(n2) complexity

a
b

c

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

Randomly pair every sample
O(n) complexity

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

Confounder matched pairs
O(n) complexity

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

S2S1 S3 S5 S6 S7 S8S4

Figure S8: A schematic representation of how rankable pairs are defined in a dataset with n = 8

samples. Each square/circle element represents a sample. True labels are denoted with color, and the value

of a binary confounder is represented by shapes. a All O(n2) rankable pairs with a binary classification

task. b An O(n) subset of all rankable pairs, obtained by randomly selecting a single rankable pair for each

sample. c An O(n) subset of all rankable pairs, where each pair of samples is constrained to have the same

value of the confounder.
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agent num_pairs

Paclitaxel 443

Doxorubicin 469

Taselisib_GDC0032 714

Pictilisib_GDC0941 358

Torin2 389

Vorinostat 112

Ipatasertib_GDC0068 333

Everolimus 535

Tivantinib_ARQ197 125

Cabozantinib 66

Saracatinib_AZD0530 296

Dasatinib 570

Palbociclib_PD0332991 428

Dinaciclib_SCH727965 224

AZD7762 592

Olaparib_AZD2281 50

Alpelisib_BYL719 367

A‐1210477 7

Buparlisib_NVP‐BKM120 188

INK128_MLN0128 526

PF‐4708671 65

Neratinib_HKI272 588

Cediranib_AZD2171 220

Ceritinib_LDK378 205

Trametinib_GSK1120212 460

Luminespib_NVP‐AUY922 322

Abemaciclib_LY2835219 559

Volasertib_BI6727 363

ABT‐737 131

TGX221 190

AZD1775 668

AZD2014 693

AZD5363 531

AZD6738 294

BJP‐6‐5‐3 0

BMS‐265246 689

BSJ‐01‐175 616

BSJ‐03‐123 304

BSJ‐03‐124 435

BVD523 138

CFI‐400945 553

E17 702

Supplementary Table 1: The total number of rankable 

pairs used to evaluate predictors of drug sensitivity 

from mRNA expression.
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FMF‐03‐145‐1 705

FMF‐03‐146‐1 42

FMF‐04‐107‐2 787

FMF‐04‐112‐1 7

Flavopiridol 99

GSK2334470 366

LEE011_Ribociclib 524

LY2606368 747

LY3023414 721

MFH‐2‐90 837

Pin1‐3 50

R0‐3306 125

Rucaparib 198

SHP099 61

SY‐1365 735

THZ‐P1‐2 356

THZ‐P1‐2R 37

THZ1 399

THZ531 352

YKL‐5‐124 570

ZZ1‐33B 852

senexin b 150
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