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Abstract 13 
 14 

Integrative analyses of genome-wide association studies (GWAS) and gene expression data 15 
across diverse tissues and cell types have enabled the identification of putative disease-critical tissues. 16 
However, co-regulation of genetic effects on gene expression across tissues makes it difficult to 17 
distinguish biologically causal tissues from tagging tissues. While previous work emphasized the 18 
potential of accounting for tissue co-regulation, tissue-specific disease effects have not previously been 19 
formally modeled. Here, we introduce a new method, tissue co-regulation score regression (TCSC), that 20 
disentangles causal tissues from tagging tissues and partitions disease heritability (or covariance) into 21 
tissue-specific components. TCSC leverages gene-disease association statistics across tissues from 22 
transcriptome-wide association studies (TWAS), which implicate both causal and tagging genes and 23 
tissues. TCSC regresses TWAS chi-square statistics (or products of z-scores) on tissue co-regulation 24 
scores reflecting correlations of predicted gene expression across genes and tissues. In simulations, TCSC 25 
distinguishes causal tissues from tagging tissues while controlling type I error. We applied TCSC to GWAS 26 
summary statistics for 78 diseases and complex traits (average N = 302K) and gene expression prediction 27 
models for 48 GTEx tissues. TCSC identified 21 causal tissue-trait pairs at 5% FDR, including well-28 
established findings, biologically plausible novel findings (e.g. aorta artery and glaucoma), and increased 29 
specificity of known tissue-trait associations (e.g. subcutaneous adipose, but not visceral adipose, and 30 
HDL). TCSC also identified 17 causal tissue-trait covariance pairs at 5% FDR. For the positive genetic 31 
covariance between BMI and red blood cell count, brain substantia nigra contributed positive covariance 32 
while pancreas contributed negative covariance; this suggests that genetic covariance may reflect 33 
distinct tissue-specific contributions. Overall, TCSC is a precise method for distinguishing causal tissues 34 
from tagging tissues, improving our understanding of disease and complex trait biology. 35 
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Introduction 48 
 49 
Most diseases are driven by tissue-specific or cell-type-specific mechanisms, thus the 50 

inference of causal disease tissues is an important goal1. For many polygenic diseases and 51 
complex traits, disease-associated tissues have previously been identified via the integration of 52 
genome-wide association studies (GWAS) with tissue-level functional data characterizing 53 
expression quantitative trait loci (eQTLs)2-5, gene expression6-9, or epigenetic features10-17. 54 
However, it is likely that most disease-associated tissues are not actually causal, due to the high 55 
correlation of eQTL effects (resp. gene expression or epigenetic features) across tissues; the 56 
correlation of eQTL effects across tissues, i.e. tissue co-regulation, can arise due to shared 57 
eQTLs or distinct eQTLs in linkage disequilibrium (LD)2,18,19,5. One approach to address this 58 
involves comparing eQTL-disease colocalizations across different tissues2; however, this 59 
approach relies on colocalizations with disease that are specific to a single tissue, and may 60 
implicate co-regulated tagging tissues that colocalize with disease. Another approach leverages 61 
multi-trait fine-mapping methods to simultaneously evaluate all tissues for colocalization with 62 
disease5; however, this locus-based approach does not produce genome-wide estimates and it 63 
remains the case that many (causal or tagging) tissues may colocalize with disease under this 64 
framework. To our knowledge, no previous study has formally modeled genetic co-regulation 65 
across tissues to statistically disentangle causal from tagging tissues.  66 

 67 
Here, we introduce a new method, tissue co-regulation score regression (TCSC), that 68 

disentangles causal tissues from tagging tissues and partitions disease heritability (or genetic 69 
covariance of two diseases/traits) into tissue-specific components. TCSC leverages gene-disease 70 
association statistics across tissues from transcriptome-wide association studies (TWAS)20,21,18. 71 
A challenge is that TWAS association statistics include the effects of both co-regulated tissues 72 
(see above) and co-regulated genes18,22. To address this, TCSC regresses TWAS chi-square 73 
statistics (or products of z-scores for two diseases/traits) on tissue co-regulation scores 74 
reflecting correlations of predicted gene expression across genes and tissues. TCSC is 75 
conceptually related to gene co-regulation score regression (GCSC)22, a method for identifying 76 
disease-enriched gene sets that models gene co-regulation but does not model tissue co-77 
regulation. Distinct from previous methods that analyze each tissue marginally, TCSC jointly 78 
models contributions from each tissue to identify causal tissues (analogous to the distinction in 79 
GWAS between marginal association and fine-mapping23). We validate TCSC using extensive 80 
simulations using real genotypes with LD, including comparisons to RTC Coloc2, RolyPoly6, LDSC-81 
SEG7, and CoCoNet9 (reviewed in 1,24). We apply TCSC to 78 diseases and complex traits 82 
(average N = 302K) and 48 GTEx tissues19, showing that TCSC recapitulates known biology and 83 
identifies biologically plausible novel tissue-trait pairs (or tissue-trait covariance pairs) while 84 
attaining increased specificity relative to previous methods.  85 
 86 
Results  87 
 88 
Overview of TCSC regression 89 
 90 
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TCSC estimates the disease heritability explained by cis-genetic components of gene 91 
expression in each tissue when jointly modeling contributions from each tissue; a formal 92 
definition of this quantity in terms of SNP-level effects is provided in the Methods section. We 93 
refer to tissues with nonzero contributions as “causal” tissues (with the caveat that joint-fit 94 
effects of gene expression on disease may not reflect biological causality; see Discussion). TCSC 95 
assumes that gene expression-disease effect sizes are independent and identically distributed 96 
(i.i.d.) across genes and tissues (while accounting for the fact that cis-genetic components of 97 
gene expression are correlated across genes and tissues); violations of this model assumption 98 
are explored via simulations below. TCSC leverages the fact that TWAS χ2 statistics for each 99 
gene and tissue include both causal effects of that gene and tissue on disease and tagging 100 
effects of co-regulated genes and tissues. We define co-regulation based on squared 101 
correlations in cis-genetic expression, which can arise due to shared causal eQTLs and/or LD 102 
between causal eQTLs18. TCSC determines that a tissue is causal for disease if genes and tissues 103 
with high co-regulation to that tissue have higher TWAS χ2	statistics than genes and tissues with 104 
low co-regulation to that tissue. 105 
 106 
In detail, let ℎ!"#$!%

&  denote the disease heritability explained by the cis-genetic component of 107 
gene expression in tissue 𝑡'. The expected TWAS χ2	statistic for gene g	and tagging tissue t	is 108 

																																														𝐸%𝜒!,$& ' = 𝑁∑ 𝑙(𝑔, 𝑡; 𝑡')ℎ!"#$!%
& /𝐺$'$′ + 1,                                                 (1) 109 

where N	is GWAS sample size, 𝑡′	indexes causal tissues, 𝑙(𝑔, 𝑡; 𝑡')	are tissue co-regulation scores 110 
(defined as 𝑙(𝑔, 𝑡; 𝑡')	=	∑ 𝑟&7𝑊9!,$ ,𝑊!!,$!:!′ 	,	where W	denotes the cis-genetic component of 111 
gene expression for a gene-tissue pair across individuals, 𝑊9  denotes the cis-predicted 112 
expression for a gene-tissue pair, the sum is over genes 𝑔′	within +/- 1 Mb to gene 𝑔), and 𝐺$'	is 113 
the number of significantly cis-heritable genes in tissue 𝑡'. A derivation of Equation (1) is 114 
provided in the Methods section. Equation (1) allows us to estimate ℎ!"#$!%

&  via a multiple linear 115 
regression of TWAS χ2	statistics (for each gene and tagging tissue) on tissue co-regulation scores 116 
(Figure 1); we note that tissue co-regulation scores reflect 𝑊9!,$ and 𝑊!!,$!  but estimated tissue 117 
co-regulation scores reflect 𝑊9!,$ and 𝑊9!',$', necessitating a bias correction step22 (Methods). To 118 
facilitate comparisons across diseases/traits, we primarily report the proportion of disease 119 
heritability explained by the cis-genetic component of gene expression in tissue 𝑡' 120 
(𝜋$! 	= 	ℎ!"($')

& /ℎ!&), where ℎ!& is the common variant SNP-heritability estimated by S-121 
LDSC13,25,26.  122 
 123 

TCSC can also estimate the genetic covariance between two diseases explained by cis-124 
genetic components of gene expression in each tissue, using products of TWAS z-scores.  In 125 
detail, let 𝜔!"#$!%  denote the genetic covariance explained by the cis-genetic component of 126 
gene expression in tissue 𝑡'	(defined analogously to ℎ!"#$!%

& ; Methods). The expected product of 127 
TWAS z-scores in disease 1 and disease 2 for gene 𝑔 and tagging tissue 𝑡 is 128 
 129 
																										𝐸%𝑧!$+ 	× 	𝑧!$& ' = 	?𝑁+𝑁& 	∑ 𝑙(𝑔, 𝑡; 𝑡')𝜔!"#$!%/𝐺$!$′ + 	𝜌𝑁,/?𝑁+𝑁&                        (2) 130 
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 131 
where 𝑁+ is GWAS sample size for disease 1, 𝑁& is GWAS sample size for disease 2, 𝑡'	indexes 132 
causal tissues, 𝑙(𝑔, 𝑡; 𝑡') are tissue co-regulation scores (see above), 𝐺$'	is the number of 133 
significantly cis-heritable genes in tissue 𝑡' (Methods), 𝜌 is the phenotypic correlation between 134 
disease 1 and disease 2, and 𝑁, is the number of overlapping GWAS samples between disease 1 135 
and disease 2. Equation (2) allows us to estimate 𝜔!"#$!%  via a multiple linear regression of 136 
products of TWAS z-scores in disease 1 and disease 2 (for each gene and tagging tissue) on 137 
tissue co-regulation scores. We note that the last term in Equation (2) is not known a priori but 138 
is accounted for via the regression intercept, analogous to previous work27. To facilitate 139 
comparisons across diseases/traits, we primarily report the signed proportion of genetic 140 
covariance explained by the cis-genetic component of gene expression in tissue 𝑡' (𝜁$! = 𝜔!"($') 141 
/𝜔!), where 𝜔! is the common variant genetic covariance estimated by cross-trait LDSC28.  142 
 143 

We restrict gene expression prediction models and TWAS association statistics for each 144 
tissue to significantly cis-heritable genes in that tissue, defined as genes with significantly 145 
positive cis-heritability (2-sided p < 0.01; estimated using GCTA29) and positive adjusted-𝑅&	in 146 
cross-validation prediction. We note that quantitative estimates of the disease heritability 147 
explained by the cis-genetic component of gene expression in tissue 𝑡'	(ℎ!"#$!%

& ) are impacted by 148 
the number of significantly cis-heritable genes in tissue 𝑡'	(𝐺$!), which may be sensitive to eQTL 149 
sample size (Methods). For each disease (or pair of diseases), we use a genomic block-jackknife 150 
with 200 blocks to estimate standard errors on the disease heritability (or covariance) explained 151 
by cis-genetic components of gene expression in each tissue, and compute 1-sided P-values for 152 
nonzero heritability (or 2-sided P-values for nonzero covariance) and false discovery rates (FDR) 153 
accordingly; we primarily report causal tissues with FDR < 5%. We use a 1-sided test for nonzero 154 
heritability because we are only interested in detecting positive tissue-specific contributions to 155 
heritability. Further details, including correcting for bias in tissue co-regulation scores arising 156 
from differences between cis-genetic vs. cis-predicted expression (analogous to GCSC22) and 157 
utilizing regression weights to improve power, are provided in the Methods section. We have 158 
publicly released open-source software implementing TCSC regression (see Code Availability), 159 
as well as all GWAS summary statistics, TWAS association statistics, tissue co-regulation scores, 160 
and TCSC output from this study (see Data Availability). 161 

 162 
Simulations 163 
 164 

We performed extensive simulations to evaluate the robustness and power of TCSC, 165 
using the TWAS simulator of Mancuso et al.30 (see Code Availability). We used real genotypes 166 
from 1000 Genomes European to simulate gene expression values (for each gene and tissue) 167 
and complex trait phenotypes, and computed TWAS association statistics for each gene and 168 
tissue. In our default simulations, the number of tissues was set to 10. The gene expression 169 
sample size (in each tissue) varied from 100 to 1,500 (with the value of 300 corresponding most 170 
closely to the GTEx data19 used in our analyses of real diseases/traits; see below). The number 171 
of genes was set to 1,000 across chromosome 1; 100 of the 1,000 genes had nonzero (normally 172 
distributed) gene-disease effects in the causal tissue31. For each tissue, 500 genes were chosen 173 
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to be cis-heritable. In the causal tissue and the three most highly genetically correlated tagging 174 
tissues, all 100 causal genes were cis-heritable. Each cis-heritable gene was assigned 5 causal 175 
cis-eQTLs within 50kb of the gene body, consistent with the upper range of independent eQTLs 176 
per gene detected in GTEx19 and other studies32-35. The cis-eQTL effect sizes for each gene were 177 
drawn from a multivariate normal distribution across tissues to achieve a specified level of co-178 
regulation (see below), the cis-heritability of each gene was sampled from an exponential 179 
distribution, and neighboring co-regulated genes were assigned the same heritability to 180 
maximize gene-gene co-regulation. In each tissue, the average cis-heritability (across genes) 181 
was set to 0.08 (sd = 0.05, ranging from 0.01 to 0.40) in order to achieve an average estimated 182 
cis-heritability (across significantly cis-heritable genes, estimated by GCTA29) varying from 0.11 183 
to 0.31 (across gene expression sample sizes), which matches empirical values from GTEx19. The 184 
proportions of expressed genes that were significantly cis-heritable and the proportion of 185 
neighboring genes with significant genetic correlation (of eQTL effects) were also matched to 186 
GTEx data19. The 10 tissues were split into three tissue categories to mimic biological tissue 187 
modules in GTEx19 (tissues 1-3, tissues 4-6, and tissues 7-10), and average cis-genetic 188 
correlations between tissues (averaged across genes) were set to 0.795 within the same tissue 189 
category, 0.722 between tissue categories, and 0.753 overall36 (Methods). The default GWAS 190 
sample size was set to 10,000. The 10 tissues included one causal tissue explaining 100% of trait 191 
heritability and nine non-causal tissues; 100% of trait heritability was explained by gene 192 
expression. Other parameter values were also explored, including other proportions of trait 193 
heritability explained by the causal tissue, other proportions of trait heritability not explained 194 
by gene expression, and other values of the number of causal tissues and the number of tagging 195 
tissues. Further details of the simulation framework are provided in the Methods section. We 196 
compared TCSC to four previously published methods: RTC Coloc2, RolyPoly6, LDSC-SEG7, and 197 
CoCoNet9. We caution that RolyPoly, LDSC-SEG, and CoCoNet do not use eQTL data, and thus 198 
the power of TCSC relative to these methods is likely to be highly sensitive to assumptions 199 
about the role of gene expression in disease architectures. We caution that the power of TCSC 200 
(and other methods) varies greatly with the choice of parameter settings (see below), thus the 201 
primary purpose of these simulations was to evaluate the robustness of TCSC relative to other 202 
methods. 203 

 204 
We first evaluated the bias in TCSC estimates of the disease heritability explained by the 205 

cis-genetic component of gene expression in tissue 𝑡' (ℎ!"($')
& ), for both causal and non-causal 206 

tissues. For causal tissues, TCSC produced unbiased estimates of ℎ!"($')
&  (Figure 2A, 207 

Supplementary Table 1); this implies that error in eQTL effect size estimates, which impacts 208 
TWAS statistics and co-regulation scores, does not bias TCSC estimates for causal tissues. A 209 
subtlety is that, as noted above, estimates of ℎ!"($')

&  are impacted by the number of significantly 210 
cis-heritable genes in tissue 𝑡' (𝐺$!), which may be sensitive to eQTL sample size. Estimates 211 
were conservative when setting 𝐺$! 	to the number of significantly cis-heritable genes, and 212 
unbiased when setting 𝐺$! 	to the number of true cis-heritable genes. For non-causal tissues, 213 
TCSC produced estimates of ℎ!"($')

& ,	that were significantly positive when averaged across all 214 
simulations, but not large enough to substantially impact type I error (see below). In this 215 
analysis of bias in estimates of ℎ!"($')

& , we could not include a comparison to RTC Coloc, 216 
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RolyPoly, LDSC-SEG, or CoCoNet, because these methods do not provide quantitative estimates 217 
of ℎ!"($')

& .  218 
 219 

We next evaluated the type I error of TCSC for non-causal tissues. The type I error of 220 
TCSC was approximately well-calibrated, ranging from 5.2% to 6.9% across eQTL sample sizes at 221 
a significance threshold of p = 0.05 (Figure 2B, Supplementary Table 1). In comparison, we 222 
observed type I errors from 53%-86% for RTC Coloc, 32%-33% for LDSC-SEG, 11%-12% for 223 
RolyPoly, and 32%-38% for CoCoNet, substantially greater than the type I error of TCSC 224 
(Supplementary Figure 1, Supplementary Table 2).  225 
 226 

We next evaluated the power of TCSC for causal tissues. We determined that TCSC was 227 
moderately well-powered to detect causal tissues, with power ranging from 11%-49% across 228 
eQTL sample sizes at a nominal significance threshold of p < 0.05 (Figure 2C) (and 1%-18% at a 229 
stringent significance threshold of p < 0.004, corresponding to 5% per-trait FDR across tissues in 230 
these simulations; Supplementary Table 1). As noted above, the power of TCSC varies greatly 231 
with the choice of parameter settings (see below), thus the power of TCSC in real-world settings 232 
is best evaluated using real trait analysis. As expected, power increased at larger eQTL sample 233 
sizes, due to lower standard errors on point estimates of ℎ!"($')

&  (Figure 2A). We also evaluated 234 
the power of RTC Coloc, RolyPoly, LDSC-SEG, and CoCoNet. For the only other method with 235 
type I error less than 15% (RolyPoly), power ranged from 14%-17% across eQTL sample sizes, 236 
substantially lower than TCSC (Supplementary Figure 1, Supplementary Table 2). We also used 237 
ROC curves to assess the relationship between the sensitivity (power) and specificity (one 238 
minus the false positive rate) of all 5 methods across 1,000 uniformly spaced p-value 239 
thresholds. TCSC attained the largest AUC (0.78, vs. 0.54-0.59 for other methods) 240 
(Supplementary Figure 1). 241 

 242 
We similarly evaluated the robustness and power of TCSC when estimating tissue-243 

specific contributions to the genetic covariance between two diseases/traits; we did not 244 
compare TCSC to RTC Coloc, RolyPoly, LDSC-SEG, and CoCoNet, which are not applicable to 245 
cross-trait analysis. We employed the same simulation framework described above and set the 246 
genetic correlation of the two simulated traits to 0.5. We first evaluated the bias in TCSC 247 
estimates of the genetic covariance explained by the cis-genetic component of gene expression 248 
in tissue 𝑡' (𝜔!"($')), for both causal and non-causal tissues (Figure 3A, Supplementary Table 3). 249 
For causal tissues, TCSC produced unbiased estimates of 𝜔!"($') (conservative estimates when 250 
setting 𝐺$! 	to the number of significantly cis-heritable genes, rather than the number of true 251 
cis-heritable genes), analogous to single-trait simulations. For non-causal tissues, TCSC again 252 
produced estimates of 𝜔!"($')	that were significantly positive when averaged across all 253 
simulations, but not large enough to substantially impact type I error. We next evaluated the 254 
type I error of cross-trait TCSC for non-causal tissues. TCSC was well-calibrated with type I error 255 
ranging from 5.4%-6.7% at p < 0.05 (Figure 3B). Finally, we evaluated the power of cross-trait 256 
TCSC for causal tissues. We determined that cross-trait TCSC was modestly powered at realistic 257 
eQTL sample sizes, with power ranging from 8%-27% across eQTL sample sizes at p < 0.05 258 
(Figure 3C) (and 1-6% power at p < 0.004 corresponding to 5% per-trait FDR across tissues in 259 
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these simulations; Supplementary Table 3); as noted above, the power of TCSC varies greatly 260 
with the choice of parameter settings (see below). In ROC curve analysis, TCSC attained an AUC 261 
of 0.67 (Supplementary Figure 1). 262 
 263 

We performed 12 secondary analyses. First, we varied the eQTL sample size across 264 
tissues. Specifically, we set the eQTL sample size of the causal tissue to 300 individuals and the 265 
eQTL sample sizes of the non-causal tissues to range between 100 and 1,500 individuals. We 266 
observed inflated type I error for non-causal tissues (particularly those with larger eQTL sample 267 
sizes), implying that large variations in eQTL sample sizes may compromise type I error 268 
(Supplementary Figure 2). Second, we evaluated the robustness of TCSC when varying the 269 
number of expressed genes in the causal tissue under four scenarios: (i) only the 500 cis-270 
heritable genes are expressed in the causal tissue, (ii) only 375 cis-heritable genes (including all 271 
100 causal genes) are expressed in the causal tissue, (iii) only 225 cis-heritable genes (including 272 
all 100 causal genes) are expressed in the causal tissue, and (iv) only the 100 causal genes are 273 
expressed in the causal tissue. We determined that type I error remained approximately well-274 
calibrated in all scenarios, and that power was dramatically improved and bias for non-causal 275 
tissues decreased as the number of tagging genes in the causal tissue decreased 276 
(Supplementary Figures 3-4); for causal tissues, estimates of ℎ!"($')

&  were upward biased when 277 
setting	𝐺$' to the number of true cis-heritable genes and unbiased when setting 𝐺$'	to the 278 
number of significantly cis-heritable genes across tissues. Third, we varied the true values of 279 
ℎ!"($')
&  (or 𝜔!"($')) for causal tissues. We determined that patterns of bias, type I error, and 280 

power were generally robust across different parameter values, although the smallest values 281 
resulted in lower power and greater bias for non-causal tissues (Supplementary Figures 5-6). 282 
Fourth, we varied the number of causal tissues, considering 1, 2, or 3 causal tissues. We 283 
observed that the power of TCSC decreased with multiple causal tissues but did not differ 284 
greatly between 2 and 3 causal tissues (Supplementary Figures 7-8); for causal tissues, 285 
estimates of ℎ!"($')

&  were upward biased when setting 	𝐺$' to the number of true cis-heritable 286 
genes. Fifth, we varied the number of non-causal tissues from 0 to 9. For causal tissues, TCSC 287 
estimates were upward biased with fewer tagging tissues but unbiased with more tagging 288 
tissues (Supplementary Figures 9-10). TCSC type I error and power were generally higher with 289 
fewer tagging tissues; this finding does not compromise our real trait analysis, which involve a 290 
large number of tissues. Sixth, we modified TCSC to not correct for bias in tissue co-regulation 291 
scores arising from differences between cis-genetic and cis-predicted expression. We 292 
determined that removal of bias correction resulted in conservative bias in estimates for causal 293 
tissues, increased type I error, and similar power (Supplementary Figures 11-12). Seventh, we 294 
modified TCSC to apply bias correction to the calculation of all correlations of cis-predicted 295 
expression contributing to co-regulation scores rather than only those involving the same gene 296 
and tissue, which resulted in a decrease in power, anti-conservative bias in estimates for causal 297 
tissues, and similar type I error rate (Supplementary Figures 13-14). Eighth, we modified TCSC 298 
to use bias-corrected co-regulation scores in the calculation of regression weights, which 299 
resulted in similar performance to the default setting (Supplementary Figures 15-16). We note 300 
that regression weights pertain to maximizing signal to noise and not avoiding bias in estimates 301 
of ℎ!"($)& ; we continue to not perform bias correction when calculating regression weights, 302 
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consistent with GCSC22. Ninth, we violated the model assumption that gene-disease effects are 303 
independent and identically distributed (i.i.d.) across tissues by including a second causal tissue 304 
whose gene-disease effects correlate with varying degree to the gene-disease effects of the 305 
original causal tissue (Supplementary Figures 17-18). We determined that while this increases 306 
noise to TCSC estimates, the estimates are generally unbiased and TCSC is able to powerfully 307 
identify the causal tissue, similar to the addition of a causal tissue where there are no shared 308 
gene-disease effects (see Supplementary Figures 7-8). Tenth, we violated the i.i.d. model 309 
assumption by duplicating the causal tissue. We determined that TCSC performs well, (e.g. 310 
frequently identifies both tissues as causal and estimates ℎ!"($')

&  for both tissues without bias) 311 
despite the violation of model assumption (Supplementary Figures 19-20), similar to the 312 
previous analysis. Eleventh, we evaluated the robustness of TCSC in the presence of disease 313 
heritability that is not mediated via gene expression. We observed that all areas of TCSC 314 
performance are affected, with slightly increased type I error rates, decreased power in the 315 
case of larger non-mediate heritability, and upward bias in estimates of ℎ!"($')

&  for causal tissues 316 
(Supplementary Figures 21-22). Finally, we evaluated the robustness of TCSC to variation in the 317 
window size used to identify co-regulated genes in the calculation of co-regulation scores and 318 
determined that TCSC performance was robust and type I error decreased with larger window 319 
sizes (Supplementary Figures 23-24). Further details of these secondary analyses are provided 320 
in the Supplementary Note. 321 
 322 
Identifying tissue-specific contributions to 78 diseases and complex traits 323 

 324 
We applied TCSC to publicly available GWAS summary statistics for 78 diseases and 325 

complex traits (average N = 302K; Supplementary Table 4) and gene expression data for 48 326 
GTEx tissues19 (Table 1) (see Data Availability). The 78 diseases/traits (which include 33 327 
diseases/traits from UK Biobank37) were selected to have z-score > 6 for nonzero SNP-328 
heritability (as in previous studies13,25,38), with no pair of diseases having squared genetic 329 
correlation > 0.128 and substantial sample overlap (Methods). The 48 GTEx tissues were 330 
aggregated into 39 meta-tissues (average N = 266, range: N = 101-320 individuals, 23 meta-331 
tissues with N = 320) in order to reduce variation in eQTL sample size across tissues (Table 1 332 
and Methods); below, we refer to these as “tissues” for simplicity. We constructed gene 333 
expression prediction models for an average of 3,993 significantly cis-heritable protein-coding 334 
genes (as defined above) in each tissue. We primarily report the proportion of disease 335 
heritability explained by the cis-genetic component of gene expression in tissue 𝑡' 336 
(𝜋$! 	= 	ℎ!"($')

& /ℎ!&), as well as its statistical significance (using per-trait FDR). We employ a per-337 
trait FDR (as in ref.39,40) rather than a global FDR (as in ref.7), because power is likely to vary 338 
across traits and there are a sufficiently large number of independent quantities estimated per 339 
trait (𝜋$!  jointly estimated across 39 tissues); a global FDR is more appropriate when there are 340 
far fewer independent quantities estimated per trait, e.g. due to non-independent, marginal 341 
tissue associations in ref.7. 342 
 343 

TCSC identified 21 causal tissue-trait pairs with significantly positive contributions to 344 
disease/trait heritability at 5% FDR, spanning 7 distinct tissues and 17 distinct diseases/traits 345 
(Figure 4, Supplementary Table 5, Supplementary Figure 25). Many of the significant findings 346 
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recapitulated known biology, including associations of whole blood with blood cell traits such as 347 
white blood cell count (𝜋$!  = 0.21, s.e. = 0.064, P = 5.7 × 10-.) and liver with lipid traits such as 348 
LDL (𝜋$!  = 0.20, s.e. = 0.050, P = 2.9 × 10-/). We obtained independent GWAS summary 349 
statistics for 10 traits implicated in 13 significant tissue-trait pairs (Supplementary Table 4) and 350 
confirmed the same direction of effect for 13 of 13 tissue-trait pairs (including FDR < 5% for 7 of 351 
13 tissue-trait pairs, FDR < 10% for 9 of 13 tissue-trait pairs) (Supplementary Table 5); however, 352 
FDR < 5% results are expected to include a small number of false positives, and our association 353 
of whole blood with major depressive disorder (FDR < 5% in primary analysis; same direction, 354 
FR = 84% in independent GWAS data) may be one of these. In our primary analysis, TCSC also 355 
identified 5 suggestive tissue-trait pairs with 5% < FDR < 10% (Figure 4, Supplementary Table 356 
6).  357 

 358 
TCSC also identified several biologically plausible findings not previously reported in the 359 

genetics literature. First, aorta artery was associated with glaucoma (𝜋$! 	= 0.15, s.e. = 0.051, P = 360 
1.3	 × 10-0). TCSC also identified aorta artery as a causal tissue for diastolic blood pressure 361 
(DBP) (𝜋$! 	= 0.078, s.e. = 0.024, P = 5.1	 × 10-.), which is consistent with DBP measuring the 362 
pressure exerted on the aorta when the heart is relaxed41. High blood pressure is a known risk 363 
factor for glaucoma42-46, explaining the role of aorta artery in genetic susceptibility to glaucoma. 364 
Second, TCSC identified heart left ventricle (in addition to whole blood) as a causal tissue for 365 
platelet count (𝜋$! 	= 0.091, s.e. = 0.031, P = 1.7 × 10-0), consistent with the role of platelets in 366 
the formation of blood clots in cardiovascular disease47-50. In cardiovascular disease, platelets 367 
are recruited to damaged heart vessels after cholesterol plaques rupture, resulting in blood 368 
clots due to the secretion of coagulating molecules51; antiplatelet drugs have been successful at 369 
reducing adverse cardiovascular outcomes52. Moreover, the left ventricle serves as a muscle to 370 
pump blood throughout the body53, likely modulating platelet counts and other blood cell 371 
counts, creating detectable changes in serum from which platelet counts are measured. Other 372 
significant findings are discussed in the Supplementary Note, and numerical results for all 373 
tissues and diseases/traits analyzed are reported in Supplementary Table 6.  374 
 375 

TCSC also increased the specificity of known tissue-trait associations. For high density 376 
lipoprotein (HDL), previous studies reported that deletion of a cholesterol transporter gene in 377 
adipose tissue reduces HDL levels, consistent with the fact that adipose tissues are storage sites 378 
of cholesterol and express genes involved in cholesterol transport and HDL lipidation54,55

. While 379 
there are three adipose tissues represented in the GTEx data that we analyzed (subcutaneous, 380 
visceral, and breast tissue), TCSC specifically identified subcutaneous adipose (𝜋$! 	= 0.16, s.e. = 381 
0.054, P = 1.5 × 10-0; Figure 4), but not visceral adipose or breast tissue (P > 0.05; 382 
Supplementary Table 6), as a causal tissue for HDL. Previous studies have established that 383 
levels of adiponectin, a hormone released by adipose tissue to regulate insulin, are significantly 384 
positively correlated with HDL56-58 and more recently, a study has reported that adiponectin 385 
levels are associated specifically with subcutaneous adipose tissue and not visceral adipose 386 
tissue59; thus, the specific role of subcutaneous adipose tissue in HDL may be due to a causal 387 
mechanism related to adiponectin. We note that TCSC did not identify liver as a causal tissue 388 
for HDL (FDR > 5%), which may be due to limited power in liver due to smaller eQTL sample 389 
size. For waist-hip ratio adjusted for BMI (WHRadjBMI), previous studies reported colocalization 390 
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of WHRadjBMI GWAS variants with cis-eQTLs in subcutaneous adipose, visceral adipose, liver, 391 
and whole blood60, consistent with WHRadjBMI measuring adiposity in the intraabdominal 392 
space which is likely regulated by metabolically active tissues61. TCSC specifically identified 393 
subcutaneous adipose as a suggestive finding (𝜋$! 	= 0.10, s.e. = 0.037, P = 2.4 × 10-0, 5% < FDR 394 
< 10%; Figure 4), but not visceral adipose, breast, liver, or whole blood (P > 0.05; 395 
Supplementary Table 6), as a causal tissue for WHRadjBMI. The causal mechanism may involve 396 
adiponectin secreted from subcutaneous adipose tissue, which is negatively correlated with 397 
WHRadjBMI62. We note that the P value distributions across traits are similar for subcutaneous 398 
adipose (median P = 0.42) and visceral adipose (median P = 0.56) and are comparable to the 399 
other 37 analyzed (median P = 0.20 – 0.84, Supplementary Table 7). For BMI, previous studies 400 
have broadly implicated the central nervous system, but did not reveal more precise 401 
contributions63,13,64,65,7,66. TCSC specifically identified brain cereb. as a suggestive finding (𝜋$! 	= 402 
0.042, s.e. = 0.015, P = 2.6 × 10-0, 5% < FDR < 10%), but not brain cortex or brain limbic (P > 403 
0.05; Supplementary Table 6), as a causal tissue for BMI. This finding is consistent with a known 404 
role for brain cerebellum in biological processes related to obesity including endocrine 405 
homeostasis67 and feeding control68; recently, a multi-omics approach has revealed cerebellar 406 
activation in mice upon feeding69.  407 
 408 

We performed a secondary analysis in which we removed tissues with eQTL sample size 409 
less than 320 individuals, as these tissues may often be underpowered (Figure 2C). Results are 410 
reported in Supplementary Figure 26 and Supplementary Table 8. The number of causal tissue-411 
trait pairs with significantly positive contributions to disease/trait heritability (at 5% FDR) 412 
increased from 21 to 23, likely due to a decrease in multiple hypothesis testing burden from 413 
removing underpowered tissues. The 23 significant tissue-trait pairs reflect a gain of 8 newly 414 
significant tissue-trait pairs (and a loss of 6 formerly significant tissue-trait pairs, of which 5 415 
were lost because the tissue was removed), but estimates of	𝜋$!  for each significant tissue-trait 416 
pair were not statistically different from our primary analysis (Supplementary Table 9). 417 
Notably, among the newly significant tissue-trait pairs, whole blood was associated with 418 
hypothyroidism (𝜋$! 	= 0.100, s.e. = 0.032, P = 8.9 × 10-.); we note that thyroid had a 419 
quantitatively large but only nominally significant association (𝜋$! 	= 0.452, s.e. = 0.225, P = 0.02, 420 
FDR = 26%). Esophagus muscularis (rather than lung tissue) was associated with the lung trait 421 
FEV1/FVC70 (𝜋$! 	= 0.167, s.e. = 0.056, P = 1.4 × 10-0). This result may be explained by the fact 422 
that smooth muscle in the lung is known to affect FEV1/FVC and influence pulmonary disease 423 
pathopysiology71, and this unobserved causal tissue is likely highly co-regulated with the 424 
smooth muscle of the esophagus, which is indeed the site from which the GTEx study sampled 425 
the esophagus muscularis tissue19. Other newly significant findings are discussed in the 426 
Supplementary Note, and numerical results for all tissues and diseases/traits are reported in 427 
Supplementary Table 8. 428 
 429 

We also performed a brain-specific analysis in which we applied TCSC to 41 brain traits 430 
(average N = 226K, Supplementary Table 10) while restricting to 13 individual GTEx brain 431 
tissues (Supplementary Table 11), analogous to previous work7. The 41 brain traits reflect a less 432 
stringent squared genetic correlation threshold of 0.25; we relaxed our threshold so that we 433 
would have a substantial number of brain traits to analyze, as many would were excluded 434 
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under the original threshold of 0.1. The 13 GTEx brain tissues were analyzed without merging 435 
tissues into meta-tissues, and irrespective of eQTL sample size (range: N = 101-189 individuals); 436 
we expected power to be limited due to the eQTL small sample sizes and substantial co-437 
regulation among individual brain tissues. TCSC identified 8 brain tissue-brain trait pairs at 5% 438 
FDR (Supplementary Figure 27, Supplementary Table 12). For ADHD, TCSC identified brain 439 
hippocampus as a causal tissue (𝜋$! 	= 0.127, s.e. = 0.045, P = 2.5	 × 10-0), consistent with the 440 
correlation between hippocampal volume and ADHD diagnosis in children72. A recent ADHD 441 
GWAS identified a locus implicating the FOXP2 gene73, which has been reported to regulate 442 
dopamine secretion in mice74; hippocampal activation results in the firing of dopamine 443 
neurons75. For BMI, TCSC identified brain amygdala (𝜋$! 	= 0.054, s.e. = 0.023, P = 8.3	 × 10-0) 444 
and brain cerebellum (𝜋$! 	= 0.039, s.e. = 0.016, P = 7.0	 × 10-0) as causal tissues, consistent 445 
with previous work linking the amygdala to obesity and dietary self-control76, although no 446 
previous study has implicated the amygdala in genetic regulation of BMI. As for brain 447 
cerebellum, previous research has implicated the cerebellar function in dietary behavior, rather 448 
than strictly regulation motor control function67-69. We note that the brain-specific analysis is 449 
expected to have greater power to identify tissue-trait pairs than the analysis of Figure 4 due to 450 
the smaller number of total tissues in the model (as simulations show higher power for TCSC 451 
when there are fewer tagging tissues; Supplementary Figure 9). Other significant findings are 452 
discussed in the Supplementary Note, and numerical results for all brain tissues and brain traits 453 
analyzed are reported in Supplementary Table 12. 454 
 455 
Comparisons of TCSC to other methods 456 

 457 
We compared TCSC to two previous methods, RTC Coloc2 and LDSC-SEG7, that identify 458 

disease-critical tissues using gene expression data. RTC Coloc identifies disease-critical tissues 459 
based on tissue specificity of eQTL-GWAS colocalizations. LDSC-SEG identifies disease-critical 460 
tissues based on heritability enrichment of specifically expressed genes. We included RTC Coloc 461 
in these comparisons because it is the only other method that analyzes eQTL data and included 462 
LDSC-SEG because we believe it is the most widely used method. We note that RTC Coloc and 463 
LDSC-SEG analyze each tissue marginally, whereas TCSC jointly models contributions from each 464 
tissue to identify causal tissues (analogous to the distinction in GWAS between marginal 465 
association and fine-mapping23). Thus, we hypothesized that RTC Coloc and LDSC-SEG may 466 
output multiple highly statistically significant associated tissues for a given trait, whereas TCSC 467 
may output a single causal tissue with weaker statistical evidence of causality. To assess 468 
whether TCSC indeed attains higher specificity, we evaluated the results of each method both 469 
for causal tissues identified by TCSC and for the most strongly co-regulated tagging tissue 470 
(based on Spearman 𝜌	for estimated eQTL effect sizes, averaged across genes, from ref.19). Our 471 
primary analyses focused on 7 traits with at least one tissue-trait association for each of the 472 
three methods (Methods). 473 
 474 

Results for the 7 traits are reported in Figure 5 and Supplementary Table 13; results for 475 
all 17 diseases/traits with causal tissue-trait associations identified by TCSC (Figure 4) are 476 
reported in Supplementary Figure 28 and Supplementary Table 14, and complete results for all 477 
diseases/traits and tissues included in these comparisons are reported in Supplementary Table 478 
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15. We reached three main conclusions. First, for a given disease/trait, RTC Coloc typically 479 
implicates a broad set of tissues (not just strongly co-regulated tissues) (Figure 5A); for 480 
example, for WBC count, RTC Coloc implicated 8 of 10 tissues in Figure 5. This is consistent with 481 
our simulations, in which RTC Coloc suffered a high type I error rate and had a substantially 482 
lower AUC than TCSC (Supplementary Figure 1). Second, for a given disease/trait, LDSC-SEG 483 
typically implicates a small set of strongly co-regulated tissues (Figure 5B); for WBC count, 484 
LDSC-SEG implicated 3 of 8 tissues in Figure 5, consisting of whole blood and spleen (which are 485 
strongly co-regulated) plus breast tissue. This is consistent with our simulations, in which LDSC-486 
SEG suffered a substantial type I error rate and had a substantially lower AUC than TCSC 487 
(Supplementary Figure 1). Third, for a given disease/trait, TCSC typically implicates one causal 488 
tissue (Figure 5C); for WBC count, TCSC implicated only whole blood as a causal tissue, with 489 
even the most strongly co-regulated tagging tissue reported as non-significant. This is 490 
consistent with our simulations, in which TCSC attained moderate power to identify causal 491 
tissues with approximately well-calibrated type I error. However, we caution that the higher 492 
specificity of TCSC in identifying unique causal tissues may be accompanied by incomplete 493 
power to identify secondary causal tissues; accordingly, we observed less significant (lower 494 
─log10P-value and lower ─log10FDR) results for causal tissues in Figure 5C than in Figure 5A and 495 
Figure 5B) (Supplementary Table 14). We also observed similar patterns when comparing TCSC 496 
to RTC Coloc and LDSC-SEG in the brain-specific analysis of Supplementary Figure 27 497 
(Supplementary Figure 29, Supplementary Table 16, Supplementary Note). Based on 498 
simulations, we expect that RTC Coloc and LDSC-SEG both attain higher power at the cost of 499 
higher false positives.  500 
 501 
Identifying tissue-specific contributions to the genetic covariance between two diseases/traits 502 
 503 

We applied cross-trait TCSC to 262 pairs of disease/traits (Supplementary Table 17) and 504 
gene expression data for 48 GTEx tissues19 (Table 1) (see Data Availability). Of 3,003 pairs of 505 
the 78 disease/traits analyzed above, the 262 pairs of diseases/traits were selected based on 506 
significantly nonzero genetic correlation (p < 0.05 / 3,003; see Methods). The 48 GTEx tissues 507 
were aggregated into 39 meta-tissues, as before (Table 1 and Methods). We primarily report 508 
the signed proportion of genetic covariance explained by the cis-genetic component of gene 509 
expression in tissue 𝑡' (𝜁$! = 𝜔!"($') /𝜔!), as well as its statistical significance (using per-trait 510 
FDR). We note that the direction of effect of tissue-specific contributions to the genetic 511 
covariance between two traits may be in the opposite direction of the global covariance 512 
between two traits, analogous to how local contributions to genome-wide genetic correlation 513 
may be in the opposite direction of the genome-wide genetic correlation77-80.  514 
 515 

TCSC identified 17 causal tissue-trait covariance pairs with significant contributions to 516 
trait covariance at 5% FDR, spanning 12 distinct tissues and 13 distinct trait pairs (Figure 6A, 517 
Supplementary Table 18). For 16 of the 17 causal tissue-trait covariance pairs, the causal tissue 518 
was non-significant for both constituent traits in the single-trait analysis of Supplementary 519 
Table 8. Findings that recapitulated known biology included both examples involving a tissue-520 
trait pair that was significant in the single-trait analysis (marked by an underline in Figure 6A, 521 
Figure 4) and examples in which both tissue-trait pairs were non-significant in the single-trait 522 
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analysis (Supplementary Table 6). Consistent with the significant contribution of liver to LDL 523 
heritability in the single-trait analysis, TCSC identified a suggestive positive contribution of liver 524 
to the genetic covariance of LDL and total cholesterol (𝜁$!   = 0.090, s.e. = 0.029, P = 1.0 × 10-0, 525 
5% < FDR < 10%), and consistent with the positive contributions of whole blood to eosinophil 526 
count heritability and to platelet count heritability in the single-trait analysis, TCSC identified a 527 
significant positive contribution of whole blood to the genetic covariance of eosinophil count 528 
and platelet count (𝜁$!  = 0.30, s.e. = 0.10, P = 2.3 × 10-0). TCSC also identified 15 suggestive 529 
tissue-trait covariance pairs with 5% < FDR < 10% (Figure 6A, Supplementary Table 19).  530 
 531 

TCSC identified several biologically plausible findings not previously reported in the 532 
genetics literature. First, brain substantia nigra had a significantly positive contribution to the 533 
genetic covariance of BMI and red blood cell count (RBC count) (𝜁$!  = 0.28, s.e. = 0.084, P = 534 
4.6 × 10-.), while pancreas had a significantly negative contribution (𝜁$!  = -0.25, s.e. = 0.079, P 535 
= 8.7 × 10-.). In the brain, energy metabolism is regulated by oxidation and previous work has 536 
shown that red blood cells play a large role in these metabolic processes as oxygen sensors81; in 537 
addition, previous studies have reported differences in the level of oxidative enzymes in red 538 
blood cells between individuals with high BMI and low BMI82,83, suggesting that genes 539 
regulating oxidative processes might have pleiotropic effects on RBC count and BMI. In the 540 
pancreas, pancreatic inflammation (specifically acute pancreatitis) is associated with reduced 541 
levels of red blood cells, or anemia84, while pancreatic fat is associated with metabolic disease 542 
and increased BMI85. Once again, the contrasting results for brain substantia nigra and pancreas 543 
suggest that genetic covariance may reflect distinct tissue-specific contributions. Second, brain 544 
substantia nigra had a significantly negative contribution to the genetic covariance of age at 545 
first birth and height (𝜁$!  = -0.11, s.e. = 0.032, P = 4.5 × 10-.). Previous work in C. elegans 546 
reported that fecundity is positively regulated by dopamine86,87, which is produced in the 547 
substantia nigra88. Therefore, it is plausible that reproductive outcomes related to fecundity, 548 
such as age at first birth, are also regulated by dopamine via the substantia nigra. Dopamine 549 
also plays a role in regulating the levels of key growth hormones such as IGF-1 and IGF-BP389 550 
and has been previously shown to be associated with height90. Third, pituitary had a 551 
significantly negative contribution to the genetic covariance of vitamin D and WHR | BMI (𝜁$!  = 552 
-0.19, s.e. = 0.057, P = 4.5 × 10-.). Irregularities in pituitary development are associated with 553 
decreased vitamin D levels and decreased IGF-1 levels, the latter of which is integral for bone 554 
development and is directly proportional to body proportion phenotypes such as WHR | BMI91-555 
93. Fourth, LCLs had a suggestive negative contribution to the genetic covariance of eosinophil 556 
count and white blood cell count (𝜁$!  = -0.081, s.e. = 0.028, P = 1.8 × 10-0, 5% < FDR < 10%, in 557 
contrast to the suggestive positive contribution of whole blood: 𝜁$!  = 0.32, s.e. = 0.12, P = 558 
2.4 × 10-0, 5% < FDR < 10%). This is plausible as previous studies have reported the 559 
suppression of proliferation of lymphocytes (the white blood cell hematopoietic lineage from 560 
which LCLs are derived) by molecules secreted from eosinophils94-96. The contrasting results for 561 
whole blood and LCLs suggest that genetic covariance may reflect distinct tissue-specific 562 
contributions. Other significant findings are discussed in the Supplementary Note. Numerical 563 
results for all tissues and disease/trait pairs analyzed are reported in Supplementary Table 19. 564 

 565 
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As noted above, for 16 of the 17 causal tissue-trait covariance pairs, the causal tissue 566 
was non-significant for both constituent traits. We sought to formally assess whether 567 
differences in tissue-specific contributions to genetic covariance vs. constituent trait heritability 568 
were statistically significant. Specifically, for each causal tissue-trait covariance pair, we 569 
estimated the differences between the tissue-specific contribution to covariance (𝜁$!) and the 570 
tissue-specific contributions to heritability for each constituent trait (𝜋$!) (and estimated 571 
standard errors by jackknifing differences across the genome). We note that 𝜁$!  and 𝜋$!  are 572 
both signed proportions and are therefore on the same scale, thus the scenario in which these 573 
two quantities are equal is a natural and parsimonious null. We identified five tissue-trait 574 
covariance pairs for which these differences were statistically significant at 5% FDR for both 575 
constituent traits and 𝜋$!  was non-significant for both constituent traits (marked by double 576 
asterisks in Figure 6A, Supplementary Table 20). For BMI and RBC count, negative contribution 577 
of pancreas (Figure 6B) and the positive contribution of brain substantia nigra (Figure 6C) to 578 
genetic covariance were each larger than the respective contributions of those tissues to BMI 579 
and RBC count heritability, which were non-significant. Other examples are discussed in the 580 
Supplementary Note. Numerical results for all tissues and trait pairs are reported in 581 
Supplementary Table 20. These findings were consistent with simulations we performed in 582 
which TCSC frequently detected tissue-specific contributions to covariance while failing to 583 
detect tissue-specific contributions to heritability for both traits, both in our original simulation 584 
framework and in a new simulation framework in which tissue-specific contributions to 585 
covariance were greater than contributions to heritability (Supplementary Table 21). 586 
 587 
Discussion 588 
 589 

We developed a new method, tissue co-regulation score regression (TCSC), that 590 
disentangles causal tissues from tagging tissues and partitions disease heritability (or genetic 591 
covariance of two diseases/traits) into tissue-specific components. We applied TCSC to 78 592 
diseases and complex traits and 48 GTEx tissues, identifying 21 tissue-trait pairs (and 17 tissue-593 
trait covariance pairs) with significant tissue-specific contributions. TCSC identified biologically 594 
plausible novel tissue-trait pairs, including associations of aorta artery with glaucoma, 595 
esophagus muscularis with FEV1/FVC, and heart left ventricle with platelet count. TCSC also 596 
identified biologically plausible novel tissue-trait covariance pairs, including a negative 597 
contribution of LCLs to the covariance of eosinophil count and white blood cell count (in 598 
contrast to the positive contribution of whole blood) and a positive contribution of brain 599 
substantia nigra and a negative contribution of pancreas to the covariance of BMI and red 600 
blood cell count; in particular, our findings suggest that genetic covariance may reflect distinct 601 
tissue-specific contributions.  602 

 603 
TCSC differs from previous methods in jointly modeling contributions from each tissue 604 

to disentangle causal tissues from tagging tissues (analogous to the distinction in GWAS 605 
between marginal association and fine-mapping23). We briefly discuss several other methods 606 
that use eQTL or gene expression data to identify disease-associated tissues. RTC Coloc 607 
identifies disease-associated tissues based on tissue specificity of eQTL-GWAS colocalizations2; 608 
this study made a valuable contribution in emphasizing the importance of tissue co-regulation, 609 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 26, 2023. ; https://doi.org/10.1101/2022.08.25.505354doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505354


but did not model tissue-specific effects, such that RTC Coloc may implicate many tissues 610 
(Figure 5A). LDSC-SEG identifies disease-critical tissues based on heritability enrichment of 611 
specifically expressed genes7; this distinguishes a focal tissue from the set of all tissues 612 
analyzed, but does not distinguish closely co-regulated tissues (Figure 5B). MaxCPP models 613 
contributions to heritability enrichment of fine-mapped eQTL variants across tissues or meta-614 
tissues4; although this approach proved powerful when analyzing eQTL effects that were meta-615 
analyzed across all tissues, it has limited power to identify disease-critical tissues: fine-mapped 616 
eQTL annotations for blood (resp. brain) were significant conditional on annotations 617 
constructed using all tissues only when meta-analyzing results across a large set of blood (resp. 618 
brain) traits (Fig. 4 of ref.4). eQTLenrich compares eQTL enrichments of disease-associated 619 
variants across tissues3; this approach produced compelling findings for eQTL that were 620 
aggregated across tissues, but tissue-specific analyses often implicated many tissues (Fig. 1d of 621 
ref.3). MESC estimates the proportion of heritability causally mediated by gene expression in 622 
assayed tissues97; this study made a valuable contribution in its strict definition and estimation 623 
of mediated effects (see below), but did not jointly model distinct tissues and had limited 624 
power to distinguish disease-critical tissues (Fig. 3 of ref.97). CAFEH leverages multi-trait fine-625 
mapping methods to simultaneously evaluate all tissues for colocalization with disease5; 626 
however, this locus-based approach does not produce genome-wide estimates and it remains 627 
the case that many (causal or tagging) tissues may colocalize with disease under this 628 
framework. Likewise, methods for identifying tissues associated to disease/trait covariance do 629 
not distinguish causal tissues from tagging tissues98,99.  630 

 631 
We note several limitations of our work. First, TCSC requires tissue-specific eQTL data 632 

(thus requiring genotype/gene expression data in substantial sample size), whereas some 633 
methods (LDSC-SEG7, RolyPoly6, and CoCoNet9) only require gene expression data in limited 634 
sample size. However, TCSC attains lower type I error and higher AUC than those methods in 635 
our simulations (Supplementary Figure 1); and its results are generally consistent in 636 
independent GWAS data (Supplementary Table 5), although all methods likely produce some 637 
false positives. Moreover, methods that only use gene expression data exclude contributions to 638 
disease from genes that are ubiquitously expressed but have cell-type-specific functionality or 639 
cell-type-specific genetic regulation such as transcription factors, which are widely believed to 640 
orchestrate large transcriptional programs important to disease100. Second, joint-fit effects of 641 
gene expression on disease may not reflect biological causality; if a causal tissue or cell type is 642 
not assayed101, TCSC may identify a co-regulated tissue (e.g. a tissue whose cell type 643 
composition favors a causal cell type) as causal or may identify a set of co-regulated tissues that 644 
collectively tag the causal tissue as causal. We anticipate that this limitation will become less 645 
severe as potentially causal tissues, cell types and contexts are more comprehensively assayed. 646 
Third, TCSC does not achieve a strict definition or estimation of mediated effects; this is 647 
conceptually appealing and can, in principle, be achieved by modeling non-mediated effects, 648 
but may result in limited power to distinguish disease-critical tissues97. Fourth, TCSC has low 649 
power at small eQTL sample sizes; in addition, TCSC estimates are impacted by the number of 650 
significantly cis-heritable genes in a focal tissue, which can lead to conservative bias at small 651 
eQTL sample sizes. We anticipate that these limitations will become less severe as eQTL sample 652 
sizes increase. Fifth, TCSC is susceptible to large variations in eQTL sample size, which may 653 
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compromise type I error; therefore, there is a tradeoff between maximizing the number of 654 
tissues analyzed and limiting the variation in eQTL sample size. Sixth, TCSC assumes that causal 655 
gene expression-disease effects are independent across tissues; this assumption may become 656 
invalid for tissues and cell types assayed at high resolution. However, we verified via 657 
simulations that TCSC performs well when this model assumption is violated (Supplementary 658 
Figures 17-20). Seventh, TCSC does not formally model measurement error in tissue co-659 
regulation scores, but instead applies a heuristic bias correction. We determined that the bias 660 
correction generally performs well in simulations. Eighth, TCSC does not produce locus-specific 661 
estimates or identify causal tissues at specific loci. However, genome-wide results from TCSC 662 
may be used as a prior for locus-based methods (analogous to GWAS fine-mapping with 663 
functional priors102). Ninth, TCSC performs less well in the presence of disease heritability that 664 
is not mediated through gene expression (Supplementary Figures 21-22). Tenth, we did not 665 
apply TCSC to single-cell RNA-seq (scRNA-seq) data, which represents a promising new direction 666 
as scRNA-seq sample sizes increase103-105,35; we caution that scRNA-seq data may require new 667 
eQTL modeling approaches103. Finally, we focused our cross-trait analyses on relatively 668 
independent traits from the single-trait analysis, to enable comparisons with single-trait results 669 
(Figure 6B, 6C); cross-trait analysis of more strongly genetically correlated traits is a future 670 
direction of high interest. Despite these limitations, TCSC is a powerful and generalizable 671 
approach for modeling tissue co-regulation to estimate tissue-specific contributions to disease.  672 
 673 
Code Availability 674 
 675 
TCSC software including a quick start tutorial: https://github.com/TiffanyAmariuta/TCSC/ 676 
Mancuso Lab TWAS Simulator: https://github.com/mancusolab/twas_sim. 677 
FUSION software: http://gusevlab.org/projects/fusion/. 678 
 679 
Data Availability  680 
 681 
We have made 78 GWAS summary statistics and 41 brain-specific summary statistics publicly 682 
available at https://github.com/TiffanyAmariuta/TCSC/tree/main/sumstats, TWAS association 683 
statistics publicly available at https://alkesgroup.broadinstitute.org/TCSC/TWAS_sumstats/, 684 
tissue co-regulation scores publicly available at 685 
https://github.com/TiffanyAmariuta/TCSC/tree/main/coregulation_scores, and TCSC output 686 
publicly available at https://github.com/TiffanyAmariuta/TCSC/tree/main/results.  687 
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Methods  696 
 697 
TCSC regression  698 

TCSC leverages the fact that the TWAS χ2	statistic for a gene-tissue pair includes the 699 
direct effects of the gene on the disease as well as the tagging effects of co-regulated tissues 700 
and genes with shared eQTLs or eQTLs in LD. Thus, genes that are co-regulated across many 701 
tissues will tend to have higher χ2 statistics than genes regulated in a single tissue. TCSC 702 
determines that a tissue causally contributes to disease if genes with high co-regulation to the 703 
tissue have higher TWAS χ2 statistics than genes with low co-regulation to the tissue. 704 

We model the genetic component of gene expression as a linear combination of SNP-705 
level effects:  706 

𝑊1!$' =	∑ 𝑋12𝛽!$'22 ,                                                      (3) 707 
 708 

where 𝑊1!$ is the cis-genetic component of gene expression in individual j for gene g and tissue 709 
t’, 𝑋12 is the standardized genotype of individual j for SNP m, and 𝛽!$2 is the standardized 710 
effect of the mth SNP on the cis-genetic component of gene expression of gene g in tissue t’. We 711 
define the cis-genetic component of gene expression 𝑊1!$ to have mean 0 and variance 1 and 712 
𝛽!$'2 to have mean 0 and variance +

3"
 , where Mg is the number of cis variants for gene g. 713 

 TCSC assumes that true gene-disease effects are identically distributed (i.i.d.) across 714 
genes and tissues while accounting for the fact that cis-genetic components of gene expression 715 
(and cis-genetic predictions of gene expression) are correlated1 (see Supplementary Figures 17-716 
20 for simulations where gene expression-trait effect sizes are not i.i.d. across genes and 717 
tissues; TCSC performs well despite violations of model assumptions). The high correlation of 718 
cis-eQTLs across tissues leads to tagging from co-regulated tissues2. We model phenotype as a 719 
linear combination of genetic components of gene expression across genes in different tissues:   720 

	721 
	𝑌1 =	∑ ∑ 𝑊1!$! 𝛼!$' +	𝜖1 ,$' 																																																				(4) 722 

	723 
where 𝑌1  is the (binary or continuous-valued) phenotype of individual j, 𝛼!$ is the standardized 724 
effect size of the cis-genetic component of gene expression on disease and 𝜖1  is the component 725 
of phenotype not explained by cis-genetic components of gene expression. We emphasize that 726 
we model disease as a function of the unobserved true cis-genetic component of gene 727 
expression 𝑊1!$', not the genetically predicted value 𝑊91!$' obtained from gene expression 728 
prediction models. Equation (4) can be rewritten in terms of SNP-level effects:  729 
 730 

𝑌1 =	∑ 𝑋14𝛽′44 +∑ ∑ ∑ 𝑋12𝛽!$'22! 𝛼!$ +	𝜖1 ,$'                                     (5) 731 
 732 
where 𝛽′4  are direct SNP-disease effects not mediated through gene expression.  733 
 734 

We define the disease heritability explained by cis-genetic expression across all tissues 735 
as follows:  736 
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	737 
ℎ!"& = 	𝑣𝑎𝑟(∑ ∑ ∑ 𝑋12𝛽!$'22! 𝛼!$)$' 																																													(6) 738 

 739 
Because 𝑊1!$ has mean 0 and variance 1 and 𝛼!$ are assumed to be i.i.d. across genes and 740 
tissues (see above), Equation (5) implies that:  741 

  742 
ℎ!"& =	∑ ∑ 𝛼!$'&! ,$' 																																																													(7) 743 

	744 
analogous to the relationship between SNP effect sizes and SNP-heritability27: ℎ!" = 745 
𝑣𝑎𝑟(∑ 𝑋#$ 𝛽$). We emphasize that the respective terms in Equation (5) for each tissue t’ are 746 
independent as 𝛼!$' are assumed to be i.i.d. across genes and tissues. It follows that the disease 747 
heritability explained by a particular tissue 𝑡'  is   748 
 749 

ℎ!"($!)
& = 	𝑣𝑎𝑟7∑ ∑ 𝑋12𝛽!$'22! 𝛼!$':,																																															(8) 750 

 751 
which given that 𝑊1!$' has mean 0 and variance 1 and 𝛼!$' is i.i.d. across genes, reduces to:  752 
 753 
 754 

ℎ!"($!)
& =	∑ 𝛼!$'&! .                                                              (9) 755 

 756 
Equation (7) and Equation (9) imply that	ℎ!%" =	∑ ℎ!%('()"

'( . Now, let 𝛼!$' be a random variable 757 
drawn from a normal distribution with mean zero and tissue-specific variance 𝑣𝑎𝑟7𝛼!$!: = 	 𝜏$'. 758 
Then  759 
 760 

ℎ!"($!)
& = ∑ 𝑣𝑎𝑟7𝛼!$!:! =	𝜏$'𝐺$',                                               (10) 761 

 762 
where 𝐺$'	is the number of significantly cis-heritable genes in the model. In simulations, we 763 
demonstrate that when there are similar numbers of cis-heritable genes across tissues, setting  764 
𝐺$'	to the total number of unique cis-heritable genes produces unbiased estimates in TCSC for 765 
the causal tissue; however, when there are varying numbers of cis-heritable genes across 766 
tissues (fewer in the causal tissue), this produces upward biased estimates (Supplementary 767 
Figures 3-4) and thus setting 𝐺$' to the number of significantly cis-heritable genes in tissue t’ is 768 
recommended. With this variance term, we can define a polygenic model that relates TWAS χ2	769 
statistics to co-regulation scores, which explicitly model the covariance structure of the χ2	770 
statistics. This strategy is analogous to modeling the dependence of GWAS χ2	statistics on LD 771 
scores27.  772 

In a TWAS, the estimated value of the gene-disease effect size 𝛼!$!  is proportional to the 773 
correlation of the cis-genetic components of gene expression and their true gene-disease effect 774 
sizes for nearby genes across tissues, analogous to GCSC22:  775 

𝐸%𝛼U!$' = ∑ ∑ 𝑟(𝑊9!$ ,𝑊!'$')𝛼!!$!!′	$′ +	𝜖!,                                                                       (11) 776 
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where 𝑟(𝑊9!$ ,𝑊!'$') is the estimated correlation in cis-genetic predicted expression between 777 
gene g in tissue t and genes g’ in tissue t’. 𝜖! is the component of phenotype not explained by 778 
cis-genetic components of gene expression, with mean 0 and variance 𝜎"&/	𝑁. 779 

The value of the TWAS χ2	is proportional to the squared estimated disease-gene effect size and 780 
the GWAS sample size N as follows:  781 

𝜒!$& = 𝑁𝛼U!$&                                                                        (12) 782 

Using the equations (9) and (10), we can write the expectation of TWAS χ2	as follows:  783 

E%𝜒!$& ' = E%𝑁𝛼U!$& '                                                                 (13) 784 

																																																																						= 𝑁E X7∑ ∑ �̂�!!'$'	𝛼!'$'!′$′ +	𝜖!:
&Z                                             (14) 785 

																																																																													= 𝑁∑ ∑ E%�̂�!!'$'& 'E%𝛼!'$'& '!′$′ + 	𝑁E%𝜖!&'                   (15) 786 

																																																																												≈ 𝑁∑ ∑ (𝑟!!'$'& + +
6
)ℎ!"($')& /𝐺$'!′$′ + 	𝑁𝜎"&/	𝑁          (16) 787 

																											= 𝑁∑ ∑ (𝑟!!'$'& + +
6
)𝜏$'!′$′ +	𝜎"&                                 (17) 788 

= 𝑁∑ ∑ 𝑟!!'$'& 𝜏$' +∑ ∑ 𝜏$'!′$′!′$′ +	𝜎"&                     (18) 789 

= 𝑁∑ ∑ 𝑟!!'$'& 𝜏$'!′ + ∑ 𝑣𝑎𝑟(𝛼!'$')$′ 	$′ +	𝜎"&             (19) 790 

= 𝑁∑ 𝑙(𝑔, 𝑡; 𝑡′)𝜏$' + 1	$′                                                (20) 791 

= 𝑁∑ 𝑙(𝑔, 𝑡; 𝑡′)ℎ!"#$!%
& /𝐺$' + 1	$′                                   (1) 792 

To go from Equation (15) to Equation (16) we use the following relationship from the derivation 793 
of LDSC13:  794 

E%�̂�!!'$'& ' ≈ 	 𝑟!!'$'& + +
6
	                                                              (21) 795 

We go from Equation (19) to Equation (20) because the variance of the phenotype 𝑌1  is 796 
∑ 𝑣𝑎𝑟(𝛼!'$')$′ + 𝜎"& and is equal to one. We also introduce the notation that ∑ 𝑟!!'$'&

!′  are the 797 
tissue and gene co-regulation scores 𝑙(𝑔, 𝑡; t′),	see below. We are interested in estimating 𝜏$' , 798 
the per-gene disease heritability explained by the cis-genetic component of gene expression in 799 
tissue 𝑡'. From the derivation, the genome-wide tissue-specific contribution to disease 800 
heritability is estimated as  801 
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ℎ!"($!)
& =	 𝐺$'𝜏$'.                                                                  (22) 802 

For the analysis of tissue-specific contributions to the covariance between two diseases, 803 
we can extend TCSC by using products of TWAS z-scores. Following the polygenic model 804 
described above, the expected product of TWAS z-scores in disease 1 and disease 2 for gene 𝑔 805 
and tagging tissue 𝑡 is 806 
 807 

𝐸%𝑧!$+ 	× 	𝑧!$& ' = 	?𝑁+𝑁& 	∑ 𝑙(𝑔, 𝑡; 𝑡')𝜔!"#$!%/𝐺$!$′ + 	𝜌𝑁,/?𝑁+𝑁&                      (23) 808 
 809 
where 𝑁+ is GWAS sample size for disease 1, 𝑁& is GWAS sample size for disease 2, 𝑡'	indexes 810 
causal tissues, 𝑙(𝑔, 𝑡; 𝑡') are tissue co-regulation scores (see below), 𝜔!"#$!% is the genetic 811 
covariance explained by the cis-genetic component of gene expression in tissue 𝑡', 𝐺$!  is the 812 
number of significantly cis-heritable genes in tissue 𝑡' (see below), 𝜌 is the phenotypic 813 
correlation between disease 1 and disease 2, and 𝑁, is the number of overlapping GWAS 814 
samples between disease 1 and disease 2. The last term represents the intercept28, and while 815 
we use a free intercept in the multivariate regression on co-regulation scores, the estimation of 816 
this term only plays a role in the estimation of regression weights (see below).   817 

 818 
For estimates of ℎ!"($')

&  and 𝜔!"#$!%, we use a free intercept; the estimation of 819 

𝜌𝑁,?𝑁+𝑁& serves only to inform the heteroscedasticity weights (see below) and is not used in 820 
the multivariate TCSC regression to estimate 𝜔!"#$!%. To estimate standard errors, we use a 821 
genomic block jackknife over 200 genomic blocks with an equal number of genes in each. The 822 
standard deviation is computed as the square root of the weighted variance across the 823 
jackknife estimates (where the weight of each block is equal to the sum of the regression 824 
weights for the genes in that block) multiplied by 200 blocks. We expect that the jackknife 825 
standard error will be conservative relative to the empirical standard error across estimates due 826 
to variation in causal signal across loci106. 827 
 828 
Estimating tissue co-regulation scores and correcting for bias  829 

We define the co-regulation score of gene 𝑔 with tissues 𝑡	and 𝑡' as  830 
 831 
																																										𝑙(𝑔, 𝑡; 𝑡')	=	∑ 𝑟&7𝑊9!,$ ,𝑊!!,$!:!′ ,																																																						(24) 832 

 833 
where W	denotes the cis-genetic component of gene expression for a gene-tissue pair across 834 
individuals, 𝑊9  denotes the cis-predicted expression for a gene-tissue pair, and genes 𝑔′	 are 835 
within +/- 1 Mb of the focal gene 𝑔. TCSC corrects for bias in tissue co-regulation scores arising 836 
from differences between cis-genetic vs. cis-predicted expression (analogous to GCSC22). We 837 
apply bias correction to co-regulation scores in the special case when	𝑔 = 𝑔' and 𝑡 = 𝑡'. While 838 
co-regulation scores aim to estimate 𝑟&7𝑊9!,$ ,𝑊!!,$!:, the squared correlation of the predicted 839 
cis-genetic component of expression of gene 𝑔 and tissue 𝑡 (corresponding to the TWAS 𝜒!,$&  840 
statistic) with the actual cis-genetic component of gene expression of gene g’ in tissue 𝑡', when 841 
𝑔 = 𝑔' and 𝑡 = 	 𝑡' , the estimated value of 𝑟&7𝑊9!,$ ,𝑊!!,$!:	will always equals one because the 842 
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estimate is based on 𝑟&7𝑊9!,$ ,𝑊9!!,$!:. However, this implies that predictions of the cis-genetic 843 
component of expression are perfectly accurate, which is unlikely to be the case. Therefore, the 844 
estimated value of 𝑟&7𝑊9!,$ ,𝑊!!,$!: if left to equal one will cause co-regulation scores to be 845 
systematically inflated.  846 
 847 
Therefore, when 𝑔 = 𝑔' and 𝑡 = 	 𝑡', we set  848 
 849 
																																																													𝑟&7𝑊9!,$ ,𝑊!!,$!: = 𝑅&/	ℎ789:& ,                                                     (25) 850 

 851 
where 𝑅& is the cross-validation prediction statistic of the gene expression model for gene 𝑔 in 852 
tissue 𝑡 and ℎ789:& 	is the GCTA-estimated cis-heritability of gene expression for gene 𝑔 in tissue 853 
𝑡. The quotient 𝑅&/	ℎ789:&  is the accuracy of the gene expression prediction model, which 854 
reflects the upper bound on how much the cis-predicted expression can be correlated with the 855 
true cis-genetic component of gene expression. While we only consider genes with 	ℎ789:&  p < 856 
0.01, the uncertainty in	ℎ789:&  estimates should be modest and therefore not greatly impact our 857 
bias correction. We note that TWAS tests the null hypothesis that a specific weighted linear 858 
combination of SNPs is not associated with disease (and does not test the null hypothesis that 859 
the cis-genetic component of gene expression is not associated with disease). 860 
 861 
TCSC regression weights 862 
 TCSC uses three sets of regression weights to increase power (analogous to GCSC22). The 863 
first regression weight is inversely proportional to 𝐿(𝑔, 𝑡),	the total co-regulation score of each 864 
gene-tissue pair summed across tissues 𝑡':  865 
 866 

𝐿(𝑔, 𝑡)=	∑ ∑ 𝑟&7𝑊9!,$ ,𝑊!!,$!:!!$! 																																																	(26) 867 
	868 

(without applying bias correction; see above), which allows TCSC to properly account for 869 
redundant contributions of co-regulated genes to TWAS χ2	statistics.  870 
 871 

The second regression weight is inversely proportional to 𝑇(𝑔, 𝑡),	the number of tissues 872 
in which a gene is significantly cis-heritable: 873 

 874 
 𝑇(𝑔, 𝑡)=	∑ 1$!	∈	!,$!,4!<4=4>?<$@A	>4,-B"C4$?D@" ,																																				(27)	875 

thereby up-weighting signal from genes that are regulated in a limited number of tissues and 876 
preventing TCSC from attributing more weight to genes that are co-regulated across many 877 
tissues.  878 
 879 

The third regression weight is inversely proportional to 𝐻B#(𝑔, 𝑡), the heteroscedasticity 880 
of χ2	statistics, and is computed differently for estimates of ℎ!"#$!%

&  than for estimates of 𝜔!"#$!% 881 
(analogous to GCSC22 and cross-trait LDSC28, respectively).  882 

 883 
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For estimates of ℎ!"($')
& ,	we estimate 𝐻B#(𝑔, 𝑡) in two steps. First, we make a crude 884 

estimate of heritability explained by predicted expression (ℎ!"& )  as follows:  885 
𝜇E = 𝑁𝜇Fℎ!"& + 1,                                                              (28) 886 

where 𝜇E is the mean	𝜒&	statistic:  887 

𝜇E =
∑ ∑ E"!,%!

#
"!%!

∑ 7%!%′
,                                                               (29) 888 

where N is the GWAS sample size, 𝑔′ iterates over significantly cis-heritable genes and	𝑡' 889 
iterates over tissues, and 𝜇F is the mean value of total co-regulation across tissues 𝑡',  890 
 891 

𝜇F =
∑ ∑ F(!',$')"!%!

∑ 7%!%′
.                                                             (30) 892 

 893 
Then, we compute the heteroscedasticity for each significantly cis-heritable gene-tissue pair as 894 

𝐻B#(𝑔, 𝑡) = 	 7𝑁𝐿(𝑔, 𝑡)ℎ!"& + 1:&.                                             (31) 895 
 896 
Finally, we combine the three regression weights as follows: 897 

𝑊𝑒𝑖𝑔ℎ𝑡B#(𝑔, 𝑡) = 	
+

F(!,$)9(!,$)H&#(!,$)
.                                           (32) 898 

 899 
For estimates of 𝜔!"#$!%, we estimate 𝐻I(𝑔, 𝑡) in two steps. First, we regress the 900 

products of TWAS z-scores on total tissue co-regulation scores, 𝐿(𝑔, 𝑡), using regression 901 
weights, 𝑊𝑒𝑖𝑔ℎ𝑡I(𝑔, 𝑡),	computed as follows:  902 

𝑊𝑒𝑖𝑔ℎ𝑡I(𝑔, 𝑡) = 	
+

F(!,$)9(!,$)H'(!,$)
                                            (33) 903 

where 𝐻I(𝑔, 𝑡) is first estimated as follows:  904 
 905 

𝐻I(𝑔, 𝑡) = 7𝑁+𝐿(𝑔, 𝑡)ℎ!"& (𝑡𝑟𝑎𝑖𝑡	1) + 1:7𝑁&𝐿(𝑔, 𝑡)ℎ!"& (𝑡𝑟𝑎𝑖𝑡	2) + 1: + 906 

dJ6(6#I")F
(!,$)

∑
*%!
+!%!

e
&

,                                                             (34) 907 

 908 
where ℎ!"& (𝑡𝑟𝑎𝑖𝑡	1) is the crude heritability estimate for trait 1 and ℎ!"& (𝑡𝑟𝑎𝑖𝑡	2) is the crude 909 

heritability estimate for trait 2, 𝜔!"  is estimated as 
∑ ∑ K

,!-!
(() K

,!-!
(#)

"!%!

J6(6#
 , 𝑁+ is the sample size of the 910 

first GWAS, 𝑁& is the sample size of the second GWAS, and 𝑇' is the total number of tissues in 911 
the regression.  912 
 913 

Second, we use the regression intercept to estimate the product 𝜌𝑁,:	 914 
𝜌𝑁, = 	𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ∗ ?𝑁+𝑁&,                                                       (35) 915 

where 𝜌 represents the phenotypic correlation between trait 1 and 2 and 𝑁, represents the 916 
number of shared samples between GWAS 1 and 2. We also use the coefficient of the 917 
regression to update our estimate of 𝜔!", such that we may update the heteroscedasticity 918 
weight as follows:  919 

𝐻I(𝑔, 𝑡) = 	 7𝑁+𝐿(𝑔, 𝑡)ℎ!"& (𝑡𝑟𝑎𝑖𝑡	1) + 1:7𝑁&𝐿(𝑔, 𝑡)ℎ!"& (𝑡𝑟𝑎𝑖𝑡	2) + 1: + 920 
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dJ6(6#I")F
(!,$)

∑
*%!
+!%!

+ 	𝜌𝑁,?𝑁+𝑁&e
&

.                                                 (36) 921 

 922 
Finally, we combine the three regression weights as follows: 923 

𝑊𝑒𝑖𝑔ℎ𝑡I(𝑔, 𝑡) = 	
+

F(!,$)9(!,$)H'(!,$)
.                                               (37) 924 

 925 
Simulating TCSC 926 

We employed a widely used TWAS simulation framework (Mancuso Lab TWAS 927 
Simulator, see Code Availability) to assess the power, bias, and calibration of TCSC in the 928 
presence of co-regulation across genes and tissues. We simulated a genome in which there are 929 
1,000 protein-coding genes from chromosome 1, of which 100 (10%) are causal31. Each primary 930 
simulation consists of 10 tissues, of which at least one is causal, defined as having nonzero 931 
gene- disease effect sizes. We create a covariance structure among tissues mimicking empirical 932 
GTEx data. We use a previously published method to estimate the causal cross-tissue 933 
correlation of eQTL effect sizes which is 0.7536. We observe that not all GTEx tissues are equally 934 
correlated to one another. We estimate three different cross-tissue eQTL correlation quantities: 935 
(1) average correlation across all pairs of tissues = 0.75, (2) average correlation across similar 936 
tissues = 0.80, e.g. brain (13 in GTEx) or adipose (2 in GTEx) tissues, and (3) average correlation 937 
across dissimilar tissues, e.g. pairs of brain and adipose tissues = 0.74. To represent these 938 
biological modules, we let simulated tissues 1-3 have higher correlation of true eQTL effects to 939 
one another than to other tissues; likewise for tissues 4-6 and 7-10. We set covariance 940 
parameters, described below, such that the similar tissues had an average eQTL correlation of 941 
0.789 across genes, dissimilar tissues have an average eQTL correlation of 0.737, and the 942 
average eQTL correlation across any pair of tissues is 0.751. We use real genotypes from 943 
European individuals in the 1000 Genomes Project to define the pairwise SNP LD structure 944 
which is used to simulate genotypes, gene expression traits, and complex traits/diseases. We 945 
simulate each gene having 5 true cis-eQTLs, based on the upper bound of empirical data from 946 
GTEx19 and others35, as well as the value used in other TWAS simulation methods34. Between 947 
pairs of co-regulated tissues, the same gene shares 3 cis-eQTLs. Between pairs of co-regulated 948 
genes in the same tissue, 3 cis-eQTLs are shared. The minimum allowed cis-heritability of a gene 949 
is 0.01 in our simulations. Cis-heritability is approximated as the sum of squared true cis-eQTL 950 
effect sizes, as done previously22. Effect sizes for the 3 shared eQTLs across tissues are sampled 951 
from a multivariate normal distribution with mean 0 and a variance-covariance matrix. We 952 
define the variance and covariance terms of this matrix such that (1) the proportion of genes 953 
detected as significantly cis-heritable by GCTA at a given sample size and (2) the average cis 954 
heritability of detected genes at a given sample size match empirical observations from GTEx 955 
data at sample sizes N = 100, 200, 300 and 500. As a result, the diagonal of the variance-956 
covariance matrix, e.g.  the variance term, is set to 0.075, and the off-diagonal elements are set 957 
to the product of the variance term and the desired correlation for each tissue pair, described 958 
above. 959 

For each of 1,000 independent simulations per analysis, we simulate a GWAS (N = 960 
10,000) by creating a complex trait which is the summation of the genetic components of 961 
causal gene expression (in the causal tissue). We use simulated genotypes based on the LD 962 
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structure of 1000 Genomes. Gene-disease effect sizes are drawn from a normal distribution 963 
with mean 0 and variance 1. In cross-trait TCSC analysis, effect sizes across genes between the 964 
two traits are correlated with default Rg = 0.5. To simulate a GWAS trait, we first compute the 965 
genetic component of each gene, which is the product of GWAS cohort genotypes and eQTL 966 
effects, such that we have 100 gene-specific traits. We then add noise to each gene-specific 967 
trait such that the total variance of the phenotype explained by the five eQTLs from the causal 968 
tissue is equal to a specified value; the value of  ℎ!"($)& 	in primary simulations is 10%. Then, we 969 
multiply each gene-specific trait by the causal gene-disease effect size, consistent with the 970 
additive generative model of gene-level effects on trait (see above). Finally, we take the sum 971 
across all gene-specific traits to make one complex trait, where the total variance of the trait 972 
explained by gene effects from the causal tissue is ℎ!"($)& , e.g. 10%.  973 

We simulate an eQTL cohort of various gene expression sample sizes (N = 100, 200, 300, 974 
500, 1000, 1500) using simulated genotypes based on the LD structure of 1000 Genomes. We 975 
simulate total gene expression in the eQTL cohort by adding a desired amount of noise to the 976 
genetic component of gene expression, e.g. the product of individual genotypes and true eQTL 977 
effect sizes, with variance equal to one minus the gene expression heritability, which is the sum 978 
of squared eQTL effects. Next, we fit gene expression prediction models by regressing the total 979 
gene expression on eQTL cohort genotypes of cis variants using lasso regularization, a standard 980 
approach used in TWAS. We define significantly cis-heritable genes as genes with GCTA 981 
heritability P value < 0.0121 and heritability estimate > 0, and adjusted-R2 > 0 in cross-validation 982 
prediction. 983 

Then we estimate co-regulation scores at each different eQTL sample size by predicting 984 
gene expression into a cohort of 500 individuals, to approximate the size of the European 985 
sample of 1000 Genomes (N = 489). Using significantly cis-heritable genes from each tissue at a 986 
given sample size, we estimate gene and tissue co-regulation scores 𝑙(𝑔, 𝑡; 𝑡') as described 987 
above, including bias correction. In simulations, cis genes are defined as genes within the same 988 
1 Mb block.  989 

Then we apply TWAS to individual-level simulated GWAS data and gene expression 990 
prediction models. We predict gene expression into each of the 10,000 GWAS cohort individuals 991 
across all significantly cis-heritable genes for each tissue. We regress each complex trait on 992 
predicted gene expression to obtain TWAS z-scores. Finally, we run TCSC by regressing TWAS χ2	993 
statistics, or products of TWAS z-scores, on bias-corrected gene and tissue co-regulation scores. 994 
 995 
Simulating other tissue-disease association methods 996 
 We simulated four tissue-trait association methods: RTC Coloc2, LDSC-SEG7, RolyPoly6, 997 
or CoCoNet9. First, we simulated RTC Coloc method2 by leveraging our existing TCSC simulation 998 
framework such that both methods could be compared via application to same simulated data. 999 
We used the same simulated GWAS cohort of 10,000 individuals as in our TCSC simulations and 1000 
then followed the steps of the RTC Coloc method as published. Briefly, we perform a genome-1001 
wide association study using our simulated complex trait and the genotypes of our simulated 1002 
GWAS cohort and select null variants with similar LD properties. Then, we simulate an eQTL 1003 
cohort consisting of total gene expression and genotypes, using the same underlying true eQTL 1004 
effect sizes as for TCSC simulations. Then, we perform colocalization analysis of GWAS variants 1005 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 26, 2023. ; https://doi.org/10.1101/2022.08.25.505354doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505354


with eQTLs, across 10 tissues at 6 different eQTL sample sizes, to obtain the regulatory trait 1006 
concordance (RTC) score. This is repeated for the set of null variants. Next, we perform 1007 
colocalization analysis of eQTL variants between pairs of tissues to obtain tissue-sharing RTC 1008 
scores, and similarly repeat this for null variants. GWAS-eQTL RTC scores are divided by tissue-1009 
sharing RTC scores summed across variants. Tissue-specific enrichment is computed as the ratio 1010 
of this quotient to the null quotient. The enrichment P value is obtained using a Wilcox test 1011 
comparing the values of the quotient to the values of the null quotient. 1012 
 Second, we simulated the three methods that utilize GWAS data and total expression 1013 
across tissues: LDSC-SEG7, RolyPoly6, and CoCoNet9. To this end, we retained the full GWAS 1014 
summary statistics from the RTC Coloc analysis above. We separately simulated total 1015 
expression across tissues in which the 100 causal genes in addition to 200 randomly selected 1016 
genes were positively differentially expressed in the causal tissue and the two tagging tissues in 1017 
the same simulated “module” as the causal tissue, e.g. with higher genetic correlation of gene 1018 
regulatory effects. We also selected 100 random non-causal genes to be negatively 1019 
differentially expressed in the causal tissue and the other two module tissues. For the 1020 
remaining 7 tagging tissues, we randomly selected 300 genes to be positively differentially 1021 
expressed, some of which at random will be causal genes, and let the remaining 700 genes be 1022 
negatively differentially expressed. Then, as previously done7, we calculated the t-statistics for 1023 
the specific expression of each gene in each tissue. While we have modules of tissues that are 1024 
more highly correlated to one another, these within-module tissues were excluded from the 1025 
calculation of t-statistics, as previously done7. Finally, we created SNP-based annotations for 1026 
each tissue, across 1000 simulations, and across 6 sample sizes, in which SNPs within +/- 100 kb 1027 
of a specifically expressed gene is assigned a value of 1 and 0 otherwise, as previously done7. 1028 
Then, we calculated LD scores and partitioned the heritability of our simulated complex traits. 1029 
For the simulations of RolyPoly and CoCoNet, we installed the following R packages: rolypoly 1030 
and CoCoNet and used the simulated data above to run each method. While CoCoNet does not 1031 
technically use GWAS summary statistics, but rather gene-based “outcome variables”, we used 1032 
the label of causal or non-causal for each gene in each tissue of our simulations as the outcome 1033 
variable.  1034 
 1035 
Gene expression prediction models and tissue co-regulation scores in GTEx data  1036 

We downloaded GTEx v8 gene expression data for 49 tissues. We excluded tissues with 1037 
fewer than 100 samples, e.g. kidney cortex (n = 69). We retained only European samples for 1038 
each tissue, as labeled by GTEx via PCA of genotypes. We constructed gene expression models 1039 
for two scenarios: (1) subsampling to 320 individuals including meta-analyzed tissues (Table 1) 1040 
or (2) using all European samples per tissue. We recommend meta-analyzing gene expression 1041 
prediction models across tissues in the case of tissues with low eQTL sample size (e.g. < 320 1042 
samples) and high pairwise genetic correlation (e.g. > 0.93). We determined in simulations that 1043 
TCSC is sensitive to eQTL sample size differences, such that a tagging tissue with larger sample 1044 
size than a causal tissue can produce false positive results; the subsampling approach was 1045 
designed to mitigate this issue. For the subsampling procedure, we first set aside tissues with 1046 
more than 320 samples; we chose 320 based on the average GTEx tissue sample size (N = 271) 1047 
and robustness of TCSC in simulations at N = 300. Then, we grouped tissues with genetic 1048 
correlation, e.g. marginal effect size correlation as reported by GTEx, with Rg > 0.93, an arbitrary 1049 
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threshold that produced biologically plausible groups of related tissues, separating groups of 1050 
brain tissues based on cranial compartment. We meta-analyzed gene expression prediction 1051 
models for these grouped tissues in order to achieve a total sample size of 320 individuals 1052 
where each tissue contributed an approximately equal number of samples, using an inverse-1053 
variance weighted meta-analysis across genes that were significantly cis-heritable in two or 1054 
more constituent tissues. The prediction weights of genes that were significantly cis-heritable in 1055 
a single constituent tissue were left unmodified.  1056 

To construct gene expression prediction models, we applied FUSION21 (Code 1057 
Availability) to individual-level GTEx data by regressing measured gene expression on 1058 
genotypes of common variants (MAF > 0.05) and covariates provided by GTEx19. FUSION uses 1059 
several different regression models: single eQTL, elastic net, lasso, and BLUP and the following 1060 
covariates: sex, 5 genotyping principal components, PEER factors107, and assay type. We 1061 
defined significantly cis-heritable genes as protein-coding genes with GCTA heritability p < 1062 
0.0121, heritability estimate > 0, and adjusted-R2 > 0 in cross-validation prediction.  1063 

We used gene expression prediction models of significantly cis-heritable genes to 1064 
predict expression into 489 European individuals from 1000 Genomes108. We then estimated 1065 
tissue co-regulation scores using Equation (24) and Equation (25), where cis-predicted gene 1066 
expression is used to estimate the cis-genetic component of gene expression. 1067 
 1068 
GWAS summary statistics and TWAS association statistics 1069 

We collected GWAS summary statistics from 78 relatively independent heritable 1070 
complex diseases and traits (average N = 302K) with heritability z-score > 6. We estimated the 1071 
heritability of all summary statistics and genetic correlation of all pairs of summary statistics. 1072 
We excluded traits with heritability z-score < 6, using S-LDSC with the baseline-LD v2.2 1073 
model13,25,26 and as done previously25. We excluded one of each pair of traits that are both 1074 
genetically correlated and have significantly overlapping samples. Specifically, for any pair of 1075 
non-UK Biobank traits with an estimated sample overlap greater than the following threshold -- 1076 
squared cross-trait LDSC intercept / (trait 1 S-LDSC intercept * trait 2 S-LDSC intercept) > 0.128 -- 1077 
the trait with the larger SNP heritability z-score was retained. For any pair of UK Biobank traits 1078 
with a squared genetic correlation > 0.1, the trait with the larger SNP heritability z-score was 1079 
retained38. In total, this procedure resulted in 78 sets of relatively independent GWAS summary 1080 
statistics. We limited all analyses (including cross-trait analyses) to the 78 relatively 1081 
independent traits in order to avoid redundant findings across single-trait (and cross-trait) 1082 
analyses. For the brain-specific analysis, we first selected brain-related diseases and complex 1083 
traits, e.g. psychiatric disorders and behavioral phenotypes, excluding multi case-control 1084 
studies and case vs case studies. Then, we applied our standard filters as described above, but 1085 
relaxing the threshold of squared genetic correlation to 0.25.  1086 

We used FUSION21 (Code Availability) to compute TWAS association statistics for each 1087 
pair of signed GWAS summary statistics and each significantly cis-heritable gene-tissue pair, 1088 
across the two scenarios described above. We further removed genes within the MHC 1089 
(chromosome 6, 29 Mb - 33 Mb) and TWAS χ2 > 80 or χ2 > 0.001N, where N is the GWAS sample 1090 
size, as previously used for quality control in the heritability analysis of GWAS summary 1091 
statistics13. TCSC scales linearly with the number of genes and quadratically with the number of 1092 
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tissues. After all input datasets are created and processed, running TCSC on a single real GWAS 1093 
trait with 39 tissues takes about two minutes. 1094 
 1095 
RTC Coloc and LDSC-SEG analysis of GWAS summary statistics and GTEx tissues 1096 

We downloaded supplementary tables for the RTC coloc method2 and for LDSC-SEG7. 1097 
For traits in our set of 78 GWAS summary statistics that were not analyzed by the LDSC-SEG 1098 
study and for traits that are inherently brain-related (as these traits require a different 1099 
procedure for generating tissue-specific gene sets), we ran LDSC-SEG ourselves. To this end, we 1100 
downloaded LD scores for GTEx tissues and specifically expressed gene set SNP-level 1101 
annotations (https://alkesgroup.broadinstitute.org/LDSCORE/LDSC_SEG_ldscores/) and ran 1102 
LDSC-SEG as previously described7. For brain-related traits, we additionally ran a brain-specific 1103 
analysis using LDSC-SEG, also as previously described7. Briefly, specifically expressed genes were 1104 
determined via a t-test of the sentinel brain tissue against all other brain tissues, rather than 1105 
against all other non-brain GTEx tissues, as done in the primary analysis of the LDSC-SEG study. 1106 
For traits in our set that were not analyzed by the RTC Coloc study, of which there were few, we 1107 
did not apply their method, as it was too computationally intensive to apply to real trait data.  1108 
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Tables 1110 
 1111 

Meta-tissue Constituent Tissue(s) Sample Size 
Adipose Subcutaneous Adipose Subcutaneous 320 

Adipose Visceral Omentum Adipose Visceral Omentum 320 
Adrenal Gland Adrenal Gland 200 
Aorta Artery Aorta Artery 320 

†	Brain Basal Ganglia Putamen, Caudate, Nucleus Accumbens 320 
†	Brain Cereb. Cerebellum, Cerebellar Hemisphere 320 
†	Brain Cortex Frontal, Anterior, Cingulate 320 
†	Brain Limbic Amygdala, Hippocampus, Hypothalamus 320 

Brain Spinal Cord Brain Spinal Cord 115 
Brain Substantia Nigra Brain Substantia Nigra 101 

Breast Mammary Gland Breast Mammary Gland 320 
Coronary Artery Coronary Artery 180 

Cultured Fibroblasts Cultured Fibroblasts 320 
Esophagus Mucosa Esophagus Mucosa 320 

Esophagus Muscularis Esophagus Muscularis 320 
Heart Atrial Appendage Heart Atrial Appendage 320 

Heart Left Ventricle Heart Left Ventricle 320 
LCLs LCLs 116 
Liver Liver 183 
Lung Lung 320 

Minor Salivary Gland Minor Salivary Gland 118 
Muscle Skeletal Muscle Skeletal 320 

Ovary Ovary 140 
Pancreas Pancreas 252 
Pituitary Pituitary 220 
Prostate Prostate 186 

Skin (sun exposed) Skin (sun exposed) 320 
Skin (sun unexposed) Skin (sun unexposed) 320 
†	Sigmoid Intestine Sigmoid Colon, Gastroesophageal Junction 320 

Spleen Spleen 185 
Stomach Stomach 269 

Tibial Artery Tibial Artery 320 
Tibial Nerve Tibial Nerve 320 

Testis Testis 277 
Thyroid Thyroid 320 

†	Transverse Intestine Transverse Colon, Small Intestine 320 
Uterus Uterus 108 
Vagina Vagina 122 

Whole Blood Whole Blood 320 
 1112 

Table 1. GTEx meta-tissues and constituent tissues analyzed. For each meta-tissue we list the 1113 
constituent tissue(s) and total sample size. Daggers denote meta-tissues with more than one 1114 
constituent tissue; for these meta-tissues, each constituent tissue has equal sample size up to 1115 
rounding error (an exception is the transverse intestine meta-tissue, which includes 176 1116 
transverse colon samples and all 144 small intestine samples).  1117 
 1118 
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Figures 1119 
 1120 

 1121 
Figure 1. Overview of TCSC regression. (A) Input data to TCSC includes (1) GWAS summary 1122 
statistics for a disease and (2) gene expression prediction models for each tissue, which are 1123 
used to produce (3) TWAS summary statistics for the disease for each tissue. (B) TCSC computes 1124 
tissue co-regulation scores 𝐿(𝑔, 𝑡; 𝑡′) for each gene-tissue pair (𝑔, 𝑡) with potentially causal 1125 
tissues 𝑡′. (C) TCSC regresses TWAS chi-squares on tissue co-regulation scores to estimate 1126 
tissue-specific contributions to disease. The shadow indicates the standard error of the TCSC 1127 
estimate (joint models only). 1128 
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 1130 
Figure 2. Robustness and power of TCSC regression in simulations. (A) Bias in estimates of 1131 
disease heritability explained by the cis-genetic component of gene expression in tissue 𝑡′ 1132 
(ℎ!"($')
& ) for causal (light and dark purple) and non-causal (light and dark gray) tissues, across 1133 

1,000 simulations per eQTL sample size. Light purple (resp. gray) indicates that 𝐺$'  was set to 1134 
the total number of true cis-heritable genes across tissues, dark purple (resp. gray) indicates 1135 
that 𝐺$'  was set to the number of significantly cis-heritable genes detected in each tissue. The 1136 
dashed line indicates the true value of ℎ!"($')

&  for causal tissues. (B) Percentage of estimates of 1137 
ℎ!"($')
&  for non-causal tissues that were significantly positive at p < 0.05, across 1,000 1138 

simulations per eQTL sample size. The type I error for TCSC ranged from 5.2% to 6.9%. In 1139 
comparison, we observed type I errors from 53%-86% for RTC Coloc, 32%-33% for LDSC-SEG, 1140 
11%-12% for RolyPoly, and 32%-38% for CoCoNet (Supplementary Figure 1, Supplementary 1141 
Table 2). (C) Percentage of estimates of ℎ!"($')

&  for causal tissues that were significantly positive 1142 
at p < 0.05, across 1,000 simulations per eQTL sample size. Error bars denote 95% confidence 1143 
intervals. Numerical results are reported in Supplementary Table 1. 1144 
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 1146 
Figure 3. Robustness and power of cross-trait TCSC in simulations. (A) Bias in estimates of 1147 
genetic covariance explained by the cis-genetic component of gene expression in tissue 𝑡′ 1148 
(𝜔!"($')) for causal (light and dark purple) and non-causal (light and dark gray) tissues, across 1149 
1,000 simulations per eQTL sample size. Light purple (resp. gray) indicates that 𝐺$'  was set to 1150 
the total number of true cis-heritable genes across tissues, dark purple (resp. gray) indicates 1151 
that 𝐺$'  was set to the number of significantly cis-heritable genes detected in each tissue. The 1152 
dashed line indicates the true value of 𝜔!"($') for causal tissues. (B) Percentage of estimates of 1153 
𝜔!"($') for non-causal tissues that were significantly positive at p < 0.05, across 1,000 1154 
simulations per eQTL sample size. (C) Percentage of estimates of 𝜔!"($') for causal tissues that 1155 
were significantly positive at p < 0.05, across 1,000 simulations per eQTL sample size. Error bars 1156 
denote 95% confidence intervals. Numerical results are reported in Supplementary Table 3. 1157 
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 1159 
Figure 4. TCSC estimates tissue-specific contributions to disease and complex trait heritability. 1160 
We report estimates of the proportion of disease heritability explained by the cis-genetic 1161 
component of gene expression in tissue 𝑡' (𝜋$!). We report tissue-trait pairs with FDR of 10% or 1162 
lower, where full boxes denote FDR of 5% or lower and partial boxes denote FDR between 5% 1163 
and 10%. Dashed boxes denote results that are highlighted in the main text. Tissues are 1164 
ordered alphabetically. Daggers denote meta-tissues with more than one constituent tissue. 1165 
Diseases/traits are ordered with respect to causal tissues. Numerical results are reported in 1166 
Supplementary Tables 5 and Supplementary Table 6 (for all traits). WHRadjBMI: waist-hip-ratio 1167 
adjusted for body mass index. HDL: high-density lipoprotein. DBP: diastolic blood pressure. 1168 
BMI: body mass index. FEV1/FVC: forced expiratory volume in one second divided by forced 1169 
vital capacity. Cereb. Cortex Ar.: cerebral cortex surface area. AST: aspartate aminotransferase. 1170 
LDL: low-density lipoprotein. WBC Count: white blood cell count. MDD: major depressive 1171 
disorder.  1172 
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 1174 
Figure 5. Comparison of disease-critical tissues identified by RTC Coloc, LDSC-SEG and TCSC. 1175 
We report -log10FDR values for (A) RTC Coloc, (B) LDSC-SEG, (C) TCSC, across 7 traits with at 1176 
least one significantly associated tissues (at FDR 5%) for each of the three methods and 10 1177 
tissues consisting of the causal tissues identified by TCSC and the most strongly co-regulated 1178 
tagging tissues, ordered consecutively. We report tissue-trait pairs with FDR of 10% or lower, 1179 
where full boxes denote FDR of 5% or lower and partial boxes denote FDR between 5% and 1180 
10%. Blue circles in panels (A) and (B) denote the causal tissue-trait pairs identified by TCSC. 1181 
Numerical results are reported in Supplementary Table 13. 1182 
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 1196 
Figure 6. Cross-trait TCSC estimates tissue-specific contributions to the genetic covariance of 1197 
two diseases/traits. (A) We report estimates of the signed proportion of genetic covariance 1198 
explained by the cis-genetic component of gene expression in tissue 𝑡' (𝜁$!). We report tissue-1199 
trait covariance pairs with FDR of 10% or lower, where full boxes denote FDR of 5% or lower 1200 
and partial boxes denote FDR between 5% and 10%. Dashed boxes denote results that are 1201 
highlighted in the main text. Tissues are ordered alphabetically. Daggers denote meta-tissues 1202 
with more than one constituent tissue. Trait pairs are ordered by positive (+) or negative (-) 1203 
genetic covariance, and further ordered with respect to causal tissues. Underlined traits are 1204 
those for which TCSC identified a causal tissue in Figure 4: for eosinophil count, WBC count, and 1205 
platelet count the causal tissue was whole blood, and for LDL the causal tissue was liver. Double 1206 
asterisks denote trait pairs for which the differences between the tissue-specific contribution to 1207 
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covariance and the tissue-specific contributions to heritability were significant for both 1208 
constituent traits and the tissue-specific contributions to heritability were non-significant for 1209 
both constituent traits. Numerical results are reported in Supplementary Tables 18-19. BMI: 1210 
body mass index. RBC Count: red blood cell count. WBC Count: white blood cell count. LDL: low-1211 
density lipoprotein. Yrs Edu: years of education. WHRadjBMI: waist-hip-ratio adjusted for body 1212 
mass index. Accumbens Vol: brain accumbens volume. Caudate Vol: brain caudate volume. 1213 
MDD: major depressive disorder. Scz: Schizophrenia. T2D: type 2 diabetes. FVC: forced vital 1214 
capacity. RA: rheumatoid arthritis. (B) For BMI and red blood cell count (RBC Count), we report 1215 
estimates of the proportion of trait heritability for each trait and signed proportion of genetic 1216 
covariance explained by the cis-genetic component of gene expression in pancreas. Lines with 1217 
asterisks denote significant differences at 10% FDR between respective estimates, assessed by 1218 
jackknifing the differences. (C) For BMI and red blood cell count (RBC Count), we report 1219 
estimates of the proportion of trait heritability for each trait and proportion of genetic 1220 
covariance explained by the cis-genetic component of gene expression in the brain substantia 1221 
nigra. Lines with double asterisks denote significant differences at 5% FDR between respective 1222 
estimates, assessed by jackknifing the differences. Numerical results are reported in 1223 
Supplementary Table 21. 1224 
  1225 
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