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Abstract 43 

The human leukocyte antigen (HLA) locus is associated with more human complex diseases 44 

than any other locus. In many diseases it explains more heritability than all other known loci 45 

combined. Investigators have now demonstrated the accuracy of in silico HLA imputation 46 

methods. These approaches enable rapid and accurate estimation of HLA alleles in the millions 47 

of individuals that are already genotyped on microarrays. HLA imputation has been used to 48 

define causal variation in autoimmune diseases, such as type I diabetes, and infectious 49 

diseases, such as HIV infection control. However, there are few guidelines on performing HLA 50 

imputation, association testing, and fine-mapping. Here, we present comprehensive statistical 51 

genetics guide to impute HLA alleles from genotype data. We provide detailed protocols, 52 

including standard quality control measures for input genotyping data and describe options to 53 

impute HLA alleles and amino acids including a web-based Michigan Imputation Server. We 54 

updated the HLA imputation reference panel representing global populations (African, East 55 

Asian, European and Latino) available at the Michigan Imputation Server (n = 20,349) and 56 

achived high imputation accuracy (mean dosage correlation r = 0.981). We finally offer best 57 

practice recommendations to conduct association tests in order to define the alleles, amino 58 

acids, and haplotypes affecting human traits. This protocol will be broadly applicable to the 59 

large-scale genotyping data and contribute to defining the role of HLA in human diseases 60 

across global populations. 61 
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Main 62 

Introduction  63 

More than 50 years ago, some of the earliest complex human disease genetic associations 64 

were reported within the major histocompatibility complex (MHC) locus1,2. This locus has since 65 

been mapped to the short arm of chromosome 6. Sequencing of the human genome has 66 

revealed that the MHC locus consists of a cluster of more than 200 genes, including many with 67 

immune functions3. The MHC locus is broadly divided into three subclasses: the class I region 68 

(e.g., HLA-A, HLA-B and HLA-C genes), the class II region (e.g., HLA-DPA1, HLA-DPB1, 69 

HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-DRB2, 70 

HLA-DRB3, HLA-DRB4 and HLA-DRB5 genes), and the class III region, which contains 71 

additional genes implicated in immune and inflammatory responses (e.g., complement genes)4 72 

(Figure 1a). Those HLA class I and II genes encode protein molecules that form complexes 73 

that present antigenic peptides to T cells, thereby influencing thymic selection and T cell 74 

activation4 (Figure 1b). The functional importance of the HLA genes and the highly polymorphic 75 

nature of this locus have made the MHC region confer the largest number of disease 76 

associations of any locus genome-wide (Figure 1c). MHC-disease risk is modulated by several 77 

underlying mechanisms. For example, in rheumatoid arthritis, polymorphisms in the amino acid 78 

sequence of HLA-DRB1 change the capability of presenting autoantigens5 or increase the 79 

autoreactive T cells during thymic selection6. In another example, the HLA-C*06:02 allele is 80 

associated with psoriasis, probably due to increased CD8+ T-cell mediated inflammatory 81 

reactions7. In another example, schizophrenia’s association within MHC locus was explained in 82 
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part by structural variation in C4, which might modulate synaptic elimination during 83 

development8. 84 

The HLA genes within the MHC have been difficult to study because of their highly 85 

polymorphic nature, the region’s complex relationship with natural selection, and its unique 86 

long-range linkage disequilibrium (LD) structure. The highly polymorphic nature of HLA genes 87 

renders traditional probe-based genotyping to be challenging. In addition, the genetic diversity 88 

at HLA genes is highly population-specific, necessitating efforts to accurately genotype HLA 89 

alleles and investigate phenotypic associations in global populations.  90 

These challenges have driven high interest in the genetics community to develop and 91 

deploy statistical techniques for HLA alleles. While the direct typing of HLA alleles continues to 92 

be costly, labor-intensive and unscalable, in silico HLA imputation has recently enabled rapid 93 

and accurate estimation of HLA alleles in individuals already genotyped on microarrays. 94 

However, there are few guidelines for HLA imputation and to estimate and fine-mapping; these 95 

methods are necessary to define HLA effects on human diseases, especially in biobank-scale 96 

data from multiple populations.  97 

In this context, here we provide detailed guidelines for imputing HLA alleles and testing for 98 

an association with human diseases and traits, in large-scale cohorts and global biobanks. We 99 

also provide a step-by-step online tutorial with scripts and available software 100 

(https://github.com/immunogenomics/HLA_analyses_tutorial). Definitions of key terms used 101 

throughout this article can be found in Box 1. 102 

  103 
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Box 1 Key terms and definitions  104 

MHC region 

A genomic region that harbors the major histocompatibility complex 

(MHC). In GRCh37, it corresponds to chr6:28,477,797-33,448,354 

(6p22.1-21.3). 

Linkage 

disequilibrium 

A non-random association or dependence of alleles at different loci in 

a given population, making the frequencies of the alleles deviate from 

the expected when the alleles were independent. 

Imputation 

A procedure of estimating the missing genotypes at loci that are not 

assayed in the target dataset. 

Reference panel 

A panel of densely genotyped haplotypes to be referred to when 

predicting the missing genotypes in the target cohort through 

imputation. 

Haplotype 

A stretch of DNA sequences (including multiple polymorphic loci) 

along one chromosome that tend to be inherited together due to 

linkage disequilibrium. 

Allele 

One of two versions of DNA sequences. An individual inherits two 

alleles (maternal and paternal) for any genomic location. 

HLA allele One of the sequence variations at a given HLA gene. 

Genotype 

An individual’s pattern of DNA sequence at a given location. Two 

alleles from a mother and a father comprise a genotype. 

Fine-mapping 

A procedure to narrow down and define potentially causal genetic 

variation(s) affecting the trait of interest, from all the associated 

genetic variations at a given locus in GWAS by using statistical 

methods. 

Homozygous 

A state where the two alleles at the genetic variation of interest (e.g., 

an HLA gene) are the same. 

Heterozygous 

A state where the two alleles at the genetic variation of interest (e.g., 

an HLA gene) are different. 

Allele divergence 

A proxy for the functional difference in antigen binding between two 

HLA alleles based on the divergence of their amino acid sequence. 

  105 
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 106 

Figure 1. A simplified summary of the location and structure of HLA genes on human 107 

chromosome 6, and their associations with human traits 108 

a. A schematic representation of the human MHC locus, three classes of the region, and genes 109 

within them. The genes in pink are the classical class I HLA genes, whereas those in blue are 110 

the classical class II HLA genes. b. Presentation of antigenic peptide by an antigen-presenting 111 

cell to a T cell through interaction between MHC class II molecule and T cell receptor (TCR). 112 

The inset describes protein structure of MHC class II, HLA-DRA and DRB1 adapted from PDB 113 

(3L6F). c. The number of traits associated with any variants within 2Mb genomic window with P 114 

< 5×10-8 in UK Biobank or meta-analysis of UK Biobank and FinnGen among 198 diseases and 115 

biomarkers9.   116 
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Summary of the protocol 117 

The protocol is summarized in Figure 2a. The protocol is comprised of two sections: HLA 118 

imputation (Figure 2a-1) and HLA association testing (Figure 2a-2). HLA imputation is a 119 

method to infer HLA alleles, amino acids and SNPs from microarray-based genotype within the 120 

MHC region. We first introduce the concept of the HLA reference panel (1), which is used as a 121 

dictionary to search for similar haplotypes (keyword) to infer unknown HLA types (definition). 122 

We highlight specifically our multi-ancestry HLA reference panel, which we recently constructed 123 

to enable accurate HLA inference in diverse global populations10. We next provide specific 124 

instructions to perform QC of the input genotype data (2), per-individual and per-variant (3). The 125 

quality of genotype data is critical in achieving accurate imputation, and a special caution 126 

should be taken given the extremely complex and polymorphic nature of genetic variants within 127 

MHC. We then introduce options to impute HLA (4), either (i) on a user’s local server or (ii) or by 128 

using the Michigan Imputation Server (MIS)11, which is a publicly available, web-based 129 

imputation platform we jointly support with Michigan University. We finally describe the quality 130 

metrics and post QC of the imputed variants (5). 131 

We next describe statistical methods to perform comprehensive association tests between 132 

HLA genotype and human traits (Figure 2a-2). Since HLA associations are often explained by 133 

amino acid sequences in the peptide binding groove of HLA molecules12, we describe 134 

strategies to fine-map associations with the aim of pinpointing causal variation. We start from a 135 

simple single-marker test which is similar to that commonly used in GWAS, and then elaborate 136 

on the HLA-specific fine-mapping methods (e.g., an omnibus test (2) and a conditional 137 
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haplotype test (3)). We also introduce statistical tests to define non-additive, interactive, and 138 

multi-trait contribution of HLA alleles. 139 

  140 
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 141 

Figure 2. The overview of HLA imputation, association, and fine-mapping, including 142 

construction of HLA reference panel. 143 

a. Overview of this protocol. (a-1) A toy example of HLA imputation, describing (1) HLA 144 

imputation reference panel, (2) input genotype in the MHC region from the target cohort without 145 

HLA types, (3) quality control of the target genotype, (4) genotype phasing and imputation to 146 

predict the untyped HLA alleles in the target cohort, and (5) output of the predicted HLA alleles. 147 

(a-2) Statistical methods to investigate and fine-map association of HLA alleles, amino acids 148 

and their haplotypes with a trait of interest. b. The naming system (nomenclature) of HLA alleles, 149 

consisting of four fields with each field corresponding to the types and consequences of 150 

nucleotide variations. c. (top) The amino acid sequences defining each of three example 151 

HLA-DRB1 alleles. The amino acids colored in red indicate the positions where they have 152 

variations among the alleles. The numbers (-25 and -24) at the bottom indicate the relative 153 

position of those amino acids within a coding region of HLA-DRB1. (bottom) A procedure to 154 
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code each of the HLA alleles and amino acid polymorphisms as binary markers: 1 if that marker 155 

is present within a haplotype and 0 otherwise. Each of the residues are coded separately for a 156 

given amino acid position in the corresponding HLA protein. 157 

 158 

  159 
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Introduction to HLA nomenclature 160 

Sequence variation within HLA genes is organized by the International Immunogenetics 161 

database (IMGT)13, which has documented and named 33,490 unique HLA alleles (URL: 162 

https://www.ebi.ac.uk/ipd/imgt/hla/about/statistics/). Within each of the HLA alleles, there are 163 

nucleotide variants which sometimes cause amino acid changes (i.e., non-synonymous 164 

nucleotide substitutions) and sometimes not (i.e., synonymous, intronic and intergenic 165 

nucleotide substitutions). A detailed nomenclature system at IMGT has been developed to 166 

organize those polymorphisms in HLA genes into four fields (Figure 2b)14. In this nomenclature, 167 

field 1 (i.e., the first two digits, e.g., HLA-DRB1*01) describes the serological type, which was 168 

historically defined based on similar seroreactivity to immunological reagents. Field 2 (i.e., the 169 

next set of digits, e.g., HLA-DRB1*01:01) corresponds to the unique amino acid sequence of 170 

the gene; all the non-synonymous changes are reflected in this set. Field 3 (e.g., 171 

HLA-DRB1*01:01:01) reflects synonymous nucleotide substitutions within the coding 172 

sequences, and field 4 (e.g., HLA-DRB1*01:01:01:01) reflects polymorphisms within the 173 

intronic or non-coding regions. Thus, whereas nucleotide variants define HLA alleles at up to 174 

four-field resolution, most disease associations are captured by two-field HLA resolution since 175 

amino acid sequence captures most of the structural differences between the alleles.  176 

The four-field naming system is the current standard and most widely used, but it is worth 177 

expanding upon the alternative nomenclatures since they are sometimes seen in practice. 178 

Before the current four-field naming system was introduced, the IMGT had used the 179 

nomenclature without a field separator (':'), where each field must have two digits. Therefore, 180 
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one-field alleles had been called two-digit alleles, and two-field alleles had been called four-digit 181 

alleles. However, as the number of two-field alleles belonging to a given one-field allele began 182 

to exceed 100 (e.g., HLA-A*02101 and HLA-B*15101), the name “four-digit” designation 183 

became inappropriate. Thus, the IMGT updated the previous nomenclature system by 184 

introducing the field separator (e.g., HLA-A*02:101 and HLA-B*15:101) and four-field naming 185 

system. 186 

In this same update, the IMGT introduced two additional nomenclature schemes to 187 

facilitate practical reporting of HLA typing: G group and P group. Current classical HLA typing 188 

technologies sometimes cannot resolve an HLA allele at four-field resolution and define a group 189 

of similar alleles based on the variations within peptide binding domains (exon 2 and 3 for class 190 

I HLA genes and exon 2 for class II HLA genes). The G group nomenclature represents HLA 191 

alleles that share the same nucleotide sequence in the peptide binding domains. For instance, 192 

HLA-A*01:02:01G includes HLA-A*01:02:01:01, HLA-A*01:02:01:02, HLA-A*01:02:01:03, and 193 

HLA-A*01:412, but not HLA-A*01:02:02. The P group nomenclature represents HLA alleles that 194 

share the same protein sequence in the peptide binding domains. For example, HLA-A*01:02P 195 

includes HLA-A*01:02:01:01, HLA-A*01:02:01:02, HLA-A*01:02:01:03, HLA-A*01:02:02, and 196 

HLA-A*01:412. 197 

 198 

Introduction to HLA imputation 199 

Genotype imputation is the term used to describe estimation of missing genotypes that are not 200 

assayed in the target dataset. Most imputation methods use data from densely genotyped 201 
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samples as a reference dataset in which haplotypes have been inferred15. They typically use 202 

statistical approaches such as hidden Markov models (HMM) to fill in missing genotypes in a 203 

dataset of interest with incomplete genotype data. Here the genotype data reflects the observed 204 

states, while the template haplotypes are represented as the unknown hidden states. Most 205 

imputation algorithms produce a probabilistic prediction of each imputed genotype. These 206 

probabilities can be used to either (1) calculate a probabilistic dosage, which is a simple sum of 207 

those expected probabilistic allele count, or (2) a best-guess genotype, which is a combination 208 

of alleles which have the largest probability. These values can then be used in the downstream 209 

analyses. Dosages inferred from imputed results are a continuous value between 0 and 2, 210 

whereas guess genotypes are discrete values of 0, 1, or 2 alleles. Genotype imputation can 211 

boost the power of the association studies, fine-map the signal, and enable meta-analysis of 212 

multiple cohorts15.  213 

After imputation, it is essential to understand the accuracy of imputation. The quality of 214 

predictions can be technically measured by masking the genotype, imputing them, and deriving 215 

the correlation between the true (masked) genotype and the predicted genotype. We favor 216 

using this correlation as a metric, as opposed to accuracy (percent of concordance between 217 

true genotype and imputed genotype calls), since accuracy can be upwardly biased for rare 218 

alleles. In practice, true genotype data is often missing. In these instances, we can also 219 

estimate the quality of imputation by the ratio of the empirically observed variance of the allele 220 

dosage to the expected binomial variance at Hardy-Weinberg equilibrium (Rsq). 221 
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HLA imputation is natural extension of the genotype imputation. The HLA imputation infers 222 

HLA alleles, amino acid polymorphisms, and intragenic SNPs within HLA (hidden state). Due to 223 

the excessive variation of these HLA genes, these variants generally cannot be accurately 224 

assayed with popular probe-based genotyping arrays. HLA alleles are inferred indirectly by 225 

using surrounding genotyped SNP variants in the MHC region (“scaffold” variants; Figure 2c). 226 

Reference haplotypes are constructed from samples with both genotyped SNP variants and 227 

HLA alleles genotyped by either classical sequence-based typing (SBT)16 or inference from 228 

untargeted sequencing data, such as whole genome sequencing (WGS) data17,18. The HLA 229 

amino acid sequences and intragenic SNPs within HLA genes can also be included in the 230 

reference haplotypes to enable their imputation. There are many widely used statistical 231 

software tools to perform the HLA imputation, such as SNP2HLA19, HIBAG20, and HLA*IMP21, 232 

HLA-IMPUTER22, and GRIMM23. The SNP2HLA and HLA*IMP methods use the same HMM 233 

algorithm used in genome-wide imputation, whereas the HIBAG method uses a 234 

machine-learning technique: a bagging method24. Imputation performance is often related to 235 

the size, quality, and suitability of the reference panel rather than the statistical software used. 236 

The output of the HLA imputation is a posterior probability as well as an effective dosage 237 

(ranging from 0 to 2) for each HLA allele in a given sample. Subsequent association tests 238 

usually account for the uncertainty of the imputation by using the estimated dosage as an 239 

explanatory variable. 240 

 241 

HLA imputation reference panel 242 
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There have been many efforts to construct haplotype reference panels in the MHC region to 243 

enable HLA imputation. Since the haplotype structure within the MHC region differs significantly 244 

among populations10, it is important that the target dataset is well represented by the reference 245 

haplotype panel. The current availability of published HLA reference panels is summarized in 246 

Table 1.  247 
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Imputation 
software Name Ancestry/population Nsamples Availability 

SNP2HLA19 T1DGC European 5,225 
Upon 
registration 

SNP2HLA Pan Asian25 
Han Chinese, Southeast Asian Malay, Tamil Indian 
ancestries, and Japanese 530 

Publicly 
available 

SNP2HLA Hirata et al.26 Japanese 1,120 Upon request 

SNP2HLA Zhou et al.27 Han Chinese 20,635 
Publicly 
available 

SNP2HLA Kim et al.28 Korean 413 
Publicly 
available 

SNP2HLA 1KG Global populations in 1000 Genomes Project 2,504 
Publicly 
available 

HLA-TAPAS1

0 1KG Global populations in 1000 Genomes Project 2,504 
Publicly 
available 

MIS 
(Minimac) 

Multi-ancestr
y Multi-ancestry 20,349 

Limited public 
accessibility 
on web 

HIBAG20 HLARES Multi-ancestry 4,000 
Publicly 
available 

HIBAG IKMB Multi-ancestry 1,360 
Publicly 
available 

HIBAG 
Degenhardt 
et al. Multi-ancestry ~1,300 Upon request 

HLA*IMP21 

1958 Birth 
Cohort + 
HapMapCEU European ~2,500 

Limited public 
accessibility 
on web 

Table 1. A list of available HLA imputation reference panels 248 

A list of currently available HLA imputation reference panels, the sample ancestry, the number 249 

of samples, and whether they are publicly available or not. Limited public accessibility means 250 

that while the raw reference panel (individual-level genetic data) is not accessible, users can 251 

use it for imputation via web-based imputation service. MIS: Michigan Imputation Server. 252 

 253 

 254 

  255 
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It is also possible to construct a custom HLA reference panel. SNP2HLA and 256 

HLA-TAPAS10,19 are tools to construct such custom reference panels. Starting with a SNP 257 

genotyped cohort (“scaffold variants”), we can either (1) obtain the gold standard SBT of HLA 258 

alleles (such as sequence-specific oligonucleotide probe hybridization (SSOP)16) if DNA is 259 

available or (2) infer HLA alleles from WGS (e.g., HLA*PRG and HLA*LA)17,18,29. Reference 260 

panels can include alleles of classical HLA genes (ngene = 8)10, which are most polymorphic and 261 

disease-associated, or both classical and non-classical HLA genes (ngene = 33)26. In the 262 

SNP2HLA algorithm, HLA alleles are converted to biallelic markers (e.g., 1 indicates the 263 

presence of the allele and 0 indicates the absence of the allele). Classical SBT, such as SSOP, 264 

is the most accurate approach to HLA genotyping. Incorporation of SBT genotypes into 265 

reference panels results in highly accurate imputation; however, since SBT is costly and 266 

labor-intensive, it cannot be easily used to build large reference panels. Graph-based inference 267 

of HLA alleles from WGS is a potential alternative method that can be easily applied to large 268 

sequencing datasets that are increasingly available17,18,29. However, an important caveat is that 269 

the accuracy of HLA typing by those graph-based methods can be variable. For example, 270 

imputation performance is affected by (i) quality of the sequencing data, (ii) read depth and 271 

length, (iii) representation of the population in reference databases such as IMGT, and (iv) the 272 

degree of sequence variation within the targeted HLA gene. For studying under-represented 273 

populations or highly polymorphic genes, gold standard SSOP might still be necessary to 274 

construct a suitably accurate reference panel. 275 
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To enable imputation of amino acid polymorphisms and intragenic HLA SNPs, we can 276 

encode all these variants as binary markers based on the refence amino acid and nucleotide 277 

sequences of each observed HLA allele from the IMGT HLA Database 278 

(https://www.ebi.ac.uk/ipd/imgt/hla/) (Figure 2d). The scaffold genetic variants within the MHC 279 

region are usually obtained by either genotyping with a SNP microarray or WGS. Stringent SNP 280 

QC is essential for accurate phasing, and ultimately accurate imputation. In constructing and 281 

updating a multi-ancestry HLA reference panel, we optimized this QC process to maximize 282 

imputation accuracy. Specifically, we started with QCing each of the global cohorts separately, 283 

with genotype call rate (> 95%) and sample call rate (>90%). We then retained all the variants 284 

that were present in the 1000 Genomes Project and excluded any variants that were not 285 

included in commonly used genotyping arrays (Illumina Multi-Ethnic Genotyping Array, Global 286 

Screening Array, OmniExpressExome, and Human Core Exome), since these variants that are 287 

not included in the target genotype data are more likely to result in phasing switch errors without 288 

improving imputation accuracy. When combining all the cohorts to construct the multi-ancestry 289 

panel, we cross-imputed all the variants together to avoid excluding population-specific variants 290 

that are polymorphic in a specific cohort but monomorphic and thus not called in the other 291 

cohorts (Supplementary Figure 1). The final reference panel includes the HLA alleles, amino 292 

acids, intragenic HLA SNPs, and the “scaffold” variants (i.e., SNP variants outside of HLA gene 293 

but within the extended MHC region), which are then phased statistically or by using trios. 294 

Imputed HLA alleles and variants are often used for subsequent association testing and 295 

meta-analyses to fine-map disease risk. Such studies potentially include data from multiple 296 
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cohorts, datasets, or populations. To avoid spurious associations due to batch effects and 297 

population stratification, it is essential to perform HLA imputation on all datasets using the same 298 

reference panel, ideally with all case and control samples genotyped together. Given that such 299 

case-control cohorts may originate from multiple populations to increase the fine-mapping 300 

resolution, we previously constructed an HLA reference panel covering multiple global 301 

populations10.  302 

With the publication of this protocol, we present an updated version of this multi-ancestry 303 

panel (version 2). Briefly, we added samples from European (n = 2,233) and Japanese (n = 304 

723) ancestry for a total of 20,349 individuals. This panel represents admixed African, East 305 

Asian, European and Latino populations. We also updated HLA allele calls and a set of scaffold 306 

variants. We plan to maintain and update the panel further to increase representation of globally 307 

diverse populations, improve the HLA allele calls, and refine selection of the scaffold variants to 308 

achieve the most accurate imputation.  309 

 310 

Recommendations for collecting genotype and phenotype information 311 

When designing a study to investigate the effect of HLA variation on human traits, it is important 312 

to be strategic when collecting genotype and phenotype data. For genotype data collection, one 313 

should ensure that the genotyping array used for the target cohort has a high coverage in the 314 

MHC region in order to adequately tag, through LD, HLA alleles, which contributes to accurate 315 

imputation. While most currently used genotyping arrays include a sufficient number of SNPs to 316 

tag HLA alleles for accurate imputation, some arrays have limited SNP coverage of the MHC 317 
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region (Supplementary Table 1)30. We and others have shown that lower MHC coverage 318 

results in inaccurate imputation19,31. Furthermore, all study participants should ideally be 319 

genotyped together with the same genotyping array, to avoid introducing any structure that 320 

could cause a bias in imputation and the subsequent association testing and possibly 321 

fine-mapping.  322 

Careful phenotype curation is very important when fine-mapping disease-associated 323 

variants. Discovery of HLA association signals can be enhanced by the addition of more 324 

samples, even at the risk of misclassified samples. However, fine-mapping can be affected by 325 

including misclassified samples. For example, studies of autoimmune disease including 326 

individuals with different subgroups of patients can obscure efforts to localize disease alleles. 327 

This has for instance been observed in rheumatoid arthritis, where patients with positive 328 

antibody status are phenotypically and genetically different from those with negative antibody 329 

status32,33. Recently, many efforts have been made to curate the phenotypes in large-scale 330 

biobanks34 using self-reported disease status or billing code (e.g., ICD-10)35. While the total 331 

number of samples with these forms of phenotyping is large in these biobanks and may enable 332 

discovery, imprecise phenotype labeling may confuse HLA fine-mapping. In contrast, 333 

physician-curated cohorts may be important for fine-mapping efforts. 334 

In addition to disease phenotypes, one must exercise caution when measuring HLA-related 335 

molecular phenotypes, such as HLA gene and protein expression. It is well established that 336 

HLA gene and protein expression is affected by the cis-regulatory genetic variants (i.e., 337 

expression quantitative trait loci (eQTL) and protein expression quantitative trait loci 338 
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(pQTL))36–38. When conducting eQTL studies, measuring HLA expression in RNA-seq is 339 

particularly challenging due to the high degree of genetic polymorphism among individuals. 340 

Standard expression quantification pipelines rely on a single human reference genome to align 341 

sequencing reads. The number of reads mapping to each HLA gene might be biased for two 342 

reasons: (1) the reads may fail to map to the reference due to the high degree of sequence 343 

variation (i.e., a large number of mismatches) and (2) the reads may not uniquely map to a 344 

single gene in the reference due to the similarity among nearby HLA genes (i.e., 345 

multi-mapping)38. To address this, more accurate gene expression estimates can be obtained 346 

by using an HLA-personalized reference38; instead of using a standard single human reference 347 

genome, we can supply customized HLA sequences for each target individual for each HLA 348 

gene (either based on classical HLA typing or HLA imputation) to minimize the degree of 349 

variation between the RNA-seq reads and the reference and hence reduce the possibility of 350 

mapping failures and multi-mapping. Similarly, caution should be taken for HLA pQTL studies. 351 

HLA protein expression is often measured by antibody-based methods (e.g., antibody-derived 352 

tags) at single-cell resolution. However, these antibodies may have differing binding affinities to 353 

the protein products of different HLA alleles. We should take caution when conducting pQTL 354 

studies, since this differing affinity might cause a bias towards specific HLA alleles when 355 

measuring the abundance of HLA proteins across individuals. 356 

 357 

Quality control of the target genotype data 358 
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Data quality control (QC) of genotype data prior to HLA imputation is extremely important. We 359 

next outline the basic QC measures commonly used in GWAS39, as well as specific instructions 360 

to handle genetic variants within the MHC region. These QC measures are typically performed 361 

once for each genotyping batch, followed by data integration and the final QC for the combined 362 

dataset (Figure 3). 363 

 364 

Per-individual QC 365 

We follow established guidelines34,39,40 to perform standard per-individual QC in GWAS. 366 

Typically, we remove (i) individuals with high missingness (e.g., > 0.02), (ii) individuals with 367 

outlier high heterozygosity on suspicion of sample contamination, (iii) individuals with 368 

discordant sex information between the meta data and genotype, and (iv) individuals suspected 369 

to be duplicate samples based on genotype relatedness. We note that the threshold for each 370 

QC measure could be data-dependent, and thus we recommend reviewing the distributions of 371 

those metrics for each of the datasets. 372 

 373 

Per-variant QC 374 

It is important to select high-quality variants to achieve accurate imputation. We will describe 375 

the variant QC that is generally recommended for GWAS as well as specific considerations for 376 

the MHC region. As part of standard GWAS QC, we recommend ensuring that the target 377 

genotype data has genomic positions based on the same genome build as the reference panel. 378 

LiftOver software41 can be used to lift the genomic position over to the desired genome build. 379 
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Next, genomic variants are typically aligned to the forward strand to be consistent with the 380 

reference panel. We also identify duplicated variants within the dataset based on genomic 381 

position and alleles, and de-duplicate them by removing ones with higher missingness. We then 382 

remove (i) variants with high missingness (e.g., > 0.01), (ii) variants demonstrating a significant 383 

deviation from the Hardy-Weinberg equilibrium (HWE), and (iii) variants with very low minor 384 

allele frequency (MAF). Specifically, we remove variants with very low MAF (e.g., < 0.01 or 385 

0.005) or small minor allele count (MAC; e.g., < 5), assuming low accuracy in genotype calling 386 

from clustering. The sample size and the estimated ancestry should be accounted for when 387 

selecting the threshold in order to retain informative population-specific markers. We usually 388 

only keep biallelic variants and remove multi-allelic variants for simplicity in the imputation. 389 

Specific caution should also be taken for per-variant QC in the MHC region, due to (i) highly 390 

variable allele frequency (AF) of variants within MHC across populations and (ii) expected HWE 391 

deviation in the MHC variants due to natural selection. For example, we usually align target 392 

genotype alleles to the forward strand. For non-palindromic SNPs (i.e., SNPs without A/T or 393 

G/C allele combinations), it is easy to do so by looking up the alleles with the same position in 394 

the reference human genome sequence on forward strand. If the alleles between the target and 395 

the reference genome are different (e.g., A/C in the reference but T/G in the target), we flip the 396 

alleles in the target dataset (swap alleles from T to A and from G to C in the target). On the 397 

other hand, in handling palindromic SNPs (i.e., SNPs with A/T or G/C alleles), we usually 398 

compare population-derived AF and the AF in the target dataset to eliminate allele ambiguity. If 399 

the AFs between them are largely different (e.g., A: 20% and T: 80% in the population reference 400 
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but A: 78% and T: 22% in the target), we can flip the alleles to be consistent with the 401 

population-derived AF (swap alleles from A to T and from T to A in the target). However, this 402 

strategy might be ineffective within the MHC since reference AF for those SNPs might be 403 

different from the target samples when the study population is different, when there are large 404 

AF differences between cases and controls in case-control studies, or when the study sample 405 

size is too small to estimate AF accurately. Therefore, when the strand information of those 406 

palindromic SNPs is ambiguous in the target genotyping array or the genotyped data, it may be 407 

preferable to exclude all the palindromic SNPs. Second, we may compare AF of the variants 408 

after QC in the target data with AF in the population-frequency database (e.g., 1000 Genomes 409 

Project42 and gnomAD43) or AF in the reference panel as a sanity check. When the AFs are very 410 

different between the two, those variants could be subject to genotyping error and should 411 

probably be removed. However, when the population does not exactly match between the 412 

target and the database or the reference, this strategy might be ineffective within the MHC. 413 

Thus, we could consider using a liberal threshold when removing variants based on the AF 414 

differences. Third, the extreme deviation from HWE is usually indicative of a genotyping or 415 

genotype-calling error that results in poor clustering44–46 and is used as a metric to exclude poor 416 

quality variants. However, the deviation from HWE is to some extent expected in the MHC 417 

region due to natural selection47 or due to the difference in allele frequency between cases and 418 

controls. The expected deviation will be greater when we study a cohort from multiple 419 

populations or of admixed ancestry, or when the effect size of HLA on the disease is large. 420 

Therefore, for the purpose of per-variant QC, we could consider (1) calculating HWE P values 421 
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only within control individuals (as is generally recommended in GWAS), (2) calculating HWE P 422 

values within individuals from a representative single-ancestry, or (3) using liberal threshold 423 

such as HWE P < 1x10-10 when removing the variants suspected of poor clustering while 424 

retaining the important markers for HLA imputation. When we are unsure about the threshold, 425 

an appropriate value can be identified by visually inspecting the genotype cluster plots. 426 

 427 

Tools for genotype phasing and HLA imputation 428 

Once we QC the target genotype data and prepare the optimal HLA reference panel, we start 429 

HLA imputation for the target data using existing tools. Table 2 summarizes the main software 430 

programs for HLA imputation and the available HLA reference panels. Of note, some imputation 431 

programs take as input the genotype files directly after the QC as described above, while others 432 

require users to pre-phase the genotypes to obtain haplotypes11,21 before imputation (Figure 3).  433 

 434 

  435 
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Imputation 

software Pre-phasing 

Input file 

format Local 

 

Output 

Amino acid 

imputation 

SNP2HLA19 Unnecessary plink Yes VCF Yes 

SNP2HLA+Minimac Necessary phased VCF Yes VCF Yes 

MIS (Minimac) 

Recommended 

when N is small VCF No VCF Yes 

HIBAG20 Unnecessary plink Yes 

R 

object No 

HLA*IMP21 Necessary 

phased 

Oxford 

haps/sample No CSV No 

Table 2. Representative software programs for HLA imputation and their requirements. 436 

A list of HLA imputation software programs and their specifications and details about the input 437 

and output. MIS: Michigan Imputation Server. 438 

 439 

 440 

  441 
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Since our group has developed one of the most widely-used algorithms, SNP2HLA, and its 442 

extensions10,48, we will focus on the HLA imputation by using the SNP2HLA algorithm along 443 

with cloud based implementation at the MIS (URL: 444 

https://imputationserver.sph.umich.edu/index.html).    445 

 446 

  447 
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 448 

Figure 3. A flow chart of suggested analytical steps for genotype QC and HLA imputation 449 

A best-practice guideline to impute HLA alleles by using SNP2HLA algorithm, depending on the 450 

characteristics of the target genotype data.  451 

 452 

  453 
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SNP2HLA 454 

The SNP2HLA19 program can phase and impute HLA alleles, amino acids and intragenic SNPs 455 

with HMM implemented in BEAGLE49 by taking the QCed target genotype file in the PLINK 456 

format as an input. The input file is internally processed to extract variants within the MHC (29 457 

Mb to 34 Mb), and then to correct or remove strand errors when possible based on genotype 458 

and AF of palindromic SNPs. In addition to the original bash scripts (URL: 459 

http://software.broadinstitute.org/mpg/snp2hla/), there are several extensions to the SNP2HLA 460 

algorithm such as HLA-TAPAS10 and CookHLA48. We also provide a step-by-step explanation 461 

of the SNP2HLA implementation, along with a script that allows users to specify all the QC 462 

thresholds as option parameters to handle various target cohorts (e.g., the target populations, 463 

the number of samples, etc.) in our tutorial website 464 

(https://github.com/immunogenomics/HLA_analyses_tutorial). 465 

We note that the original implementation using BEAGLE does not scale to a large number of 466 

samples in the target dataset, especially N > 10,000. To address this, we also provide a pipeline 467 

using the other representative imputation software, Minimac11, which can scale to hundreds of 468 

thousands to millions of individuals 469 

(https://github.com/immunogenomics/HLA_analyses_tutorial). To use Minimac for imputation, 470 

we first pre-phase the genotype by using methods such as SHAPEIT50 or EAGLE51. EAGLE 471 

has an advantage of accurate and fast phasing when the number of samples is large (e.g., N > 472 

10,000). The pre-phased output file must be converted into the VCF format, and then used as 473 

an input to the Minimac software.  474 
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 475 

Michigan Imputation Server  476 

While HLA imputation using the SNP2HLA algorithm can be conducted locally using publicly 477 

available HLA reference panels, not all the HLA reference panels are available due to data 478 

sharing and privacy restrictions. Our latest multi-ancestry HLA reference panel is one such 479 

restricted-access panel10. To enable widespread access, we implemented HLA imputation on 480 

the Michigan Imputation Server (MIS; https://imputationserver.sph.umich.edu/index.html), 481 

which is a cloud-based imputation server with a user-friendly interface (Supplementary Figure 482 

2). We host the multi-ancestry HLA reference panel at the MIS and implement the HLA 483 

imputation using Minimac as described above. In brief, the user first creates an account online, 484 

and securely uploads either a phased or unphased VCF-format genotype file. If the uploaded 485 

genotypes are unphased, the uploaded genotype file will be phased within the MIS using the 486 

EAGLE algorithm. As noted above, we recommend to pre-phase the genotype (with the 487 

reference haplotype when possible) using SHAPEIT or other software when the sample size is 488 

small (e.g., N < 5,000) to achieve accurate phasing before imputation. The MIS automatically 489 

performs basic QC of the input VCF file for the strand orientation and alleles in accordance with 490 

the reference. If the input passes the QC steps, the MIS seamlessly performs the HLA 491 

imputation. The user will be notified with a download link for the imputed VCF file encrypted with 492 

a one-time password via an email once the imputation is completed. The MIS has been used to 493 

impute more than 6 million genomes since we started the web-based HLA imputation service in 494 

2021. We benchmarked the performance of HLA imputation on the MIS using individuals with 495 
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both SNPs and (masked) gold-standard HLA alleles from the 1000 Genomes Project. We 496 

confirmed that the imputation accuracy measured by dosage correlation with true HLA alleles 497 

was very high across populations (mean dosage correlation r = 0.981 for two-field alleles with 498 

MAF > 0.05; Figure 4).  499 

 500 

  501 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.24.504550doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.24.504550
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sakaue et al. 
 

 32

 502 

Figure 4. HLA Imputation quality in Michigan Imputation Server. 503 

a-e. Dosage correlation r (y-axis) between the Michigan Imputation Server imputed dosage and 504 

true genotypes of all two-field alleles in 1KG samples as a function of allele frequency (x-axis), 505 

colored by HLA gene, for all 1KG individuals (a) as well as per-ancestry (b-e). f. The accuracy 506 

(concordance) of the imputed dosage of all two-field alleles in1KG samples in Michigan 507 

Imputation Server and the true genotype of those per HLA gene and per ancestry. The 508 

accuracy metric was calculated as previously described19. 509 

 510 

  511 
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Post-imputation QC 512 

The output from the HLA imputation software is accompanied by a quality metric conveying the 513 

confidence or estimated accuracy of imputation per allele. A thorough review of these 514 

imputation metrics and their correspondence to imputation accuracy is described in Marchini 515 

and Howie15. We typically QC the imputed HLA alleles, amino acids, and intragenic SNPs 516 

based on imputation metrics before association testing. SNP2HLA, Minimac, and MIS all 517 

include Rsq as a quality metric. The appropriate Rsq threshold for QC may depend on the study 518 

design; for example, we commonly use Rsq > 0.7 in single cohort studies and Rsq > 0.5 in 519 

multi-cohort meta-analyses. By removing imputed alleles that are below this Rsq threshold, 520 

some individuals might end up having an HLA gene for which the total number of two-field 521 

alleles does not sum up to exactly 2. Those individuals might bias the fine-mapping of 522 

disease-causing alleles, which we will explain in the subsequent sections. Thus, we 523 

recommend removing any individuals that do not have two two-field alleles for a given gene 524 

when conducting conditional haplotype tests using two-field alleles. 525 

We recommend calculating true imputation accuracy from classical HLA typing if it is 526 

available for a subset of study individuals. While the estimated imputation accuracy generally 527 

corelates well with the true accuracy, having the ability to internally benchmark with classical 528 

typing for a subset of the cohort is useful for evaluating the true imputation performance, 529 

especially if the reference panel imperfectly represents the genetic ancestry of the imputed 530 

cohort. 531 

 532 
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HLA association and fine-mapping 533 

Single-marker tests 534 

Single-marker genetic association tests are used to investigate whether a specific HLA allele, 535 

amino acid or SNP is statistically associated with a risk of a disease or a trait of interest, such as 536 

risk for a given disease. Similar to the approach used in GWAS, we perform a logistic 537 

regression (for case-control traits) or a linear regression (for quantitative traits) for the imputed 538 

binary makers that indicate the presence (coded as T in the imputed VCF file) or absence 539 

(coded as A in the imputed VCF file) of the selected HLA allele, an amino acid, or an intragenic 540 

SNP. For the markers, we typically use the imputed probabilistic dosage genotypes to account 541 

for any imputation uncertainty. We include study-specific covariates that could independently 542 

explain the trait of interest, such as sex, age, and genotype batches, as well as genotype 543 

principal components (PCs) to account for population stratification and an indicator variable of 544 

cohorts when combining multiple cohorts. 545 

The logistic regression can be formulated as: 546 

���������� � 	� 
 	���,� 
 � 	���,�  
 � 	����,�
��

 

where ���������� is the logged odds ratio for case-control status in individual �, � indicates 547 

the specific allele being tested, and ��,� is the imputed dosage of allele � in individual �. The 548 

allele � could be either HLA alleles, amino acid polymorphisms or SNPs. The 	� parameter 549 

represents the additive effect per allele. For all covariates �, ��,� and 	� are the covariate �‘s 550 

value in individual � and the effect size for the covariate �, respectively. Similarly, ���,� and 	� 551 
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are the first �th genotype PC value in individual � and the effect size for the first �th genotype 552 

PC, respectively, to control for genetic ancestry. The 	� is the logistic regression intercept. 553 

Quantitative traits that follow continuous distributions (e.g., antibody levels, blood cell counts 554 

etc.) can be analyzed by using linear regression similarly: 555 

� � 	� 
 	���,� 
 � 	���,�  
 � 	����,�
��

 

where �  is a quantitative trait of interest, and normalized by Z score or inverse-normal 556 

transformation when necessary. 557 

These association tests can be conducted using conventional GWAS software, such as 558 

PLINK52, SAIGE53, BOLT54, etc. by directly using the output VCF files from either the SNP2HLA 559 

or the MIS. We use the dosage values designated as “DS” in the imputed VCF files to conduct 560 

dosage-based association tests. We provide example command-line scripts to perform single 561 

marker tests by using PLINK2 software at our website. 562 

To interpret the results from such an association analysis, we ensure that the “effect allele” 563 

(i.e., the allele to which the effect estimate refers) is the presence (coded as P or T in 564 

SNP2HLA) of the allele. Also, we note that the association of rare alleles might be spurious due 565 

to both the limited accuracy in imputation and the noise in the estimate in the regression. Thus, 566 

we might QC the association statistics by MAF to exclude rare alleles (e.g., MAF < 1%). The 567 

odds ratio (OR) calculated from the beta (��) is the estimated risk explained by having one copy 568 

of the HLA allele of interest, and the P value indicates its significance. Given the strength of LD 569 

in the MHC region, trait associations to multiple HLA alleles, amino acid polymorphisms or 570 
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intragenic SNPs may yield significant results. Further analysis is then required to identify which 571 

allele(s) most significantly explains the disease risk within the HLA region. 572 

 573 

Omnibus tests for fine-mapping amino acid position 574 

To further narrow down the causal position within amino acid sequences within that HLA gene, 575 

we perform an omnibus test. This analysis is particularly useful when we seek to define 576 

mechanisms for the HLA association with the disease, for example by changing the amino-acid 577 

compositions at the peptide binding groove of the HLA molecule. In the omnibus test, we 578 

estimate the total effect on our trait of interest of all amino acid content variation at a given 579 

amino acid position, rather than the separate effects of individual amino acids that appear at 580 

that position, as we did in the single-marker test. For an amino acid position which has � 581 

possible amino acid residues, we assess the significance of the improvement in fit for the full 582 

model which includes � � 1 amino acid dosages as explanatory variables when compared to 583 

a reduced model without including those amino acid dosages. We usually select one amino 584 

acid residue that is most common in the studied cohort as the reference allele, and use all the 585 

other amino acid residues (� � 1) as the explanatory variables. We assess the improvement in 586 

model fit by the delta deviance (sum of squares) using an F-test with � � 1 degrees of 587 

freedom and derive the statistical significance of the improvement.  588 

Full model: ���������� � 	� 
 ∑ 	���,�  
 ∑ 	����,�� 
 ∑ 	����,�
	
�
���  �  589 

Reduced model: ���������� � 	� 
 ∑ 	���,�  
 ∑ 	����,��  �  590 
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where � is one amino acid residue at this position, � is the total number of observed amino 591 

acid residues at this position, ���,� and 	� are the amino acid dosage of the residue � in 592 

individual � and the effect size for the residue �, respectively. 593 

We may use the permutation procedure to determine whether the observed association at a 594 

single-marker test is primarily driven by HLA alleles (e.g, HLA-DRB1*04:01) or amino acid 595 

polymorphisms (e.g., HLA-DRβ1 positions 11, 71 and 74)12. To do so, we shuffle the 596 

correspondence between amino acid sequences and each of the two-field HLA alleles which 597 

was originally defined in IMGT database as described above, while preserving the relationship 598 

between the phenotype and the two-field HLA alleles. Then, in each permutation, we select 599 

each amino acid polymorphism and assess the improvement in deviance after including this 600 

amino acid polymorphism into the model. We typically perform > 10,000 permutations. If the 601 

observed improvement using the actual data is significantly larger than the improvements using 602 

these permutations, we can infer that amino acid polymorphism is driving the signal, instead of 603 

observing the “synthetic” association driven by the HLA allele and its linkage with the causal 604 

amino acid(s). 605 

 606 

Conditional haplotype tests to define a risk sequence of amino acids  607 

Defining the exact stretches of HLA amino acid sequences driving the association with disease 608 

allows us to understand the mechanism by which amino acid change affects disease risk 12. 609 

Importantly, to model combinations of positions, we must use phased genotyping information, 610 

rather than encoding each position separately. We perform a conditional haplotype test, where 611 
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we utilize and combine the imputation results of both two-field alleles and amino acid 612 

polymorphisms to obtain phased information. Specifically, we start from the most significant 613 

position of amino acid sequence based on the omnibus test we described in the previous 614 

section. If there are � possible amino acid residues at this position, we can group all possible 615 

two-field alleles for this HLA gene into � groups based on the amino acid residue property at 616 

our selected position (Figure 5a). Recall that each two-field allele at a given HLA gene 617 

corresponds to a unique sequence of amino acids in this gene. In the same way as we did in the 618 

omnibus test based on the � amino acid residues, we can estimate the effect of each of the � 619 

groups using a logistic regression model (including covariates, as described above) and derive 620 

the improvement in model fit over a reduced model without including those M groups.  621 

Full model: ���������� � 	� 
 ∑ 	���,�  
 ∑ 	����,�� 
 ∑ 	����,�
	
�
���  �  622 

Reduced model: ���������� � 	� 
 ∑ 	���,�  
 ∑ 	����,��  �  623 

where ���,� is the sum of the dosage of two-field alleles from a group �, explained by the 624 

�’th amino acid residue. We note that we recommend removing any individuals that do not 625 

have two two-field alleles for a given gene, as we explained in the Post-imputation QC section. 626 

Once we define the most significant individual position at a given HLA gene based on the 627 

significance of improvement, we next seek to identify which amino acid position other than this 628 

significant position best improves the model over the model only including this significant 629 

position (Figure 5b). Let � be the most significant position in the primary analysis, which has 630 

� possible amino acid residues. We sequentially test each amino acid position (�) other than �, 631 

to ask whether haplotypes defined by the amino acid combination of positions � and � �� � �� 632 
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explain the disease risk more than those defined only by the position � . To do so, we 633 

re-categorize all two-field alleles at this HLA gene into   groups, where   is the total number 634 

of observed haplotypes defined by the amino acid positions � and �. The value of   must be 635 

at least �  if no new haplotypes are defined. We again assess the significance of the 636 

improvement in model fit of the Full model (covariation at positions � and �) over the Reduced 637 

model (variation at position � alone) by the delta deviance (sum of squares) using an F-test 638 

with  � � degrees of freedom. 639 

Full model: ���������� � 	� 
 ∑ 	���,�  
 ∑ 	����,�� 
 ∑ 	��,�����,�,��
�
���  �  640 

Reduced model: ���������� � 	� 
 ∑ 	���,�  
 ∑ 	����,�� 
 ∑ 	,���,�,�
�
�
���  �  641 

where ����,�,�  is the sum of the dosages of two-field alleles in a group !  by a given 642 

combination of the amino acid residues at positions � and �.  643 

Thus, we define the next most significant amino acid position which additionally and 644 

independently explains the disease risk from the position �. If the model improvement in this 645 

second round is statistically significant, we iterate the same analyses to identify amino acid 646 

position(s) other than the previously identified positions that best improve the model over the 647 

model including those previous positions, until we obtain no further significant improvement 648 

from any of the remaining positions. 649 

 650 

  651 
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 652 

Figure 5. Grouping of two-field alleles in conditional haplotype test 653 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.24.504550doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.24.504550
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sakaue et al. 
 

 41

An example illustration of the conditional haplotype test for the HLA-DRB1 gene. In the first 654 

round of the amino acid association test at position +11 (a), we group all two-field alleles (32 655 

alleles in total) into 6 groups based on the amino acid residues at the position +11, and ask 656 

whether those groups significantly explain the disease risk by using omnibus test. In the second 657 

round of conditional haplotype test (b; position +71 as an example), we group the two-field 658 

alleles into 10 groups based on the amino acid residues at the position +11 and +71. Then, we 659 

ask whether those 10 groups explain the disease risk more significantly than the 6 groups that 660 

we defined in the first round. 661 

  662 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.24.504550doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.24.504550
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sakaue et al. 
 

 42

Tests for non-additivity 663 

The dosage effect of HLA (having one copy or two copies of a given HLA allele) on disease risk 664 

is not purely additive in infectious diseases and autoimmune diseases55–63. All the analyses we 665 

have described above assume the additive risk model, a model in which the risk (i.e., log Odds 666 

Ratio(OR)) for acquiring a disease due to carrying one copy of the allele (heterozygous state) is 667 

half the risk (log(OR)) conferred by carrying two copies (homozygous state). A non-additive 668 

effect represents a deviation from this linear relationship between the dosage and the risk 669 

(Figure 6a). For instance, a dominant effect might be indicated when the effect of carrying one 670 

copy is more than half the effect of carrying two copies. A biological explanation for such a 671 

dominant effect might be (1) having one copy is enough to express the MHC variant with the 672 

disease-relevant antigen-binding properties on the cell surface, or that (2) there are synergistic 673 

interactions with another HLA allele at the same locus. Lenz et al.62,64 showed that such 674 

non-additive effects are pervasive in a spectrum of autoimmune diseases. 675 

To test for the non-additive effect, we construct a logistic regression model which captures 676 

both additive and non-additive contribution of the allele to the disease risk (Figure 6b)62,65. We 677 

first define the additive term ��,� as either the best guess or the dosage genotype of allele " in 678 

an individual � which we are interested in.  679 

��,� � # $%� &��$ �'��� ��!�$�(� �) $%� ������ " �! �! �!��*��'�� �:  ,0,1,20$%� ������ ��!�$�(� �) $%� ������ " �! �! �!��*��'�� �:  0 1 ��,� 1 22 
We next define the non-additive term 3�,� as the heterozygous status of the allele " in an 680 

individual �, which should capture any deviation of the effect from the additivity.  681 

3�,� � 41 �) �!� �!�� �) ��,� � 1, 0 �$%��5��� 6  ,0,10 
1 � �&�71 � ��,�8:  0 1 3�,� 1 2  2 
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  682 
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 683 

 684 

Figure 6. Non-additive test and multi-trait analysis  685 

a. Schematic illustrations of additive model and non-additive models using the log odds ratio 686 

(log(OR)) according to the dosage of the genotype of interest. a denotes the purely additive 687 

effect by having one copy of the allele, and d denotes any departure from additivity at 688 
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heterozygous genotype. b. A logistic regression model to assess both the additive and 689 

non-additive effect of the allele " (see main text for details). c. Multi-trait analysis by using 690 

multiple linear regression model (MMLM) to test the association between multi-dimensional 691 

phenotype 9 and the amino acid polymorphism. 692 

 693 

  694 
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Using those two terms ��,� and 3�,�, we construct a full model by including both additive and 695 

non-additive term with covariates, and a reduced model with by including only additive term with 696 

covariates. 697 

Full model: ���������� � 	� 
 ����,� 
 ��3�,� 
 ∑ 	���,�  
 ∑ 	����,��  �  698 

Reduced model: ���������� � 	� 
 ����,� 
 ∑ 	���,�  
 ∑ 	����,��  �  699 

where �� denotes an additive effect and �� denotes a non-additive (dominance if positive) 700 

effect. 701 

We finally assess the significance of the improvement in model fit of the Full model over the 702 

Reduced model in model fit by the delta deviance (sum of squares) using an F-test. 703 

 704 

Tests for interactions among HLA alleles 705 

Once we identify an allele harboring a possible non-additive effect, we may also be interested in 706 

understanding whether this is due to an interaction effect between the identified allele and the 707 

other allele at the same HLA locus. In other situations, we may want to assess an interaction 708 

effect between a pair of alleles of functional interest. If the disease risk from a combination of 709 

those two alleles deviates from the expected disease risk by multiplying the disease risk (i.e., 710 

adding the log(OR)) of each of the two alleles, that combination can be regarded as having an 711 

interaction effect. To test this hypothesis, we construct a reduced model which only includes an 712 

additive term for each of the two alleles, and a full model which includes an interaction term 713 

between the two alleles in addition to the additive term for each of the two alleles. Let ��,� be 714 

the dosage genotype of the allele "  in a given individual �  nominated by a significant 715 
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non-additive test, and let ��,�  be the dosage genotype of the other allele % �% � "� in an 716 

individual � to be tested for an interaction effect with the allele ". 717 

Full model: ���������� � 	� 
 ����,� 
 ����,� 
 :�,���,���,� 
 ∑ 	���,�  
 ∑ 	����,��  �  718 

Reduced model: ���������� � 	� 
 ����,� 
 ����,� 
 ∑ 	���,�  
 ∑ 	����,��  �  719 

where :�,� is the effect size of the interaction between the alleles " and %. We again assess 720 

the significance of the improvement in Full model over Reduced model in model fit by the delta 721 

deviance (sum of squares) using an F-test. We note that the observed interaction effects can be 722 

spurious when the frequencies of the tested alleles are relatively low, which results in noisy 723 

effect estimate. We consider conservative QC of the tested alleles based on MAF (e.g., MAF > 724 

0.05 or 0.10), or performing permutation analyses to test whether the observed statistics could 725 

occur by chance, in such cases. 726 

 727 

HLA evolutionary allele divergence 728 

A potential source for non-additive interaction effects among HLA alleles is the extent to which 729 

their encoded HLA molecule variants differ functionally (i.e., in their bound antigen repertoires). 730 

Since HLA genes are generally co-dominantly expressed, both HLA variants of a heterozygous 731 

individual are presenting antigens at the cell surface. If two HLA alleles are very similar in their 732 

sequence, their encoded HLA molecules on average will bind similar sets of antigens and thus 733 

exhibit a substantial overlap in their presented antigen repertoires, while the opposite will be 734 

true for two alleles with very divergent sequences66. The concept that carrying two divergent 735 

HLA alleles will allow HLA-presentation of a wider range of antigens, and by extension increase 736 
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the likelihood of pathogen detection by the adaptive immune system, has been termed 737 

divergent allele advantage (DAA), as an extension of the classical heterozygote advantage67,68. 738 

DAA has already been shown to drive HLA allele frequencies and contribute to HIV control63,66. 739 

but might have broader implications in HLA-mediated complex diseases. For instance, it was 740 

shown that cancer patients whose HLA class I alleles exhibit a higher HLA evolutionary 741 

divergence (HED) respond better to cancer immunotherapy, possibly because more mutated 742 

neoantigens are presented by their HLA69. The HED score between two HLA alleles at a given 743 

HLA locus is based on the Grantham distance between their amino acid sequences, The HED 744 

is applicable to both HLA class I and class II alleles. It can be calculated using publicly available 745 

scripts66, and its effect on a given phenotype can then be estimated by adding it as a 746 

quantitative parameter in a regression model and testing for improvement in model fit with an 747 

F-test. 748 

 749 

Multi-trait analysis 750 

Our group recently showed that the amino acid frequencies at complementarity-determining 751 

region 3 (CDR3) of the T cell receptor (TCR) are highly influenced by the HLA alleles and amino 752 

acids, possibly through thymic selection6. This type of analysis is an extension of the analyses 753 

we described in the previous sections. One notable difference is that the response variable 754 

represents not a single trait (e.g., a disease) but multiple traits: in this case the frequencies of 755 

each amino acid residue at the position of interest within CDR3, which we call cdr3-QTL 756 
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analysis. We test which amino acid position has a significant association with those frequencies 757 

overall, using an extended framework of the omnibus test that we described above (Figure 6c).  758 

In this case, the response variable is not a vector of one phenotype, but a matrix 759 

(multidimensional vector) of frequency phenotypes where each row represents an individual 760 

and each column represents a frequency of a given amino acid residue at a given position of 761 

CDR3. Let 9 be this frequency matrix with ; rows and � � 1 columns, and 9� be the � � 1 762 

frequency phenotypes in an individual �. ; denotes the number of individuals, and � denotes 763 

the number of observed amino acid residues at this position. We perform a multivariate multiple 764 

linear regression model (MMLM) to test the association between 9 and HLA alleles or amino 765 

acid positions of interest.  766 

Full model: 9� � < 
 ∑ 	���,�  
 ∑ 	����,�� 
 ∑ 	����,�
�
�
���  �  767 

Reduced model: 9� � < 
 ∑ 	���,�  
 ∑ 	����,��  �  768 

where < is an �-dimensional parameter that represents the intercept, = is the total number of 769 

observed amino acid polymorphisms at this position, ���,�  and 	�  are the amino acid 770 

dosage of the residue � in an individual � and the �-dimensional effect sizes for the residue 771 

� on 9, respectively. 772 

We assess the significance of the improvement in model fit between Full model and 773 

Reduced model with the multivariate analysis of variance (MANOVA) test for quantitative traits. 774 

As spurious associations again arise when the frequencies of the tested alleles are relatively 775 

low 6, we recommend performing permutation analyses to confirm the calibration of the test 776 

statistics. 777 
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By using this multi-trait framework, we can assess any combination of multiple phenotypes. 778 

One potential application is to investigate disease phenotypes by using deep phenotype record 779 

in biobanks. This framework could disentangle pleiotropic HLA alleles that simultaneously affect 780 

a spectrum of diseases of interest. Another interesting application might be multiple molecular 781 

phenotypes such as expression or protein abundance of multiple genes, and a combination of 782 

multiple modalities (e.g., expression and chromatin accessibility). We can also assess those 783 

phenotypes across multiple cell types (e.g., expression of a gene in T cells, B cells, Monocytes 784 

etc.). 785 

 786 

Concluding remarks 787 

Given the increasing number of associations between the HLA region and human complex 788 

traits that have been identified through large-scale GWAS, accurate imputation and 789 

fine-mapping of the causal HLA alleles and amino acids will continue to be important as the 790 

data size continues to grow. We present a strategy that can lead investigators to fine-mapped 791 

alleles. Leveraging HLA fine-mapped alleles with the variants outside of MHC region, it may be 792 

possible to construct an efficient genetic risk score to stratify people based on the genetic risk 793 

for those diseases. We have publicized this imputation pipeline through the user-friendly MIS, 794 

which hosts the HLA reference panel representing multiple populations and enables web-based 795 

automatic HLA imputation for global cohorts. Another advantage of this implementation is the 796 

computational efficiency: HLA imputation of a cohort of millions of individuals is computationally 797 

scalable (for example, for a cohort of size 20,000, HLA imputation runs within 1 hour). We hope 798 
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this protocol will empower the field of statistical genetics to more comprehensively define the 799 

effect of HLA variation on a spectrum of human diseases. 800 

Despite the well-established performance of our approach, we can still improve our HLA 801 

imputation reference panel further. First, we continue to expand the reference panel to better 802 

represent global populations that are currently missing (e.g., Africans and South Asians). 803 

Similarly, the scope of genes included in the panel can be expanded to include, for example, 804 

non-classical HLA genes and C4 copy number. Second, the imputation accuracy is currently 805 

satisfactory in association testing but not yet as high as the gold-standard HLA typing. We aim 806 

to further improve the accuracy by updating the HLA calls and scaffold variants used in the 807 

reference panel as well as improving the imputation algorithms.  808 

While fine-mapping of HLA alleles has provided deeper insights into disease pathogenesis, 809 

we need more mechanistic or structural understanding of how these alleles contribute to 810 

disease biology. Why do certain HLA alleles cause a diverse spectrum of diseases? How do 811 

those alleles characterize our inherited composition of T cell repertoires? What are 812 

auto-antigens that are being presented by those alleles? Recent advances in experimental and 813 

computational modeling of protein structures and its complex70,71 can offer promise. We need 814 

both experimental and computational approaches to answer all these important questions. 815 

 816 

Data Availability 817 
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We provided the availability of HLA imputation reference panel at Table 1. We made our HLA 818 

imputation pipeline using multi-ancestry HLA reference panel publicly available at Michigan 819 

Imputation Server (https://imputationserver.sph.umich.edu/index.html). 820 

 821 

Code Availability 822 

The computational scripts and their usage related to this tutorial are available at 823 

https://github.com/immunogenomics/HLA_analyses_tutorial. 824 

 825 
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