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Summary 42 

Genome-wide association studies (GWAS) have uncovered over 40 genomic loci associated 43 

with risk for late-onset Alzheimer’s Disease (LOAD), but identification of the underlying causal 44 

genes remains challenging. While the role of glial biology in the mediation of LOAD genetic risk 45 

has been increasingly recognized, recent studies of induced pluripotent stem cell (iPSC)-derived 46 

neurons from LOAD patients have demonstrated the existence of neuronal cell-intrinsic 47 

functional defects, absent interactions with other brain cell types or exposure to neurotoxic 48 

insults. Here, we searched for genetic contributions to neuronal dysfunction in LOAD 49 

pathobiology, using an integrative systems approach that incorporated multi-evidence-based 50 

gene-mapping and network analysis-based prioritization. We found widespread dysfunction in 51 

neuronal gene co-expression networks in the LOAD brain and identified synaptic and 52 

endolysosomal function as being specifically impacted by LOAD-associated genetic variation. A 53 

systematic perturbation screening of candidate risk genes in C. elegans revealed that neuronal 54 

knockdown of the LOAD risk gene orthologs vha-10 (ATP6V1G2), cmd-1 (CALM3), amph-1 55 

(BIN1), ephx-1 (NGEF), and pho-5 (ACP2) significantly alters short/intermediate-term memory 56 

function, the cognitive domain affected earliest during LOAD progression. These results 57 

highlight the impact of LOAD risk genes on evolutionarily conserved memory function, as 58 

mediated through neuronal endosomal dysfunction, and identify new targets for further 59 

mechanistic interrogation. 60 

 61 

Introduction 62 

Alzheimer’s Disease (AD), the most common cause of dementia, is an age-related 63 

neurodegenerative disorder that affects millions worldwide1. Although our understanding of the 64 

molecular mechanisms underpinning the progression of AD has increased steadily over the past 65 
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several decades2,3, the precise etiology of the disease remains elusive, and no preventative or 66 

curative treatments currently exist3,4. In recent years, large consortia-based genome-wide 67 

association studies (GWAS) have identified over 40 genomic loci associated with risk for 68 

sporadic late-onset AD (LOAD)5-8, the predominant form (>90% of cases) of the disease. 69 

However, the majority of risk variants reside in non-coding regions of the genome and are 70 

enriched in cell type-specific transcriptional regulatory elements such as enhancers, suggesting 71 

that they contribute to genetic risk by altering gene expression regulatory networks9,10. Yet, we 72 

still have a limited ability to predict how non-coding variants affect cell- and tissue-specific gene 73 

regulatory interactions that alter transcriptional outputs, confounding efforts to identify LOAD-74 

causal variants and target genes10-12, a critical step to fully realize the promise of GWAS for 75 

clinical applications. 76 

Thus far, the genes and loci implicated in LOAD genetic risk have nominated multiple 77 

pathways for disease relevance, including endosomal trafficking, cholesterol regulation, 78 

mitochondrial function, and inflammation and immunity13, most of which are active in multiple 79 

cell types in the brain. Due to the discovery of LOAD-associated coding variation in genes such 80 

as TREM214-16, PLCG214,17, and ABI314, which are predominantly expressed in microglia, 81 

functional studies in both cell and animal models have increasingly been focused on the role of 82 

microglial biology with regard to genetic risk for LOAD and the pathways listed above18-22. 83 

However, in contrast to previous work which had highlighted the importance of microglia-84 

expressed genes to transcriptional network dysregulation in the LOAD brain23, a recent co-85 

expression network study of brain RNA-seq data from a large-scale LOAD cohort found neuron-86 

specific co-expression modules to be the most profoundly affected by disease state24. 87 

Additionally, in vitro studies of neuronal cultures derived from LOAD patient iPSCs have 88 

demonstrated several cell-intrinsic defects in neuronal function, including hyperexcitability and 89 

altered synapse formation dynamics, absent interactions with other cell types or exposure to 90 
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external neurotoxic insults25,26. The precise mechanisms through which common genetic 91 

variation contributes to neuronal cellular dysfunction and genetic risk for LOAD are understudied 92 

and remain largely unknown. 93 

Here, we searched for genetic contributions to neuronal dysfunction in LOAD 94 

pathobiology by taking a systems biology approach. We analyzed summary statistics data from 95 

a recent LOAD GWAS meta-analysis7 in the context of large-scale brain omics data, utilizing 1) 96 

multi-evidence-based gene-mapping; 2) transcriptome-wide correlation with clinical and 97 

neuropathological traits and network analysis-based prioritization; and 3) in vivo functional 98 

screening to identify high-confidence neuronal genes and pathways contributing to LOAD 99 

pathophysiology. We found that many candidate LOAD risk genes that are dysregulated in the 100 

LOAD brain and more strongly correlated with clinically-assessed cognitive function and 101 

dementia severity than with post-mortem assessment of neuropathological burden are central 102 

members of network modules involved in critical neuronal functions.  103 

As modeling cognitive dysfunction in vitro presents considerable challenges, we chose 104 

to screen our candidate genes for LOAD-relevant effects in vivo, through the use of C. elegans 105 

associative memory assays, a well-established experimental paradigm of cognitive function 106 

assessment with evolutionarily conserved molecular underpinnings27-29. C. elegans shares 107 

similarities with mammals in age-related physiological changes, including learning and memory 108 

decline28. Like mammals, memory loss is one of the earliest features of neuronal aging in C. 109 

elegans28,30. Furthermore, conserved molecular machinery is required in C. elegans to learn and 110 

remember27,28,31. A systematic perturbation screening of candidate risk genes in C. elegans 111 

revealed that neuronal knockdown of the LOAD risk gene orthologs vha-10 (ATP6V1G2), cmd-1 112 

(CALM3), amph-1 (BIN1), ephx-1 (NGEF), and pho-5 (ACP2) significantly altered 113 

short/intermediate-term memory function, the cognitive domain affected earliest during LOAD 114 
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progression, highlighting these genes for further in vitro and in vivo evaluation as potential 115 

therapeutic targets. 116 

 117 

Results 118 

Integrative multi-omics analysis for target gene identification and functional screening in 119 

vivo  120 

To identify high-confidence target genes that underlie LOAD genetic risk and contribute to 121 

neuronal dysfunction in LOAD pathobiology, we analyzed LOAD GWAS summary statistics7 in 122 

the context of large-scale brain omics data, as outlined in Fig. 1. Our analysis framework 123 

incorporates data from large-scale brain expression quantitative trait loci (eQTL) studies 124 

(PsychENCODE32, CommonMind Consortium (CMC)33, BRAINEAC34, BrainSeq35, ROSMAP36, 125 

and GTEx37),  chromatin interaction data from various Hi-C analyses of brain and neural tissue 126 

(PsychENCODE - Dorsolateral Prefrontal Cortex (DLPFC)32, Giusti- Rodríguez et al.- Adult and 127 

Fetal Cortex38, and Schmitt et al. - DLPFC, Hippocampus, and Neural Progenitor Cell39), and 128 

RNA-seq data from a cohort of 364 brains from the Mount Sinai Brain Bank (MSBB)40, a 129 

recently generated resource made publicly available as part of the Accelerating Medicines 130 

Partnership-Alzheimer’s Disease Consortium (AMP-AD). A key strength of our approach is the 131 

use of the C. elegans short/intermediate-term associative memory assay as an organismal level 132 

readout of the relevance of our prioritized candidate genes to neuronal circuit integrity and 133 

function.  134 

 135 

LOAD GWAS variants are enriched in neuronal open chromatin regions 136 
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Previous studies have shown that LOAD SNP heritability is specifically enriched in 137 

transcriptional regulatory elements active in microglia41-44, findings which have contributed to the 138 

recent focus on microglial biology in LOAD functional genomics studies. While clearly important 139 

to genetic risk for LOAD, this microglial enrichment does not explain the dysfunctional 140 

phenotypes observed in LOAD patient iPSC-derived neurons25,26. To test for the presence of 141 

LOAD GWAS signal7 in neuronal transcriptional regulatory elements, we used single-cell open 142 

chromatin profiles generated from the human brain by Assay for Transposase-Accessible 143 

Chromatin using sequencing (scATAC-seq)43, and a statistical enrichment methodology 144 

employed by Wang and colleagues45 (see Methods). We found an enrichment of LOAD GWAS 145 

signal in the open chromatin of several neuronal cell types, over a wide range of statistical 146 

significance, from genome-wide significant (GWS) p-values (P<5x10-8) to a sub-GWS p-value of 147 

P=1x10-4, although the overall neuronal enrichment observed was much weaker than that seen 148 

in microglia (Fig. 2a).  149 

Since any enrichment of signal in the sub-GWS range could potentially be explained by 150 

linkage disequilibrium (LD) with above-threshold LOAD GWAS variants9, we performed an 151 

additional enrichment analysis after removing all variants within 1 Mb of the GWS loci. 152 

Surprisingly, the enrichment of sub-GWS signal in neuronal open chromatin regions was 153 

significantly strengthened, a result observed for all neuronal subtypes in the scATAC-seq 154 

dataset, including both excitatory and inhibitory neurons (Fig. 2a). In comparison, the same 155 

analysis using scATAC-seq data from the human lung46 did not show enrichment in the open 156 

chromatin of lung cell types (Supplemental Fig. 1a). This result indicates that sub-threshold 157 

LOAD GWAS loci likely harbor causal non-coding risk variants in transcriptional regulatory 158 

elements active in neurons, which may lead to the dysregulation of causal risk genes underlying 159 

the dysfunction observed in LOAD patient iPSC-derived neurons. Thus, for our integrative 160 

approach outlined in Fig. 1 we chose to include loci which reached a suggestive significance 161 
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threshold of P<1x10-5, in addition to GWS loci, as this approach has been successfully used for 162 

post-GWAS gene mapping45,47-49.  163 

 164 

eQTL and chromatin interaction data indicate potential causal genes in LOAD GWAS loci 165 

Increasing evidence suggests that the gene nearest to the most significant variant in a GWAS 166 

loci is often not the causal gene50-53. To identify and prioritize candidate causal LOAD risk 167 

genes, we incorporated functional genomics data with summary statistics from the recent LOAD 168 

GWAS meta-analysis conducted by Jansen and colleagues7 using the web-based platform 169 

Functional Mapping and Annotation (FUMA)54 (see Methods). We selected genes which were 170 

nominated by eQTL32-37 or chromatin interaction data32,38,39 (Fig. 1) and disregarded genes that 171 

were only implicated through positional mapping. These datasets expand upon those used for 172 

gene-mapping in the original Jansen et al. study7, incorporating two more eQTL studies 173 

(PsychENCODE32 and BrainSeq35), and two additional Hi-C studies (PsychENCODE32 and 174 

Giusti- Rodríguez et al.- Adult and Fetal cortex38). In addition, we included those genes that 175 

contained protein-coding variants in LD (r2 > 0.8) with the tag variant at each LOAD GWAS 176 

locus. This strategy nominated 1,630 coding and non-coding genes, in 29 GWS and 71 sub-177 

GWS loci, as candidate causal LOAD risk genes (Fig 2c, Supplemental Table 1). The majority 178 

of mapped genes were protein-coding, with lncRNAs and pseudogenes making up the next two 179 

largest categories, in roughly equal proportions in both GWS and sub-GWS loci (Fig. 2c).  180 

More candidate risk genes were mapped by variant-promoter chromatin interactions 181 

(n=1,353) than by eQTL evidence (n=542). In total, 282 genes (17%) were supported by both 182 

eQTL and chromatin interaction evidence (Fig. 2b). The PsychENCODE and the Adult and 183 

Fetal cortex Hi-C data provided most of the chromatin interaction-implicated genes 184 

(Supplemental Fig. 2a, Supplemental Table 2), and the majority of cis-eQTL-associated 185 
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genes came from the PsychENCODE, GTEx, and CMC datasets (Supplemental Fig. 2b, 186 

Supplemental Table 3). Using human single-cell transcriptome data from the temporal 187 

cortex32,55,56, we examined the expression patterns of the protein-coding candidates (n=957) and 188 

found ubiquitous expression across cell types for many genes, but higher levels of expression 189 

for most of the risk genes in neurons and astrocytes, in comparison to that of microglia, 190 

oligodendrocytes, oligodendrocyte precursors, and endothelial cells (Fig. 2d). 191 

Of particular interest is the CELF1/SPI1 locus (11p11.2), which did not reach GWS in the 192 

Jansen et al. study7 but has been found as GWS in several previous LOAD GWAS5,6,8 (Fig. 2e). 193 

Previous work has implicated SPI1 as the causal gene in the locus57 based on the data from 194 

microglia. However, whether or not SPI1 is the only causal gene in the locus, and microglia are 195 

the only causal cell type, remains unclear. Overlaying the locus with recently generated brain 196 

cell type-specific epigenomic annotation data42, we found that the region of LOAD association is 197 

rich with regulatory elements that are active in several cell types, including dense clusters of 198 

neuronal enhancers (Fig. 2e). Our integrated analysis including eQTL and chromatin interaction 199 

data implicates almost all (n=29) of the protein-coding genes in the CELF1/SPI1 locus as 200 

candidate causal LOAD risk genes (Fig. 2e), highlighting the challenges in identifying the true 201 

causal genes and relevant cell types underlying GWAS associations and the need for further 202 

prioritization and functional screening. 203 

 204 

Prioritized LOAD risk genes are co-expression network hubs dysregulated in the LOAD 205 

brain. 206 

To determine the potential relevance of our candidate risk genes to the transcriptional 207 

alterations occurring in the LOAD brain, we performed weighted gene co-expression network 208 

analysis (WGCNA)58 on RNA-seq data from a cohort of 364 brains from the Mount Sinai Brain 209 
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Bank (MSBB)40. Samples from this cohort span a wide spectrum of LOAD-related 210 

neuropathological and cognitive disease severities; and RNA-seq data exists for 4 brain regions: 211 

Brodmann area 10 (BM10) frontal pole, BM22 superior temporal gyrus, BM36 parahippocampal 212 

gyrus, and BM44 inferior frontal gyrus. We focused our analyses on data from the BM36 region 213 

(n=215) because a prior transcriptomic study of this cohort found that BM36, out of 19 sampled 214 

regions, was the most highly affected by AD59. Using WGCNA we identified 32 distinct co-215 

expression modules, 10 of which were enriched for cell type-specific gene expression 216 

signatures: oligodendrocyte (M1, M22); neuronal (M2, M10, M25, M32); astrocyte (M23); 217 

endothelial (M14, M18); microglia (M28); astrocyte/endothelial (M20); and microglia/endothelial 218 

(M21) (Fig. 3a).  219 

We utilized the spectrum of neuropathology and cognitive function present across the 220 

dataset to identify significant associations between gene expression and disease severity. We 221 

assessed the correlations between both the expression of individual genes, and the expression 222 

of module eigengenes, and neuropathological category (CERAD), neurofibrillary tangle burden 223 

(Braak), and clinically-assessed cognitive function (CDR), as well as APOE genotype. On the 224 

level of individual genes, 14,421 genes were associated with at least one trait (FDR<0.05, 225 

Supplemental Table 4), indicating large-scale rewiring of transcriptional activity in the LOAD 226 

brain, with a large overlap seen between genes that were significantly correlated with CDR 227 

score, CERAD neuropathological category, and Braak staging score (Fig. 3b). In contrast, 228 

APOE genotype was significantly associated with relatively few genes (Fig. 3b). With regard to 229 

module-trait correlations, we found that 26 of the 32 modules were significantly associated with 230 

at least one trait (Fig. 3c). The top four modules with the strongest associations were: the 231 

neuronal module M2, which was most strongly negatively associated with CDR score; the 232 

astrocyte/endothelial module M20, which was most strongly positively associated with CERAD 233 

category; module M16, which was not enriched for any cell type-specific signature but was the 234 
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second-most negatively correlated with CDR score; and the endothelial module M18, which was 235 

the second-most positively associated with CERAD category (Fig. 3c). Modules which were 236 

enriched for cell type-specific signatures showed a clear demarcation with respect to their 237 

correlation with CERAD category, and Braak and CDR scores, with all neuronal modules having 238 

a negative association, while astrocyte, microglia, oligodendrocyte, and endothelial modules 239 

were all positively associated (Fig. 3d, Supplemental Table 5). We then assessed whether any 240 

of the modules were enriched for our candidate LOAD risk genes, considering only protein-241 

coding genes which had a significant correlation with a trait (Fig. 3e). The module most 242 

enriched for our candidate risk genes was M16, one of the top four trait-associated modules, 243 

along with two other modules, which were also not enriched for any cell type-specific expression 244 

signature: module M19, which was negatively correlated with CDR; and module M29, which was 245 

positively correlated with Braak score (Fig. 3e).  246 

Previous findings from network-based analysis of LOAD transcriptomic data have 247 

highlighted the disease-relevance of modules representing aspects of microglia23 and 248 

oligodendrocyte60 biology. Most recently, a co-expression network analysis of the same RNA-249 

seq dataset we analyzed here, utilizing a different methodology, determined that neuronal 250 

modules were the most significantly affected by LOAD pathobiology24. A key difference and 251 

advantage of our study is the use of genetic association as the fundamental basis of our 252 

prioritization schema, upon which we leverage network approaches to derive new insights from 253 

LOAD brain transcriptome data. It has been recognized that genetically-supported drug targets 254 

have a much greater chance of success in clinical trials61. By using genetics as a foundation, we 255 

increase confidence in our prioritized risk genes while also increasing the probability of 256 

successful therapeutic development. Indeed, our analysis confirmed that the significant disease-257 

relevant neuronal modules contain well-supported AD risk genes, including the familial AD gene 258 

APP and the APP processing pathway member SORL162,63 in module M2, which was the most 259 
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strongly associated with dementia status (CDR) (Fig. 3c). The overall expression of M2 member 260 

genes, as captured by the module eigengene, exhibited marked downregulation during the 261 

progression from normal cognitive function to advanced AD dementia (Fig. 3f). 262 

Correspondingly, gene ontology analysis of M2 member genes revealed an enrichment for 263 

many biological processes that are profoundly affected by AD, including synaptic signaling, 264 

learning and memory, synaptic structure and organization, transmembrane transporter activity, 265 

and regulation of mitochondrial transcription and translation (Fig. 3i). Another module of 266 

significance was M16, a top trait-associated module with the strongest enrichment for our 267 

candidate risk genes. In comparison to M2, M16 member genes didn’t display significant 268 

downregulation until more advanced levels of cognitive decline (Fig. 3g) and showed an 269 

enrichment for biological process terms encompassing many aspects of mitochondrial function, 270 

including oxidative phosphorylation, and glucose and purine nucleotide metabolism (Fig. 3j). 271 

 272 

Identification of high-priority candidate causal risk genes for functional screening in vivo  273 

The network analysis identified important relationships between genes and modules involved in 274 

synapse and mitochondrial biology, critical components of healthy neuronal function, and LOAD. 275 

Since our candidate LOAD risk genes were enriched in these important neuronal function co-276 

expression modules and were more closely correlated with dementia status than with 277 

neuropathological burden, we chose to functionally screen our candidates for effects on 278 

memory, in a non-amyloidosis model, in neurons in vivo. The C. elegans short/intermediate-279 

term associative memory (S/ITAM) assay was chosen as the ideal experimental paradigm due 280 

to the highly evolutionarily conserved molecular biology which underpins memory function from 281 

worms to mammals27-29, as well as the practicality and efficiency the model affords, allowing for 282 

the testing of large numbers of candidates.  283 
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For an un-biased, systematic analysis, we included 4 categories of candidates (Table 1). 284 

1) High-priority candidate causal risk genes. Since candidate risk genes with higher 285 

centrality in the network are more likely to have disease-relevant effects if perturbed64-66, we 286 

focused on candidates which occupied centrally-connected nodes within the overall co-287 

expression network. We identified “core” genes as those positioned in the top 10% of the 288 

network, as determined by the eigengene-based connectivity measure kME (see Methods). 289 

Interestingly, overall connectivity in the co-expression network displayed a strong correlation 290 

with gene-trait association (Fig. 3h) so that genes with the highest absolute correlation with 291 

CDR score were more likely to have high network centrality. Furthermore, core genes were 292 

enriched for biological process terms involved in neuronal functions, including synaptic 293 

plasticity, synaptic vesicle transport, and synapse organization, as well as ATP metabolic 294 

processes, protein targeting to the membrane, and RNA catabolism (Fig. 3k). We ranked these 295 

core network candidate risk genes by absolute correlation with dementia status and prioritized 296 

the top 20 as high-priority targets for functional validation (Supplemental Table 6). Notably, 297 

eighteen of these top 20 candidates were either not the genes usually nominated from their 298 

respective loci or were genes that came from sub-GWS loci6,7. The two exceptions were the 299 

well-replicated LOAD GWAS gene PTK2B, and the familial AD gene APP (Supplemental Table 300 

6), which resides in a locus that reached the suggestive association threshold (P<1x10-5)7. Out 301 

of the 20 high-priority candidates, 16 were members of the neuronal signature modules M2 and 302 

M32. The remaining four candidates were members of M16, the module with the strongest 303 

enrichment for candidate LOAD risk genes (Fig. 3e), and one of the top four trait-associated 304 

modules. 2) CELF1/SPI1 locus candidates. Since the expression of 18 of the 29 eQTL- and 305 

chromatin interaction-implicated genes in the CELF1/SPI1 locus (Fig. 2e) were significantly 306 

correlated with CDR score (Table 1, Supplemental Table 4), we selected multiple members 307 

(n=5) of this locus to screen for potential memory effects. 3) Well-studied LOAD GWAS genes. 308 

We selected two of the best studied GWS LOAD GWAS genes, BIN1 and PICALM , based on 309 
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recent fine-mapping analyses using cell type-specific approaches42,43 and their known role in 310 

synaptic function67-69, as strong candidates. 4) Candidates unsupported by prioritization 311 

schema. Since any effects on memory function we observed in our screen could conceivably 312 

occur due to perturbation of important neuronal genes that coincidentally exist in LOAD GWAS 313 

loci but have no actual relevance to LOAD genetic risk, we included genes from LOAD GWAS 314 

loci that were not prioritized by our analysis (RAPSN and GRIN3B (not present in MSBB RNA-315 

seq data); GNB2 and TRPM7 (not correlated with CDR score); and CHL1, GDE1, and RORA 316 

(previously identified sub-GWS LOAD GWAS loci5 which did not meet significance criteria7)), to 317 

act as surrogate negative controls. To identify the appropriate targets for our 33 prioritized 318 

candidate LOAD risk genes (Table 1, Supplemental Table 6), we used the web-based 319 

comparative genomics tool OrthoList 270 to identify the closest C. elegans orthologs for our 320 

perturbation screen. Keeping only those genes with orthology predictions supported by more 321 

than one database, we found 27 well-supported orthologs for 24 of our candidate risk genes 322 

(Table 1, Supplemental Table 7). As a final layer of prioritization, we selected orthologs which 323 

had been shown to be expressed in C. elegans neurons, as determined by our previous work 324 

characterizing the C. elegans neuronal transcriptome71 (Table 1, Supplemental Table 7), 325 

leading to a total of 27 worm orthologs of 24 LOAD GWAS candidate risk genes in 17 loci for in 326 

vivo functional screening.  327 

 328 

Neuron-specific knockdown of LOAD risk gene orthologs alters memory function in C. 329 

elegans.  330 

Since the expression of all our candidate genes were negatively correlated with LOAD severity, 331 

with the exception of BIN1 and PICALM (Table 1), we knocked-down the candidate genes using 332 

RNAi to mimic the directional impact of association. To generate neuronal-specific knockdown 333 

of candidate genes, we used a neuronal RNAi-sensitive strain (LC108) of C. elegans, which can 334 
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otherwise be refractory to RNA interference. We knocked-down each of the LOAD candidate 335 

risk gene orthologs from egg stage and tested for effects on short/intermediate-term memory (at 336 

1 hour and 2 hours post-conditioning) at day 1 (young adulthood). Knockdown of most of the 337 

candidate genes had no effect on naive chemotaxis (Supplemental Fig. 3a-g), suggesting that 338 

they did not alter normal neuronal development or function, with the exceptions of F54A3.2 339 

(CKAP5; decreased naive chemotaxis), and aps-2 (AP2S1; increased naive chemotaxis), which 340 

unfortunately prevented robust assessment of any potential memory effects for these two high-341 

priority genes. In addition, rpt-5 (PSMC3), unc-11 (PICALM), and gpb-1 (GNB2) could not be 342 

assayed for memory effects due to motor deficits resulting from knockdown. Finally, two of the 343 

high-priority candidates, kin-32 (PTK2B) and cisd-1 (CISD1), could not be tested for memory 344 

effects due to a lack of available RNAi clones in the Ahringer and Vidal libraries. However, their 345 

presence in our list of top candidates gave us further confidence in our prioritization schema 346 

because of previous findings from functional studies of these genes. In mice, PTK2B,  a well-347 

known LOAD GWAS gene, has been shown to have important roles in hippocampal-dependent 348 

memory, synaptic plasticity, and dendritic spine structure72, and deficiency of CISD1, a gene 349 

involved in mitochondrial function, has been shown to elicit Parkinsonian phenotypes73.  350 

Among the high-priority candidates that could be tested in the memory assays (Table 1), 351 

knockdown of vha-10 (ATP6V1G2), cmd-1 (CALM3), and ephx-1 (NGEF) caused significant 352 

impacts on memory function (Fig. 4a, 4b, 4d), while knockdown of jnk-1 (MAPK9), apl-1 (APP), 353 

Y62E10A.2 (POP7), misc-1 (SLC25A11), and the other CKAP5 ortholog, zyg-9, had no effect 354 

(Fig. 4a-c). Knockdown of our top candidate vha-10 (ATP6V1G2) resulted in a robust memory 355 

deficit at 1hr post-conditioning (Fig. 4a). ATP6V1G2 encodes a neuronal-specific subunit of the 356 

vacuolar-type ATPase (V-ATPase), a proton translocating pump that plays critical roles in the 357 

acidification of endosomal compartments including lysosomes74 and the loading and release of 358 

synaptic vesicles75. Similarly, knockdown of cmd-1 (CALM3), encoding the calcium-binding 359 
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protein calmodulin, resulted in a significant memory deficit at 1hr and 2hr post-conditioning (Fig. 360 

4b). In the brain calmodulin has diverse functions, including the regulation of synaptic signaling, 361 

endocytosis, cholesterol metabolism, and ion channel function76. Interestingly, knockdown of the 362 

high-priority risk candidate ephx-1 (NGEF) and the well-known LOAD GWAS risk gene amph-1 363 

(BIN1) had no effect on short/intermediate-term memory function, but instead resulted in 364 

increased memory retention at 2hr post-conditioning (Fig. 4d). These results indicate that 365 

neuronal loss of expression of these genes impacts processes of active forgetting that are 366 

mediated through RAC1/CDC4277,78. Indeed, NGEF encodes a neuronal guanine nucleotide 367 

exchange factor (GEF) that regulates the activity of GTPases such as RAC1, RHOA, and 368 

CDC4279, and recent work has implicated BIN1 in RAC1-mediated synaptic remodeling80.  369 

Among the 5 gene orthologs from the gene dense CELF1/SPI1 locus (Table 1) that did 370 

not meet the criteria for inclusion in the list of high-priority candidates, mtch-1 (MTCH2), nuo-2 371 

(NDUFS3), rpt-5 (PSMC3), and two orthologs of ACP2, pho-5 and pho-14, knockdown of mtch-372 

1, nuo-2, and pho-14 showed no significant memory effects (Fig. 4a, 4e, 4g). However, 373 

knockdown of pho-5, the closest ortholog of the lysosomal acid phosphatase gene ACP2, 374 

resulted in a memory retention effect at 2hr post-conditioning, similar to what we observed for 375 

ephx-1 and amph-1 (Fig. 4f). This result suggests that, like NGEF and BIN1, ACP2 is also 376 

involved in the process of active forgetting, possibly through the local turnover of synaptic 377 

proteins during dendritic spine remodeling, a process recently found to involve neuronal-activity 378 

dependent lysosome trafficking81.  379 

In total, out of 24 LOAD GWAS candidate risk genes (27 worm orthologs) in 17 loci 380 

tested, we identified 5 genes in 5 loci as in vivo modulators of memory function (Table 1). Taken 381 

together, the results of our systematic perturbation screen indicate that LOAD genetic risk 382 

impacts neuronal function, particularly with respect to memory, through two primary avenues – 383 

the synapse (ATP6V1G2, CALM3, BIN1, NGEF), and the lysosome (ACP2, ATP6V1G2, 384 
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CALM3). The common point of interaction between these two fundamental components of 385 

neuronal biology is the endosomal trafficking system. Pathway and gene set analyses have 386 

previously found a significant enrichment of LOAD-associated genetic variation in genes 387 

involved in endolysosomal function82. However, the involvement of the endolysosomal system in 388 

LOAD pathobiology has typically been conceptualized in the context of amyloid and tau 389 

biology83-85. Our findings indicate that genetic contributions to neuronal dysfunction in LOAD 390 

pathobiology can affect the endolysosomal system through mechanisms which do not involve 391 

amyloid and tau, but instead directly impact the evolutionarily conserved pathways of learning 392 

and memory.  393 

 394 

Discussion 395 

Studies of the genetic underpinnings of LOAD continue to uncover new genomic loci of interest 396 

but identifying the responsible genes and translating genetic discoveries into druggable targets 397 

remains a major challenge for the field. In this study we searched for the genetic contributions 398 

which underlie neuronal dysfunction in LOAD pathobiology, using an integrative systems 399 

approach that incorporated multi-evidence-based gene-mapping and network analysis-based 400 

prioritization, with the C. elegans short/intermediate-term associative memory assay as an 401 

organismal level readout of the impact of our prioritized candidate risk genes on neuronal circuit 402 

integrity and function.  403 

We compiled and employed a large array of functional genomics data to identify 404 

candidate risk genes from LOAD GWAS loci. Examined in the transcriptional context of the 405 

LOAD brain, we found significant associations between many candidate risk genes and 406 

phenotypic measures of cognitive dysfunction and LOAD neuropathology. Network analysis 407 

identified several neuronal co-expression modules that were the most significantly associated 408 
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with LOAD-associated cognitive dysfunction. We prioritized candidate risk genes by using 409 

genetic association and functional genomics evidence, focusing on core genes in the neuronal 410 

co-expression modules. A limitation of functional genomics-enabled post-GWAS gene mapping 411 

is the possibility of false positive gene nominations due to such factors as non-causal overlap 412 

between QTL and GWAS associations and non-disease relevant promiscuous chromatin 413 

interactions between GWAS variants and gene promoter regions. This limitation persists 414 

regardless of the quality and comprehensiveness of the tools and datasets used. Because of 415 

this fact, functional follow-up is critical to gaining confidence in a set of GWAS-implicated genes. 416 

Thus, we conducted functional studies of the prioritized candidate neuronal risk genes, as well 417 

as low-priority and non-prioritized genes, for effects on in vivo memory function in C. elegans. 418 

Testing 27 worm orthologs out of 24 LOAD GWAS candidate risk genes in 17 loci, this study is 419 

to our knowledge the first comprehensive functional screen of its kind. The most notable finding 420 

of this study is the identification of 5 LOAD causal risk genes, ATP6V1G2, CALM3, BIN1, 421 

NGEF, and ACP2, in 5 loci, as in vivo modulators of evolutionarily conserved memory function. 422 

ATP6V1G2 encodes a neuronal-specific subunit of the large V-ATPase complex. Our 423 

analysis prioritized ATP6V1G2 as our top candidate risk gene, both due to its membership 424 

within the core network of genes, as well as being the candidate most significantly associated 425 

with cognitive function. ATP6V1G2 has not been previously nominated as a LOAD risk gene, 426 

most likely due to the fact that it resides in the 6p21.32 major histocompatibility (MHC) locus, a 427 

region well-known for having an extremely complex LD structure that makes the identification of 428 

causal variants and genes in the locus particularly difficult. Multiple members of the V-ATPase 429 

complex are associated with neurological disorders and neurodegenerative conditions arising 430 

due to defective lysosomal acidification86. Additionally, V-ATPase function has also been shown 431 

to be important for the maintenance of neural stem cell renewal capacity87, and the age-related 432 

loss of this capacity is also implicated in impaired cognitive function88. In support of our findings, 433 
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a network-based study found ATP6V1A (3q13.2), another member subunit of V-ATPase, to be 434 

one of the top drivers of neuronal function that is dysregulated in the LOAD brain24. 435 

Furthermore, testing for LOAD relevance in a Drosophila model of Aβ pathology, the authors of 436 

the study24 found that Vha68-1 (ATP6V1A) deficiency negatively affected neuronal activity and 437 

exacerbated Aβ-mediated neuronal toxicity. These findings complement our observation that 438 

vha-10 (ATP6V1G2) deficiency causes deficits in short/intermediate-term memory function in C. 439 

elegans, and further highlights evolutionarily conserved V-ATPase function as an attractive 440 

target for LOAD therapeutic development.  441 

CALM3 is one of the three identical isoforms of the calmodulin gene that is encoded in 442 

the human genome. A calcium-binding factor, calmodulin is ubiquitously expressed, and has 443 

central roles in a wide variety of processes critical to cellular health and function. Calmodulin 444 

function has been tied to LOAD pathobiology for some time, leading some to postulate a 445 

“calmodulin hypothesis” for AD pathogenesis89, as an extension of the already-established 446 

“calcium hypothesis”90. With respect to CALM3 in particular, it has been difficult to definitively tie 447 

alterations in CALM3 expression in the LOAD brain to genetic risk because CALM3 resides 448 

within the greater APOE locus. Due to the powerful LOAD association of APOE, along with the 449 

strong LD relationships in this locus, identification of additional signals beyond the well-studied 450 

APOE coding variants91-93 has been challenging. We identified and prioritized CALM3 by our 451 

analyses for in vivo testing. In contrast to mammals, the C. elegans genome contains only one 452 

ortholog of calmodulin, cmd-1. We found that neuron-specific knockdown of this critical gene 453 

cmd-1 (CALM3) resulted in a significant memory deficit at 1hr post-conditioning without causing 454 

significant motor or chemotaxis defects. This interesting phenotype likely involves differential 455 

regulation of calmodulin-dependent kinase II (CaMKII) activity, given its well-known roles in 456 

learning, memory, and forgetting94,95. 457 
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The BIN1 (Bridging Integrator 1) locus has the second strongest LOAD association 458 

behind APOE. Recent variant fine-mapping studies have indicated that transcriptional regulatory 459 

elements specific to microglia might be the mediators of LOAD genetic risk in the region, 460 

resulting in altered microglial BIN1 expression42,43. However, different cell types in the brain 461 

express different isoforms of BIN1, and while global transcription of BIN1 is increased in the 462 

LOAD brain, the transcription of neuron- and astrocyte-specific isoforms are downregulated and 463 

are associated with tau pathology96. Additionally, recent work has shown that neuron-specific 464 

conditional knockout of BIN1 results in reduced synapse density, decreased presynaptic vesicle 465 

release, and learning and memory deficits in mice67. Interestingly, we found that neuronal-466 

specific knockdown of the C. elegans ortholog amph-1 (BIN1) resulted in a decreased ability to 467 

“forget” an associated memory, in line with its role in RAC1-mediated synaptic remodeling80, an 468 

important component in the process of active forgetting77,78.  These results suggest complex 469 

roles for neuronal BIN1 function that may have isoform-dependent phenotypes upon 470 

perturbation. 471 

NGEF, or ephexin-1, is a neuronal guanine nucleotide exchange factor (GEF) for 472 

GTPases such as RAC1, RHOA, and CDC42. Besides central functions in axon guidance79 it 473 

also has major roles in dendritic spine morphogenesis, post-synaptic organization, and pre-474 

synaptic vesicle release through its interactions with Eph receptors like EphA497,98. We found 475 

that, similar to amph-1 (BIN1), neuronal knockdown of ephx-1 (NGEF) resulted in a persistence 476 

of associative memory. In the LOAD GWAS locus that includes NGEF, INPP5D is the gene 477 

usually nominated as causal. However, a recent fine-mapping study identified neuron-specific 478 

chromatin interactions between LOAD risk variants and the NGEF promoter42, nominating 479 

NGEF as one of the top candidate neuronal causal genes. These results indicate that there 480 

might be multiple, cell type-specific, causal genes in this locus, in contrast to the prevailing view 481 

that LOAD genetic risk is conferred by dysregulation of INPP5D primarily in microglia99. 482 
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The CELF1/SPI1 LOAD GWAS locus (11p11.2), which we screened extensively for 483 

functional effects on memory, is a gene dense locus that did not reach GWS in the Jansen et al. 484 

2019 GWAS/X meta-analysis7, but has been found as GWS in several previous studies5,6,8. 485 

SPI1 has been found to be a likely causal gene with regard to the relevance of this locus for 486 

microglial function in AD57, but LD relationships in this locus are complex and other lines of 487 

evidence42,43,100 as well as the results presented here indicate that this locus harbors additional 488 

causal genes, including ACP2. ACP2 encodes lysosomal acid phosphatase 2, a phosphatase 489 

present in the lysosomal membrane which assists in the maturation of lysosomal enzymes and 490 

helps maintain the optimal pH for proper lysosomal function101. In humans ACP2 is broadly 491 

expressed in all tissues, with particularly strong expression in pyramidal neurons of the cortex 492 

and cerebellar Purkinje cells102. ACP2 deficiency in mice causes lysosomal storage defects, 493 

seizures, skin, cerebellum, and vertebral malformations, and ataxia103,104. Intriguingly, a recent 494 

LOAD whole exome sequencing (WES) study identified a rare missense variant in ACP2 495 

(D353E) to be enriched in controls compared to LOAD patients105, suggesting a protective role 496 

of ACP2 in LOAD. Correspondingly, we found that neuron-specific knockdown of pho-5 (ACP2) 497 

results in extended associative memory in C. elegans, even up to 3 hours post-conditioning, an 498 

interesting result which agrees directionally with the finding from the WES analysis. While 499 

complete loss of ACP2 function results in severe neurological phenotypes103,104, these results 500 

suggest that reduced ACP2 function could be protective with respect to LOAD-associated 501 

cognitive impairment. 502 

In addition to endolysosomal biology, mitochondrial function was also enriched in our top 503 

LOAD-associated neuronal modules, and both have been implicated in the etiology of other 504 

neurodegenerative diseases, including Parkinson’s disease (PD)106. Interestingly, several PD 505 

risk genes are members of the modules we highlight in this study, including GBA and PINK1 506 

(mitochondrial module M16), and SNCA and PRKN (neuronal module M2). Additionally, gene 507 
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ontology analysis of the LOAD-downregulated mitochondrial function module M16 found a 508 

significant enrichment for genes involved in antigen presentation (Fig. 3k), and recent studies 509 

have drawn links between mitochondrial antigen presentation and immune responses in PD107, 510 

suggesting potentially common mechanisms of pathogenesis between the two diseases, 511 

centered on mitochondrial biology. Notably, a previous co-expression network study found two 512 

modules which were conserved between normal aging and LOAD, one representing 513 

mitochondrial processes, and the other representing synaptic function, and identified 514 

ATP6V1G2 as a top hub gene common to both LOAD and aging108. Since modules and genes 515 

that we identified through our work have also been found to be relevant to the normal aging 516 

process, this suggests that perhaps LOAD genetic risk factors which affect neuronal function 517 

are the earliest contributors to disease pathophysiology, as aging is the greatest risk factor for 518 

neurodegenerative disease, including LOAD. 519 

In summary, our integrative analysis and in vivo screening revealed genetic contributions 520 

to neuronal dysfunction in LOAD pathobiology and identified evolutionarily conserved key 521 

neuronal genes and pathways involved in this process. When combined with the growing 522 

publicly available human genomic data, simple model organism systems, such as the C. 523 

elegans behavioral paradigm used here, have great potential to advance the functional genetic 524 

understanding of the complex etiology of LOAD. 525 
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 534 

Methods 535 

Data sources 536 

Alzheimer’s disease GWAS summary statistics from the Jansen et al. meta-analysis7 were 537 

retrieved from https://ctg.cncr.nl/software/summary_statistics. The MSBB LOAD RNA-seq data 538 

are available through the AD Knowledge Portal (https://adknowledgeportal.synapse.org) under 539 

the synapse ID# syn3159438. Processed single-cell expression data from human brain32,55,56 540 

was downloaded from the PsychENCODE Integrative analysis web portal 541 

(http://resource.psychencode.org), as listed under the descriptor “Processed single-cell 542 

expression data merged from all three sources”. Human brain cell type-specific enhancer tracks 543 

from Nott et al.42 are available through the UCSC Genome Brower 544 

(https://genome.ucsc.edu/s/nottalexi/glass_lab_BrainCellTypes_hg19). 545 

 546 

LOAD patient cohort 547 

The Mount Sinai Brain Bank (MSBB) LOAD cohort consists of 364 postmortem control and 548 

LOAD patient brains, each accompanied by robust clinical and neuropathological phenotype 549 

metadata, with various sample subsets used for the generation of genome-, transcriptome- and 550 

proteome-scale molecular datasets, as has been described in detail previously40. For our 551 

analyses we utilized bulk RNA-seq data that had been generated from the Brodmann area 36 552 

parahippocampal gyrus region of a subset of the greater cohort (n=215). Each individual had full 553 

neuropathological assessments according to the Consortium to Establish a Registry for 554 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 22, 2022. ; https://doi.org/10.1101/2022.08.19.504537doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.19.504537
http://creativecommons.org/licenses/by-nc-nd/4.0/


Alzheimer’s Disease (CERAD) protocol109, a Braak staging score for neurofibrillary 555 

neuropathology burden110, and a Clinical Dementia Rating (CDR) scale score111 based on 556 

premortem dementia and cognitive function assessment. APOE genotype was available for a 557 

subset of the individuals (n=135). 558 

 559 

Candidate gene mapping 560 

To map LOAD GWAS loci to genes we used the web-based tool Functional Mapping and 561 

Annotation (FUMA, v1.3.6a)54. Using the summary statistics from the Jansen et al. meta-562 

analysis, a sub-genome-wide significance threshold of P<1x10-5 was used to identify all 563 

independent (r2<0.1, EUR population, 1000 Genomes) loci. Within each identified locus, all 564 

SNPs that met the significance threshold were used for mapping, as well as SNPs in strong 565 

linkage disequilibrium (r2>0.6, EUR population, 1000 Genomes) with the index variant of each 566 

locus. Gene mapping was conducted using two strategies: 1) Selecting genes with significant 567 

cis-eQTL associations (FDR < 0.05) with the LOAD GWAS SNPs (i.e., expression of the gene is 568 

associated with allelic variation at the SNP). Six large-scale brain eQTL studies were utilized for 569 

this purpose – PsychENCODE32, CommonMind Consortium33, BRAINEAC34, BrainSeq35, 570 

ROSMAP36, and GTEx v8 (Brain and Nerve tissue only)37; and 2) Selecting genes by identifying 571 

significant chromatin interactions (FDR ≤ 1e-6) between gene promoter regions (250 bp up- and 572 

500 bp downstream of the transcription start site) and the LOAD GWAS SNPs, as identified by 573 

Hi-C data. Data from three Hi-C studies of brain and neural tissue were utilized – DLPFC from 574 

PsychENCODE32, Adult and Fetal cortex data from the study of Giusti-Rodríguez et al.38, and 575 

DLPFC, Hippocampus, and Neural Progenitor Cell data from the study of Schmitt et al.39. 576 

 577 

Cell type expression specificity of candidate risk genes 578 
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We investigated the cell type-specific expression of our candidate risk genes by examining their 579 

expression patterns in published human single-cell transcriptome data from the temporal 580 

cortex32,55,56. Preprocessed single-cell expression data32,55,56 was downloaded as described 581 

above, and only the adult, broad cell class data was retained (Astrocyte, Endothelial, Microglia, 582 

Neuron, Oligodendrocyte, OPC). Expression data was scaled and log-normalized and displayed 583 

as a heatmap by using the R package ‘pheatmap’. 584 

 585 

Statistics 586 

Descriptions of all statistical tests performed are included in the figure legends or the respective 587 

Methods sections, where relevant. 588 

 589 

Co-expression network analysis 590 

The R package ‘WGCNA’58 was used to construct a co-expression network from the MSBB 591 

LOAD brain RNA-seq data40. For the creation of the network we utilized the publicly available 592 

preprocessed expression matrix (see Data sources) which had already been normalized and 593 

adjusted for sex, race, age, RNA integrity, post-mortem interval, and batch effect. A weighted 594 

co-expression network was built using the preprocessed expression values and the 595 

blockwiseModules WGCNA function with the following parameters: soft-thresholding power = 8, 596 

TOMType = “signed”, deepSplit = 2, minimum module size of 15, merge cut height of 0.25, 597 

signed hybrid network with pamRespectsDendro = FALSE. This resulted in the identification of 598 

32 modules of co-expressed genes, from which we calculated module eigengenes (MEs). 599 

Correlations between clinical and neuropathological traits and individual gene expression or 600 

MEs were computed as Pearson’s correlations and were corrected for multiple testing according 601 
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to the FDR (Benjamini-Hochberg) method. Significance was determined using an adjusted P-602 

value cutoff of 0.05. 603 

 604 

Enrichment analysis 605 

Enrichment of LOAD GWAS signal7 in open chromatin regions of human brain cell types was 606 

calculated according to the methodology of Wang et al.45, using called peaks from scATAC-seq 607 

of the human brain43. At each p-value significance cut-off, using a sliding -log(p-value) threshold 608 

from 0 to 10 in steps of 0.1, the proportion of SNPs in ATAC-seq peaks with p-values more 609 

significant that the cut-off, the foreground, was calculated against the proportion of SNPs 610 

present in the summary statistics (~13 m). Co-expression modules were tested for significant 611 

overlap with the cell type-specific expression signatures of five major brain cell types (neurons, 612 

microglia, astrocytes, oligodendrocytes, endothelial) identified through human brain single-cell 613 

RNA-sequencing data55, and reported previously59. Enrichment statistics were calculated by one 614 

tailed Fisher’s exact test and corrected for multiple comparisons by the FDR (Benjamini-615 

Hochberg) method. Significance was determined using an adjusted P-value cutoff of 0.05. 616 

Functional enrichment of biological pathways within the co-expression modules was assessed 617 

by over-representation test, using the R package ‘clusterProfiler’112, considering all genes 618 

present in the MSBB RNA-seq dataset as the set of background genes. The Gene Ontology 619 

(Biological Process) gene sets used for the enrichment analysis came from the Molecular 620 

Signatures Database (MSigDB) v7.0113,114. Multiple testing correction was performed according 621 

to the FDR (Benjamini-Hochberg) method and significance was determined using an adjusted 622 

P-value cutoff of 0.05. Significantly enriched terms were visualized as a network map, with 623 

edges connecting overlapping gene sets, using the emapplot function of the R package 624 

‘enrichplot’115, with layout = ”kk”. 625 
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 626 

Identification of core network genes 627 

To identify genes with high trait-relevance that also reside in centrally-located positions within 628 

the co-expression network, we took the approach used by Chateigner et al.116. By utilizing the 629 

module membership measure kME (the correlation between the expression of a gene and the 630 

module eigengene), it can be appreciated that the genes with the highest kME in a given 631 

module are also the most correlated to the traits that are most closely associated with the 632 

module eigengene. This relationship demonstrates the utility of employing kME as a centrality 633 

score when prioritizing genes with both relevance to the trait of interest and high network 634 

connectivity. Using kME to define the topological positions of all the genes in the co-expression 635 

network, the max kME was identified for every gene (i.e., the score with respect to the module 636 

to which the gene was assigned), and “core” network genes were then defined as the top 10% 637 

of genes with the highest global absolute scores. 638 

 639 

Worm cultivation 640 

All strains were maintained at 20C on plates made from high growth medium (HGM: 3 g/L 641 

NaCl, 20 g/L Bacto-peptone, 30 g/L Bacto-agar in distilled water, 4 mL/L cholesterol (5 mg/mL in 642 

ethanol), 1 mL/L 1M CaCl2, 1 mL/L 1M MgSO4, and 25 mL/L 1M potassium phosphate buffer 643 

(pH 6.0) added to molten agar after autoclaving (Brenner, 1974) with OP50 E.coli as the food 644 

source. For RNAi treatment, the standard HGM was supplemented with 1 mL/L 1M IPTG 645 

(isopropyl b-d-1-thiogalactopyranoside) and 1 mL/L 100 mg/mL carbenicillin, and plates were 646 

seeded with HT115 E. coli for ad libitum feeding. Worms were synchronized by collecting eggs 647 

from hermaphrodites via exposure to an alkaline-bleach solution (80 mL water, 5 mL 5N KOH, 648 
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15 mL sodium hypochlorite); collected eggs were repeatedly washed in M9 buffer (6 g/L 649 

Na2HPO4, 3 g/L KH2PO4, 5 g/L NaCl and 1 mL/L 1M MgSO4 in distilled water; Brenner, 1974).  650 

 651 

Strains 652 

LC108 (vIs69 [pCFJ90(Pmyo-2::mCherry + Punc-119::sid-1)]) 653 

Short/intermediate-term associative memory training 654 

Worms were tested for short/intermediate-term memory as previously described (Kauffman et 655 

al., 2010). Briefly, synchronized day 1 adult hermaphrodites were washed from HGM plates with 656 

M9 buffer for 3 times. Then the animals were starved for 1 hr in M9 buffer. For training, worms 657 

were transferred to 10 cm NGM conditioning plates seeded with OP50 E. coli bacteria and with 658 

18 ul 10% 2-butanone (Acros Organics) in ethanol on the lid for 1 hr. After conditioning, the 659 

trained worms were tested for chemotaxis towards 10% butanone vs. an ethanol control either 660 

immediately (0 hr) or after being transferred to 10 cm NGM plates with fresh OP50 for specified 661 

intervals before testing (30 min-2 hr). Chemotaxis indices (CI) were calculated as follow: 662 

(#wormsButanone – #wormsEthanol)/(Total #worms). Learning indices (LI) are: LItrained=CItrained-663 

CInaive. 664 
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 904 

 Figure 1. Integrative systems biology approach for LOAD risk gene identification and 905 

functional screening 906 

(a) Candidate risk genes are identified from LOAD GWAS summary statistics, using functional 907 

genomics data from large-scale brain eQTL and chromatin interaction studies. (b) Relevance of 908 

candidate risk genes to LOAD biology is assessed by correlation of expression patterns with 909 

clinical and neuropathological traits, and connectivity within co-expression networks built from 910 
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LOAD cohort brain RNA-seq data. (c) Prioritized candidate risk genes are screened for in vivo 911 

effects on memory function through the use of associative memory assays in C. elegans. 912 

 913 

Figure 2. Data from eQTL and chromatin interaction studies implicates potential causal 914 

genes in LOAD GWAS loci 915 

(a) Enrichment signal for sub-threshold LOAD GWAS SNPs in neuronal open chromatin 916 

becomes evident following the removal of GWS loci and nearby SNPs (+/- 1 Mb), becoming 917 

similar in magnitude to that of microglia. Each point on the curves represents the difference in 918 

fold of the proportion of SNPs with a p-value below the cutoff in the ATAC-seq peaks versus all 919 

SNPs present in the GWAS summary statistics. (b) Numbers of candidate risk genes unique to, 920 

and shared by, the two gene-mapping methods. (c) Distribution of candidate risk genes by gene 921 

type and significance threshold. (d) Heatmap of cell type-specific expression patterns of 922 

candidate risk genes in the human brain. Color scale represents relative expression across cell 923 

types (red = higher, blue = lower). (e) Example LOAD GWAS locus (CELF1/SPI1), highlighting 924 

challenges in the identification of causal genes. Top to bottom – Manhattan plot of -log10(p-925 

value) association statistics from Jansen et al., with the top SNP rs10437655 highlighted in 926 

purple and remaining variants colored according to LD (r2) with the lead SNP; Genome browser 927 

track showing all coding genes present in the locus. Gene names colored in green or blue are 928 

candidate risk genes nominated by QTL evidence or SNP-promoter interaction evidence, 929 

respectively. Gene names colored in red are candidate risk genes nominated by both kinds of 930 

evidence; Track showing the location of significant GWAS SNPs (P<1x10-5), and SNPs in LD 931 

(r2>0.6); Tracks indicating the positions of enhancer elements identified in different human brain 932 

cell types; Track illustrating the significant chromatin interactions between LOAD GWAS SNPs 933 

and gene promoters in the locus; Track illustrating the significant eQTL associations between 934 

LOAD GWAS SNPs and genes in the locus. 935 
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 936 

Figure 3. Co-expression network analysis identifies candidate LOAD risk genes as 937 

dysregulated neuronal subnetwork hubs in the LOAD brain 938 

(a) Co-expression network analysis of RNA-seq data from the parahippocampal gyrus identifies 939 

32 distinct co-expression modules. Modules enriched for cell type-specific gene expression 940 

signatures are indicated. (b) UpSet plot of the intersections between gene sets found to be 941 

significantly associated with the listed traits. (c) Association significance of correlations between 942 

module eigengenes and traits. Significance of the top four trait-associated modules (M2, M20, 943 

M16, M18) is indicated. Bars extending past the dotted line represent FDR < 0.05. (d) Scatter 944 

plot of module eigengene association with CDR vs. enrichment of cell type gene expression 945 

signature. Blue dots = neuronal modules, green dots = oligodendrocyte modules, red dots = 946 

astrocyte modules, purple dots = microglia modules, yellow dots = endothelial modules. (e) 947 

Significance of enrichment of LOAD candidate risk genes within each module. Grey bars = 948 

modules with no cell type enrichment, blue bars = neuronal modules, purple bars = microglia 949 

modules. Bars extending above the line represent FDR < 0.05. (f-g) Expression of the module 950 

eigengene decreases significantly with increased dementia severity for both the 951 

neuronal/synapse module M2 (f) and the mitochondrial/metabolism module M16 (g). Pearson’s 952 

correlation and FDR-corrected P-value are indicated. Differences in the expression of the 953 

module eigengene at each CDR score with respect to cognitive baseline (CDR=0) was also 954 

assessed by t test. (h) Gene expression correlation with CDR is significantly correlated with 955 

network connectivity as measured by kME. Pearson’s correlation and FDR-corrected P-value 956 

are indicated. Core network candidate risk genes, according to max kME, are shown in teal. The 957 

top 20 high-priority risk gene candidates, as determined by correlation with CDR and network 958 

centrality, are highlighted in orange. (i-k) Significantly enriched (FDR < 0.05) Gene Ontology 959 

biological process terms are shown as network maps, with edges connecting overlapping gene 960 
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sets, for the neuronal/synapse module M2 (i), the mitochondrial/metabolism module M16 (j), 961 

and the core network genes (k). Node size indicates the number of genes overlapping with the 962 

term and node color indicates magnitude of adjusted P-value significance. *P  0.05, **P  0.01, 963 

***P  0.001.  964 

 965 

Figure 4. Neuronal knockdown of LOAD risk gene orthologs alters memory function in C. 966 

elegans 967 

(a-g) 1 hour and 2 hour post-conditioning learning indices of worms treated with whole-life RNAi 968 

for LOAD candidate risk gene orthologs. Grouping of the tested orthologs was random and does 969 

not represent candidate prioritization. n  4 (n: technical replicates). Statistical significance 970 

determined by One-way ANOVA, with Dunnett’s post hoc test. *P  0.05, **P  0.01, ***P  971 

0.001, ****P  0.0001. 972 

 973 

Supplemental Figure 1. Lack of enrichment of LOAD GWAS SNPs in open chromatin of 974 

lung cell types 975 

(a) Enrichment signal for LOAD GWAS SNPs in open chromatin of lung cell types, both with the 976 

inclusion of GWS loci and following the removal of GWS loci and nearby SNPs (+/- 1 Mb). Each 977 

point on the curves represents the difference in fold of the proportion of SNPs with a p-value 978 

below the cutoff in the ATAC-seq peaks versus all SNPs present in the GWAS summary 979 

statistics. 980 

 981 

Supplemental Figure 2. More candidate risk genes were mapped by variant-promoter 982 

chromatin interactions than by eQTL evidence 983 
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(a) UpSet plot of the intersections between gene sets nominated by the chromatin interaction 984 

data from various Hi-C analyses of brain and neural tissue. (b) UpSet plot of the interactions 985 

between gene sets nominated by the large-scale brain expression quantitative trait loci (eQTL) 986 

studies. 987 

 988 

Supplemental Figure 3. Naive chemotaxis is mostly unaffected after neuronal knockdown 989 

of LOAD risk gene orthologs in C. elegans 990 

(a-g) Naive chemotaxis indices of worms treated with whole-life RNAi for LOAD candidate risk 991 

gene orthologs. Grouping of the tested orthologs was random and does not represent candidate 992 

prioritization. n  4 (n: technical replicates). Statistical significance determined by One-way 993 

ANOVA, with Dunnett’s post hoc test. *P  0.05, **P  0.01, ***P  0.001, ****P  0.0001. 994 
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