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Abstract 10 

Understanding human error processing is a highly relevant interdisciplinary goal. More than 30 11 

years of research in this field have established the error negativity (Ne) as a fundamental 12 

electrophysiological marker of various types of erroneous decisions (e.g. perceptual, economic) 13 

and related clinically relevant variations. A common finding is that the Ne is more pronounced 14 

when participants are instructed to focus on response accuracy rather than response speed, an 15 

observation that has been interpreted as reflecting more thorough error processing. We challenge 16 

this wide-spread interpretation by demonstrating that when controlling for the level of non-event-17 

related noise in the participant-average waveform and for single-trial peak latency variability, the 18 

significant speed-accuracy difference in the participant-average waveform vanishes. This 19 

suggests that the previously reported Ne differences may be mostly attributable to a more precise 20 

alignment of neuro-cognitive processes and not (only) to more intense error processing under 21 

accuracy instructions, opening up novel perspectives on previous findings. 22 

Keywords: error negativity; event-related potential; single-trial analysis; accuracy 23 

instruction; speed instruction 24 
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Why does the error negativity peak higher when accuracy is emphasised over speed? The 25 

impact of noise and single-trial latency variability challenges traditional interpretations 26 

There are hardly any tasks that humans perform flawlessly, i.e. without making any 27 

errors. To decrease the number of undesired action outcomes, it is important for the cognitive 28 

control system to monitor responses and identify incorrect actions. One marker of response 29 

monitoring is the error negativity (Ne; Falkenstein et al., 1991, also error-related negativity, 30 

ERN; Gehring et al., 1990). The Ne is an event-related potential (ERP) component with a fronto-31 

central distribution characterised by a negative peak up about 100 ms after an erroneous 32 

response. Although it is usually more pronounced after errors, it can also be observed after 33 

correct responses albeit with a smaller amplitude (Vidal et al., 2000). The Ne is thought to reflect 34 

early error processing (Falkenstein et al., 1991; Gehring et al., 1990) independent from actual 35 

error awareness (Wessel, 2012). One of the earliest findings related to the Ne is that its peak 36 

amplitude is larger (i.e., more negative) when participants are instructed to respond as accurately 37 

as possible compared to when the instruction emphasises speed over accuracy (Gehring et al., 38 

1993). This finding has been replicated numerous times (e.g. Endrass et al., 2012; Riesel et al., 39 

2019; Themanson et al., 2008; Themanson et al., 2011). Common explanations suggest that the 40 

error significance in the accuracy condition is increased compared to the speed condition, 41 

prompting participants to process errors more deeply when accuracy is emphasised (Gehring et 42 

al., 1993; Hajcak et al., 2005). A more thorough processing of errors may in turn enhance the 43 

participants chances of giving more accurate responses in the future (Wessel, 2018). Here, we 44 

present two additional explanations for Ne peak amplitude difference under accuracy and speed 45 

instructions that have found little consideration so far: (1) the level of noise and (2) single-trial 46 

latency variability.  47 
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Non-event-related noise and averaging 48 

The difference in Ne peak amplitude may be partially attributable to differences in the 49 

level of noise included in the averaged waveform. In this context, by noise, we mean random, 50 

unsystematic and non-event-related noise which is normally distributed with a mean of zero and 51 

a standard deviation reflecting the magnitude of the noise (Figure 1A). This noise is 52 

superimposed on the true waveform (i.e. the systematic, event-related signal). The observed 53 

waveform thus reflects the sum of the signal and the noise. The principle aim of building a 54 

participant-average waveform is to reduce this noise (and thus to increase the signal-to-noise 55 

ratio): The more trials go into a participant-average waveform, the less noisy it is. When 56 

accuracy is emphasised over speed, participants usually make less errors (e.g. Gehring et al., 57 

1993; Wickelgren, 1977). Hence, the participant-average waveform should be based on less trials 58 

than when speed is emphasised, and the remaining noise is larger (Figure 1B). 59 

Often, the peak amplitude is defined as the most positive or most negative point in a 60 

certain time interval. This measure not only reflects differences in the true waveform between 61 

experimental conditions, but is also highly influenced by different levels of noise (e.g. Clayson et 62 

al., 2013; Luck, 2014). For example, in Figure 1B, we imposed different levels of random noise 63 

on the same true waveform. The peak amplitude in the left panel is much higher than the peak 64 

amplitude in the right panel. However, this difference merely reflects different numbers of trials 65 

and thus different levels of noise: A lower number of errors in the accuracy condition results in a 66 

noisier average waveform and a higher peak amplitude. A higher number of errors in the speed 67 

condition results in a less noisy average waveform and thus a lower peak amplitude because the 68 

random noise is averaged out. 69 
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Figure 1 70 

The Impact of Different Noise Levels on the Ne Peak Amplitude  71 

 72 

Note. A) Different levels of noise after averaging a different number of trials. Both levels have a 73 

mean of zero but the standard deviation of the distribution of high noise is larger than the 74 

standard deviation of the distribution of low noise. The noise distributions are shown to the right 75 

of the plots. B) When the noise is superimposed on the true waveform (light grey), the peak is 76 

higher when noise is high than when noise is low.  77 

Effect of single-trial latency jitter on the peak amplitude 78 

Differences in the peak amplitudes in the participant-average waveforms may also be 79 

explained by differences in single-trial latency variability. Peak amplitudes are usually quantified 80 

in the participant-average waveform in ERP research because single-trial waveforms are too 81 

noisy to reliably detect a peak (e.g. Luck, 2014). This approach, however, implicitly assumes that 82 

the single-trial waveforms all peak at the same point in time (Kappenman & Luck, 2012). In 83 

Figure 2, we illustrate what happens when this assumption is not met. If the single-trial peak 84 

latency variability is large, the average of the single-trial waveforms will have a smaller 85 

amplitude than when the latency variability is small. Hence, the observed Ne peak amplitude 86 

difference in the participant-average waveforms between the speed and the accuracy condition 87 

may also be a result of different levels of single-trial peak latency variability. Specifically, the 88 

single-trial waveforms should vary more in their peak latencies in the speed condition than in the 89 
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accuracy condition, resulting in a flatter participant-average waveform and thus producing a 90 

smaller peak amplitude in the average waveform for the speed condition (high latency 91 

variability) compared to the accuracy condition (low latency variability). 92 

Figure 2 93 

The Impact of Single-Trial Latency Variability on the Participant-Average Waveform 94 

 95 

Note. The grey lines indicate single-trial waveforms, the black lines result from averaging the 96 

single-trial waveforms. In the left panel, the single-trial waveforms peak around the same point 97 

in time, hence the variability in single-trial peak latencies is small and the resulting average 98 

waveform has a comparatively high peak amplitude. In the right panel, the variability in single-99 

trial latencies is much larger and as a consequence, the resulting average waveform has a lower 100 

peak amplitude. 101 

Objectives 102 

To sum up, we suspect that parts of the difference in the Ne peak amplitude between the 103 

accuracy and speed instruction assessed in the participant-average waveform can be explained by 104 

difference in the noise level and the single-trial variability in both conditions. Specifically, as we 105 
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outlined above, we expect that the level of noise is larger in the accuracy condition than in the 106 

speed condition, and that the extent of single-trial latency variability is larger in the speed 107 

condition than in the accuracy condition. As a consequence, we hypothesize that that the Ne 108 

amplitude is negatively related to the level of noise (the higher the noise, the more negative the 109 

Ne peak amplitude) and positively related with the extent of single-trial latency variability (the 110 

higher the latency variability, the less negative the Ne peak amplitude). (Note that the Ne has a 111 

negative peak such that a negative relationship between the Ne and another measure means that 112 

higher levels in this measure are accompanied by a more pronounced Ne.) We predict that when 113 

controlling for the level of noise and the extent of latency variability, the difference in the Ne 114 

peak amplitude between the two instructions should become smaller or even disappear 115 

altogether. To test our hypotheses, we analysed existing data of an experiment in which 116 

participants received a speed instruction in the first part of the experiment and an accuracy 117 

instruction in the second part of the experiment (Bode & Stahl, 2014; Kummer et al., 2020; 118 

Mattes et al., 2022) and resorted to a single-trial peak estimation technique to assess latency 119 

variability. 120 

Results and Discussion 121 

Testing Prerequisites  122 

First, we ensured that the instruction had the expected effects in terms of response time 123 

and number of error trials. Responses were faster in the speed (M = 248 ms, SD = 101) than in 124 

the accuracy condition (M = 517 ms, SD = 116), t(51) = 13.25, p < .001, dz = 2.47, and there was 125 

a smaller number of errors when accuracy (M = 23.71, SD = 18.35) was emphasised over speed 126 

(M = 67.40, SD = 28.03), t(51) = 10.65, p < .001, dz = 1.82. Next, we examined our assumption 127 

that the averaged Ne peak amplitude was indeed more pronounced in the accuracy 128 
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(M = -13.13 µV, SD = 6.91) than in the speed condition (M = -8.41 µV, SD = 5.28; see also 129 

Figure 3A), t(51) = 5.16, p < .001, dz = 0.76. As expected, we also found that the level of noise 130 

was higher in the accuracy (M = 6.27, SD = 3.06) than in the speed condition (M = 3.56, 131 

SD = 2.60; see also the density plot at the top of Figure 3B), t(51) = 5.02, p < .001, dz = 0.95. 132 

Further, the extend of single-trial latency variability was higher in the speed (M = 34.42, 133 

SD = 7.59) than in the accuracy condition (M = 27.65, SD = 8.33; see also the density plot at the 134 

top of Figure 3C), t(51) = 5.40, p < .001, dz = 0.85. Hence, the instruction had the desired effect 135 

in terms of response time and number of error trials, and we replicated the commonly observed 136 

pattern of larger Ne peak amplitudes for accuracy vs. speed instructions. Importantly, we were 137 

able to demonstrate that the accuracy and speed instruction differed indeed in their level of noise 138 

and the extent of latency variability. 139 
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Figure 3 140 

Illustration of the Results 141 

 142 

Note. A) Grand-average waveform of the speed and accuracy condition at the electrode FCz. B) 143 

Relationship between the level of standardised noise (x-axis) and the standardised Ne amplitude 144 

(y-axis) for the accuracy and speed instruction. C) Relationship between the extent of single-trial 145 

latency variability (x-axis) and the Ne amplitude (y-axis) for the accuracy and speed instruction. 146 

D) The difference of the Ne amplitude between the accuracy and speed instruction when only 147 

considering the instruction (“Instruction only model”), when controlling for the level of noise 148 

(“Noise model”), when controlling for the extent of latency variability (“Lat. variab. model”), 149 

and when controlling for both noise and latency variability (“Full model”). 150 

Identifying the sources of speed-accuracy effects on Ne  151 

Next, we tested whether these differences were able to explain the difference in peak 152 

amplitude quantified in the participant averages. To this end, we computed a series of mixed 153 
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models predicting the standardised Ne amplitude. The models are summarised in Table 1. In the 154 

first model, we predicted the Ne peak amplitude of the averaged waveform by the instruction 155 

only and found that the instruction significantly predicted the Ne peak amplitude, b = -0.72, 156 

p < .001. This analysis is similar to the t-test reported in the previous paragraph. Next, we added 157 

the level of noise to the mixed model. The level of noise significantly predicted the Ne peak 158 

amplitude, b = -0.27, p = .002. The higher the noise is, the higher (i.e., more negative) the Ne 159 

peak amplitude is (Figure 3B). The Ne peak amplitude still differed significantly between the 160 

speed and the accuracy instruction, although to a smaller extent, b = -0.48, p = .002. This finding 161 

lends initial support to our assumption that parts of the differences in the Ne amplitude between 162 

the instructions can be explained by the level of noise. 163 
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Table 1 164 

Summary of the mixed models 165 

Predictors Model 1   Model 2  Model 3  Model 4 

b SE t df p  b SE t df p  b SE t df p  b SE t df p 

(Intercept) 0.00 0.11 0.00 50 >.999  0.00 0.11 0.00 49 >.999  0.00 0.10 0.00 49 >.999  0.00 0.09 0.00 48 >.999 

Instruction -0.72 0.14 -5.16 50 <.001   -0.48 0.16 -3.11 49 .002  -0.35 0.14 -2.46 49 .014  -0.06 0.15 -0.41 48 .680 

Noise (z)       -0.27 0.09 -3.03 49 .002        -0.31 0.08 -4.00 48 <.001  

Latency 

variability (z) 

            0.47 0.09 5.31 49 <.001   0.49 0.08 5.99 48 <.001  

 166 
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In the third model, we removed the level of noise as a predictor and entered the extent of 167 

single-trial latency variability. As expected, the latency variability positively predicted the Ne 168 

amplitude, b = 0.47, p < .001. The more the single-trial latencies varied, the smaller the Ne 169 

amplitude was (Figure 3C). As in the second model, the instruction was still a significant 170 

predictor of the Ne amplitude, b = -0.35, p = .014, although the difference between the 171 

instructions was smaller than in the first model, which did not include the latency variability as 172 

an additional predictor. This finding provides evidence for our assumption that parts of the 173 

differences in the Ne amplitude between the instructions can be explained by the extend of 174 

single-trial latency variability. 175 

In the last model, we entered the instruction, the level of noise and the extent of latency 176 

variability as predictors. While the level of noise and the extent of latency variability still 177 

predicted the Ne amplitude significantly, b = -0.31, p < .001 and b = 0.49, p < .001, respectively, 178 

the instruction did not reach the level of significance anymore (Figure 3D), b = -0.06, p = .680. 179 

This suggests that the level of noise and the extent of single-trial latency variability were able to 180 

explain large parts of the variance in the Ne peak amplitude that is usually found to differ 181 

between speed and accuracy instructions. Note however, that the lack of statistical significance 182 

of the instruction in the last model does not mean that there is no effect of the instruction on the 183 

Ne after controlling for noise and latency variability. The insignificance may also reflect a lack 184 

of power to detect an instruction effect which is much smaller than when noise and latency 185 

variability are not controlled for (dz = 0.06 vs. dz = 0.72). Importantly, our results show that a 186 

higher Ne amplitude for accuracy instructions may not uniquely be interpreted as reflecting a 187 

deeper processing of errors due to an increased error significance (e.g. Gehring et al., 1993; 188 
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Hajcak et al., 2005; Themanson et al., 2011). It may even be that error processing is just as deep 189 

for accuracy instructions as for speed instructions (Figure 3D). 190 

Level of noise 191 

The level of noise is most likely an artefact due to averaging different number of trials. 192 

To avoid artificial differences between the instructions that are uniquely driven by the level of 193 

noise, other peak measures which are not as vulnerable to unsystematic noise may be used. For 194 

example, when using the mean peak amplitude as the dependent variable in the first model, the 195 

effect size is descriptively smaller (peak amplitude: dz = -0.72; mean peak amplitude (peak ± 20 196 

data points): dz = -0.51), indicating that the averaging across neighbouring data points reduced 197 

the noise in the peak measure. Clayson et al. (2013) have discussed the impact of noise on ERP 198 

measures extensively, so we will mostly focus on the effects of single-trial latency variability in 199 

the following. Unlike the level of noise – which we assume is unsystematic and exclusively due 200 

to the different numbers of trials – latency variability potentially provides insights into 201 

differences in psychological processes and a different interpretation of the observed speed-202 

accuracy Ne effect. 203 

Latency variability and process alignment 204 

When accuracy is emphasised over speed, the cognitive processes involved in decision-205 

making (perception, response selection, response execution, response monitoring, etc.) might be 206 

more “aligned”, perhaps because time restraints play a less important role. In this context, 207 

alignment means that across trials, the same processes occur at the same point in time. Hence at 208 

the time of response onset, processes related to perception and response selection are largely 209 

finished and response monitoring is executed. This alignment ultimately produces less peak 210 

latency variability at the single-trial level and a higher Ne amplitude in the accuracy condition 211 
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compared to the speed condition. When speed is emphasised, the processes are less aligned 212 

across trials, resulting more single-trial latency jittering and a smaller peak amplitude of the 213 

average waveform. Hence, different processes might be executed at response onset on each trial. 214 

As a consequence, the average waveform is flatter due to jittering in the single-trial peak 215 

latencies. 216 

These analyses provide a different way of interpreting literature findings that build on the 217 

instruction effect. For example, Riesel et al. (2019) found that patients with obsessive 218 

compulsive disorder (OCD) showed a much smaller difference in the Ne amplitude between the 219 

speed and accuracy condition than healthy controls, suggesting that patients with OCD have 220 

difficulty adapting a response strategy that does not focus on accuracy. Our findings do not 221 

change the conclusions Riesel et al. draw from their data, but postulate different underlying 222 

mechanisms. Assuming that the same latency effect occurs in their data, we would postulate that 223 

while healthy controls seem to disengage from aligning cognitive processes in favour of faster 224 

responses when speed is stressed, patients with OCD may have difficulty in doing so. In another 225 

study, Endrass et al. (2012) found that the Ne amplitude was reduced in older adults compared to 226 

younger adults, especially under speed instructions. Hence, for older adults, the speed instruction 227 

might disrupt the alignment of cognitive processes even more than for younger adults. These 228 

examples demonstrate that speed and accuracy instructions are still useful to study error 229 

processing. However, Ne differences may not (only) reflect more thorough error processing or 230 

more error significance, but differences in the level of noise and single-trial latency variability. 231 

While the level of noise is probably a statistical artefact, the single-trial latency variability may 232 

be an alternative mechanism that is helpful in interpreting and understanding differences in the 233 

Ne amplitude between speed and accuracy instructions. 234 
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Conclusion 235 

Using single-trial ERP analyses, we could show that substantial parts of the well-known 236 

difference in Ne amplitude between speed and accuracy instructions can be explained by 237 

differences in single-trial latency variability. This finding shifts the interpretation of the Ne 238 

amplitude difference away from processing intensity and neural capacity, and towards temporal 239 

dynamics and the alignment of cognitive processes. Our method can easily be applied to research 240 

questions in other domains in which the origins of ERP amplitude differences are unknown and 241 

may pave the way to novel insights into cognitive mechanisms reflected by ERP amplitude 242 

differences. 243 

Method 244 

Participants 245 

The study was approved by the ethics committee of the German Psychological Society 246 

(DGPs) and was conducted according to the Declaration of Helsinki. In the original study, the 247 

order of the speed and accuracy instruction was counterbalanced. As the order effect was not 248 

relevant for the current investigation, we only analysed the data of participants who completed 249 

the speed instruction first and the accuracy instruction second, which was the order with the 250 

higher number of participants. Of the 61 participants who completed the task in this order, 251 

9 participants yielded less than six error trials in any of the speed or accuracy conditions (for the 252 

most part in the accuracy condition) and were excluded from the analyses (see 253 

Electrophysiological Data). The remaining 52 participants (28 male, 24 female) had a mean age 254 

of 25.40 years (SD = 5.54). All participants gave written informed consent prior to the study. 255 
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Procedure and Experimental Task 256 

Participants performed a modified version of the Flanker Task (Eriksen & Eriksen, 1974) 257 

in which participants had to determine whether a target digit (out of the numbers 1 to 8) was odd 258 

or even by pressing a key with one of the index fingers. The assignment of the odd/even 259 

responses to the left/right index fingers was counterbalanced across participants. At the left and 260 

right of the target digit, two identical distractor digits were presented. The stimulus comprising 261 

the three digits was presented for 67 ms and was followed by a response window of 1133 ms. 262 

Subsequently, a feedback was presented for 700 ms, followed by an inter-trial interval of 263 

1500 ms. In the accuracy condition, the feedback informed participants whether the response was 264 

correct or erroneous. In the speed condition, the feedback additionally informed participants that 265 

the response was too slow when the response time limit was exceeded. The response time limits 266 

were set to 850 ms (accuracy condition) and 85 % of the average response time of the practice 267 

block (speed condition). Responses that were given after this response time limit but within the 268 

response window were recorded as “too slow”. Participants first completed 10 blocks of 40 trials 269 

each in which they were instructed to respond as fast as possible. Next, they completed another 270 

10 blocks in which they were instructed to respond as accurately as possible. More information 271 

on the task can be found in Bode and Stahl (2014). 272 

Electrophysiological Data 273 

The EEG was recorded from 61 scalp electrode sites (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, 274 

FC1, FC2, FC6, T7, C3, C3’, Cz, C4, C4’, T8, FPz, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, 275 

FCz, O1, Oz, O2, AF7, AF3, AF4, AF8, F5, F1, F2, F6, FT7, FC3, FC4, FT8, C5, IZ, C6, TP7, 276 

CP3,CPz, CP4, TP8, P5, P1, P2, P6, PO7, PO3, POz, PO4, PO8) with active Ag/AgCl electrodes 277 

(actiCAP, BrainProducts) which were referenced against the left mastoid. A DC converter 278 
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(BrainAmp DC, BrainProducts) was used to digitise the continuous EEG signal recorded with a 279 

sampling rate of 500 Hz. An online band-pass filter (DC-70 Hz) was applied to the signal. The 280 

electrooculogram (EOG) was recorded from two electrodes placed at the outer sides of the eyes 281 

(horizontal EOG) and two electrodes placed above and below the left eye (vertical EOG). 282 

The EEG data were preprocessed in the BrainVision Analyzer software (BrainProducts). 283 

First, a DC detrend was applied to the data. Next, the data were stimulus-locked (-100 ms to 284 

2100 ms) and baseline-corrected. An ocular correction was performed (Gratton et al., 1983) and 285 

segments in which the signal exceeded ± 150 µV were removed. The stimulus-locked segments 286 

were used for the noise estimation (see next section). For the main analyses, the segments were 287 

response-locked (-100 ms to 900 ms) and baseline-corrected. After averaging the wavelines 288 

within participants, the Ne was defined as the most negative point at the FCz electrode site in the 289 

interval from response onset to 150 ms following the response. Only participants who had at 290 

least six trials in each of the conditions were considered to ensure a reliable quantification of the 291 

Ne (Olvet & Hajcak, 2009). 292 

Noise Estimation 293 

The remaining noise after averaging a given number of trials was estimated as the 294 

standard deviation of the participant-averaged EEG signal at the FCz electrode in the 100 ms 295 

pre-stimulus baseline. We chose the pre-stimulus baseline over the pre-response baseline because 296 

we cannot rule out that systematic processes such as response preparation or even response 297 

monitoring are already ongoing before a response is carried out (Bode & Stahl, 2014). Unlike the 298 

pre-response baseline, we assume that no systematic response-related processes are present in the 299 

pre-stimulus baseline and that variation in this interval reflects random noise. The stimulus-300 
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locked epochs were baseline-corrected such that the ERP signal of the pre-stimulus interval in 301 

which the noise was determined had a mean of zero. 302 

Latency Variability Estimation 303 

We used a procedure introduced by Hu et al. (2010; 2011) to quantify peak latencies in 304 

single-trial waveforms and computed the standard deviation of single-trial latencies for each 305 

participant as an indicator of single-trial latency variability. The single-trial estimation was 306 

performed in MATLAB (MathWorks) using the Letswave 6 toolbox (Moureaux et al., 2016). 307 

In the following, we briefly describe the single-trial estimation procedure and refer to Hu 308 

et al. (2010; 2011) for a detailed description. The procedure consists of two major steps: (1) 309 

applying a wavelet filter to denoise the data and (2) modelling the filtered single-trial waveforms 310 

in a multiple linear regression approach. In the first step, a wavelet filter is computed by 311 

transforming each single-trial waveform from the time domain to the frequency domain and 312 

averaging all time-frequency transforms. The resulting average time-frequency transform 313 

indicates in which frequencies and at which time points there is stable activation across trials and 314 

serves as the basis for the wavelet filter. All single-trial signals are time-frequency transformed, 315 

the wavelet filter is applied to them, and they are transformed back to the time domain. The 316 

filtered signal is then modelled in a multiple linear regression approach by three regressors 317 

capturing the overall waveform, the latency, and the morphology (i.e., whether the waveform is 318 

wide or narrow). Finally, the peak is determined in the fitted single-trial waveform and the peak 319 

amplitude and latency can be quantified. In a simulation study, Hu et al. (2011) have 320 

demonstrated that the peak estimates derived from this procedure are accurate and unbiased. The 321 

technique has successfully been applied in a multitude of studies (e.g. Franz et al., 2015; Hu et 322 
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al., 2014; Mattes et al., 2022). The same trials were used for the participant-average waveform, 323 

the estimation of single-trial latency variability, and the estimation of noise. 324 

Statistical Analyses 325 

We used within-subject t-tests to investigate differences in response time, number of 326 

error trials, Ne peak amplitude, level of noise and latency variability between the speed and the 327 

accuracy condition. We then computed a series of mixed models predicting the Ne amplitude 328 

quantified in the participant-average waveform. The models differed in the predictors that they 329 

included. The instruction was entered as a contrast-coded dichotomous predictor (speed: -0.5; 330 

accuracy: 0.5). The level of noise and the extent of latency variability were entered as 331 

standardised continuous predictors. Furthermore, the Ne peak amplitude was also standardized. 332 

This allowed to interpret the regression coefficient of the instruction factor in terms of Cohen’s d 333 

and the regression coefficients of the continuous predictors similar to partial correlations. 334 

Participants were included as random effects in the mixed models. We carried out all statistical 335 

analyses in R (R Core Team, 2017). We fitted the mixed models to the data using the lme4 336 

package (Bates et al., 2015) and tested the regression coefficients for significance using the 337 

lmerTest package (Kuznetsova et al., 2017). Data processing and plotting were done using 338 

functions provided by the tidyverse package (Wickham et al., 2019). The data and analysis script 339 

are available here: https://osf.io/c638e/ [anonymous link for review; will be made public upon 340 

acceptance of the manuscript] 341 
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