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 18 
ABSTRACT   19 Correlation between objects does not answer many scientific questions because of the lack 20 of causal but the excess of spurious information and is prone to happen by coincidence. 21 Causal discovery infers causal relationships from data upon conditional independence test 22 between objects without prior assumptions (e.g., variables have linear relationships and 23 data follow the Gaussian distribution). Causal interactions within and between cells provide 24 valuable information for investigating gene regulation, identifying diagnostic and 25 therapeutic targets, and designing experimental and clinical studies. The rapid increase of 26 single-cell data permits inferring causal interactions in many cell types. However, because no 27 algorithms have been designed for handling abundant variables and few algorithms have 28 been evaluated using real data, how to apply causal discovery to single-cell data remains a 29 challenge. We report a pipeline and web server 30 
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(http://www.gaemons.net/causalcell/causalDiscovery/) for accurately and conveniently 31 performing causal discovery. The pipeline has been developed upon the benchmarking of 18 32 algorithms and the analyses of multiple datasets. Our applications indicate that only 33 complicated algorithms can generate satisfactorily reliable results. Critical issues are 34 discussed, and tips for best practices are provided.  35 
Keywords: Single-cell, scRNA-seq, feature selection, causal discovery, causal network, causal 36 analysis 37  38 
INTRODUCTION 39 The cell-specific regulation of gene expression and protein interaction generate various 40 emergent signalling pathways which indicate that most interactions between genes and their 41 products are causal. Causation determines widely observed and varied correlation. Some 42 causal interactions are annotated in the "canonical" pathways (e.g., the KEGG pathways), but 43 most remain unannotated, especially those in cells during development and in diseases and 44 in small cell populations. On statistical data analysis, Judea Pearl wrote "statistics alone 45 
cannot tell which is the cause and which is the effect" (Pearl and Mackenzie, 2019); however, 46 uncovering causation is more difficult than uncovering correlation. Causal discovery is a 47 science which infers causal interactions from data observations upon testing conditional 48 independence (CI) between variables (Glymour et al., 2019). Mathematically, CI is at the 49 heart of causal discovery and CI≠unconditional independence ≠uncorrelation.  50  51 Researchers have used RNA-seq to detect gene expression in a lump of cells for years, but 52 causal interactions in such mixed cells are blurred. Also, the sizes of such samples (lumped 53 cells) are adequate for inferring only correlation but not causation between genes. Many 54 methods (e.g., weighted gene co-expression network analysis, WGCNA) have been developed 55 to construct networks of correlated genes in lumped cells upon RNA-seq data (Joehanes, 56 2018). Recently, scRNA-seq has been widely used to detect gene expression in single cells. In 57 many situations (especially scRNA-seq using 10X Genomics), numbers of many cell types 58 allow for inferring causal interactions between genes in each cell type.  59  60 Many different CI tests have been developed, from the quite fast Gauss CI test to the highly 61 time-consuming kernel-based CI tests (Verbyla, 2018; Zhang et al., 2011). Gauss CI test is 62 based upon partial correlations between variables; kernel-based CI tests estimate the 63 dependence between variables upon their observations without assuming any relationship 64 between variables or data distribution. CI tests critically characterize causal discovery 65 algorithms and differentiate causal discovery from other network inference methods, 66 
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including regulatory network inference (Nguyen et al., 2021; Pratapa et al., 2020), causal 67 network inference (Lu et al., 2021), network inference (Deshpande et al., 2019), and gene 68 network inference (Marbach et al., 2012).  69  70 The PC algorithm (named after its developers Peter Spirtes and Clark Glymour) is a 71 state-of-the-art causal discovery algorithm and can work with different CI tests (Glymour et 72 al., 2019). The time consumption of CI tests (especially kernel-based ones) makes it 73 infeasible to apply the PC algorithm to all genes in a scRNA-seq dataset. On the other hand, 74 what CI tests best suit scRNA-seq data and how to make proper trade-offs between time 75 consumption and network size or accuracy remain unclear. Thus, benchmarking the PC 76 algorithm and CI tests using single-cell data is essential before developing causal discovery 77 pipelines and applying causal discovery to single-cell analysis. 78  79 This Tools and Resources article presents a solution to single-cell causal discovery by 80 combining feature selection algorithms and causal discovery algorithms. Upon 81 benchmarking 9 feature selection algorithms and 9 CI tests using simulated and real 82 scRNA-seq data, we developed a pipeline and web server (called CausalCell) to perform 83 causal discovery. Some measures are developed and imbeded into the pipelinle to ensure 84 reliability of causal discovery. The analysis of multiple datasets were performed, with the 85 results indicating that complicated (time-consuming) CI tests are crucial for generating 86 reliable results. The inferred causal interactions provide informative clues for experimental 87 and clinical studies.  88  89 
METHOD DESCRIPTION  90 
1. Software implementation 91 The CausalCell pipeline consists mainly of feature selection and causal discovery. A parallel 92 version of the PC algorithm (Le et al., 2019), together with the Docker techniques, is used to 93 realize the parallel multi-task causal discovery, which is supported by a cluster of computers. 94 The user interface is implemented using the Shiny language (Figure 1). Annotations of 95 functions and parameters and a detailed description of an example are available online.  96 
 97 
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 98 Figure 1. The user interface of CausalCell. Many functions are implemented to facilitate 99 performing feature selection and causal discovery.   100 
 101 
2. Data input and display  102 scRNA-seq data generated by multiple protocols (e.g., 10X Genomics, smart-seq2) and 103 proteomics data (e.g., CyTOF) generated by mass cytometry can be analyzed (Supplementary 104 Note 1). Data can be in the log2-transformed or z-score normalized format, and online 105 transformation and normalization are available. A dataset can have or not have a control 106 dataset. If a control dataset is uploaded, the fold change of gene expression is computed 107 using the FindMarkers function in the Seurat package. Genes have multiple attributes (e.g., 108 expression value, the percent of cells in which they are expressed, variance, and fold change); 109 all of these attributes can be used to order genes to reveal gene expression features and to 110 filter genes for performing feature selection (researchers often try to identify and analyse 111 highly differentially expressed genes or genes having high variance).  112 
 113 
3. Feature selection  114 Combining feature selection and causal discovery enables causal discovery to be applied to a 115 arbitrary set of genes (feature genes). After genes are filtered upon conditions (i.e., 116 
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expression threshold, the expressed cells, variance, and fold change) which generate 117 candidate genes for feature selection, one or multiple genes of primary interest are used as 118 the target genes (aka response variables) to select feature genes (aka features) from the 119 candidate genes (aka candidates). Upon the evaluation of the accuracy, time consumption, 120 and scalability of the 9 feature selection algorithms (Supplementary Note 2), BAHSIC is the 121 most recommended feature selection algorithm. We also recommend the joint use of 122 multiple algorithms (e.g., Random Forest + BAHSIC) to ensure reliability. Usually, feature 123 genes should be 50-70 (depending on what causal discovery algorithms are chosen). Genes 124 can be manually added into or removed from the feature gene list, to make feature genes 125 better reflect a biological question. Also, all feature genes can be manually selected without 126 performing feature selection, by which the user can examine any gene set. 127 
 128 
4. Causal discovery 129 We implemented 9 causal discovery algorithms by combining the parallel version of the PC 130 algorithm with 9 CI tests (Le et al., 2019). We evaluated the accuracy, time consumption, 131 sample requirement, and stability of the 9 CI tests (Figure 2; Supplementary Note 3). The 132 DCC algorithms are both most accurate and most time-consuming, suitable for small-scale 133 network inferencec; RCIT is reasonably accurate and relatively fast, suitable for large-scale 134 network inference. Multiple algorithms can be chosen in one run for a feature gene set, and a 135 consensus network can be constructed upon the networks inferred by some or all selected 136 algorithms. The consensus network is statistically more reliable. Edges in causal networks 137 have arrows that indicate activation or inhibition and show thickness that indicate CI test's 138 statistical significance.  139  140 If the scRNA-seq dataset is too large, a subset of it should be sampled. Typically, for 141 Smart-seq2 data, 300 cells are enough, and for 10X Genomics data, 600 cells are enough. 142 Also, HSIC.perm and DCC.perm use permutations when performing the CI test. The random 143 sampling and permutation make causal networks inferred each time not identical. Our 144 benchmarking and data analyses reveal that interactions inferred by DCC algorithms are 145 highly stable (Figure 3).  146  147 The following three parameters greatly influence causal discovery. "Set the alpha level" 148 determines the statistical significance cutoff of CI test; a large alpha level causes more causal 149 interactions to be inferred. "Select the number of cells" controls sample size; selecting more 150 cells for causal discovery makes the inference more reliable but more time-consuming. 151 "Select how a subset of cells is sampled" determines the way of a subset of cells is sampled. If 152 a subset  is sampled randomly, the inferred causal network is not exactly reproduable, but 153 
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by running multiple times the inferred causal networks are highly consistent (Figure 3). 154 Since each causal discovery task takes at least hours, providing an email address is necessary 155 to make the result sent to the user automatically when it completes.  156  157  158 
 159 

 160 Figure 2. The accuracy of the 9 CI algorithms (based on 9 CI tests). (A) The cluster map 161 measures the consistency between causal networks generated by the 9 algorithms. Darker 162 colors indicate higher similarity, and the networks of DCC.gamma, DCC.perm, HSIC.gamma, 163 and HSIC.perm have the highest similarity values. A consensus network built upon the four 164 DCC and HSIC networks was used as the reference to evaluate algorithms. (B) For each 165 algorithm's network (green circled area), interactions overlapping the interactions in the 166 consensus network (pink circled area) were examined. There are 73 overlapping 167 interactions between DCC.gamma's network and the consensus network; thus, the true 168 positive rate of the DCC.gamma network (TPR)=73/(73+33)=68.9%. The TPR of DCC.gamma, 169 DCC.perm, HSIC.gamma, HSIC.perm, gaussCItest, HSIC.clust, cmiKnn, RCIT and RCoT are 170 68.9%, 70.2%, 67.6%, 68.9%, 29.5%, 61.8%, 47.9%, 57.1%, and 56.6%.  171 
 172 
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 173 Figure 3. The shared and distinct interactions inferred by DCC.gamma (A) and DCC.perm (B) 174 by running the algorithm 5 times using the dataset of lung cancer cell line H2228. 78% and 175 64.3% of interactions occurred stably in >=4 networks and many distinct interactions 176 occurred in just one network, indicating that the networks inferred by the two algorithms 177 are stable.  178 
 179 
5. Evaluating and ensuring the reliability 180 A challenge for all kinds of network inferences is to verify or validate inferred networks. 181 Inspired by using RNA spike-in to measure RNA sequencing quality, we developed a method 182 to evaluate and ensure the reliability of causal discovery. This method includes three steps: 183 extracting the data of some well-known genes and their interactions from some datasets as 184 the "spike-in" data, integrating the spike-in data into the primary dataset, and applying 185 causal discovery to the integrated dataset. In the first step, the user can pick up a spike-in 186 data stored in the web server or design and upload a specific one; the following two steps 187 are performed automatically. In the inferred causal network, if genes and their interactions 188 in the spike-in data are clearly separated from genes and interactions in the primary dataset, 189 the causal discovery should be pretty reliable (Supplementary Note 4).  190 
 191 
6. Key features of different algorithms 192 Upon one or several response variables (i.e., genes of interest), feature selection chooses a 193 subset of features (i.e., variables, genes) from the whole dataset by removing features 194 unrelated or less related to response variables. A feature selection algorithm combines a 195 search technique and an evaluation measure. After obtaining a measure between the 196 response variable(s) and each feature, a subset of features most related to the response 197 variable(s) is extracted. Constraint-based causal discovery algorithms identify causal 198 relationships in a set of features in two steps: skeleton estimation (determining the skeleton 199 of the causal network) and orientation (determining the direction of edges in the causal 200 
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network). Algorithms are different in that they use different CI tests to perform the first step 201 (the most time-consuming step). We combine the PC algorithm with 9 CI tests to form 9 202 causal discovery algorithms. Table 1 and Table 2 briefly describe the features and 203 advantages/disadvantages of these feature selection and causal discovery algorithms. “+++” 204 and “+” in the tables indicate the most and lest recommended ones.  205  206 
Table 1 Performance of the 9 feature selection algorithms 207 

 Algorithm     Category 

Time 
consumption

Accuracy 
Scalability 
Stability  Advantage 

/disadvantage RandomForest An ensemble learning-based method (e.g., random forest) uses many trees of a random forest to calculate the importance of features, then performs regression based on the response variable(s) to identify the most relevant features.  

+ ++ ++ + This kind of algorithms is indeterministic (the same input may generate somewhat different outputs). Both ExtraTrees and RandomForest are good, the accuracy of XGBoost is unsatisfactory. 

ExtraTrees + ++ ++ + XGBoost ++ + + ++ 

BAHSIC Hilbert-Schmidt independence criterion (HSIC) is used as the measure of dependency between the response variable and features. BAHSIC, SHS, and HSIC Lasso are three HSIC-based algorithms. 

+ +++ + ++ BAHSIC and SHS are the best and second best, fast and accurate. SHS + +++ + ++ 
HSIC Lasso ++ ++ ++ ++ Inferior to BAHSIC and SHS. Lasso Lasso is a regression analysis method that performs both variable selection and regularization. Regularization adds additional constraints or penalty to a regression model. Features which have non-zero regression coefficients are 'selected' by Lasso algorithms. Lasso, RidgeRegression, and ElasticNet are 

+++ + +++ ++ Inferior to BAHSIC and SHS. Accuracy is not high and scalability is poor. RidgeRegression +++ + +++ ++ ElasticNet +++ + +++ ++ 
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three regulation terms. 
 208 

Table 2 Performance of the 9 causal discovery algorithms 209 

 Algorithm     Category 

Time 
consumption 

Accuracy 
Sample size 
Stability #1  

Advantage/dis
advantage 

GaussCItest Gauss CI test examines CI using partial correlation, assuming that all variables are multivariate Gaussian. This assumption impairs the performance of GussCItest, especially when data are complex.  

+++ + +++ +++ Fast but inaccurate 

CMIknn Conditional mutual information (CMI) is a measure based on mutual information, which can be used to measure mutual dependence between two variables. 
+++ ++ + + Fast but inaccurate 

RCIT The Kernel Conditional Independence Test (KCIT) is a powerful but time-consuming CI test. RCIT and RCoT are two approximation methods of KCIT. 
++  ++ ++ ++ Moderately accurate, fast, recommended for large-scale networks 

RCoT ++ ++ ++ ++ 
HSIC.clust HSIC is a measure of dependency between two variables; HSIC X, Y = 0 if X and Y are unconditionally independent. HSIC.gamma and HSIC.perm employ gamma test and permutation test to estimate a p value. 

+  ++ ++ ++ Slow yet accurate, do not need large samples, recommended for small networks 
HSIC.gamma + +++ ++ ++ HSIC.perm + +++ ++ + 
DCC.gamma Distance covariance is an alternative to HSIC for measuring independence. DCC.gamma and DCC.perm employ Gamma test and permutation test to estimate a p value. 

+ +++ +++ ++ Slow yet most accurate, do not need large samples, recommended for small networks 
DCC.perm + +++ +++ + 

#1 see Supplementary Table 3. 210 
 211 
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 212 
APPLICATIONS 213 
1. The analysis of lung cancer cell lines and alveolar epithelial cells 214 Down-regulated MHC-II genes help cancer cells avoid being recognized by immune cells 215 (Rooney et al., 2015); thus, identifying genes and interactions related to the down-regulation 216 is important. To assess if causal discovery helps identify the related interactions, we 217 examined 5 lung cancer cell lines (A549, H1975, H2228, H838, and HCC827) and the normal 218 alveolar epithelial cells (Tian et al., 2019; Travaglini et al., 2020). For each of the six datasets, 219 we took the 5 MHC-II genes (HLA-DPA1, HLA-DPB1, HLA-DRA, HLA-DRB1, HLA-DRB5) as the 220 target genes and selected 50 feature genes (using BAHSIC, unless otherwise stated) from all 221 genes expressed in >50% cells. Then, we applied 9 causal discovery algorithms to the 50 222 genes in 300 cells sampled from each of the datasets. The two DCC algorithms performed the 223 best when processing the H2228 cells and lung alveolar epithelial cells (Figure 2; 224 Supplementary Note 5).  225  226 Inferred networks show that down-regulated genes weakly, but up-regulated genes strongly, 227 regulate downstream targets and that loss of activation (or inhibition) leads to down (or up) 228 regulation. These features are biologically reasonable. Many interactions, including those 229 among MHC-II genes and CD74, among CXCL genes, and among MHC-I genes and B2M, are 230 supported by the STRING database (http://string-db.org) and experimental findings (Figure 231 4; Supplementary Fig. 12) (Castro et al., 2019; Karakikes et al., 2012; Szklarczyk et al., 2021). 232 An interesting finding is the PRDX1TALDO1HSP90AA1NQO1PSMC4 cascade in 233 H2228 cells. Interactions between PRDX1/TALDO1/HSP90AA1 and NQO1 were reported 234 (Mathew et al., 2013; Yin et al., 2021), but between NQO1 and PSMC4 were not. Previous 235 findings on NQO1 include that it determines cellular sensitivity to the antitumor agent 236 Napabucasin in many cancer cell lines (Guo et al., 2020), is a potential poor prognostic 237 biomarker, and is a promising therapeutic target for patients with lung cancers (Cheng et al., 238 2018; Siegel et al., 2012), and that mutations in NQO1 are associated with susceptibility to 239 various forms of cancer. Previous findings on PSMC4 include that high levels of PSMC4 (and 240 other PSMC) transcripts were positively correlated with poor breast cancer survival (Kao et 241 al., 2021). Thus, the inferred NQO1PSMC4 probably somewhat explains the mechanism 242 behind these experimental findings.  243  244  245  246 
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 247 Figure 4. The network of the 50 genes inferred by DCC.gamma from the H2228 dataset (the 248 alpha level for CI test was 0.1). Red  and blue -| arrows indicate activation and inhibition, 249 and colors indicate fold changes of gene expression (from -2 to 2) compared with genes in 250 the alveolar epithelial cells.  251  252 
2. The analysis of macrophages isolated from glioblastoma  253 Macrophages critically influence glioma formation, maintenance, and progression (Gutmann, 254 2020), and CD74 is the master regulator of macrophage functions in glioblastoma (Alban et al., 255 2020; Quail and Joyce, 2017; Zeiner et al., 2015). To examine the function of CD74 in 256 macrophages in gliomas, we used CD74 as the target gene and selected 50 genes from genes 257 expressed in >50% macrophages isolated from glioblastoma patients (Neftel et al., 2019). In 258 the networks of DCC algorithms (Supplementary Note 6), CD74 regulates MHC-II genes, 259 agreeing with the finding that CD74 is an MHC-II chaperone and plays a role in the 260 
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intracellular sorting of MHC class II molecules. In the network, there are interactions between 261 C1QA/B/C, agreeing that they form the complement C1q complex. The identified 262 TYROBPTREM2A2MAPOEAPOC1 cascade is supported by the reports that TREM2 is 263 expressed in tumor macrophages in over 200 human cancer cases (Molgora et al., 2020) and that 264 there are interactions between TREM2/A2M, TREM2/APOE, A2M/APOE, and APOE/APOC1 265 (Krasemann et al., 2017).  266 
 267 
3. The analysis of tumor-infiltrating exhausted CD8 T cells 268 Tumor-infiltrating exhausted CD8 T cells are highly heterogeneous yet share common 269 differentially expressed genes (McLane et al., 2019; Zhang et al., 2018), suggesting that CD8 270 T cells undergo different processes to reach exhaustion. We analyzed three exhausted CD8 T 271 datasets isolated from human liver, colorectal, and lung cancers (Supplementary Note 7) 272 (Guo et al., 2018; Zhang et al., 2018; Zheng et al., 2017). A key feature of CD8 T cell 273 exhaustion identified in mice is PDCD1 upregulation by TOX (Khan et al., 2019; Scott et al., 274 2019; Seo et al., 2019). Using TOX and PDCD1 as the target gene, we selected 50 genes 275 expressed in >50% exhausted CD8 T cells and 50 genes expressed in >50% non-exhausted 276 CD8 T cells, respectively. Transcriptional regulation of PDCD1 by TOX was observed in 277 LVMV-infected mice without mentioning any role of CXCL13 (Khan et al., 2019). Here 278 indirect TOXPDCD1 (via genes such as CXCL13) was inferred in exhausted CD8 cells, and 279 direct TOXPDCD1 was inferred in non-exhausted CD8 T cells (although the expression of 280 TOX and PDCD1 is low in these cells) (Supplementary Figure 17). Recently, CXCL13 was 281 found to play a critical role in T cells for effective responses to anti-PD-L1 therapies (Zhang 282 et al., 2021). The causal discovery results help reveal differences in CD8 T cell exhaustion 283 between species and under different pathological conditions. The PDCD1TOX inferred in 284 exhausted and non-exhausted CD8 T cells may indicate some feedback between TOX and 285 PDCD1; on the proteome level, a related report is that the binding of PD1 to TOX in the 286 cytoplasm facilitates the endocytic recycling of PD1 (Wang et al., 2019).  287 
 288 
4. Identifying genes and inferring interactions that signify CD4 T cell age 289 How immune cells age and whether some senescence signatures reflect the aging of all cells 290 draw wide attention (Gorgoulis et al., 2019). We analyzed gene expression in naive, TEM, 291 rTreg, naive_Isg15, cytotoxic, and exhausted CD4 T cells from young (2-3 months, n=4) and 292 old (22-24 months, n=4) mice (Supplementary Note 8) (Elyahu et al., 2019). For each cell 293 type, we compared the combined data from all four young mice with the data of each old 294 mouse to identify differentially expressed genes. If genes were expressed in >25% cells and 295 consistently up/down-regulated (|fold change|>0) in most of the 24 comparisons, we 296 assumed them as aging-related (Supplementary Table 4). Some of these identified genes 297 
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play important roles in the aging of T cells or other cells, such as the mitochondrial genes 298 encoding cytochrome C oxidases and the gene Sub1 in the mTOR pathway (Bektas et al., 299 2019; Gorgoulis et al., 2019; Goronzy and Weyand, 2019; Walters and Cox, 2021). We 300 directly used these genes, plus one CD4-specific biomarker (Cd28) and two reported aging 301 biomarkers (Cdkn1b, Cdkn2d) (Gorgoulis et al., 2019; Larbi and Fulop, 2014), as feature 302 genes to infer their interactions in different CD4 T cells in young and old mice. The causal 303 networks unveil multiple findings (Supplementary Figure 18). First, B2mH2-Q7 (a mouse 304 MHC class I gene), Gm9843Rps27rt (Gm9846), and the interactions between the five 305 mitochondrial genes (MT-ATP6, MT-CO1/2/3, MT-Nd1) were inferred in nearly all CD4 T 306 cells. Second, many interactions are supported by the STRING database (Supplementary 307 Figure 13). Third, some interactions agree with experimental findings, including 308 Sub1-|Lamtor2 (Chen et al., 2021) and the regulation of these mitochondrial genes by 309 Lamtor2 (Morita et al., 2017). Fourth, Gm9843Rps27rtJunb were inferred in multiple 310 CD4 T cells, and both Gm9843 and Rps27rt are mouse-specific. Since JUNB belongs to the 311 AP-1 family transcription factors that are increased in all immune cells during human aging 312 (Zheng et al., 2020), Gm9843Rps27rtJunb could highlight a counterpart regulation of 313 JUNB in human immune cells.  314 
 315 
DISCUSSION 316 Various methods have been developed to infer interactions between variables from data. As 317 surveyed recently (Nguyen et al., 2021; Pratapa et al., 2020), most methods assume linear 318 relationships between variables and the Gaussian distribution of data. The assumptions 319 enable these methods to run fast, capable of handling many genes or performing 320 genome-wide predictions. Our results indicate that networks inferred by such fast methods 321 deserve serious concern. Instead, based on kernel-based CI tests, causal discovery performs 322 inference directly upon data observations without assuming any relationship between 323 variables and the distribution of data (Glymour et al., 2019; Imbens and Rubin, 2015). The 324 cost in time consumption pays off in terms of accuracy. Interacting genes and molecules 325 within and between cells may have varied quantitative relationships, so causal discovery 326 employing kernel-based CI tests best satisfies inferring causal interactions in varied single 327 cells.  328  329 Several conclusions can be drawn from the benchmarking and applications. First, although 330 kernel-based CI tests are time-consuming (Shah and Peters, 2020), applying causal discovery 331 to a set of genes can be reasonably performed. Of note, the most time-consuming CI tests 332 generate the most reliable results. Second, dropouts and noises in scRNA-seq data, which 333 concern researchers and trouble correlation computation (Hou et al., 2020; Mohan and Pearl, 334 
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2018; Tu et al., 2019), can be well tolerated by kernel-based CI tests if the dataset is large 335 enough to provide sufficient observations. Third, latent and unobserved variables influence 336 causal discovery (just as they influence any network inference), and a solution to this 337 problem is to evaluate whether the inference is reliable by using the "spike-in" data. Fourth, 338 it is difficult to judge inferred interactions if without relevant information (e.g., related 339 findings and domain knowledge).  340  341 Here are three examples showing the help of relevant information for judging inferred causal 342 interactions. First, upon the report TOX activating PDCD1 in mice (Khan et al., 2019), 343 whether CXCL13 is involved (or even required in humans) in the TOX-PDCD1 interaction in 344 exhausted CD8 T cells is unclear until CXCL13 was reported to play critical roles in T cells for 345 effective responses to anti-PD-L1 therapies (Zhang et al., 2021). Second, upon data from 346 different cancers, inferred networks in exhausted CD8 T cells are quite different, and a recent 347 study reports that exhausted CD8 T cells show high heterogeneity and exhaustion can follow 348 different paths (Zheng et al., 2021). Third, it was difficult to explain the multiple genes 349 encoding ribosomal proteins in the inferred networks in CD4 cells from old mice; a new 350 study reports that aging impairs the ability of ribosomes to synthesize proteins efficiently 351 (Stein et al., 2022).  352  353 
Limitations of the methods and study 354 First, the time consumption of the most accurate causal discovery algorithms disenables the 355 inference of large-scale networks. Inferring multiple networks with shared genes and 356 merging these networks into a big one is a way to circumvent this problem, but the 357 effectiveness of the strategy remains to be confirmed. Second, it deserves noting that 358 although time consumption pays off in accuracy, small networks could be biologically 359 inaccurate and unreliable due to potential lack of highly related genes. Third, to make the 360 trade-off properly between time consumption, network accuracy, and network size may 361 need multiple rounds of trials. Fourth, the current programming language support parallel 362 computing but does not support high-performance computing. The most time-consuming 363 parts of the codes are to be replaced using C codes. 364 
 365 
TIPS FOR BEST PRACTICES 366 First, exploring different modules or processes needs different target genes (Figure 5). When 367 it is unclear what gene is suitable or whether multiple genes can be co-selected, it is better to 368 examine one by one and inspect the shared feature genes. Second, BAHSIC and SHS are the 369 best feature selection algorithms. Third, selecting feature genes from too many candidate 370 genes may be unreliable. Usually, filtering out some genes is necessary upon conditions such 371 
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as genes are expressed in too few cells or have too low fold changes. Fourth, sometimes it is 372 advisable to apply causal discovery to a set of genes (e.g., differentially expressed genes) 373 without choosing a target gene and performing feature selection. Fifth, the two DCC 374 algorithms are most recommended; it is often sufficient just to use their results to build the 375 consensus network. Sixth, there are trade-offs between the scale, reliability, and accuracy for 376 causal discovery. To examine many genes, using RCIT is a proper trade-off. If the dataset is 377 large, choosing a subset of cells (e.g., 300) is a must. More cells are needed if feature genes 378 are expressed in a small portion (e.g., 25%) of cells or if scRNA-seq data are sparse. Seventh, 379 using a spike-in dataset and repeating causal discovery multiple rounds are two ways to 380 ensure and improve reliability. Eighth, carefully inspect the influence of cell heterogeneity on 381 causal discovery. Ninth, randomly sampling cells from the dataset and sampling cells with 382 more feature genes expressed suit large and small datasets, respectively. Tenth, causal 383 discovery identifies cell-specific causality when applied to homogeneous cells but identifies 384 more general causality when applied to heterogeneous cells (Figure 5); in the latter case, 385 caution is needed to interpret the results. 386  387  388 

 389 Figure 5. Using causal discovery to analyze different cells, cells at different stages, or 390 different biological processes in cells. The red and grey dots within the four circles in the 391 central cell indicate the four modules' core genes and related genes. When exploring 392 different biological processes, core genes in different modules should be chosen as target 393 genes.  394 
 395  396 
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