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Abstract 

Body-part centric response fields are pervasive: they are observed in single neurons, fMRI, EEG, and multiple 

behavioural measures. This prevalence across scales and measures makes them excellent candidates for studying 

systems-level neuroscience. Nonetheless, they remain poorly understood because we lack a unifying formal explanation 

of their origins and role in wider brain function. Here, we provide such explanation. 

We use reinforcement learning to analytically explain the existence of body-part centric receptive fields, also known as 

peripersonal field. We then simulate multiple experimental findings considered foundational in the peripersonal space 

literature. Our results demonstrate that peripersonal fields naturally arise from two simple and plausible assumptions 

about living agents: 1) they experience reward when they contact objects in the environment, and 2) they act to maximise 

reward. These simple assumptions are enough to explain empirical findings on stimulus kinematics, tool use, valence, 

and network-architecture. 

Our explanation provides further insight. First, it offers multiple empirically testable predictions. Second, it offers a formal 

description of the notion that the world-agent state is encoded in parieto-premotor cortices, using motor primitives: 

peripersonal fields provide building blocks that together create a short-term model of the world near the agent in terms 

of its future states; a successor representation. This short-term, close-range egocentric peripersonal map is analogous 

to the long-term, long-range allocentric spatial map of place and grid cells, which underlie locomotion and navigation to 

reach distant objects. Together, these allocentric and egocentric maps allow efficient interactions with a changing 

environment across multiple spatial and temporal scales. 
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Introduction 

Many neural and behavioural responses have a spatial 

component. A class of such responses has offered a 

highly informative window into brain function: place and 

grid cells in the hippocampus and entorhinal cortex 

explicitly encode the animal`s position in its environment 

(1, 2).  

Our functional understanding of place and grid cells has 

been enormously enriched by attempts to formally 

describe their activity patterns (1, 3–7). An example of 

particular relevance to this work came from the exchange 

of ideas between neuroscience and reinforcement 

learning (5), which demonstrated that allocentric place 

and grid responses – responses whose reference frame 

is anchored to the environment rather than the individual 

– are not purely spatial. Rather, they might provide a 

description of the world in terms of its future states (8, 9). 

This successor representation allows animals and 

artificial agents to interact with their environment at the 

spatio-temporal scale of locomotion and navigation to 

reach distant objects (5, 10). It follows that allocentric 

spatial responses provide an effective substrate for 

navigation in not only physical but also abstract, mental 

environments, even when facing a novel task (9, 11, 12). 

Subsequent empirical work has confirmed this prediction 

in humans and other animals (10, 13–15). Clearly, the 

substantial efforts to formally understand the 

computational mechanisms underlying allocentric 

responses have been enormously valuable. 

However there exist other egocentric responses that have 

been less studied, both empirically and theoretically. 

Anchored to body parts, and dependent on the spatial 

proximity between stimuli and those body parts1, these 

responses have peripersonal fields (16–20). Peripersonal 

fields are measurable from macaque single neurons (21–

25), human and non-human functional MRI (26–28), EEG 

signals (29, 30), and several behavioural measures2 (31–

41). Such pervasiveness across scales and measures 

makes peripersonal responses excellent candidates for 

studying systems-level neuroscience. Nonetheless, while 

the theory behind place and grid cells is ever improving, 

formal theories of the function and necessity of 

peripersonal receptive fields are not yet as developed 

(42). Speculative notions have been put forward that 

these responses contribute to or reflect diverse and often 

vaguely-defined concepts such as body movement, the 

sense of self, impact prediction, and multisensory 

representation of space (19, 43–45). The few attempts at 

formalisation of peripersonal fields have largely focused 

on perceptual aspects (46–50), leaving several features 

unexplained. For example, existing models are often 

limited in both their temporal dynamics, and in the extent 

 
1 The responses of interest here are egocentric in terms of proximity, 

and thus distance. In this article, we do not discuss the many neural 
responses which are egocentric in terms of angle only (119–123). We 
therefore use the term ‘peripersonal’ to refer to a response field that is 
egocentric but also centred around and anchored to a body-part. 
2 These behavioural responses include cross-modal extinction in brain-

damaged patients (31), crossmodal congruency distraction effects 

(124), performance in line bisection tasks (33), reaction times to tactile 

to which they are affected by motor repertoire and 

stimulus valence. Thus, a precise and unifying 

mathematical formalism reflecting a complete functional 

understanding of peripersonal fields is lacking (51).  

Here we show analytically (i.e. normatively) and in-silico 

(i.e. computationally) that a reinforcement learning 

perspective can explain both the origins and the functions 

of peripersonal receptive fields. This perspective 

subsumes existing interpretations and formal models of 

peripersonal fields, and reproduces a range of 

foundational experiments. We also demonstrate that 

peripersonal fields provide a short-term map of the world 

near the agent in terms of its future states. This is 

analogous to how place and grid cells provide a longer-

term map of the world at the further spatio-temporal scale 

of locomotion and navigation to reach distant objects. 

Together, these predictive maps, also known as 

successor representations, allow efficient interactions 

with a changing environment across multiple spatial and 

temporal scales. 

Results 

In theory: Peripersonal receptive fields can 

arise naturally from rewarded contact 

Animals navigating the world experience reward or 

punishment upon contact between the body surface and 

objects in the environment. We contend that this simple 

fact fully accounts for the emergence of peripersonal 

fields centred around a given body part. We will first 

demonstrate this theoretically under a reinforcement 

learning framework, and then elaborate through 

computational modelling.  

In a reinforcement learning model of an agent interacting 

with its environment, the values (𝑄) of actions that bring 

a body part into contact with certain objects correlate with 

the object’s proximity to that body part. When those 𝑄-

values are plotted as a function of stimulus position, 

graded fields surrounding the agent’s limbs arise (Figure 

1). In this framework, three factors cause action values 𝑄 

to correlate with proximity between objects and the 

agent’s body: (1) the temporal discount factor 𝛾, (2) the 

world dynamics 𝑝(𝑠𝑡+1|𝑠𝑡), and (3) the actions 𝐴 available 

to the agent (Box 1 and Figure 1). These three factors 

lead to the natural emergence of peripersonal receptive 

fields, as we explain below.  

1) Proximity in time. The temporal discount factor 

𝛾 causes the values of states n time-steps away from 

environmental contact with the body-part to be 

discounted by 𝛾𝑛 (Figure 1; Formally, max
𝑎

[𝑄𝜋(𝑠𝑡(𝑑𝑡 >

0), 𝑎)] < max
𝑎

[𝑄𝜋(𝑠𝑡(𝑑𝑡 = 0), 𝑎)]). Given that spatial 

displacement of external objects takes time, the discount 

stimuli during simultaneous visual or auditory stimulation (34, 35, 113), 

temporal order judgements (36), reachability and semantic estimates 

(37, 38), spatial demonstratives (39), defensive reflexes (40, 125), and 

TMS-evoked motor potentials (59) . 
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factor 𝛾 also causes the values of actions related to 

distant objects to be smaller than those related to objects 

closer to the body: the distance 𝑑𝑡 is related to the number 

of timesteps n necessary for the object to contact the 

body. For example, if a wasp is near your hand you want 

to avoid the “negative reward”3 of a potential sting by 

moving the hand away. But if the wasp is still a few metres 

away from your hand, you do not feel an urge to either 

move the hand away or hit the wasp: the wasp is unlikely 

to your hand in the near future4. In this case, the number 

of timesteps n needed for the wasp to hit your hand is 

high. Therefore, actions related to avoiding or creating 

contact with the wasp are strongly discounted by 𝛾𝑛. In 

the simplest scenario, if the wasp (or any other object in 

the world) always moves towards the hand (i.e. 

𝑃(𝑑𝑡+1 < 𝑑𝑡) = 1), the value of actions should be 

monotonically related to the distance between the wasp 

and the hand 𝑑𝑡 (Figure 1, top left trio of heatmaps). This 

relationship between value and distance naturally 

describes a body-part centric receptive field.  

2) Environmental dynamics. In a biologically more 

plausible case, the wasp is not guaranteed to move closer 

to the hand (i.e. 𝑃(𝑑𝑡+1 < 𝑑𝑡) < 1). In this case contact is 

not certain to happen at any point in time, and more time 

will elapse until contact is made (if it is made at all). 

Therefore, the negative reward due to contact is weighted 

less strongly, and action value will fall off more strongly 

as a function of distance to an object 𝑑𝑡 (Box 1; Figure 1, 

bottom left trio of heatmaps). This second factor further 

shapes peripersonal receptive fields, yielding maximal 

action value when the object is near a body-part, where 

probability of contact is highest. Even without any 

temporal discounting (i.e. 𝛾 = 1) action value will still be 

maximal near the body-part. Thus, environmental 

 
3 Here we use the term ‘reward’ in its reinforcement learning sense, 

allowing it to have both positive (i.e. a prize) and negative meaning (i.e. 
a punishment) depending on its sign. 
4 You might, however, still feel the urge to walk away from the wasp. 

Thus, when the wasp is at an intermediate distance, the value of walking 

dynamics also contribute to the emergence of 

peripersonal receptive fields.  

3) Action repertoire. The repertoire of actions available 

to the agent also contributes to shaping peripersonal 

fields. Actions can alter either the distance to an object 

(𝑑𝑡; e.g., moving the hand further away from the wasp), 

or the probability that contact will be made (e.g., wearing 

a glove), or both. Because Q-values for current actions 

also take into account potential actions that can be made 

in the future (Box 1), it follows that Q-value fields can also 

appear in response to static stimuli: even if the wasp is 

dead, we can reach out to brush it away (Figure 1, right 

column).  

Therefore, given that contact with objects in the 

environment is rewarded, action values naturally take the 

shape of peripersonal receptive fields.  

In practice: artificial peripersonal receptive 

fields strongly resemble biological ones 

Despite its simplicity, the principle that object-body 

contact is rewarded or punished accounts for many 

behavioural and neurophysiological results. To 

demonstrate this, we trained a set of artificial neural 

network (ANN) agents to move one or two body parts 

(referred to onwards as ‘limbs’) in a 2D grid world (Figure 

2). In a series of in-silico experiments, we recreated 

multiple foundational experimental findings describing 

peripersonal receptive fields. We obtained the following 

six results. (1) The agents’ behavioural responses, as 

well as the activity of many individual neurons in the 

underlying networks, show body-part centric receptive 

fields, which remain anchored to a body part when it 

away is substantially higher than the value of moving one limb. This 
illustrates the important point that there are different peripersonal fields 
for different actions: the ‘walk away field’ would presumably be centred 
on the whole body and expand far into space, while the ‘move hand out 
the way’ field would be centred on the hand and only expands is less 
expansive (16).  

 

Figure 1. A reinforcement learning perspective explains the origin and properties of egocentric receptive fields. If contact between an object and a 
given body part is rewarded (top left; ‘Reward’), the value of an action that creates or avoids contact will form a receptive field centred around that body 
part. A number of additional factors determine the properties of such fields. 1) The world dynamics (rows) alter the probability that contact with a body part 
occurs, and affect how action value depends on proximity. 2) The actions available to an agent (main columns) also affect the positions from which an object 
can contact the body. Therefore, motor repertoire expands body-part centred receptive fields. 3) The discount factor gamma (sub columns) decrease the 

value of actions when objects are further from contacting the body in time. Thus, temporal discount  creates an inverse relationship between stimulus 

distance to a bodypart and action value: a body-part centred receptive field. 
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moves. (2) The spatial extent of these peripersonal fields 

depends on both stimulus speed and direction relative to 

the body part. (3) These fields are altered by tool use, 

both plastically and dynamically. (4) They expand in 

response to stimuli of stronger valence. (5) In the ANNs 

underlying the agents’ behaviour, distinguishable sub-

networks for goal-oriented vs threat-avoidance behaviour 

appear. (6) These ANNs provide a reliable statistical 

model of the environment near the agent, which can be 

recycled to respond effectively to novel tasks and 

environments. 

Modelling Approach 

Details about models are provided in supplementary 

methods. Briefly, in all models an agent is situated in a 

grid world. In this world, the agent can either keep its 

limbs still, or move them left or right. Objects appear at 

the top of the grid world and generally move along a 

downward trajectory towards the agent, with some 

random noise at each timestep. The exact speeds and 

trajectories differ slightly between models (see Methods 

for details). An object can either be a ‘goal’ or a ‘threat.’ 

Agent contact with a goal results in a positive reward, and 

agent contact with a threat results in a negative reward. 

For each model we tested multiple ANN architectures to 

Glossary 
State 𝒔𝒕  

The configuration of the agent and the environment at 

a time 𝒕 

Actions 𝑨 

Movement options chosen by the agent at every 

timepoint. Different individual actions 𝑎 may differently 

affect the state transition 𝑠𝑡→𝑠𝑡+1 (i.e. the probability 

of reaching a specific state at the next timepoint) 

Policy 𝝅 

The method of choosing a single action 𝑎 from all 

available actions 𝑨. 

Reward 𝒓 

An experience of the agent, occurring in certain 

states. The agent’s aim is to maximise summed 

reward over time. Reward can be either positive or 

negative. 

Discount 𝜸 

The amount by which the agent de-emphasises the 

importance of future reward when summing predicted 

future reward 

Value 𝑸 

The agent’s expectation of the total discounted reward 

𝒓 if it takes an action 𝑎, and thereafter follows a 

particular policy 𝜋 to select between its future actions 

𝑨. Peripersonal field 

When touch is rewarded, 𝑸 takes the shape of a body-

part centric or peripersonal receptive field. 

Task 

The agent’s task is defined by the distribution of 

rewards across states. For example, in one task, an 

agent might experience a +1 reward upon contact with 

an object, while in another task the reward might be -

2. 

Successor features 𝝍𝒕 

A collection of predictive features that can be 

combined to form an effective model of the world: a 

successor representation. By performing a 

weighted sum over these features, a (new) action 

value 𝑸 can be calculated.  

Peripersonal map 

Individual successor features can simply be 𝑸 values 

for different tasks. Therefore peripersonal fields 

could be used as building blocks to form a successor 

representation of the world near the body: a 

peripersonal map. 

Box 1: Reinforcement Learning principles 
and model assumptions 

In Reinforcement Learning, an agent attempts to 
maximise the cumulative future reward R by 
interacting with its environment through a set of 
possible actions A. Here we use a particular 
Reinforcement Learning technique, called Q-learning. 
The value Q of performing an action a in a state st at 
time t under a given policy π is the expectation E of 
the cumulative reward R discounted by 𝛾: 

𝑄𝜋(𝑠𝑡 , 𝑎) = E𝜋 [∑ 𝛾𝑖𝑟𝑡+𝑖+1

∞

𝑖=0
 | 𝑠𝑡 , 𝑎] 

In order to maximise reward, the goal of Q-learning is 
to find an optimal policy 𝜋∗, which results in optimal 

action values 𝑄𝜋∗
 that satisfy the equation 

𝑄𝜋∗
(𝑠𝑡 , 𝑎) = max

𝑎
(E𝜋∗

[∑ 𝛾𝑖𝑟𝑡+𝑖+1

∞

𝑖=0
 | 𝑠𝑡 , 𝑎]) 

= max
𝑎′

(E𝜋∗
[𝑟𝑡 + 𝛾𝑄𝜋∗

(𝑠𝑡+1, 𝑎′)]) 

= E𝜋∗
[𝑟(𝑠𝑡 , 𝑎)] + 𝛾 ∙ max

𝑎′
(𝑄𝜋∗

(𝑠𝑡+1, 𝑎′)) 

In other words, the optimal value of an action is the 
expected total discounted reward received when, after 
starting in a state 𝑠𝑡, the agent performs an action 𝑎, 
and follows the optimal policy thereafter. To find these 

optimal action values 𝑄𝜋∗
, the agent iteratively 

updates its current estimate of value 𝑄𝜋: after the 
agent gains experience by interacting with its 
environment, the value of an action a in a given state 
st is updated as 

𝑄𝜋(𝑠𝑡 , 𝑎) ← (1 − 𝛼) ∙ 𝑄𝜋(𝑠𝑡 , 𝑎) + 𝛼

∙ (𝑟𝑡 + 𝛾 ∙ max
𝑎

[𝑄𝜋(𝑠𝑡+1, 𝑎)]) 

Where 𝛼 ∈ [0,1] is the learning rate, 𝛾 ∈ [0,1] is the 

discount factor, and 𝑟𝑡 is the reward. Over time, these 
updates bring 𝑄𝜋 progressively closer to the optimal 

value 𝑄𝜋∗
. 

We instantiate the assumption that contact between 
the agent and the environment is rewarded or 
punished, by dictating that when the distance between 
the body and an external object 𝑑𝑡 becomes zero, 𝑟𝑡 

is non-zero, and (for simplicity) that 𝑟𝑡 is zero 
otherwise: 

𝑟𝑡(𝑑𝑡) ∝ {
0, 𝑑𝑡 > 0
1, 𝑑𝑡 = 0

 

Under this assumption, the Q action values will 
manifest as peripersonal receptive fields, in which Q 
magnitude correlates with the object-body proximity. 
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statistically test consistency of experimental results 

across different network types (see Methods for further 

rationale) This approach deliberately abstracts over 

specific physiological details, demonstrating that the 

results obtained in biological systems can be explained 

from a set of simple basic assumption and through a 

simple mechanism. The following sections describe each 

model in detail.  

Model #1 – Artificial agents produce response fields 

anchored to the limb 

Background. A defining feature of peripersonal fields is 

that response magnitude (of either behaviour or single 

neurons) correlates with the distance between 

environmental stimuli and the body (Figure 2, right 

column). Crucially, this correlation is invariant to body-

part position, i.e. it does not change when the limb is 

displaced (Figure 2, bottom row). This observation, which 

has been demonstrated in a plethora of studies using 

both visual and auditory stimuli, has often been 

interpreted as a coding of stimulus position in egocentric 

coordinates (16, 17, 20, 52–56).  

Neurons showing such proximity coding have been 

described in the putamen and the parieto-premotor 

system, most prominently in ventral intraparietal area 

(VIP), and the dorsal part of F4, near the boundary with 

F5 (21–25) (Figure 2 top left panel). These neurons are 

often referred to as peripersonal neurons, and many of 

them also respond to somatosensory stimuli delivered to 

the body-part around which the visual or auditory 

receptive field is centred.  

Behavioural measures with similar response features 

have been identified in humans, typically using 

concomitant audio-tactile and visuo-tactile stimuli (57, 

58). Several imaging studies have shown overlap 

between human and macaque brain areas which contain 

or modulate peripersonal fields (27, 59–61). 

Approach. We designed Model #1 to test whether similar 

artificial limb-centric response fields would emerge from 

action value. We ran this using 6 different network 

architectures. In 3 of these 6 instances the agent 

controlled 1 limb, and in the other 3 the agent controlled 

2 limbs. The environment only contained goals. For more 

details, see ‘Base Model’ and ‘Model #1’ in Methods. 

Results. The action values in all architectures of Model #1 

were highly reminiscent of the biological responses: they 

consistently correlated with proximity between the object 

and the agent’s limbs (p ≤ 7.97x10-3, |ρ| >0.086, FDR-

corrected Pearson correlation tests; Figure 2). Similarly, 

a substantial proportion of units within the networks 

showed receptive fields with body-part centric 

distributions, regardless of exact network architecture 

and the number of limbs controlled by the agent (51 ±9% 

[SD; from here on out all Figures following ± will be 

standard deviation SD]; Figure 2; see supplementary 

methods for the precise network architectures tested and 

the rationale behind them). This was especially the case 

in the later network layers, where units were closer to 

representing action value (p = 1.56 x10-9, LME main effect 

of layer depth; 63 ± 21% of units being body-part centric 

in the last layer; Figure 2).  

Figure 2. Artificial agents demonstrate peripersonal value fields. 
Top panel: Several behaviors that reflect the value of being hit by an 
external stimulus – e.g. the blink reflex - are graded as a function of stimulus 
distance to the face (left column). Artificial agents that receive reward or 
punishment after being hit by a stimulus show similar peripersonal fields 
reflecting their estimate of action value (right column). Bottom panel: 
Macaque brain areas VIP and PZ (left column) contain neurons with 
receptive fields around various body-parts (limb, 1st row; head, 2nd row; data 
reproduced from Graziano et al., 1994, 1997). Artificial networks (right 
column) contain similar neurons. Here we show responses from an agent 
trained to simultaneously move two ‘body-parts’. Different artificial neurons 
in the network (1st and 2nd row), respectively have ‘limb’ and ‘face’ centred 
receptive fields. The proportion of neurons with such receptive fields 
increases as a function of layer depth (top of right column). Peripersonal 
neurons in the macaque brain move their receptive field as a function of 
body-part location (left column, bottom row). The artificial neurons and 
resulting action values are also anchored to body-parts (right column, 
bottom row). 
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Conclusion. These results indicate that 

biological neurons which show peripersonal 

receptive fields anchored to the limb might 

also be outputting the value of an action which 

is rewarded by contact with a stimulus, as we 

have suggested elsewhere (16).  

Model #2 – Artificial peripersonal fields are 

reshaped by stimulus dynamics 

Background. A second property of almost all 

biological peripersonal receptive fields is that 

in they are also altered by many non-spatial 

variables, similarly to place cells (14, 62). 

For example, peripersonal fields – whether 

neurophysiological or behavioural – expand 

when the velocity of a looming stimulus 

increases (63–66). They are also often 

anisotropic, with a maximal extent in the 

direction of movement of the stimulus relative 

to the body-part (24, 65, 67). In theory, action 

values of an artificial agent should similarly 

depend on stimulus velocity. They should 

depend on speed because a faster 

approaching stimulus can travel more 

distance between timesteps. They should also 

depend on direction, which dictates whether 

the stimulus will hit the body.  

Approach. To demonstrate these kinematic 

dependencies, in Model #2 we exposed 4 

agents (each subserved by a different ANN 

architecture) to stimuli moving at different 

speeds and in different directions. For details, 

see ‘Model #2’ in Methods. 

Results. As predicted, action-value fields 

expanded when stimuli moved faster (p 

≤8.46x10-3, ρ ≥0.42, FDR-corrected Pearson 

Figure 3. Artificial peripersonal fields demonstrate 
most of the properties of biological peripersonal 
responses. 

Top panel: Canonical biological peripersonal fields 
depend on stimulus velocity and direction. Artificial value 
fields also expand when incoming stimuli move faster 
(top row), in the direction of the incoming stimuli (bottom 
row). A substantial proportion of the neurons in the 
agent’s network are velocity sensitive (i.e. speed and 
direction; right column).  

Middle panel: Canonical peripersonal fields extend to 
incorporate the tip of a tool, but only after training with 
the tool. Artificial value fields also expand only after 
training with a tool that increases the ability to touch an 
object (bottom right sub panel). Artificial neurons also 
have receptive fields that expand as a function of tool use 
after training. These neurons are prevalent in deeper 
network layers (right column). 

Bottom panel: Canonical peripersonal fields are larger 
and have greater magnitude in response to stimuli of 
higher valence. Artificial value fields show similar 
properties (1st and 2nd columns). This means that contact 
creating or avoiding actions are initiated when a high-
valence object is at a further distance from the body 
(bottom graph). Individual artificial neurons are also more 
affected by the location of a high-valence than a low-
valence stimulus (3rd column). This reflects the biological 
observation that the brain regions containing 
peripersonal neurons show substantially stronger activity 
to behaviourally relevant stimuli (77, 126). 
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correlation tests Figure 3, top), and specifically in the 

direction from which stimuli approached (p ≤3.24x10-12, ρ 

≥0.85, FDR-corrected Pearson correlation tests; Figure 3, 

top).  

Activity of individual artificial neurons conformed with 

these observations. The extent of individual receptive 

fields correlated with stimulus speed and direction (26 ± 

6% of units had receptive fields whose extent correlated 

with vertical movement speed; 76 ± 8% expanded in the 

horizontal direction of movement; 20 ± 6% correlated with 

both; Figure 3, middle panel).  

Conclusion. Such mixed encoding of position and velocity 

parameters is another physiological hallmark of 

peripersonal neurons, and of the brain areas in which 

they are found (17). These results strengthen the case 

that biological peripersonal neurons represent late stages 

in a system computing contact action value. 

Model #3 – Tool use reshapes artificial peripersonal 

fields 

Background. During tool use, certain peripersonal 

neurons expand their receptive fields to incorporate the 

tool and the area surrounding it (68). Other behavioural 

and neural measures are similarly affected (69–73). This 

plastic remapping of receptive fields5 seems to only occur 

after some initial experience with the tool: if participants - 

whether human or monkey - hold the tool without having 

used it, no change in receptive fields occurs. People with 

extensive tool use, however, are different. For example, 

as soon as blind cane users pick up a cane, their hand 

centric response fields dynamically change (74). 

Approach. To demonstrate these remapping effects, in 

Model #3, we first trained 3 agents that occasionally held 

a ‘tool’6, but the tool was ineffective: stimulus contact with 

the tool tip did not reward the agents (see Model #4 in 

Supplementary Methods). Subsequently, we re-trained 

the same agents while they held an effective tool that, 

when touched by the object, granted reward to the agent. 

Results. We observed a main effect of training, a main 

effect of tool presence, and an interaction (2x2 ANOVA; 

p = 1.37x10-6, p = 6.37x10-26, p = 1.08x10-6 respectively). 

To investigate the source of these effects, we performed 

post-hoc comparisons between conditions. As expected, 

without effective tool training there was no evidence of 

remapping when picking up the tool: there was no 

consistent effect on the Q-fields between conditions in 

which the agents did or did not hold the tool (1.0 ± 0.0 vs 

1.1 ± 0.3 Q peaks; p = 0.125; Wilcoxon Signed Rank test). 

However, after training the agents while they held an 

effective tool, the presence or absence of the tool strongly 

affected the Q- fields (1.4 ± 0.5 vs 2.0 ± 0.0 Q peaks; p = 

2.73x10-6; Wilcoxon Signed Rank test). This was due to 

the appearance of a new Q-value maximum around at the 

tip of the tool, but only when the agent held the tool 

 
5 Plastic remapping here refers to the change of a neural response field 

after extended tool use, while dynamic remapping refers to the 
immediate change as soon as the tool is picked up (86) 
6 We are purposefully modelling tool use in a highly abstracted manner: 
here, a tool is simply something the agent can use to modify the effect 
of its actions on the environment. Specifically, if the agent ‘holds a tool’, 

(Figure 3, middle). Therefore, after training the receptive 

fields had plastically adapted, and gained the ability to 

dynamically adapt Q-values depending on tool presence. 

A substantial proportion of units within the networks 

showed the same type of variation in their receptive fields 

as a function of tool use (50 ± 5%; Figure 3). This was 

especially true in later network layers, where units were 

closer to representing action value (p = 4.34 x10-5, LME 

main effect of layer depth; 70 ± 22% of units displaying 

receptive field remapping; Figure 3, middle). 

Conclusion. Therefore, both plastic and dynamic changes 

due to tool use are consistent with action value coding. 

Our model shows that plastic changes in peripersonal 

responses might represent long-term learning processes 

involving changes of neural connectivity, while dynamic 

changes might instead represent pre-learned 

associations that are simply instantiated through 

differences in neural activation in different states. Such 

an interpretation does not require the common 

assumption that a change of “body schema” is necessary 

to explain tool use remapping (75, 76). 

Model #4 – Valence alters peripersonal fields and 

underlying networks 

In Model #4 we describe the effects of magnitude and 

sign of rewards. We show that these factors respectively 

contribute to the expansion of peripersonal fields, and the 

neuroanatomical segregation of movement networks. 

Artificial peripersonal fields expand when exposed to high 

valence stimuli (4a) 

Background. Stimuli with higher valence (e.g., highly 

desirable or highly dangerous objects) elicit stronger 

responses from biological peripersonal neurons and brain 

regions that contain such neurons (77–79)7. 

Approach. To investigate whether the action value 

framework instantiated in our models could recapitulate 

this known effect of stimulus valence on response fields, 

we varied the value of the reward 𝑟𝑡. We predicted that a 

larger absolute reward would lead to overall higher action 

values. To test this prediction, we trained 3 agents to 

respond to stimuli of various reward magnitudes.  

Results & Conclusions. All agents showed larger 

response magnitudes for higher reward stimuli (p ≤ 

2.42x10-67, |Z| ≥ 17.3, Signed Rank test). Consequently, 

actions related to a higher reward stimulus were 

performed at greater distances from the body (p = 9.77 

x10-4, FDR-corrected Signed Rank tests; Figure 4, 

bottom). This mirrors behavioural studies, which describe 

a response field expansion when stimulus valence is 

higher (34, 80–83). In fact, even conditioned fear 

responses seem to be learned in a body-part centric 

manner (84).  

Individual artificial neurons were also affected by reward 

magnitude. When the networks were exposed to high 

the agent receives a reward when objects are in contact with either its 
limb, as usual, or the location of the tool tip. 
7 Unfortunately, studies on single-cell recordings never statistically 

tested the effects of valence, but their authors did recommend using 

stimuli with an inherent interest to the monkey – such as food, or novel 

objects (77, 126). 
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value stimuli (i.e. with higher absolute 𝑟𝑡), neural activity 

varied more than when exposed to low-value stimuli. (p = 

6. 2x10-3, Z =2.738, Signed Rank test). This mirrors the 

fact that brain regions including peripersonal neurons 

respond more strongly to high-valence stimuli than to 

motivationally irrelevant ones (77, 78). 

Valence sign results in distinct sub-networks subserving 

different movement classes (4b) 

Background. Peripersonal responses are often said to be 

related to separate classes of movements. Specifically, a 

distinction is frequently made between defensive 

avoidance movements, and grabbing or appetitive 

movements (17, 85–87). This distinction is based on the 

type of movements associated with the brain areas where 

peripersonal neurons are found: VIP and F4, for instance, 

are more linked to defensive movements, while MIP, AIP, 

F5 and 7B are more related to reaching and grasping 

(86). In fact, microstimulation of peripersonal VIP neurons 

elicits defensive movements. Similarly, biasing firing rates 

in the dorsal part of F4 using bicuculine and muscimol 

alters both likelihood and magnitude of defensive 

responses (88). Unfortunately, no other neurons with 

body-part centric receptive fields have been directly 

stimulated in other brain areas. Still, prolonged electrical 

stimulation of large areas of pre-central cortex results in 

spatially-specific movements that often seem to be 

appetitive (89). 

It remains debated why these action classes are 

represented in different cortical areas, and how they 

relate to peripersonal responses (52, 56, 85, 87, 90). Our 

model offers a perspective that clarifies the issue: the 

separation between classes of actions and their 

Figure 4. Network analysis: Functional subnetworks and Successor-representation world models 

Left panel: Motor areas in the primate brain contain distinct functional units that coordinate different types of behavior. Similarly, training an artificial 
network to perform both approach and avoidance behaviors (top row) gives rise to spatially distinguishable sub-networks (middle row). Individual 
neurons can be classified as threat- or goal-preferring (red and blue, respectively). When the neuron-to-neuron distance depends on connection 
strength, identifiable threat- or goal-preferring sub-networks appear (red and blue, respectively). This is reminiscent of the anatomical structure of the 
parieto-premotor system, where peripersonal neurons cluster together based on their behavioural function (inset). Such sub-network structure is 
particularly likely to appear when the network condenses information (i.e. when it narrows; pink histogram), compared to when it spreads out 
information over many neurons in later layers (i.e. when it widens; blue histogram). 

Right panel: Peripersonal fields could be used as basis functions to flexibly interact with the world near the body. An artificial network that has only 
learned to reach positive valence stimuli (left column, blue; top row) can be ‘recycled’ to approximate an appropriate value field for avoidance 
movements (center column, red; top row). Specifically, by taking a weighted sum of the neural activities in the second half of the blue network (𝝍), the 
output from the red network could be faithfully reconstructed (last column, red fields). Furthermore, the probability that a stimulus would hit the body 
over any number of timesteps (3-timestep hit-probability shown; left purple field, bottom row) could be faithfully reconstructed using the same second 
half of the blue network (𝝍). This is particularly informative given that the agent never had access to information more than 1 timestep back, while the 

derived hit-probability is for 3 timesteps in the future: action values allow the agent to build up a longer-term predictive model. 
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subserving functional networks can be understood by 

considering the effect of the sign of the reward 𝑟𝑡, which 

is equivalent to stimulus valence.  

Approach. To investigate this possibility, we exposed 45 

agents to two types of objects (the rationale for the 

number of agents is explained in Model #4b of Methods). 

One type (goals) led to positive reward upon contact with 

a limb, while the other (threats) led to negative reward (i.e. 

a punishment; see footnote 1 above). 

Results. Both types of objects resulted in canonical 

action-value fields graded with limb proximity and 

anchored to limb position (p ≤ 8.98 x10-4, ρ ≤ 0.124 for 

positive valence stimuli; p ≤ 5.59 x10-6, ρ ≥ 0.163 for 

negative valence stimuli; FDR-corrected Pearson 

correlation tests; Figure 4, left). Behaviourally, the agents 

moved their limb towards positive objects, and away from 

negative objects (p ≤ 5.82 x10-4, |Z| ≥ 3.44; Figure 4, left).  

The activity of substantial proportions of units within each 

network correlated with proximity of at least one stimulus 

type (79 ± 7%). Units showed a clear preference for 

different stimulus types: 60 ± 12% of units’ activities 

correlated with proximity of goals, 55 ± 12% with the 

proximity of threats, and 36 ± 10% with both. Interestingly, 

in almost every network instantiation, two spatially-

segregated sub-networks reminiscent of those described 

above in primates emerged: positive-valence preferring 

units were more strongly connected to each other, and 

vice-versa (p ≤ 0.05 for 32/45 networks, FDR-corrected 

Pearson correlation tests). As a result, there was more 

sub-network structure than expected by chance across all 

networks (p ≤ 5.59 x10-6, T = 7.29; un-paired t-test; Figure 

5).  

Conclusion. Thus, the anatomical separation of the 

cerebral cortex into multiple action classes (91, 92) could 

be an emergent property of the different requirements of 

actions afforded by different types of stimuli: these 

Box 2: Successor features   

Successor features ( 𝝍𝜋) are a generalisation of the successor representation which has gained traction in both AI 

and neuroscience (11, 12). Successor features provide a possible solution to the problem of relearning value 

functions. The value function 𝑄𝑖
𝜋 for a specific task i and a policy 𝜋 can be constructed from two parts: the successor 

features 𝝍𝜋 and the successor weights wi. 

𝑄𝑖
𝜋(𝑠𝑡 , 𝑎) = 𝝍𝜋(𝑠𝑡 , 𝑎)T𝐰𝑖 

This allows the same successor features 𝝍𝜋 to be re-used for different tasks i by simply using different weights wi. 

Place cells probably provide successor features for a successor representation with temporal and spatial scales that 

allows animals to navigate through the environment (9, 11). This fits with the hippocampus’ role as a coordinator of 

multiple regions across extended periods of time (127).  

In the main text we demonstrate that peripersonal fields might provide successor features analogous to place cells 

but at smaller spatial and temporal scales. Similarly to the way in which place and grid cells allow navigation through 

the distant environment, body-part centric receptive fields might allow interaction with the environment near the 

body. 

This notion of a peripersonal, egocentric map as a near-body world model is supported by a recently demonstrated 

advantage of successor features: they can be approximated by a collection of value function estimates 𝑄̃𝑗≠𝑖
𝜋  across 

multiple tasks (128): 

𝝍𝜋 ≈ 𝝍̃𝜋 = [𝑄̃1
𝜋, 𝑄̃2

𝜋, … , 𝑄̃𝐷
𝜋] 

Thus, a peripersonal value function for a novel context i should simply be computable as a linear combination of 

several other peripersonal value functions (or, more realistically, of the activity of multiple late-stage units 

approximating those value functions; see right panel in Figure 5). 

A further demonstration of value fields as world models is the calculation of impact prediction. Impact prediction is a 

particularly easy world model to compute using peripersonal value fields, given that 𝑄̃𝑖
𝜋 is a function of the 

probabilities of bodily impact, under task i, conditioned on action policy 𝑝(𝑠𝑡+𝑘 = touch|𝑠𝑡 = vision or audition, 𝜋) (see 

Box 1): 

𝝍̃𝜋 = [𝑄̃1
𝜋, 𝑄̃2

𝜋, … , 𝑄̃𝐷
𝜋] 

=  E𝜋[𝒓𝑡 + 𝛾 ∙  𝑸̃𝜋(𝑠𝑡+1
′ , 𝑎)]  

= ∑ 𝒓𝑡  𝑝(𝑠𝑡|𝑠𝑡−1, 𝜋)

𝑠𝑡

  + 𝛾 ∙  E𝜋[𝒓𝑡+1 + 𝛾 ∙  𝑸̃𝜋(𝑠𝑡+2, 𝑎)] 

= ∑ 𝒓𝑡  𝑝(𝑠𝑡|𝑠𝑡−1, 𝜋)

𝑠𝑡

+ 𝛾 ∙ ∑  𝒓𝑡+1 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝜋)

𝑠𝑡+1

+ 𝛾2 ∙  E𝜋[𝒓𝑡+2 + 𝛾 ∙  𝑸̃𝜋(𝑠𝑡+3, 𝑎)] 

etc. Then, given that 𝑄̃𝑖
𝜋 is the value function for creating or avoiding bodily contact (i.e. only touch is rewarded), we 

can set 𝒓 to zero if no touch occurs, and the contribution of contact probability becomes explicit: 

𝝍̃𝜋 = ∑ 𝛾𝑘 ∙ 𝒓touch,𝑡+𝑘 ∑  𝑝(𝑠𝑡+𝑘+1 = touch|𝑠𝑡+𝑘 , 𝜋)

𝑠𝑡+𝑘+1

∞

𝑘=0
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actions are more efficiently deployed if the networks 

processing the stimuli separate at early stages. Should 

the networks not segregate at early stages, the necessary 

differential processing resulting in different action types 

would be left to the final stage of motor transformation. In 

a system with limited bandwith this would result in a lower 

SNR than necessary (93, 94). 

Peripersonal action values as near-body 

world models 

Model #5 – Transferable Successor Features 

Peripersonal neurons can be recycled to perform novel 

tasks (5a) 

Background. Context and environment can change 

quickly. Thus, both biological and artificial agents are 

more effective when they are quickly able to update their 

behaviour upon encountering a novel task or 

environment. For novel tasks, recomputing action values 

from scratch is highly inefficient and can overwrite 

previously learnt associations (95, 96). If the agent 

instead has access to a predictive model of the world, it 

can simply multiply the probability of future states by the 

expected rewards, and thereby generate appropriate 

action values to novel situations (96, 97). 

We will now demonstrate that this principle extends to 

peripersonal value fields: they can be used as building 

blocks that are recombined into novel action values. From 

this perspective, peripersonal receptive fields are 

successor features (see Glossary), reminiscent of place 

cells in hippocampal function (9) but working at shorter 

spatio-temporal scales (see Box 2). Thus, a sufficiently 

large number of peripersonal value fields create a model 

of the world near the body, an egocentric map that allows 

agents to cope with an ever-changing environment.  

Approach & Results. To demonstrate that peripersonal 

receptive fields can be used as transferable successor 

features, we computed new value fields for novel stimuli 

to which network A had never been exposed. Specifically, 

we first trained network A by only exposing it to positive 

stimuli, and network B by only exposing it to negative 

stimuli. We then approximated the value functions from 

network B (i.e., value functions appropriate for 

responding to threats) by using a linear combination of 

value functions coming from network A, which had never 

been exposed to threats.  

Note that this approximation is not trivial for two reasons. 

First, the value field for a given action in the presence of 

a goal is not simply the inverse of its value when there is 

a threat8. Second, the dynamics of the environment that 

networks A and B were trained in were different, to make 

reconstructing a negative-valence value field harder and 

thus demonstrate generalizability across environments. 

Specifically, instead of a 50% chance of moving an 

additional block up, down, left or right (i.e., the general 

rule of object movement in all other models; see 

Methods), goals had a 33% chance of moving an 

 
8 This holds true because (i) at a given timepoint, the value of any action 

assumes that the agent will perform the optimal actions at all future time 

additional block left or right, and never moved an 

additional block up or down. Nonetheless, the linear 

combinations of goal value functions calculated by 

network A were excellent approximations of the threat 

value functions computed by network B (p ≤ 10-30, ρ ≥ 

0.87, FDR-corrected Pearson correlation tests).  

Similarly, we recreated the value functions of network B 

using only the activity of units in late layers of network A 

(i.e., units in layers close to the output layer; those 

computing positive reward-seeking values). These threat-

avoidance values were good approximations of the 

originals (p ≤ 10-30, ρ ≥ 0.83, FDR-corrected Pearson 

correlation tests p ≤ 10-30, ρ = 0.92, FDR-corrected 

Pearson correlation tests; Figure 4, right panel). 

Therefore, value functions that had been learned in order 

to reach an appetitive stimulus, can be easily recycled to 

avoid an aversive stimulus. Crucially, such a mechanism 

avoids having to completely relearn threat-specific value 

functions from scratch.  

Conclusion. This recycling of value functions is a practical 

example of how a set of peripersonal fields could 

constitute the building blocks for a successor 

representation of the world near the body (𝝍̃𝜋; Box 2 and 

Glossary). The successor representation is recycled to 

allow the agent to interact adaptively with the near-body 

environment. Such a flexible, value-based world model 

provides a formal explanation for the notion that the 

representation (and even perception) of the space near 

the body is built up of a set of motor schemata (17, 53, 

98, 99). Our formal explanation is also fully in line with the 

conceptualisation of posterior parietal areas as state-

estimators (100) that use partially overlapping motor 

codes (101). 

points (see Box 1), and (ii) the optimal actions are different when facing 

a threat or a goal. 

 

Figure 5. Human reaction times to tactile stimuli shorten when 
concomitant auditory or visual stimuli are near the body. This effect 
is abolished when posterior parietal cortex or ventral pre-motor cortex is 
reversibly lesioned with TMS (left column; data from (59)). Similar results 
can be obtained for an artificial agent. If the agent’s network contains a 
module (red circle) that calculates contact-action value, reaction times to 
tactile stimuli will be shortened with visual stimulus proximity. When the 
contact-value module within the main network is ‘lesioned’, this effect 
vanishes (right column). 
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Subsuming other formal explanations of peripersonal 

responses (5b) 

Background. There are other interpretations of the 

functional significance of peripersonal responses. Many 

interpretations postulate that these responses reflect two 

types of world models: impact prediction and 

multisensory integration (46, 47, 49, 102–104). In fact, 

both models entail the same computation: both use vision 

or audition to compute the probability of touch (i.e. 

𝑝(𝑠𝑡+𝑘
′ = touch|𝑠𝑡 = vis/aud, 𝑎)), but the prediction occurs 

at different timescales (51). In multisensory integration 

touch is predicted in a short time-window around the 

visual or auditory stimulus, while in impact prediction, the 

computation occurs across a longer time-window, which 

always extends forward in time from the visual or auditory 

stimulus.  

Our successor representation subsumes and 

accommodates these previous explanations into a more 

general formalism. It explains, for example, why one can 

predict impact from peripersonal responses: value 

functions resulting from rewarded touch include terms 

which are essentially discounted estimates of hit 

probability, conditioned on action choice policy and 

multiplied by the value of contact reward (see Boxes 1 

and 2).  

Approach & Results It follows that action values (as well 

as the activity of units in late network layers) can be used 

to approximate the probability that a stimulus contacts the 

agent’s body at any point in the future. To demonstrate 

this, we approximated hit probability 1 to 7 timesteps into 

the future, using a linear combination of value functions 

coming from network A (see model 5a). These linear 

combinations were excellent approximations of hit 

probability at all 7 timespans (p ≤ 10-30, ρ ≥ 0.63 using 

action values, p ≤ 10-30, ρ ≥ 0.78 using neural activity, 

FDR-corrected Pearson correlation tests; Figure 4).  

Conclusion. In other words, the ability to predict touch on 

the basis of visual or auditory input is an arising property 

of the peripersonal successor representation. Thus, this 

perspective subsumes existing formal explanations 

based on impact prediction and multisensory integration. 

A further advantage of the formalism we propose is that 

most other formal models require highly specific 

assumptions about what the brain might be encoding or 

about the underlying neural architecture. For example, 

some older models of peripersonal responses specifically 

assumed that the brain encodes multisensory integration, 

thus forcing the network architecture to combine visual 

and tactile inputs by fixing specific weights between 

specific units (50). In other words, the inevitable result 

that a certain model successfully performs, say, function 

A (e.g. multisensory integration) when that model is set 

up to do precisely A, does not tell us why function A is 

achieved by the brain. Newer models used a lighter touch 

with respect to network architecture, and were able to 

recreate many features of canonical peripersonal space 

responses. However, they did still explicitly assume that 

the brain encodes impact prediction (47, 49, 104, 105), 

 
9 Although very recently, an impact prediction model has touched on 

the importance of motor repertoire: that model suggests that impact 

multisensory integration (106), or limb-centric target 

position (107) without providing a priori reasons for why 

the brain might do this. In a recent neural network model, 

Bertoni et al (46) showed that peripersonal fields can 

arise under the more parsimonious assumption that the 

brain attempts to condense multisensory input 

information. While this result is interesting, such pure 

representational models inevitably miss out the main 

function of the brain: acting to survive (93, 108–112).  

In contrast, here we started a priori from the basic 

assumption that the brain acts to survive by maximising 

reward and minimising punishment through making or 

avoiding contact with objects in the environment. We 

subsequently demonstrated that the abilities to perform 

multisensory integration and predict impact are natural 

consequences of computing action value, without having 

to assume that they are being encoded explicitly by the 

brain. We also showed that impact prediction is 

conditional on the available actions (Figure 1), something 

which impact prediction models, as well as other purely 

representational models tend to ignore9. 

Model #6 – Artificial psychophysical responses that 

seem unrelated to creating contact nonetheless form 

peripersonal fields 

Background. A number of behavioural responses that on 

the surface seem unrelated to creating contact are 

nonetheless proximity-dependent. For example, tactile 

detection reported by button press – i.e. an action that 

does not create contact with the concomitant auditory or 

visual stimulus – improves when the concomitant 

stimulus is delivered near the tactile stimulus (34–36, 

113). This proximity-dependence can be smoothly 

explained by the successor representation perspective.  

The reason is simple. Stimuli occurring at certain 

distances from the body, with or without an explicit 

instruction to grab or avoid them, activate a network that 

reflects the value of *potential* grabbing or avoidance 

actions: the peripersonal successor representation. This 

activation facilitates motor output for all actions that have 

overlapping motor codes with the successor 

representation. Given that an untrained and novel task 

involving near-body responses should make use of the 

successor representation, it follows that the tactile 

detection task, will be facilitated by the peripersonal 

successor representation, and thus show proximity 

dependence. Notably, tactile detection stops being 

affected by the proximity of the non-somatosensory 

stimulus after rTMS lesions of brain regions strongly 

related to motor planning and containing peripersonal 

neurons (e.g. posterior parietal and ventral premotor 

cortices) (114). 

Approach. Here we demonstrate the above postulate: 

behaviours that do not lead to creating or avoiding contact 

could nonetheless show proximity dependence because 

they are affected by proximity-dependent neurons that 

calculate action value. We trained a neural network to 

perform a new ‘reaction time’ task. In this task, the agent 

prediction better fits peripersonal data when one takes into account the 
time it takes to perform an action with the limb in question (104). 
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was required to report whether it received somatosensory 

stimulation, which was delivered concomitantly to task-

irrelevant visual stimuli presented at different distances 

from the limb (see Model #6 in Methods). Crucially, the 

network contained a pre-trained subnetwork module that 

returned the Q values of moving under the assumption t 

hat contact with visual stimuli would result in a reward 

(Figure 5; module is described in Model #1 of Methods). 

In other words, this ‘reaction time’ network made use of a 

peripersonal map: it included neurons that were also part 

of a ‘body-part centric response field’ network. For more 

details, see Model #6 in Methods. 

Results. Reaction times to tactile stimuli were affected by 

the position of a concomitant visual stimulus, with shorter 

responses when the visual stimulus was near the limb (p 

=0.0024, Wilcoxon signed rank test). However, when the 

network module with peripersonal response fields was 

artificially lesioned, the proximity effect disappeared (p 

=0.0117, Z =2.5219, Wilcoxon rank sum test between 

lesioned and non-lesioned reaction times; Figure 5).  

Conclusion. Together with TMS observations in humans 

(114), these results illustrate that when a network that 

calculates contact-action value (i.e. the peripersonal map 

Box 3: Model predictions  

The formalism described here makes a number of empirically testable predictions.  

First, extensive training should reduce or remove the proximity-dependent effect of a visual or auditory stimulus on 

the detection of a concomitant tactile stimulus. The reason for this prediction is that – under our framework – the 

network responding to the tactile stimulus uses a successor representation (i.e. the network overlaps with existing 

action representations meant to create or avoid contact; Model # 6). Therefore, after extensive training with feedback 

in a tactile reaction time task, the network enacting the task should progressively separate from the contact-sensitive 

network. Because the contact network responds to auditory and visual stimuli, the modulatory effect of such stimuli 

should lessen with training. 

Second, training participants to better predict whether or when a stimulus will impact the body, should not affect 

peripersonal fields. The reasoning here is simple: impact prediction should be an arising property of action value, 

and thus computable from it. Hence, improving impact prediction should be equivalent to training the network that 

extracts information from the successor representation, and as such leave body-part centered fields unaffected. 

Third, the extent of receptive fields should depend on certain traits that have analogues in reinforcement learning. 

One promising variable for investigation is the discount factor. Participants – human or animal – that show signs of 

being impulsive, can be said to have strong temporal discounting. As such, we should expect the receptive fields of 

these individuals to extend less far in both space and time. Similarly, one might expect that the state of an animal 

would affect its impulsivity and temporal discounting: if an animal is particularly hungry, it should be willing to wait 

longer and work more for food. As such, its receptive fields for appetitive actions should expand. The temporal 

discount factor could even be influenced by changing stimulus dynamics. Indeed, individual traits such as anxiety 

and cynophobia (fear of dogs) have been shown to affect peripersonal fields (129, 130). 

Fourth, the effect of uncertainty in stimulus position and direction should be two-fold. On the one hand, increasing 

speed and position uncertainty should increase the zone of the receptive field with magnitude above a given cut-off, 

as it becomes more likely that stimuli might reach the agent from formerly unlikely positions (Figure 1). On the other 

hand, the maximal response magnitude within the receptive field should decrease: if the agent is less certain that a 

stimulus, even if very near, will move in its direction, the value of avoiding or catching it will necessarily decrease 

(Figure 1). 

Fifth, decreasing the uncertainty of stimulus position and velocity to 0 should not homogenise peipersonal fields as 

long as the agent is able to move and reach the stimulus. This prediction is particularly significant because it runs 

counter to most other formulations of peripersonal fields. In those formulations that rely purely on impact prediction, 

it is exactly the uncertainty that creates the receptive field, because a stimulus that is immobile has no probability of 

contacting the body (46, 131). In our formalism however, the value of moving in response to a completely predictable 

and stationary stimulus is still non-zero, giving rise to a body-part centred receptive field (Figure 1).  

Sixth, a participant or animal’s available motor repertoire should affect peripersonal fields. For example, 

immobilising a limb alters the available actions, and should thus affect action values, even for actions which have 

not been directly impeded (moving the arm - for example – will be much less valuable if the hand is immobilized 

than if it is free to grasp). Indeed, recent empirical results suggest this motor repertoire affects peripersonal 

responses (132, 133). Similarly, the actions afforded by a stimulus (29, 38) or one's own limb dynamics (134) seem 

to affect receptive fields. 

We note that the outcome of these predictions should not be used be used as proof that the proposed framework is 

entirely wrong or right. More likely, different measures will conform to these predictions to different extents, and 

should thereby help us understand to what extent a ‘successor representation with action-field components’ is a 

satisfactory explanation of the data at hand. If the prediction is entirely wrong, we need to supplement or replace 

our model for that measure. If the prediction is entirely right, we must keep searching for other exceptions proving 

that the framework is unsatisfactory. 
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in posterior parietal and ventral premotor cortices) is part 

of a larger motor network (91) that performs a behavioural 

task unrelated to creating contact, the task can still be 

modulated in a body-part centric fashion. Therefore, 

behavioural measures such as a tactile detection with 

concomitant task-irrelevant stimuli can be interpreted as 

a generalised index of multiple action values (16): the 

peripersonal map that affects these measures consists of 

multiple peripersonal fields describing the value of 

various contact-related actions. Therefore, these 

behavioural measures modulated by body-part proximity 

likely reflect an arbitrarily weighted average across 

multiple action values. 

Conclusion 

We have demonstrated that body-part centric response 

fields are naturally arising properties of two simple and 

plausible assumptions about living agents. First, agents 

experience reward or punishment upon contact between 

the body and external objects. Second, they act to 

maximise reward.  

The resulting receptive fields can be observed both in 

artificial single-neuron activity and in the behaviour of the 

agent. These artificial fields are sensitive to many of the 

same factors that modulate biological peripersonal fields 

(Figures 2, 3). The structure of the artificial network 

subserving the agent’s actions is also reminiscent of its 

biological equivalents: it segregates into distinct sub-

networks for appetitive versus avoidance actions (Figure 

5, left panel). These arising properties indicate that the 

many different instances of biological peripersonal fields 

can be considered indexes of contact-action value, as 

originally hinted at by electrophysiology (115), and later 

suggested theoretically (16, 116, 117). Importantly, the 

formal explanation proposed here also makes multiple 

empirically testable predictions (see Box 3). This 

formalism has a further, theoretical implication: 

peripersonal fields can be combined into an egocentric 

map. The egocentric map provides a model of the world 

near the agent in terms of its future action values, which 

can be adapted to face novel tasks. This flexible model 

facilitates quick and efficient interactions with a constantly 

changing environment. 
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Methods 

Model design 

Base model 

The agent’s environment was a grid world of 13x14 

blocks (width [x] x height [y]), with recurring infinite 

boundary conditions on the left and right edges. In this 

world, an artificial neural network (ANN) controlled the x-

position of its ‘limb’, located at y = 3. At each timestep, 

the ANN could either keep the limb still, or move it left or 

right. Simultaneously, an object moved in the world. 

When the object came into contact with the limb, the 

agent received a positive reward (+2).  

The object spawned in at a random x-coordinate at the 

top of the world (i.e. at y = 14), and moved downward at 

a speed of 1 block per time step. In addition, in the same 

time step, the object had 50% chance to additionally 

move 1 block left, right, up, or down – a process 

simulating kinematic noise. After an object reached the 

bottom of the grid-world, a new object was spawned at 

the top of the grid-world. While staying still did not entail 

any reward (unless the object touched the limb), moving 

left or right had a cost of -0.001, to disincentivize random 

movement. 

The ANN received world information through 

“proprioceptive” input reflecting the limb x-position, and 

“visual” input reflecting the object x and y positions. The 

network output was a value for each possible action (Q-

value, see Box 1). Q-values were learned through Q-

learning with experience replay (97). Each simulation 

lasted 4,000,000 time steps, each of which was stored as 

a state transition. At the end of the simulation, the network 

was further trained on stored state transitions to ensure 

near-optimal fitting of the value function, using 100 

batches of 10,000 time steps each10.  

Model variations 

Most of the in-silico experiments described in the main 

text entail some variations to the base model environment 

described above. The exact variations are detailed in the 

description of each experiment, below. Here we only list 

the parameters that were varied. 

1. Number of limbs. In some environments, we 

allowed the model to control an additional limb, 

placed one block below the base limb (i.e. at y = 

2). 

2. Object velocity. In some environments, objects 

with different velocity could spawn. Each time an 

object was spawned its y-velocity was set 

randomly between 1 and 3 (blocks/timestep). 

Similarly, its x-velocity was set randomly between 

-2 and +2. 

3. Input timesteps. In the environments where the 

objects could have different velocities, the 

network was provided with a “memory” input: 

proprioceptive and visual information from the 

 
10 The scope of this article was not to create an algorithm that optimally 

learns particular Q-values. Therefore, the parameters used to learn Q-
values were not rigorously optimized with respect to computational 

preceding timestep. This allowed the network to 

infer object velocity (118). 

4. Reward offered by objects. In some 

environments, the reward consequent to contact 

with an object was set to either -2 or +4 instead 

of +2 of the base model. We note that we use the 

term ‘reward’ in the most general sense: thus, the 

agent can receive a negative reward, which can 

be understood as a punishment. 

5. Presence of a ‘tool’. In some environments, we 

provided the agent with a ‘tool’, the effective part 

of which was located 4 blocks above the limb and 

measuring 1x1. The tool moved when the limb 

moved. When an object came into contact with 

the tool tip (i.e. the effective part of the tool), the 

agent experienced reward as if its limb had made 

contact with the object.  

6. Number of objects in the environment. In some 

environments, two objects were simultaneously 

present. In such environments, we set the 

rewards to +2 for one object and -2 for the other, 

thus making the objects either ‘goals’ or ‘threats’, 

respectively. 

We ran each of the experiments described below three 

times, each time training a separate neural network with 

different architectures. This procedure ensured that the 

results observed were not due to specific network 

architecture. 

Combo Model 

We also trained one agent in a model environment that 

included all variations described above. Where 

appropriate, we additionally ran the statistical tests on this 

‘combo model’. This ensured that the results obtained in 

the simpler model variations also held for an agent that 

could display a wider range of environments with more 

complex behaviour. 

All analyses were performed in Matlab. All codes used will 

be made available upon publication.  

Model #1 – Limb-centric response fields 

Model design 

In Model #1 we tested whether the action values (i.e. the 

ANN output), as well as the activity of single artificial units 

correlated with limb-object proximity. We ran this model 6 

times, using a different network architecture each time. In 

3 of the 6 instances the agent controlled 1 limb, and in the 

other 3 instances the agent controlled 2 limbs. When the 

agent controlled 2 limbs, the second limb was placed one 

row further down from the first limb (i.e. at y = 2). As for 

the first limb, the second limb could also be kept still or 

moved left or right at every timestep. Only goals (i.e. 

objects offering a +2 reward) were present in these 

environments. 

To determine the number of network layers necessary for 

the agents to effectively interact with this environment, we 

assessed the performance of 12 networks composed of 

speed or performance. These parameters were chosen because they 
gave satisfactory performance, without substantial time investment. 
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1-12 layers. Each of these networks had 9 units per layer. 

We found that ANN composed of 4 and 5 layers were 

sufficient for near-optimal performance (~0.09 rewards 

per action) with one and two limbs, respectively. Network 

sizes were necessarily larger when controlling two limbs 

because the task was more complex; any of the three 

possible movements could be performed by each limb, 

thus requiring the agent to choose from a total of 9 actions 

(3x3) at every timepoint. As a result, we used network 

sizes of [12 10 8 6], [9 9 9 9] and [6 8 10 12] when 

controlling one limb, and [13 11 9 7 5], [9 9 9 9 9] and [5 

7 9 11 13] when controlling two limbs. Each entry in these 

vectors represents the number of units in a layer, from the 

first (input) to the last (output) layer. The network shapes 

were chosen to demonstrate consistency of results 

across different network types, given that some of the 

analyses involved investigated the activity of individual 

units in the networks.  

Statistical testing 

To determine whether the Q-values correlated with the 

limb-object proximity, we calculated (separately for each 

model and limb) the Pearson correlation coefficient 

between the Q-values of each action and multiple 

measures of distance across all possible limb- and object-

positions. These multiple measures were: absolute 

Euclidian limb-object distance, absolute limb-goal 

column-distance (i.e. x-axis distance), and absolute limb-

goal row distance (i.e. y-axis distance). We considered a 

Q-value to be body-part centric if the FDR-corrected p-

value was < 0.05 for all correlations across action types, 

number of models, and number of limbs. Q-values 

correlating with limb-object proximity constituted a 

peripersonal receptive field.  

We performed identical analyses for each artificial unit to 

determine whether its activity also correlated with limb-

object proximity (i.e. whether the neural activity was body-

part centric), and could be therefore classified as 

peripersonal. 

All analyses were performed separately for each of the 

six networks described above, as well as on another 

network trained on the ‘combo’ model (i.e. the model 

containing all the variations to the environment described 

in the section above). For the sake of conciseness, in the 

main text we report the highest, and thus weakest, p-

values out of all Pearson’s correlation tests across all 

networks and actions. 

To assess whether units with body-part centric receptive 

fields were homogeneously distributed across the ANNs 

layers, we calculated their proportion relative to the total 

number of units in each layer, separately for each ANN.  

We finally ran a Linear Mixed Effect analysis (LME) to 

predict the proportion of peripersonal units, with relative 

layer depth as a fixed effect and network number as a 

random effect (as we assessed 7 separate networks). 

Model #2 – Kinematic effects 

Model design 

To test whether the peripersonal fields (1) expand when 

stimuli move faster, and (2) expand in the direction of 

incoming stimuli, we ran an additional model. The agent 

had a single limb, and was only exposed to goals. As 

detailed above (Model variation #2), every time a new 

goal was spawned, it was assigned a horizontal velocity. 

These velocities were [1 2 3] blocks per timestep 

horizontally and [-2 1 0 1 2] vertically. Thus, goals always 

moved downward, but with varying speeds [1 2 3] and 

stimulus directions [-2 1 0 1 2]. In addition, to provide the 

agent with information about the objects’ movement, the 

object position at the previous timestep was additionally 

provided to the network. We ran this model 3 times, using 

a different network architecture each time. 

To determine the number of network layers necessary for 

the agents to satisfactorily interact with this environment, 

we assessed the performance of 12 networks composed 

of 1-12 layers. Each of these networks had 12 units per 

layer. We found that the ANN composed of 9 layers was 

sufficient for near-optimal performance (~0.1 rewards per 

action). Network sizes were necessarily larger than in 

Model #1 because the task was more complex: not only 

stimulus position but also speed and direction had to be 

taken into account. As a result, we used network sizes of 

[8 9 10 11 12 13 14 15 16], [12 12 12 12 12 12 12 12 12] 

and [16 15 14 13 12 11 10 9 8] units, from the first (input) 

to the last (output) layer. We chose these 3 network 

shapes to demonstrate consistency of results across 

different network types, given that part of the analysis 

involved the activity of individual units in the networks.  

Statistical testing 

To determine whether Q-value fields expanded as a 

function of the velocity with which objects fell downwards, 

we first averaged the Q-values across horizontal object 

speed ([-2 -1 0 1 2]) and possible actions. We then found 

the smallest vertical limb-object distance at which Q-

values were above a particular threshold (the 90th centile 

of Q-values in that condition). We calculated this distance 

for each of the three falling velocities [1 2 3], each limb 

position, each possible action, and each model. Next, we 

calculated the Pearson correlation coefficient ρ between 

this distance and the vertical object velocity. We 

considered a Q-field to be (1) affected by object velocity 

if the FDR corrected p-value was < 0.05 for all 

correlations, and (2) expanded by increasing object 

velocity if, additionally, the ρ value was positive (Figure 

4). 

To statistically test whether Q-value fields were affected 

by stimulus direction, we averaged Q-values across 

vertical object velocities [1 2 3], possible actions and 

vertical limb-object distances. We then calculated the 

asymmetry of the Q-fields as the horizontal (i.e. x-axis) 

distance between a) the center of mass of the Q-values 

distribution and b) the limb position. This distance was 

used as a proxy for lateral expansion of the Q-fields. We 

finally calculated the Pearson correlation coefficient 

between this lateral field expansion and the incoming 

stimulus direction, for each action (stay, move left, move 

right), and each of the 3 network architectures. We 

considered a Q-field to be affected by stimulus direction 

if the FDR corrected p-value was < 0.05 for all 

correlations. 
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All analyses were performed separately for each of the 

three network architectures described above, and also on 

another network trained on the ‘combo’ model (i.e. the 

model containing all the variations to the environment, as 

described in the ‘combo model’ section). For the sake of 

conciseness, in the main text we report the highest, and 

thus weakest, p-values out of all Pearson’s correlation 

tests across all networks and actions. 

We performed identical analyses for each artificial unit to 

determine whether its neural activity could be described 

as a field which expands as a function of object velocity 

and direction, with only one difference: because artificial 

neural activity can be both positive and negative, this 

activity was (1) multiplied by the sign of its correlation with 

distance, and (2) shifted along the y-axis (i.e. baseline 

corrected by its lowest activity value) to be always 

positive. This manipulation ensured that the shape of the 

neural fields remain identical, while allowing the statistical 

analysis described above for Q-values. FDR correction 

was performed across units, layers and network 

architectures.  

Model #3 – Tool use, plastic and dynamic 

changes  

Model design 

To demonstrate the effects of tool use, we ran a model 

entailing only goals and a single limb. This time, however, 

we added the possibility for that the agent to hold a tool. 

This was modelled by an additional binary input to the 

network indicating whether the tool was present or not. 

We used two different types of tool: one effective and one 

ineffective. The ineffective tool had no effects on the 

environment or rewards. The effective tool, in contrast, 

resulted in a reward to the agent if one world block located 

4 rows above the hand came into contact with a goal. This 

block represents the tip of the tool, effectively expanding 

the agent’s reach. Every time a new goal spawned, the 

agent had a 50% probability to ‘hold the tool’ until a new 

goal was spawned. 

To demonstrate the reshaping of peripersonal fields due 

to tool use, we trained the agent and assessed its 

performance in two steps. First, we trained the agent with 

an ineffective tool (i.e. a condition in which contact 

between the tool tip and a goal did not offer any rewards). 

We then retrained the same agent with an effective tool. 

To determine whether field reshaping occurred, we 

characterised the response fields of the agent before and 

after effective tool training, while they were and were not 

holding a tool. Specifically, we first averaged Q-values 

along the x-axis, and then calculated the number of Q-

value peaks along the y-axis, for every possible limb 

position (a peak was defined as any block with a 

magnitude higher than its two neighbouring blocks along 

the y axis). Similarly, we also calculated the number of 

peaks for each artificial unit’s response fields. 

We ran this model 3 times, using a different network 

architecture each time. The numbers of units and layers 

in these networks were determined as described in Model 

#2 section, but with a 0.5 probability of holding the tool 

and without multiple object speeds nor directions. As a 

result, we used network sizes of [8 10 12 14 16], [12 12 

12 12 12] and [16 14 12 10 8] units, from the first to the 

last layer.  

Statistical testing 

To determine whether the Q-value fields had different 

shapes under any of the conditions, we performed a 2x2 

ANOVA on the number of peaks in the Q-fields, with 

factors ‘tool training type’ (two levels: effective, 

innefective) and ‘tool presence’ (two levels: yes, no). To 

determine whether the Q-fields reshaped by holding an 

effective tool, we performed paired post-hoc Wilcoxon 

signed rank tests on the number of peaks, across limb 

positions and models.  

We also calculated the proportion of ‘tool-use sensitive’ 

peripersonal units across neural network layers. We 

subtracted the number of peaks after training while 

holding the effective tool from the number of peaks before 

training, and labelled a unit as ‘tool-use-sensitive’ if this 

number was larger than 0 (i.e. if training resulted in a new 

peak in the response field). We then calculated the 

fraction of such units for each layer and neural network 

separately. We finally ran a Linear Mixed Effect analysis 

(LME) to predict the proportion of tool-sensitive units, with 

layer depth as a fixed effect and network number as a 

random effect. 

Model #4 – Valence effects 

Model designs 

Expansion of receptive fields (4a). To test the effects of 

valence magnitude, we ran a model entailing two different 

types of goals, and a single limb. The rewards for making 

contact with the first and second goal types were +2 and 

+4, respectively. The two types of goals moved 

independently. To probe the effects of valence on 

movement choice more effectively, the cost of moving (-

0.1) was higher than in the other models (-0.001). The 

agent received “visual” input reflecting the x and y 

position of each goal type separately. The numbers of 

units and layers in these networks were determined as 

described in Model #2. As a result, we used network sizes 

of [6 10 14 18], [12 12 12 12] and [18 14 10 6] units, from 

the first to the last layer. 

Separation of movement classes (4b). To test the effect 

of negative valence stimuli, we used a model identical to 

model 5a, but entailing both goals and threats. The 

rewards for contacting these stimuli were set to +2 and -

2 respectively. Network sizes were also as above ([6 10 

14 18], [12 12 12 12] and [18 14 10 6] units, from first to 

last layer). Because we found that these each of these 

three networks split into two distinguishable sub-networks 

(one responding more to threats, and one to goals; see 

Results), we assessed the reliability of the generation of 

such sub-networks. To do so, we trained from scratch 

three new networks of the same sizes on new data, 15 

times per network size (so training 45 networks in total). 

To ensure that the results were not due to the specific 

minimal network sizes, we then trained three additional 

new networks of larger sizes ([6  10 12 14 16 18], [12 12 

12 12 12 12 12] and [18 16 14 12 10 8 6]), again 15 times 

per network size. Results reported in the main text refer 
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to this final training of larger networks, because (1) 

statistical results using more units are more robust, and 

(2) this last analysis represents the final validation of the 

results. The results from the smaller networks, reported 

below in the ‘statistical testing’ section, were qualitatively 

similar. 

Statistical testing 

Expansion of receptive fields (4a). First, to test whether 

Q-value magnitudes are larger in response to stimuli with 

higher valence, we performed sign rank tests between the 

Q-values obtained with low-reward and high-reward 

goals. We performed these tests for each action (move 

left, move right and stay), and each of the 3 network 

architectures. We considered a Q-field to be affected by 

reward magnitude if the FDR-corrected p-value was < 

0.05 for all comparisons. 

Second, to test whether actions related to a high-reward 

object are performed when the object is at greater 

distances from the body as compared to a low-reward 

object, we shifted Q-values by the minimum value, to 

make them all positive. We then compared the Q-values 

in the y-direction to a normally-distributed noisy threshold 

for action initiation: the threshold was centric at the 90th 

centile of Q-values, with a standard deviation of 25% of 

the 90th centile. The proportion of initiated contact-related 

actions was calculated by entering the Q-value into the 

normal cumulative distribution function of the threshold 

distribution. We performed this analysis in all models, for 

all limb positions and actions. Next, we compared the 

distance at which the proportion of contact actions was 

above 0.5 between stimuli of the two reward magnitudes, 

using a Wilcoxon signed-rank test for each network 

architecture. A difference on this test indicates that 

higher-reward stimuli result in actions at further distances 

from the body. 

Third, we assessed the effects of reward magnitude on 

artificial unit response. For each unit and network, we 

calculated the variability in neural activity for all object and 

limb positions. We did this separately for high- and low-

reward objects. We then assessed whether units were 

overall more responsive to higher-reward objects by 

calculating the difference in variability between high- and 

low-valence objects, dividing this difference by the sum of 

the variance across reward magnitudes, and comparing 

the distribution of these normalized differences against 

zero using a Wilcoxon signed rank test.  

Separation of movement classes (4b). First, we verified 

that both Q-values and neural activity correlated with 

limb-object proximity. We performed the same analyses 

described for Model #1, but this time also on Q-values 

and neural activities resulting from negative reward 

objects (i.e. threats). To perform the analyses relative to 

goals, we averaged the Q-values across all possible 

threat positions, and vice-versa. 

Next, we investigated the differences in agents’ behaviour 

in response to goals and threats. We labelled the agents’ 

behaviour as follows: -1 if the limb moved to intercept the 

object (i.e. if it moved to reduce the x-axis distance to the 

goal or the threat), 0 if the limb did not move, and +1 if the 

limb moved to avoid the object (i.e. if it moved to increase 

the x-axis distance to the goal or the threat), for every 

network architecture, object position, and limb position. 

We then performed a Wilcoxon signed rank test on these 

movement types, comparing the presence of goals with 

the presence of threats, across models and object 

positions.  

Subsequently, we used two different approaches to test 

whether distinguishable sub-networks arose in these 

agents. 

First, we assessed whether units of a given type were 

more strongly connected to other units of the same type. 

To do so, we (1) created 𝒄, a measure of how much each 

unit 𝑖 in a network prefers either positive or negative 

objects. This measure of preference 𝒄 was defined as the 

difference in absolute covariance between a unit’s activity 

𝒂𝑖 and the distance 𝒅𝑖 between the limb and either types 

of object: 

𝑐𝑖 = |𝑐𝑜𝑣[𝒂𝑖, 𝒅𝑖
+]| − |𝑐𝑜𝑣[𝒂𝑖, 𝒅𝑖

−]|  

Where 𝒅𝑖
+ and 𝒅𝑖

− are vectors of distances between the 

limb and either positive-reward or negative-reward 

objects, respectively. We then (2) assessed whether each 

unit is more connected to other units with similar 

preference 𝒄:  we calculated the Pearson correlation 

coefficient between all 𝒄, and the weighted preferences of 

all units connected to them, 𝑊𝒄. The weights 𝑊𝑖𝑗 were 

the input weights from each unit 𝑖 to each unit 𝑗, z-scored 

across all inputs for each 𝑗. We considered a network to 

contain distinguishable sub-networks (according to this 

first metric) if the FDR-corrected correlation p-value was 

< 0.05. 

A second approach to test whether distinguishable sub-

networks arose, we quantified the spatial sub-network 

structure, assuming that more strongly connected units 

are more likely to be closer to each another. To do so, we 

projected each network onto a 2D plane as a weighted 

graph using the matlab digraph function, with edge length 

set to the inverse of the weight between every pair of 

units. Next, we assigned the neural preference 𝑐𝑖 to the 

position of each unit i, and applied a 2D gaussian filter 

(𝜎 = [5, 5]) across the graph. In this way, areas of the 

graph with large groups of similarly-classified units would 

have high absolute values. Finally, we summed these 

absolute values (i.e. the values of filtered similarity index) 

over the entire graph. We then permuted the location of 

the 𝑐𝑖 values 100 times, filtered and summed them, and 

finally compared the original sum against this null 

distribution. We considered the networks to be more 

structured than by chance if the difference between the 

real and permuted values was > 0 (assessed using an un-

paired t-test).  

All analyses were performed on the 45 (15x3) networks 

described above, as well as on the ‘combo’ network 

trained on the more realistic environment. As for all 

previous models, in the main text we report the highest, 

and thus weakest, p-values across all networks. 

Small-network results. Both goals and threats resulted in 

action-value fields graded with limb-object proximity and 

anchored to limb position (p ≤8.98 x10-4, ρ ≤0.124 for 

positive valence stimuli; p ≤5.59 x10-6, ρ ≥0.163 for 
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negative valence stimuli; FDR-corrected Pearson 

correlation tests; Figure 5). Behaviourally, the agents 

moved their limb away from threats and towards goals (p 

≤5.82 x10-4, |Z| ≥3.44). The activity of a substantial 

proportion of units within the network correlated with the 

proximity of at least one stimulus type (79 ±7%). In 

addition, units showed preference for a given stimulus 

types. 60 ±12% of neuronal activities correlated with goal 

proximity, 55 ±12% with threat proximity, and 36 ±10% 

with both. In almost every network architecture, two sub-

networks emerged: goal preferring units were more 

strongly connected to each other and vice-versa (p ≤0.05 

in 28 out of 48 tested networks, FDR-corrected Pearson 

correlation). Importantly, there was more sub-network 

structure than expected by chance across all networks (p 

≤5.59 x10-6, T =7.29; un-paired t-test). 

Model #5 – Transferable Successor Features 

Model design 

To demonstrate that Q-fields can be used as a set of 

successor features for near-body interactions, we used 

two different environments. In one environment the agent 

was only exposed to threats (yielding a -2 reward upon 

contact). In the other the agent was only exposed to goals 

(yielding +2 reward upon contact). To determine network 

sizes we used the same approach as for Model #1. As a 

result, we used network sizes of [12 10 8 6], [9 9 9 9] and 

[6 8 10 12] units, from the first to the last layer. We used 

these same networks to demonstrate that successor 

features encode impact probability (see Reconstruction of 

hit probability, below). To make the task of reconstructing 

a negative-valence value field harder, we altered the 

dynamics of the positive-reward objects: instead of a 50% 

chance of moving an additional block up, down, left or 

right, goals had a 33% chance of moving an additional 

block left or right, and never moved an additional block up 

or down.  

Statistical testing 

Transferable successor features. We reconstructed Q-

values in response to negative-reward stimuli (threats) 

from Q-values in response to positive-reward objects 

(goals). To do so, we first retrieved all Q-values 

calculated by an agent that had only been exposed to 

goals, for all stimulus and limb positions. We did the same 

for all Q-values calculated by an agent that had only been 

exposed to threats. We then linearly reconstructed the 

latter (i.e. the Q-value to negative-reward stimuli for ‘stay’ 

action) using the former (i.e. the Q-values to positive-

reward stimuli for ‘stay’, ‘move left’, and ‘move right’ 

actions).  

We subsequently calculated the strength of the 

relationship between the reconstructed threat Q-values 

and the original threat Q-values using a Pearson 

correlation. To demonstrate that body-part centric neural 

activity (i.e. value function approximations) can be 

exploited in the same manner, we repeated this analysis 

a second time. The only difference was that instead of 

using goals Q-values to reconstruct threats Q-values, we 

took the neural activities from the later layers of the neural 

network that calculated Q-values in response to goals 

(Figure 5).  

We performed these comparisons between the two 

models of each network architecture, but trained on either 

goals or threats. We considered the reconstructed Q-

fields to be good approximations of the original values if 

the FDR corrected p-value was < 0.05 for all tests. 

Reconstruction of hit probability. We also reconstructed 

the probability that any object would make an impact with 

the limb (i.e. the probability of experiencing touch given 

vision, 𝑝(𝑠𝑡+𝑘
′ = touch|𝑠𝑡 = vis/aud, 𝑎)) from existing Q-

values. We first calculated the actual impact probability of 

an object using the observations stored from the agent 

training (note that objects disappeared after they either 

contacted the limb or touched the bottom of the world 

[y=0], and so impact probability was always ≤1.) We 

subsequently linearly reconstructed the hit probabilities 

for all world states using the goal Q-values, and 

calculated the correlation strength as we did it for 

reconstructed threat Q-values. Again, we performed the 

same analysis using the neural activity from the later 

layers of the network. We performed these 

reconstructions using all architectures of the models 

trained with goals. We considered the reconstructed hit 

probabilities to be good approximations of the original 

values if the FDR-corrected p-value was < 0.05. 

Model #6 – Psychophysical responses 

Model design  

To demonstrate that behavioural responses that do not 

necessarily entail avoiding or creating contact with 

objects can nonetheless be body-part centric, we trained 

a new ANN to perform a different task. This network 

controlled one limb as described above, but contact with 

environmental objects was not rewarded. Instead, the 

agent was rewarded for performing a correct ‘button 

press’ action in response to an occasional extra ‘tactile’ 

input given to the ANN concomitantly to the standard 

visual and proprioceptive input. Crucially, the tactile input 

was noisy, i.e. it fluctuated randomly around 1 and 0 

(when tactile input was present and absent, respectively).  

The agent was rewarded when it responded correctly to 

the tactile input with a button press. If the agent 

responded when there was no tactile input, it was 

punished. We calculated the average response rate to 

these noisy tactile stimuli. This model, besides simulating 

a tactile detection task, can also be interpreted as 

simulating a reaction time task: assuming that better 

detection leads to faster reaction times, a high average 

response rate indicates a short reaction time and vice 

versa.  

The network performing the reaction time task had a 

crucial quirk: it contained a pre-trained subnetwork 

(specifically, the network described in Model #1) that 

returned the Q-values of moving under the assumption 

that contact with visual stimuli would result in a positive 

reward, even if in the current task contact was irrelevant 

to receive a reward (Figure 3). 

To simulate the results of rTMS lesion experiments in 

humans (59), we calculated the average response rate 
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under two conditions: 1) leaving the network intact, as 

described above, and 2) lesioning the network by setting 

the output of the pre-trained module to zero for any input 

condition, thus mimicking an rTMS lesion of the PPC in 

humans. 

Statistical testing 

We tested whether the network lesioning removed the 

proximity effect on reaction times. For the sake of analogy 

to how real rTMS lesion data are presented (Figure 3), we 

grouped the reaction times according to whether the 

visual stimulus was ‘Near’ or ‘Far’ from the limb (59). Near 

and Far responses were the average reaction times when 

stimuli were 1-5 and 7-11 blocks away from the limb along 

the y-axis, respectively. We calculated these measures 

for each of the 13 possible limb position. Next, for each 

limb position, we subtracted the Far from the Near 

responses, to obtain a measure of the shortening of 

reaction times as a function of stimulus proximity. We 

compared this reaction time shortening to zero using a 

Wilcoxon signed rank test, as well as between the intact 

and rTMS lesioned neural networks using a Wilcoxon 

rank sum test. 
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Supplementary Videos 

Supplementary videos are available at 

https://doi.org/10.6084/m9.figshare.20449758.v3  

Video legends:  

 

 

 

  

Supplementary Video SV1,  Learning agent. Agents are trained to move their limbs (grey hand) to avoid threats (red squares) and 
intercept goals (blue squares). Video shows instances of an example agent being trained in an environment where threats move less 
predictably than goals. Before training, the agent’s behaviour is random (left panel). After some training, the agent intercepts goals, 
but only when it is unlikely to be hit by a threat. 

 

Supplementary Video SV2,  Shifting fields. A large portion of artificial neurons display body-part centric responses that shift with the 
location of the limb. Receptive fields of each artificial neuron are shown as colour maps. ‘Peripersonal’ receptive fields are highlighted 
by a black box. 
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