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Abstract 
 
Organisms have evolved circadian rhythms in behavior to anticipate daily opportunities and challenges such as 
mating and predation. However, the ethological investigation of behavioral rhythms has been traditionally limited 
to studying easy-to-measure behaviors (such as locomotor activity) on a circadian timescale or difficult-to-measure 
behaviors with limited temporal resolution. Here we sought to examine eight overt behaviors never before studied 
as a function of time of day, sex, light cycle, and neuropeptide signaling. We hypothesized that sex and neuropeptide 
signaling-dependent differences in daily behaviors have been largely missed because of the focus on running wheel 
activity in rodents. To address this hypothesis, we used high-throughput machine learning to automatically score 
complex behaviors from millions of video frames of singly housed, freely behaving male and female mice. 
Automated predictions for each of the eight behaviors correlated highly with consensus labels by trained human 
classifiers. We discovered reliable daily rhythms in eating, drinking, grooming, rearing, nesting, digging, exploring, 
and resting behaviors that persisted in constant darkness. We found that the overall frequency of most behaviors 
was predominantly affected by light cycle, but the amplitude and peak time of circadian rhythms in multiple 
behaviors were each dramatically influenced by neuropeptide signaling and sex. We conclude that machine learning 
can be used to reveal novel daily rhythms in behaviors that depend on sex, neuropeptide signaling, and ambient 
light and will allow for the rapid circadian phenotyping of mice with different genotypes or disorders. 
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Introduction 

 
Understanding the genetic, neural, and ethological 

mechanisms that temporally organize behavior is a fundamental 
goal of fields including neuroscience, motion science and 
circadian biology. One such behavior, locomotor activity, has 
been highly studied at a wide range of timescales using running 
wheels or infrared beam breaks in animals or wrist actigraphy in 
humans (Ancoli-Israel et al., 2003; Jud et al., 2005). Other 
behaviors such as eating and drinking can be measured over time 
with optical or electrical sensors (Schwartz and Zimmerman, 
1990; Pendergast et al., 2013). However, determining the 
temporal structure of more complex behaviors typically requires 
manual scoring by trained observers of videos recorded over long 
timescales and, consequently, has not been widely adopted. To 
overcome the challenges of labor intensive and subjective manual 
behavior scoring, we sought to adapt a machine learning 
approach to simultaneously track several behaviors in individual 
mice over multiple days and conditions with high temporal 
resolution. 

 
We chose to investigate eight behaviors that encompass an 

individual mouse’s complete behavioral repertoire: eating, 
drinking, grooming, rearing, nesting, digging, exploring, and 
resting. We selected these comprehensive behaviors even though 
some can be further subdivided because together they describe 
the full extent of a singly housed mouse’s “ethogram,” including 
maintenance, nesting, exploratory, and inactive behaviors 
(Garner, 2017). Many of these behaviors have been quantified 
using various machine learning approaches that use markerless 
pose estimation including DeepLabCut, SimBA, and MARS 
(Pereira et al., 2020). However, these methods have not yet been 
applied to understanding the temporal organization of behavior.  

 
To address this critical problem, we used DeepEthogram, a 

recently developed general purpose machine learning classifier 
that uses raw pixel values of videos instead of pose estimation to 
predict behavior with high accuracy (Bohnslav et al., 2021). 
Importantly, when given a video input, a trained DeepEthogram 
model will output a temporally sequenced binary matrix - an 
ethogram - that indicates if a given behavior is present or absent 
in a given frame. We could then use this ethogram to determine if 
and how behavioral patterns change over time. Specifically, we 
focused our analysis on how these eight behaviors changed on a 
circadian, or near-24 h, timescale. Circadian rhythms provide an 
excellent opportunity to test our model on data collected over 
multiple days and are also ethologically relevant, as they have 
evolved to provide an adaptive advantage to animals by allowing 
them to anticipate regular changes to their environment such as 
food availability, predator avoidance, and mate selection 
(Yerushalmi and Green, 2009). 

 
 In mammals, circadian rhythms in behavior and physiology 

are coordinated by the central pacemaker, the suprachiasmatic 
nucleus (SCN) (Hastings et al., 2018). To accomplish this, the 
SCN must be synchronized by a population of neuropeptidergic 
vasoactive intestinal peptide (VIP)-producing neurons that are 
critical for the circadian organization of physiology (Jones et al., 
2018; Mazuski et al., 2018; Todd et al., 2020). Mice genetically 
deficient for Vip or its receptor exhibit disrupted circadian 
rhythms in numerous physiological processes including 
glucocorticoid production, metabolism, cardiovascular function, 
and body temperature (Bechtold et al., 2008; Loh et al., 2008, 
2014; Schroeder et al., 2011). VIP is also required for normal 
circadian rhythms in locomotor behavior, as Vip-deficient mice 
fail to fully entrain their wheel-running activity to a 12 h:12 h 
light:dark cycle (LD) and exhibit attenuated, or, frequently, 
arrhythmic wheel-running activity rhythms in constant darkness 
(DD) (Colwell et al., 2003; Aton et al., 2005). However, whether 
this neuropeptide is essential for daily rhythms in other complex 

behaviors is unknown.  
 
Males and females also differ in the temporal patterning of 

numerous physiological processes (Krizo and Mintz, 2014; Joye 
and Evans, 2022). Clear sex differences have been identified in, 
for example, daily rhythms in glucocorticoid production, 
cardiovascular function, body temperature, and immune function 
(Walton et al., 2022). Sex differences have also been observed in 
locomotor activity rhythms, although these behavioral 
differences are much more subtle. For instance, male mice show 
a greater precision of locomotor activity onsets in LD and female 
mice show a longer locomotor activity duration in DD (Kuljis et 
al., 2013). These differences are likely due to differences in levels 
of circulating sex hormones and sex hormone expression (Bailey 
and Silver, 2014). However, it is unclear if there are more overt 
sex differences in other behavioral rhythms that have not yet been 
investigated. 

 
Here, we tested the hypotheses that neuropeptide signaling, 

sex, and ambient light affect daily patterns of behavior. We used 
machine learning to measure behaviors never before studied 
simultaneously as a function of time of day in male and female 
wild-type and Vip-deficient mice housed in LD and in DD. We 
found that the overall frequency of most behaviors was 
predominantly affected by light cycle rather than VIP or sex. 
However, we discovered that the amplitude and peak time of 
circadian rhythms in multiple behaviors were each dramatically 
influenced by neuropeptide signaling and sex. We conclude that 
several novel behavioral rhythms depend on neuropeptide 
signaling, sex, and light, and that machine learning can be used 
to discover circadian phenotypes that were previously difficult or 
impossible to observe. 

 

Results 

 
Machine learning can reliably classify behaviors. 
 

To validate the use of machine learning to accurately identify 
behaviors, we recorded videos from mice singly housed in 
custom-built cages (Supplementary Fig. 1a, for full details see 
Methods). We manually labeled a set of frames as one of eight 
behaviors (eating, drinking, grooming, rearing, nesting, digging, 
exploring, or resting). We used these labeled frames to train our 
model (Supplementary Fig. 1b) to automatically predict 
behaviors in our recorded videos (Supplementary Fig. 1c).  

 
We then used our model to infer behaviors on a manually 

labeled 24 h video of a freely behaving mouse. We compared the 
inferred labels to our manual labels and calculated an F1 score 
that accounted for both true and false positives and negatives. 
Our model had an F1 score of ≥ 75% for 7 out of 8 behaviors, and 
an F1 score of 52% for the “rearing” behavior. To determine how 
these F1 values compared to chance, we simulated ten randomly 
generated arrays of behaviors and calculated their F1 scores 
versus our ground truth manually labeled frames. Chance F1 
values for our simulated random arrays were much smaller than 
the calculated F1 scores from our model: 14.1 ± 1.8 % (eating, 
mean ± SEM), 0.4 ± 0.9 % (drinking), 20.3 ± 3.9 % (grooming), 
0.4 ± 1.3% (rearing), 4.6 ± 0.7 ± (nesting), 9.9 ± 1.8 % (digging), 
7.5 ± 1.3 % (exploring), and 43.8 ± 12.8 % (resting). We also 
inferred the same video twice through our model and found that 
reproducibility was high (>90%) between inferences. 

 
Next, we wanted to determine how well our model predicted 

behaviors compared to naive human classifiers. Three trained 
human classifiers independently labeled behaviors in four 5 min 
videos of a wild-type mouse. The labeled videos were each 
empirically compared by all four human classifiers to generate a 
ground-truth reference standard for each of the four videos that 
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minimized intra-classifier variability (<3% of all frames). We then 
had four naive human classifiers and our model label each of the 
four videos and compared the human labeled behaviors and 

model labeled behaviors to those labeled in the reference 
standard (Supplementary Fig. 1d). We found that accuracy 
(defined as percentage of labeled frames that were identical to the 

 
Figure 1. Circadian rhythms in multiple behaviors in male and female wild-type and Vip-deficient mice. Top, ethograms of 
average behaviors (colored lines and dark colored shading, mean ± SEM) from mice (n = 32; 8 wild-type male, 8 wild-type female, 8 
Vip-/-, 8 Vip-/- female) recorded over 96 h in a 12:12 light:dark cycle (LD, yellow and dark gray background) and in constant darkness 
(DD, light and dark gray background). For visualization, data were smoothed with a 1 h running average, Y axes were individually 
scaled by behavior, and areas under the curves were shaded. Bottom, raster plots of behaviors from each individual mouse in LD 
and DD; warmer colors indicate greater activity. For visualization, behaviors were plotted in 1 h bins. Activity profiles of individual 
mice were scored as either rhythmic (color) or arrhythmic (grayscale). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.18.504454doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504454
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

reference standard) for each behavior did not differ significantly 
between videos labeled by human classifiers or our model (p ≥ 
0.500 for each behavior, Two-Way ANOVA).  

 
Finally, we wanted to compare the results of our model to 

results from an independent automated behavior analysis 
program. We used MouseActivity (Zhang et al., 2020) to analyze 
the position of a mouse and automatically calculate several 
variables including distance traveled and velocity over time in 
four video clips previously labeled by our model. To directly 
compare MouseActivity-predicted behaviors with the predictions 
of our model, we thresholded the MouseActivity output by 
defining “exploring” behavior as a minimum path length of 9 mm 
and “resting” behavior as a frame with no observed movement. 
We found remarkably high (>80%) agreement between our 
model’s and MouseActivity’s predictions of whether a given frame 
contained exploring or resting behavior (Supplementary Fig. 
1e). Together, these methods of validation demonstrate that our 
model can reliably and accurately predict behaviors in our videos. 
 
Behavior frequency differs by genotype, sex, and light 
cycle. 

 
We next wanted to use our validated model to determine the 

temporal distribution of a mouse’s behavioral repertoire over 
multiple days. To do this, we recorded videos of freely-behaving 
male and female wild-type and Vip-/- mice (n = 32; 8 wild-type 
male, 8 wild-type female, 8 Vip-/-, 8 Vip-/- female) over 96 h in a 
12:12 light:dark cycle (LD) and in constant darkness (DD). We 
then used machine learning to automatically classify which of 
eight behaviors were present in each frame of the recorded videos, 
as described above. We transformed this binary classification 
matrix into an ethogram depicting the occurrence of each 
behavior over time both for each individual mouse and for mice 
averaged across genotype and sex (Fig. 1). 

 
Because we noticed that certain behaviors (e.g., resting) 

occurred much more frequently than other behaviors (e.g., 
nesting) across all animals of either genotype or sex, we 
quantified behavior frequency, which we defined as the summed 
total number of frames containing a given behavior for each 
mouse in 2 days in LD and in 2 days of DD (Fig. 2, 
Supplementary Fig. 2, Supplementary Table 1). We 
observed that behavior frequency differed by genotype, sex, and 

 
Figure 2. Behavior frequency differs by genotype, sex, and light cycle. Behavior frequencies (total activity counts) that 
significantly differ by genotype, sex, or light cycle in individual mice. a) Behavior frequencies for individual wild-type (WT; male and 
female, housed in a 12:12 light:dark cycle (LD) and in constant darkness (DD); closed circles) and Vip-deficient (KO; male and female, 
housed in LD and in DD; open circles) mice. b) Behavior frequencies for individual male (WT and KO, housed in LD and in DD; closed 
circles) and female (WT and KO, housed in LD and in DD; open circles) mice. c) Behavior frequencies for individual mice housed in 
LD (WT and KO, male and female; closed circles) and in DD (WT and KO, male and female; open circles). *, significant difference in 
behavior frequencies between groups within a genotype, sex, or light cycle, Three-Way Repeated Measures ANOVA, p < 0.05; ** p 
< 0.01; *** p < 0.001. ##, significant interaction between behavior frequencies across genotype, sex, or light cycle, p < 0.01. Lines 
depict mean ± SEM. 
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light cycle. Specifically, we found that wild-type mice of either 
genotype in either light cycle rear and explore more frequently, 
but groom less frequently, than Vip-/- mice (Fig. 2a). We also 
found that male mice of either sex in either light cycle groom more 
frequently, but dig less frequently, than female mice (Fig. 2b). 
Importantly, these results indicate that there is no difference in 
the frequency of occurrence of most behaviors between wild-type 
and Vip-/- mice (5/8 behaviors similar) or male and female mice 
(6/8 behaviors similar). 

Conversely, we found that the frequency of occurrence of 
most behaviors differed between mice housed in LD and in DD 
(2/8 behaviors similar, Fig. 2c). We found that mice of either 
genotype or sex in LD rear and rest more frequently, but eat, 
drink, and groom less frequently, than mice in DD. Furthermore, 
wild-type mice of either sex explored more frequently in LD than 
in DD, but Vip-/- mice of either sex did not differ in exploring 
behavior in either light cycle. Together, these results demonstrate 
that light, but, surprisingly, not sex or genotype, affects the 
frequency of most behaviors. 

 
Behavior rhythm amplitudes differ by genotype, sex, 
and light cycle. 
 

We noticed that even though overall behavior frequency was 
mostly similar between male and female wild-type and Vip-/- 
mice, the distribution of each behavior seemed to vary with time 
of day across each genotype, sex, and light cycle. To quantify this, 
we used circadian analysis to detect daily rhythms in each 
behavior across individual mice (Fig. 1). We found that most 
individual mice of each genotype and sex exhibited significant 
diurnal (in LD) and circadian (in DD) rhythms for each behavior 
regardless of which method we used to determine rhythmicity 
(Supplementary Fig. 3). 

 
We next determined the amplitude of each behavioral 

rhythm for each mouse, which we defined as half the distance 
from the peak to the trough of a fitted cosine wave (Yang and Su, 
2010). We defined the amplitude of arrhythmic behaviors for 
each mouse as zero. Amplitude is analogous to the “strength” of a 
particular behavioral rhythm; that is, a rhythm with a higher 
amplitude has more defined bouts of activity and inactivity over 
the 24 h day.  We observed that unlike behavior frequency, the 
amplitudes of each behavioral rhythm varied widely by genotype, 
sex, and light cycle (Fig. 3, Supplementary Fig. 4, 
Supplementary Table 2). Specifically, we found that wild-type 
mice of either sex in either light cycle had much higher amplitude 

 
Figure 3. Behavioral rhythm amplitudes differ by genotype, sex, and light cycle. Behavior rhythm amplitudes (in arbitrary units) 
that significantly differ by genotype, sex, or light cycle in individual mice. a) Behavioral rhythm amplitudes for individual wild-type (WT; 
male and female, housed in a 12:12 light:dark cycle (LD) and in constant darkness (DD); closed circles) and Vip-deficient (KO; male 
and female, housed in LD and in DD; open circles) mice. b) Behavior rhythm amplitudes for individual male (WT and KO, housed in 
LD and in DD; closed circles) and female (WT and KO, housed in LD and in DD; open circles) mice. c) Behavior rhythm amplitudes 
for individual mice housed in LD (WT and KO, male and female; closed circles) and in DD (WT and KO, male and female; open 
circles). *, significant difference in behavior rhythm amplitudes between groups within a genotype, sex, or light cycle, Three-Way 
Repeated Measures ANOVA, p < 0.05; ** p < 0.01; *** p < 0.001. #, significant interaction between behavior rhythm amplitudes across 
genotype, sex, or light cycle, p < 0.05, ## p < 0.01, ### p < 0.001. Lines depict mean ± SEM. 
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eating, drinking, rearing, exploring, and resting rhythms than 
Vip-/- mice (Fig. 3a). The decrease in circadian amplitude we 
observed for most behaviors in individual Vip-/- mice is similar to 
the reduction in wheel-running activity rhythm amplitude 
previously observed in these animals (Aton et al., 2005). This 
suggests that SCN desynchronization due to disrupted VIP 
signaling dampens the amplitude of, but does not eliminate, most 
behavioral rhythms. 

 
We also found that male mice of either genotype in either 

light cycle had higher amplitude nesting rhythms, but lower 
amplitude digging rhythms, than female mice (Fig. 3b). 
Additionally, wild-type male and female mice in either light cycle 
had similar amplitude resting rhythms, but Vip-/- male mice had 
lower amplitude resting rhythms than female mice. These results 
suggest that even though most behavioral rhythms are similar 
between individual male and female mice regardless of genotype 
or light cycle, there are pronounced sex differences in specific 

behavioral rhythms (nesting and digging) that had not previously 
been identified. 

 
Finally, we found that mice of either genotype and sex had 

lower amplitude eating rhythms in LD than in DD (Fig. 3c). We 
also found that several behavioral rhythms showed a distinct 
interaction between genotype and light cycle. Specifically, there 
were no differences in drinking, exploring, or resting rhythm 
amplitudes between Vip-/- mice of either sex in LD and in DD. 
However, wild-type mice of either sex in LD had higher amplitude 
exploring and resting rhythms, but lower amplitude drinking 
rhythms, than wild-type mice of either sex in DD. This genotype 
difference in light-induced masking (or amplification/ 
suppression) of behavioral rhythm amplitudes suggests that, as 
has been previously reported for wheel-running activity (Colwell 
et al., 2003), Vip-deficient mice exhibit deficits in 
photoentrainment. Together, these results demonstrate that 
many genotype, sex, and light cycle differences in complex 

 
Figure 4. Peak times of behavioral rhythms differ by genotype, sex, and light cycle. Rayleigh plots depicting peak times of 
behavioral rhythms (in hours) that significantly differ by genotype, sex, or light cycle in individual mice. Direction of the line depicts 
the mean phase of all rhythmic mice. Length of the line ranges from 0 to 1, where 0 = mice peak randomly around the day and 1 = 
all mice peak at the same time. a) Peak times of behavioral rhythms for individual wild-type (WT; male and female, housed in a 12:12 
light:dark cycle (LD) and in constant darkness (DD); closed circles) and Vip-deficient (KO; male and female, housed in LD and in DD; 
open circles) mice. b) Peak times of behavioral rhythms for individual male (WT and KO, housed in LD and in DD; closed circles) 
and female (WT and KO, housed in LD and in DD; open circles) mice. c) Peak times of behavioral rhythms for individual mice housed 
in LD (WT and KO, male and female; closed circles) and in DD (WT and KO, male and female; open circles). Colored *, significant 
clustering of peak times across mice, Rayleigh test, p < 0.05; ** p < 0.01; *** p < 0.001. Black *, significant difference in peak times 
of behavioral rhythms between groups within a genotype, sex, or light cycle, Multi-Way Circular ANOVA, p < 0.05; ** p < 0.01; *** p 
< 0.001. #, significant interaction between peak times of behavioral rhythms across genotype, sex, or light cycle, p < 0.05; ## p < 
0.01. Lines depict mean ± SEM. 
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behaviors are only evident when observed on a circadian 
timescale. 

 
Peak times of behavioral rhythms differ by genotype, 
sex, and light cycle. 
 

Next, we wanted to determine if the peak time, or phase, of 
each behavioral rhythm differed by genotype, sex, or light cycle. 
Phase describes how reliably synchronized a behavioral rhythm is 
across mice; accordingly, the “true” endogenous phase of a 
behavioral rhythm likely occurs when multiple mice exhibit 
similar peak times for a given behavior. We again used circadian 
analysis to quantify the phase of each behavioral rhythm for each 
mouse, which we defined as the time series value of the peak of a 
fitted cosine wave (Yang and Su, 2010). Phase was undefined for 
arrhythmic behaviors from individual mice and, as such, we 
excluded these behaviors from analysis.  

 
We found that wild-type male mice exhibited synchronized 

rhythms (peaking at the same time across all mice) in 7 out of 8 
behaviors in LD and in DD (Supplementary Fig. 5). In these 
mice, resting rhythms peaked around noon while most other 
behavioral rhythms peaked around midnight. Surprisingly, wild-
type male nesting rhythms peaked at dawn in each light cycle. 
Wild-type female mice also exhibited synchronized rhythms in 
most (5 out of 8) behaviors in LD and in DD. However, unlike with 
males, female digging and nesting rhythms were each 
desynchronized and peaked randomly throughout the day. These 
results from wild-type mice sharply contrast with what we 
observed for behavioral rhythm synchrony across Vip-deficient 
mice. In LD, Vip-/- male and female mice exhibited synchronized 
rhythms in most (5 out of 8) or some (4 out of 8) behaviors, 
respectively. However, strikingly, in DD, almost no behaviors 
were synchronized across Vip-/- male (1 out of 8) or female (0 out 
of 8) mice.This suggests that Vip-/- mice, though individually 
rhythmic in most behaviors, are desynchronized from one 
another and not entrained to the external LD cycle. 

 
We next compared peak times of behavioral rhythms of 

individual mice and found that they varied widely by genotype, 
sex, and light cycle, similar to what we observed for behavioral 
rhythm amplitudes in individual mice (Fig. 4, Supplementary 
Fig. 6, Supplementary Table 3). Specifically, we found that 
rhythms in eating, drinking, rearing, nesting, exploring, and 
resting behaviors in wild-type mice of either sex in either light 
cycle peaked later in the day than those in Vip-/- mice, although 
Vip-/- nesting rhythms were not significantly synchronized across 
mice (Rayleigh test, p > 0.05; Fig. 4a). The earlier peak time of 
these behavioral rhythms in individual Vip-/- mice is similar to the 
phase advance in wheel-running activity previously observed in 
these animals (Colwell et al., 2003). This suggests that the 
reduced ability of these animals to entrain to the external 
light:dark cycle advances the phase of most, but not all, 
behavioral rhythms.  

 
We also found that nesting behavior rhythms in male mice of 

either genotype in either light cycle peaked later in the day than 
those in female mice (Fig. 4b), although these rhythms in 
females were not significantly synchronized across mice 
(Rayleigh test, p > 0.05). Furthermore, digging behavior rhythms 
in wild-type male mice in either light cycle peaked earlier in the 
day than those in wild-type female mice, although these rhythms 
in females were also not significantly synchronized across mice 
(Rayleigh test, p > 0.05). The peak time of digging behavior 
rhythms did not differ between male and female Vip-/- mice in 
either light cycle. As with behavioral rhythm amplitude, these 
results again highlight that there are profound sex differences in 
specific behavioral rhythms (nesting and digging). 

 
Finally, we found that grooming behavior rhythms in mice of 

either genotype or sex peaked later in the day in LD than in DD 
(Fig. 4c), although these rhythms were not significantly 
synchronized across mice in LD (Rayleigh test, p > 0.05). We also 
found that drinking rhythms in male mice of either genotype 
peaked earlier in the day in LD than in DD. Conversely, drinking 
rhythms in female mice of either genotype peaked later in the day 
in LD than in DD. Furthermore, rearing behavior rhythms in Vip-

/- mice of either sex peaked later in the day in LD than in DD, 
although these rhythms in DD were not significantly 
synchronized across mice (Rayleigh test, p > 0.05). The peak time 
of rearing behavior rhythms did not differ between wild-type mice 
of either sex in LD or in DD. This suggests that ambient light has 
only a modest effect on the timing of endogenously generated 
behavioral rhythms. Together, these results demonstrate that 
genotype, sex, and light cycle each influence the time of day at 
which a given behavior is most likely to occur. 

 

Discussion 

 
To test the hypotheses that neuropeptide signaling, sex, and 

ambient light affect daily patterns of behavior, we used machine 
learning to automatically measure circadian rhythms in behavior 
from male and female wild-type and Vip-/- mice over several days 
in LD and DD. The frequency of occurrence of most behaviors was 
not largely affected by circadian genotype or sex but was strongly 
influenced by light cycle. Conversely, the amplitudes and peak 
times of circadian rhythms in several behaviors varied by 
circadian genotype, sex, and light cycle. We conclude that several 
previously unstudied behavioral rhythms depend on sex, 
neuropeptide signaling, and ambient light. Our identification of 
these novel behavioral rhythms that differ by circadian genotype, 
sex, and light cycle and our implementation of a method to 
automatically classify circadian rhythms in behavior will provide 
a foundation for future studies investigating the temporal 
organization of other complex behaviors. 

 
We found that each measured behavior was typically 

rhythmic in individual animals of each genotype and sex in both 
LD and DD regardless of which rhythmicity analysis method we 
used (JTK Cycle, Cosinor, Lomb-Scargle periodogram, empirical 
JTK Cycle, or ARSER) (Refinetti et al., 2007; Zielinski et al., 2014; 
Wu et al., 2016). These algorithms may have a propensity for false 
positives with our data because, for the large number of time 
points (172,800 frames) we recorded within a limited sampling 
window (48 h), inactivity/activity (sleep/wake) could cause a 
behavior to appear rhythmic. However, the rhythmicity we 
observed in a majority of behaviors in a majority of individual 
mice is consistent with several previous studies. For example, 
wheel-running activity is rhythmic in male and female wild-type 
mice in LD and DD (Kuljis et al., 2013), and wheel-running 
activity is rhythmic in most Vip-/- mice in LD and for the first 
several days in DD (Aton et al., 2005). It is possible that the 
rhythms we observed in some or all behaviors in our Vip-/- mice 
would disappear after a longer time in DD. 

 
These behavioral rhythms we observed in individual mice 

occurred at “logical” times and were not randomly scattered 
throughout the day. For instance, exploring and resting rhythms 
were antiphase, occurring roughly 12 h apart in individual mice 
regardless of genotype, sex, or light cycle. We also found that 
within individual animals most behavioral rhythms other than 
nesting and resting peaked at approximately the same time of 
day. This suggests that unlike physiological rhythms that peak 
around the clock (Perreau-Lenz et al., 2004), behavioral rhythms 
are largely constrained to the middle of the night in nocturnal 
mice. This may be simply due to sleep restricting behavior to 
essentially only half of the circadian day while physiological 
processes can typically persist during the inactive phase. 
However, we found that nesting rhythms in individual wild-type 
male mice reliably peak at dawn. As nesting is a sleep-preparatory 
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behavior (Eban-Rothschild et al., 2016) and mice sleep during the 
day, future studies should distinguish between the role of sleep 
need versus circadian output in producing this ethologically-
relevant rhythm. 

 
We found that several behavioral rhythms differed by 

circadian genotype. For instance, rhythms in eating, drinking, 
rearing, exploring, and resting behaviors were each dramatically 
lower in amplitude in Vip-deficient mice than in wild-type mice. 
This is consistent with previous studies that found that wheel-
running activity, sleep, and feeding rhythms in Vip-/- mice each 
have lower amplitudes than rhythms in wild-type mice (Colwell 
et al., 2003; Bechtold et al., 2008; Hu et al., 2011), but alterations 
in daily rhythms in drinking and rearing behaviors in these 
animals have not been previously reported. Similarly, rhythms in 
eating, drinking, rearing, nesting, exploring, and resting 
behaviors peaked earlier in the day in Vip-deficient mice than in 
wild-type mice. This is again consistent with previous studies that 
found that wheel-running activity and sleep rhythms in Vip-/- 
mice peak earlier than rhythms in wild-type mice (Colwell et al., 
2003; Hu et al., 2011), but phase differences in eating, drinking, 
rearing, and nesting have not been previously reported. 
Importantly, this study is the first to simultaneously measure 
each of these behaviors in Vip-/- mice. This parallel analysis is 
critical to understand how disrupted neuropeptide signaling in 
the SCN affects the temporal sequencing of multiple behaviors. 

 
We also found that rhythms in digging and nesting behaviors 

differed between individual male and female mice. The sex 
differences we observed in the amplitude or phase of these 
behavioral rhythms are entirely novel and have not been 
previously reported. However, other studies have found that 
individual female mice show a longer duration of wheel-running 
activity (comparable to our “exploring” behavior) than male mice 
in DD, but individual male mice show a greater precision of 
wheel-running activity than female mice in LD (Kuljis et al., 
2013). We were unable to directly compare our results to these 
findings because we only measured behaviors over two days in LD 
and two days in DD. However, we did observe that the duration 
of exploring rhythms in female mice was indeed slightly longer 
than in male mice (14.6 ± 0.5 h versus 13.7 ± 0.6 h; unpaired 
Welch’s t test, p < 0.01). These results emphasize that measuring 
circadian rhythms in behaviors other than locomotor activity can 
reveal critical unseen differences between males and female mice 
and, most likely, between other groups of experimental animals. 

 
Intriguingly, the circadian genotype and sex differences we 

observed were only present in a subset of an individual mouse’s 
entire behavioral repertoire. The amplitudes of grooming, 
nesting, and digging rhythms and the phases of grooming and 
digging rhythms do not differ by circadian genotype. Similarly, 
the amplitudes and phases of all behavioral rhythms but digging 
and nesting do not differ by sex. This suggests that the brain 
regions and neural circuits that regulate each of these behaviors 
may be differentially influenced by the daily timing signal that 
originates from the SCN. For example, the circuit that regulates 
digging rhythms may be relatively robust to a desynchronized, 
low-amplitude input arising from a Vip-deficient SCN, but the 
circuit that regulates exploring rhythms may be more directly 
affected by Vip deficiency. Similarly, circuits regulating digging 
and nesting behaviors may respond differently to SCN input in 
male and female mice, perhaps due to a differential expression of 
estrogen or androgen receptors. Future experiments should 
investigate the role of local clocks and sex hormone receptor 
expression in brain circuits that are known to be associated with 
each of these behaviors. 

 
We found that circadian genotype, sex, and light cycle also 

affected the synchronization of behaviors across mice. For 
instance, Vip-/- mice of either sex only exhibited synchronized 

behavioral rhythms in LD but not DD. This suggests that Vip-
deficient mice are not entrained to the LD cycle, causing their 
behavioral rhythms to peak at random times in DD, which we 
observe as desynchrony across mice. Furthermore, nesting and 
digging rhythms were desynchronized across female mice but 
were synchronized across male mice. Indeed, nesting rhythms in 
male mice had their own unique phase compared to all other 
behaviors, peaking synchronously around dawn. The mechanism 
underlying this desynchrony in some, but not all behavioral 
rhythms across female, but not male, mice is unclear, but may be 
due to changes in specific circuits that respond differently to 
circulating sex hormones. 

 
Our observation that resting rhythms are synchronized 

across Vip-/- male mice but nesting rhythms are desynchronized 
helps discern whether the sleep-preparatory nesting rhythm is 
regulated by sleep or the circadian system. In wild-type male 
mice, rhythms in nesting behavior peak about 6 h before resting 
rhythms. If nesting was entirely regulated by sleep need, we 
would expect to see synchronized rhythms in nesting behavior in 
Vip-/- male mice peak several hours before resting rhythms, which 
are still synchronized across animals even though the daily timing 
signal from the Vip-deficient SCN is disrupted. Instead, nesting 
rhythms are desynchronized in the absence of Vip signaling. This 
suggests that the daily occurrence of nesting behavior at dawn is 
regulated by the circadian clock.  

 
Finally, we identified sex differences in the frequencies of 

grooming and digging behaviors that are consistent with previous 
studies that also identified sex differences in grooming and 
digging, albeit within a much shorter temporal window (Geuther 
et al., 2021; Pond et al., 2021). Surprisingly, we also observed 
differences in the frequency of grooming, rearing, and exploring 
behaviors between Vip-deficient and wild-type mice. Behavior 
frequency is independent of circadian time and, consequently, 
SCN desynchrony caused by disrupted neuropeptide signaling in 
Vip-/- mice should theoretically have no effect on this 
measurement. There is limited evidence that the SCN can 
influence certain behaviors independently of its role in rhythm 
generation (Yu et al., 2017). Alternatively, VIP is also expressed 
in other neurons, such as those in the olfactory bulb and cortex 
(Lein et al., 2007). Disrupted neuropeptide signaling in these 
circuits could result in our observed circadian genotype-
dependent differences in behavior frequency. 

 
In this study, we used machine learning to automatically 

identify differences in the temporal organization of behavior due 
to neuropeptide signaling, sex, and ambient light. This approach 
can readily be expanded to address other critical questions in 
neuroscience and circadian biology, including the ethological 
investigation of other behavioral rhythms in videos of mice 
recorded in the laboratory and, potentially, in the wild. Notably, 
machine learning can also be used for the rapid circadian 
phenotyping of mice with different genotypes or disorders. 
Current approaches almost universally measure changes to 
wheel-running activity rhythms as evidence that a mutation, 
disease, or drug influences circadian behavior. Here, we found 
that some, but not all, behavioral rhythms differ by sex and with 
neuropeptide signaling. It is therefore likely that a given 
experimental treatment may cause circadian alterations in 
behaviors other than, or in addition to, wheel-running activity. 
Machine learning can be used to study these circadian behaviors 
that were previously difficult or impossible to observe.  

 

Methods 

 
Animals. Prior to recording, we group-housed male and 

female wild-type (Vip+/+, n = 8, 8) and Vip-/- ((Colwell et al., 
2003), n = 8, 8) mice in their home cages in a 12h:12h light:dark 
cycle (LD, where lights on is defined as zeitgeber time (ZT) 0; light 
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intensity ~2 x 1014 photons/cm2/s) at constant temperature 
(~23°C) and humidity (~40%) with food and water provided ad 
libitum. All mice were between 6 and 12 weeks old at the time of 
recording. All experiments were approved by and performed in 
accordance with the guidelines of Texas A&M University and 
Washington University’s Institutional Animal Care and Use 
Committees.  

 
Experimental housing. We transferred individual mice from 

their home cages to custom-built recording cages 
(Supplementary FIg. 1a) inside light-tight, temperature-and-
humidity controlled circadian cabinets for the duration of our 
experiments. The cages are built out of transparent 6 mm-wide 
acrylic and are approximately 21 cm in length, width, and 
height.  In one of the cage walls, we installed an acrylic food 
hopper with a slotted opening of around 15 x 10 cm that we filled 
with food pellets. On the outside of the wall immediately adjacent 
to the food hopper, we installed a water bottle with a metal spout 
that protruded about 1.5 cm into the cage. We covered the cage 
floor (around 440 cm2 of explorable space) with about 1 cm of 
standard corn cob bedding and placed half of a cotton nestlet in 
the center of the cage. In the light phase in LD, we illuminated the 
cabinets with broad-spectrum white light (~6 x 1013 
photons/cm2/s measured at the cage floor). In the dark phase in 
LD and in DD, we illuminated the cabinets with dim red light (660 
nm, ~3 x 1013 photons/cm2/s). We acclimated mice in the 
recording cages for 20-24 hours before the start of each 
experiment. 

 
Video recording. We positioned networked video cameras 

(DCS-932L and DCS-933L, D-Link) equipped with fish-eye lenses 
directly above the recording cages such that all four corners of the 
cage, the food hopper, and water spout were all visible in the 
recorded video and the mouse and nesting material were in focus 
(Supplementary Fig. 1a). We continually recorded grayscale 
videos (640 x 480-pixel resolution, 30 frames per second) of 
singly-housed mice as they freely behaved continually over four 
days, two days in 12h:12h LD and two days in DD. We then 
exported the recorded videos as .asf files using D-ViewCam 
software, downsampled the videos to 1 fps using the open-source 
video editing program FFMpeg, and converted the videos to .mp4 
files using FFMpeg. Finally, we cropped the converted videos to 
the extent of the cage floor using the open-source video editing 
program Handbrake.  

 
Model training and inference. We installed DeepEthogram 

(Bohnslav et al., 2021) from source on a custom-built machine 
learning computer (12-core AMD Ryzen 9 5900X CPU, 32 GB 
RAM, NVIDIA GeForce RTX 3090 with 24 GB VRAM) according 
to the DeepEthogram Github installation guide 
(http://github.com/jbohnslav/deepethogram/). After 
installation, we loaded a set of training videos (three 24 h, 86,400 
frame-long videos of an individual wild-type male mouse and five 
10 min, 600 frame-long videos of female wild-type and male and 
female Vip-/- mice) into the DeepEthogram GUI.  

 
To train the DeepEthogram models, we first chose eight 

complex motor behaviors that encompass the majority of a 
mouse’s daily activity: eating, drinking, grooming, rearing, 
nesting, digging, exploring and resting. We manually labeled each 
frame of the training videos using the GUI as one of these 
behaviors or background (Supplementary Fig. 1b) based on 
consensus between three trained classifiers and the behavioral 
descriptions listed on the Stanford University Mouse Ethogram 
index (Garner, 2017). While we labeled our training videos, we 
began training the “flow generator” convolutional neural network 
(CNN), which is pretrained on the Kinetics700 video dataset and 
requires no user input. The flow generator uses the MotionNet 
architecture to estimate motion (“optic flow”) from our training 
video frames. Next, we trained a two-stream CNN, a “feature 

extractor,” on the output from the flow generator and our 
manually labeled frames. The feature extractor, also pre trained 
on the Kinetics700 video dataset, uses the ResNet50 architecture 
to determine the probability of a behavior being present on a 
particular frame based on a low-dimensional set of temporal 
(optic flow) and spatial (labeled frames) features. Finally, we used 
our feature extractor outputs to train a “sequence model” CNN 
that uses the Temporal Gaussian Mixture CNN which has a large 
temporal receptive field and can thus further refine the model 
predictions using a longer timescale to provide “context” for a 
given behavior frame.  

 
After training our models, we uploaded our experimental 

videos using the DeepEthogram GUI. In total, we uploaded 32 
videos (male and female, wild-type and Vip-/-) each containing 
345,600 frames (96 h). For each video, we inferred behaviors on 
each frame using our trained feature extractor and sequence 
models in the DeepEthogram GUI (Supplementary Fig. 1c). 
Because the original DeepEthogram model was trained on 
datasets in which behaviors were not mutually exclusive (that is, 
multiple behaviors could occur on a given frame), we changed the 
final activation value for our feature extractor and sequence 
model CNNs from “sigmoid” to “softmax” during training. A 
softmax, or normalized exponential activation, function requires 
that the probability of predicted behaviors on a given frame sum 
to one and thus, for our inferred videos, each frame was uniquely 
labeled as one behavior.  

 
Analysis. We determined circadian rhythmicity using three 

methods (Supplementary Fig. 3): Cosinor analysis (Refinetti 
et al., 2007) in Matlab and Lomb-Scargle Periodogram and 
ARSER in Metacycle (Wu et al., 2016). We also performed 
empirical JTK Cycle in BioDare2 (Zielinski et al., 2014) on data in 
5 min bins instead of on the entire dataset because the current 
release of JTK Cycle struggles to handle data of this length. We 
ultimately used rhythmicity, amplitude, and phase predictions by 
ARSER to perform comparisons of circadian rhythms. We 
calculated rhythm amplitudes and peak times for individual mice 
using the amplitude and phase values determined by ARSER. We 
calculated total activity by summing the total frames exhibiting a 
given behavior for individual mice in LD and in DD. We calculated 
transition scores, which we defined as the probability that a given 
behavior will follow another behavior within 10 or fewer seconds, 
using a custom MATLAB script. 

 
We performed the following statistical tests in Prism 9.0 

(GraphPad, San Diego, CA): Two-Way ANOVA, Three-Way 
Repeated Measures ANOVA. We performed the following 
statistical analyses using the Circular Statistics Toolbox (Berens, 
2009) in Matlab (Mathworks, Natick, MA): Rayleigh test, multi-
way circular ANOVA, and Watson-Williams test. We performed 
the following statistical analysis using the Statistics Toolbox in 
Matlab: multi-way ANOVA with post hoc Tukey’s HSD test. We 
used Shapiro–Wilk and Brown–Forsythe tests to test for 
normality and equal variances, defined α as 0.05, and presented 
all data as mean ± SEM. 
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