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Abstract 29 

Global patterns of collective motion in bird flocks, fish schools, and human crowds are thought 30 

to emerge from local interactions within a neighborhood of interaction, the zone in which an 31 

individual is influenced by their neighbors.  Both topological and metric neighborhoods have 32 

been reported in birds, but this question has not been addressed in humans.  With a topological 33 

neighborhood, an individual is influenced by a fixed number of nearest neighbors, regardless of 34 

their physical distance; whereas with a metric neighborhood, an individual is influenced by all 35 

neighbors within a fixed radius. We test these hypotheses experimentally with participants 36 

walking in real and virtual crowds, by manipulating the crowd’s density.  Our results rule out a 37 

strictly topological neighborhood, are approximated by a metric neighborhood, but are best 38 

explained by a visual neighborhood with aspects of both. This finding has practical implications 39 

for modeling crowd behavior and understanding crowd disasters.   40 

 41 

42 
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Introduction 43 

Large-scale patterns of coordinated motion are observed in many animal groups, including flocks 44 

of birds, schools of fish, herds of mammals, and crowds of humans1-5. It is widely believed that 45 

such global patterns of collective motion emerge from many local interactions between 46 

individuals in a process of self-organization1,6,7. Understanding collective motion thus depends 47 

on characterizing these local interactions8,9.  First, what are the rules of engagement that govern 48 

how an individual interacts with a neighbor? Second, what is the neighborhood of interaction 49 

over which these rules operate and the influences of multiple neighbors are combined?  Here we 50 

aim to characterize the neighborhood of interaction in human crowds. 51 

Many mathematical models of collective motion assume rules of engagement based on 52 

hypothesized forces of attraction, repulsion, and velocity alignment10-14. Such models – including 53 

our own15 – typically average the influence of all neighbors within a metric neighborhood or 54 

zone of fixed radius (Figure 1A, shaded region), with neighbor influence often decreasing with 55 

metric distance15-17. In contrast, others have proposed a topological neighborhood18-20 (Figure 56 

1A, dashed lines) in which an individual is influenced by a fixed number of nearest neighbors, 57 

regardless of their metric distance, and neighbor influence may decrease with ordinal number. 58 

All of these models can be described as ‘omniscient’ because they assume a third-person view of 59 

the physical positions and velocities of all neighbors as input.  We compare them with a new 60 

visual neighborhood model21 based on an embedded, first-person view in a crowd, which reflects 61 

both metric and topological distance22.   62 

Evaluating these hypotheses is nontrivial, for metric distance (number of meters) and topological 63 

distance (ordinal number of neighbors) are naturally correlated. Yet the two hypotheses can be 64 
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dissociated by varying group density. The metric hypothesis predicts that velocity alignment 65 

should depend on density, because the influence of neighbors increases with their physical 66 

proximity (Figure 1, shaded regions). In contrast, the topological hypothesis predicts that 67 

alignment should be independent of density, because neighbor influence only depends on ordinal 68 

number (Figure 1, dashed lines).  69 

Observational studies of bird flocks have found empirical support for both hypotheses. Starlings 70 

appear to possess a topological neighborhood2,18, for the ordinal range of interaction remains 71 

constant at 6-7 neighbors despite natural fluctuations in flock density.  In contrast, chimney 72 

swifts appear to have a metric neighborhood23, for the physical range of interaction is constant 73 

over variations in density (see also24).  Specifically, alignment with neighbors is maximal at 1.4 74 

m, independent of nearest-neighbor distance, and decreases with metric distance, whereas 75 

alignment with the nth nearest neighbor depends on its metric distance. 76 

To date, this question has not been answered in humans, for the existing data do not distinguish 77 

the hypotheses.  The answer is of central importance for modeling crowd dynamics, simulating 78 

emergency evacuations, and understanding crowd disasters such as jams, crushes and 79 

stampedes3,25-28. We test the hypotheses by manipulating the density of virtual and real crowds, 80 

perturbing the heading (walking direction) of a subset of neighbors, and measuring the 81 

participant’s heading response. The metric hypothesis predicts that varying the density of 82 

neighbors will influence the heading response, whereas the topological hypothesis predicts that 83 

density will have no effect.   84 

Specifically, we manipulate the distance of the perturbed and unperturbed neighbors in a virtual 85 

crowd so the metric hypothesis predicts a stronger (first experiment) or weaker (second 86 
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experiment) heading response with a higher density. We find significant effects of density in the 87 

predicted directions.  To generalize these results to real crowds (third experiment), we 88 

manipulate the density of human ‘swarms’ and analyze the degree of alignment. We find greater 89 

alignment in high-density swarms, whether plotted as a function of metric or topological 90 

distance. 91 

These findings rule out a strictly topological neighborhood. The direction of the density effect is 92 

predicted by a metric neighborhood model15, but the quantitative results are best predicted by the 93 

visual model21 based on optical velocities and visual occlusion. We conclude that the 94 

neighborhood of interaction in humans is neither metric nor topological but visual, determined 95 

by the laws of optics. 96 

Results 97 

We begin by describing models of metric, topological, and visual neighborhoods, then test them 98 

experimentally. 99 

Neighborhood models 100 

Metric model.  To describe a metric neighborhood, we used our empirical model of local 101 

interactions in human crowds15. The rules of engagement are derived from experiments on 102 

following in pairs of pedestrians, which found that the follower matches the heading direction 103 

and speed of the leader. The neighborhood of interaction is derived from experiments on a 104 

participant walking in a virtual crowd, which found that a pedestrian is influenced by a weighted 105 

average of neighbors (Equation 1a), where the weight decays exponentially with metric distance 106 

(Equation 1b): 107 
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 �̈�𝑝 =
𝑘

𝑛
∑ 𝑤𝑖𝑠𝑖𝑛(𝜙𝑖 − 𝜙𝑝)𝑛

𝑖=1  (1a) 108 

 𝑤𝑖 =
𝑎

e𝜔𝑑𝑖+𝑎
 (1b) 109 

Specifically, a pedestrian p’s angular acceleration (�̈�𝑝) is proportional to the mean difference 110 

between p’s current heading (𝜙𝑝) and that of each neighbor (𝜙𝑖), where n is the number of 111 

neighbors within a 5m radius and a 180° field of view.  The gain or stiffness parameter k=3.15 112 

was fit to the pedestrian following data29. The weight of each neighbor wi decreases 113 

exponentially with metric distance di, and the decay rate ω=1.3 and constant a=9.2 were fit to 114 

three trials of human ‘swarm’ data.   115 

This results in a metric neighborhood with a ‘soft’ radius that asymptotes to zero around 4-5m, 116 

determining the range of interaction (Figure 1, shaded regions).  According to the model, p’s 117 

heading direction stabilizes on the mean heading in the neighborhood.  The physical proximity of 118 

neighbors determines the strength of attraction, and hence the turning rate and relaxation time of 119 

the heading response. An analogous equation for linear acceleration controls p’s speed15. 120 

Topological model.  A topological neighborhood is similarly based on a weighted average of 121 

neighbors (Equation 1a), but in this case the weight is a function of the topological distance of 122 

each neighbor (ordinal number i) rather than their metric distance: 123 

 𝑤𝑖 = 𝑓(𝑖) (2) 124 

An integer number of neighbors, 𝑖 = [1, … , 𝑛], is taken as input, where n determines the 125 

topological range of interaction. We do not try to estimate this ordinal function here, for the 126 

topological hypothesis can be tested qualitatively. 127 
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Visual model.  The visual model21 is also based on a weighted average of neighbors, but it 128 

replaces omniscient variables (distance, heading, speed) with visual variables (angular velocity, 129 

rate of optical expansion, visibility): 130 

 �̈�𝑝 =
1

𝑛
∑ 𝑣𝑖[− 𝑐1(𝑐𝑜𝑠 𝛽𝑖)𝜓𝑖

̇ + 𝑐2(𝑠𝑖𝑛 𝛽𝑖)�̇�𝑖]𝑛
𝑖=1   (3) 131 

Specifically, pedestrian p’s heading is controlled by canceling the angular velocity 𝜓𝑖
̇  and 132 

expansion rate �̇�𝑖 of all visible neighbors (𝑖 = 1 … 𝑛). These two optical variables trade off as 133 

cosine and sine functions of the neighbor’s eccentricity 𝛽𝑖 in the field of view, which is centered 134 

on p’s heading direction. For example, if a neighbor directly ahead of p turns right, this generates 135 

a rightward angular velocity but little optical expansion; whereas if a neighbor on p’s left turns 136 

right, this generates an optical expansion but little angular velocity (see ref21 for details).  The 137 

constants 𝑐1 = 14.38 and  𝑐2 = 59.71 were fit to data on pedestrian following29,30. A 138 

complementary equation controls p’s speed, based on the same optical variables21. 139 

Critically, optical velocities (�̇�, �̇�) decrease with metric distance d as 𝑡𝑎𝑛−1(1 𝑑⁄ ), in accordance 140 

with Euclid’s Law of visual angle, thus eliminating an explicit distance term (Equation 1b).  In 141 

addition, nearer neighbors tend to visually occlude farther neighbors, depending on their visual 142 

directions, ordinal numbers, and metric separation in depth22,31,32. The model weights each 143 

neighbor in proportion to their visibility, which ranges from 𝑣𝑖 = 0 (fully occluded) to 𝑣𝑖 = 1 144 

(fully visible); neighbors below a visibility threshold 𝑣𝑡 < 0.15 (fit to experimental data) are set 145 

to zero, and n is the number of neighbors at or above threshold. The neighborhood’s range of 146 

interaction is limited by the complete occlusion of farther neighbors, which varies with density 147 

and crowd configuration22.  148 
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The visual model thus depends on both metric and topological distance, but the neighborhood of 149 

interaction is determined by the laws of optics. The model stabilizes on the mean heading in the 150 

visual neighborhood, and the attraction strength, turning rate, and relaxation time are determined 151 

by the visibility of neighbors and the magnitudes of their optical motions.   152 

Experiments in Virtual Crowds 153 

We tested the neighborhood hypotheses by varying the density of a virtual crowd. This allowed 154 

us to manipulate the behavior of virtual neighbors and measure their influence on a participant’s 155 

walking trajectory. Participants walked freely in a 12m x 14m area while viewing a group of 12 156 

virtual humans in a mobile virtual reality headset. We asked participants to walk with the crowd 157 

and treat them as if they were real people. During each trial, we perturbed the heading (walking 158 

direction) of a subset of neighbors, all to the left (-10˚) or to the right (+10˚), and recorded the 159 

participant’s heading direction (the “heading response”).  160 

High and low density crowds were created by positioning virtual neighbors at prescribed initial 161 

distances from the participant, and then randomly jittering their positions (Figure 2). On each 162 

trial, the virtual crowd appeared with their backs to the participant (Figure 2A,B); after 1s, a 163 

verbal “begin” command was played and the crowd accelerated forward for 3s to a walking 164 

speed of 1.0 m/s; 2s later the subset was perturbed, and the display continued for another 8 165 

seconds. The participant’s head position in the horizontal plane was recorded, filtered, and used 166 

to compute the time series of heading for each trial. The final heading on each trial was the mean 167 

value between 4s and 6s post-perturbation. A mean time series was computed for each 168 

participant in each condition for analysis.  169 
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Heading responses increase with density when random neighbors are perturbed.  In the first 170 

experiment, the heading of a random subset of the virtual neighbors (0, 3, 6, 9, or all 12) was 171 

perturbed on each trial.  In the high density condition, five neighbors were initially positioned at 172 

1.5m and seven at 3.5m (Figure 2C); in the low density condition, the initial distances were 3.5m 173 

and 7.5m (Figure 2D). (Speed was perturbed in another condition; see Supplementary Data 1 and 174 

Supplementary Figure 1). 175 

According to the metric model (Equation 1), the participant is attracted to the mean heading in 176 

the neighborhood, which increases with the percentage of perturbed neighbors.  Because nearer 177 

neighbors have higher weights, the model predicts that the attraction strength will be greater, the 178 

turning rate faster, and the relaxation time shorter at higher density.  Consequently, the mean 179 

final heading after 4-6s should be larger in the high density condition than the low density 180 

condition, and this difference should increase with the percentage of perturbed neighbors (Figure 181 

3A, dotted curves).  In contrast, the topological hypothesis predicts no difference between the 182 

high and low density conditions. 183 

The results appear in Figure 3A (solid curves). As the number of perturbed neighbors increases, 184 

mean final heading becomes larger in the high density condition (blue) than the low density 185 

condition (red). A linear mixed effects (LME) regression analysis found that this interaction was 186 

significant: the effect of density increased with the number of perturbed neighbors (χ2(1) = 6.111, 187 

p = 0.0134) (see SI Methods for details on the statistical model).  This significant dependence on 188 

density is contrary to the topological hypothesis.  On the other hand, the metric model (dotted 189 

curves) is close to the human data, although it only lies within the 95% confidence intervals in 190 

four of the eight perturbation conditions, and undershoots the data in the low density condition 191 

(red).  192 
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Attraction strength is indicated by the time series of heading, where the post-perturbation slopes 193 

are steeper in the high density condition (Figure 3B, blue curves) than the low density condition 194 

(Figure 3C, red curves), increasingly so as more neighbors are perturbed. An LME regression 195 

showed that this three-way interaction (density x time x perturbed neighbors) is significant (χ2(1) 196 

= 4.163, p = 0.041), confirming that the turning rate is faster in the high density condition, as 197 

predicted by the metric model.  In contrast, the significant dependence on density is inconsistent 198 

with the topological hypothesis.  199 

Model simulations. To compare the metric model (Equation 1) with the human data 200 

quantitatively, we simulated each experimental trial with fixed parameters. The model agent was 201 

initialized with the participant’s position, heading, and speed 2s before the perturbation, the 202 

distance and heading of virtual neighbors were taken as input on each time step, and the agent’s 203 

heading time series was computed. We then calculated the agent’s mean time series in each 204 

condition, and compared it to the participant’s mean time series in the corresponding condition 205 

using the root of the mean squared error (RMSE).  206 

Time series of heading for the metric model (cyan curves) are plotted together with the human 207 

data in Figure 3B (high density condition) and Figure 3C (low density condition).  The model 208 

again appears to undershoot the data at low density.  The mean RMSEm was 2.06° (leaving out 209 

the control condition).  210 

We repeated these simulations using the visual model (Equation 3).  In this case, the input to the 211 

model agent was the angular velocity, expansion rate, eccentricity, and visibility of each 212 

neighbor in the participant’s field of view, calculated from their position, heading, and speed at 213 

each time step.  The model’s mean final heading (Figure 3D, dashed curves) is closer to the 214 
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human data, particularly in the low density condition (red curves), and is within the 95% 215 

confidence interval of the data in six of the eight perturbation conditions.  The mean time series 216 

for the visual model are plotted together with the human data in Figure 3E (high density) and 217 

Figure 3F (low density).  The mean RMSEv is 1.96°, closer to the human data than the metric 218 

model.  To compare the relative strength of evidence for the two models, we computed Bayes 219 

Factors, yielding anecdotal evidence favoring the visual model overall (BFvm = 1.42), with 220 

substantial evidence in the low density condition (BFvm = 8.85).  The visual model thus explains 221 

the human data as well as or better than the metric model. 222 

Is this good model performance?  Given that there is inherent noise in the data due to gait 223 

oscillations and measurement error, we estimated the limit on best performance by computing 224 

the RMSE between the participant mean time series in the control condition (0 perturbed 225 

neighbors) and a heading of 0°.  This yielded a mean RMSE of 1.21°, indicating that the visual 226 

model is only 0.75° from the limit.  Conversely, to estimate the worst performance for a model 227 

that does not respond to the input, we computed the RMSE between the participant mean time 228 

series in the perturbation conditions and a heading of 0°.  This yielded a mean RMSE of 3.98°, 229 

indicating that visual model is much better than doing nothing. The visual model is thus near the 230 

high end of possible model performance, close to the human data.   231 

Conclusion.  The first experiment finds that participants have a stronger heading response in a 232 

higher density crowd. Specifically, when perturbed neighbors are in the majority and in closer 233 

proximity to the participant they exert a greater influence, producing a faster turning rate and a 234 

larger final heading. This significant density-dependence contradicts the topological hypothesis, 235 

which predicts that density should have no effect. The direction of the density effect is consistent 236 

with the metric hypothesis, but the data are better predicted by the visual model. 237 
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Heading responses decrease with density when nearest neighbors are perturbed.  The first 238 

experiment found that the heading response increased with crowd density. But if the response 239 

depends on metric distance, we should be able to manipulate the proximity of unperturbed 240 

neighbors to elicit the opposite effect: a decrease in the heading response with higher density. 241 

The second experiment tested this prediction. Specifically, we held the metric distances of the 242 

four nearest neighbors constant and varied density by manipulating the distances of the other 243 

eight neighbors (Figure 2E,F). When the near neighbors are perturbed, the metric hypothesis 244 

predicts a weaker response in the high density condition than the low density condition. In 245 

contrast, the topological hypothesis predicts that the distance of the unperturbed neighbors 246 

should have no effect. 247 

In this experiment, the heading of the nearest neighbors (0, 2, or 4) was always perturbed.  The 248 

four nearest neighbors were positioned at fixed distances (1.5, 1.7, 1.9, 2.1 m) before jittering, 249 

while the remaining eight neighbors appeared at moderate distances in the high density condition 250 

(2.3 to 3.7 m, Figure 2E), and far distances in the low density condition (3.1 to 11.1 m, Figure 251 

2F), and were never perturbed. The speed of the virtual crowd was increased slightly to a more 252 

comfortable walking speed (1.15 m/s), so the display continued for 5.4s post-perturbation and 253 

mean final heading was recorded between 2.4 and 4.4s. Otherwise, the procedure was the same 254 

as before.  255 

The metric model predicts that the heading response should be reduced in the high density 256 

condition, because the unperturbed neighbors were closer and more influential. By contrast, in 257 

the low density condition the unperturbed neighbors were farther away and less influential, so 258 

the response to the perturbed neighbors should be stronger, yielding a faster turning rate and a 259 
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larger final heading. In other words, the density effects should be the opposite of those observed 260 

in the first experiment.  261 

The results for mean final heading appear in Figure 4A. It is clear that the density effect is 262 

reversed: final heading is now smaller the high density condition (solid blue curve) than in the 263 

low density (solid red curve). An LME regression confirmed a significant two-way interaction, 264 

such that the effect of density grows with the number of perturbed neighbors (χ2(1) = 5.54, p = 265 

0.0186).  This finding is similar to the first experiment but in the opposite direction, as expected 266 

by the metric hypothesis.  On the other hand, a significant density effect contradicts the 267 

topological hypothesis. Yet the metric model (dotted curves) overshoots the data by a wide 268 

margin at both densities, lying outside the 95% confidence intervals in three of the four 269 

perturbation conditions.   270 

The effect of density on attraction strength is also reversed, for the slopes of the heading time 271 

series are shallower in the high density condition (Figure 4B, blue curves) than in the low density 272 

condition (Figure 4C, red curves). An LME regression found that the three-way interaction 273 

(density x time x number of perturbed neighbors) was significant (χ2(1) = 4.269, p = 0.0388), 274 

confirming a slower turning rate in the high density condition.  In sum, the density effects were 275 

reversed, contrary to the topological hypothesis, but in the direction predicted by the metric 276 

hypothesis. 277 

Model simulations. We simulated each trial with the metric model (Equation 1), as before. The 278 

mean time series of heading for the model (cyan curves) are plotted together with the human data 279 

in the high density (Figure 4B) and low density (Figure 4C) conditions. Leaving out the control 280 

condition, the mean RMSE was 1.48° (note the smaller error due to smaller turns in this 281 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.18.504451doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504451
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

experiment).  Although the metric model generates the reversed density effect, it systematically 282 

overshoots the data. 283 

Why might this be so? The metric model approximates the effect of distance with a fixed 284 

exponential decay term that was fit to a sample of human swarm data15. However, it does not 285 

take account of the actual optical velocities and visual occlusion in a particular crowd, and thus 286 

fails to generalize to other densities and distributions of neighbors. Because the visual model is 287 

predicated on these optical variables, it should generalize to the novel crowds in the second 288 

experiment.  289 

We simulated the data with the visual model (Equation 3), as before.  The model’s mean final 290 

heading appears in Figure 4D (dashed curves). Most importantly, it closely predicts the reverse 291 

density effect, falling within the 95% confidence interval for the data in all conditions. The mean 292 

time series of heading for the model are closer to the human data in both high density (Figure 293 

4E) and low density (Figure 4F) conditions. Overall, the mean RMSE is 1.18° for the visual 294 

model, which is very strongly favored over the metric model (BFvb = 56.1). In addition, the 295 

performance of the visual model is only 0.43° from the inherent noise limit (mean RMSE = 296 

0.75°), and it is better than doing nothing (mean RMSE = 2.55°).  A visual neighborhood thus 297 

explains the human data better than a metric or topological neighborhood. 298 

Conclusion. The second experiment found a significant density effect once again, but in the 299 

opposite direction of the first experiment. This density-dependence contradicts the topological 300 

hypothesis.  The reversed density effect is consistent with the metric hypothesis, but the model 301 

overshoots the data in high and low density conditions.  Both experiments are best explained by 302 
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the visual model, which generalizes to new density and occlusion conditions because the 303 

neighborhood is based on optical variables rather than physical distance. 304 

Human ‘Swarm’ Experiment 305 

To test whether our findings with virtual crowds extend to real crowds, a third experiment 306 

measured alignment in human ‘swarms’. Three groups of participants (N = 10, 16, 20) were 307 

instructed to walk about a large tracking area (14m x 20m), veering randomly left and right but 308 

staying together as a group, for 2-min trials. We manipulated the initial density of the group 309 

(high, low), and measured the difference in heading between pairs of participants to analyze 310 

alignment.   311 

Each group participated in two trials at each density, for a total of 12 trials. Head positions in the 312 

horizontal plane were recorded with 16 motion-capture cameras, filtered, and used to compute 313 

the heading direction of each participant in each time step.  This yielded approximately 11 314 

minutes of usable data (frames in which all head positions were successfully recovered). We then 315 

measured the absolute heading difference (|∆𝜙𝑖,𝑗|) and metric distance (𝑑𝑖,𝑗) between pairs of 316 

participants i and j in each time step. 317 

Alignment is greater in high density crowds.  According to both the metric and topological 318 

hypotheses, the absolute heading difference between neighbors should increase with metric 319 

distance, because metric and topological distance are correlated. But the metric hypothesis 320 

predicts a smaller heading difference (greater alignment) in the high density condition, whether 321 

the data are plotted as a function of metric or topological distance.  In contrast, the topological 322 

hypothesis predicts greater alignment in the low density condition when plotted as a function of 323 
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metric distance, because the n nearest neighbors interact over longer distances. But any effect of 324 

density should disappear when the data are plotted as a function of topological distance. 325 

We first checked that the density manipulation was successful by plotting a discrete probability 326 

density function for occupancy in each condition (Figure 5). A shift in color temperature 327 

between panels is apparent, indicating that a greater density was maintained in the high condition 328 

(Figure 5A, hot reds) than the low condition (Figure 5B, cooler oranges and yellows). The mean 329 

measured density (participants per square meter in every frame of data) was 2.1 ± 0.004 p/m2 330 

(SEM) in the high condition and 1.72 ± 0.005 p/m2 (SEM) in the low condition. An LME 331 

regression analysis confirmed a significant effect of the high/low manipulation on measured 332 

density (χ2(1) = 2585.9, p < 0.001), although a significant interaction (high/low x time) indicated 333 

that the difference decreased over the course of a 2-min trial (χ2(1) = 305.75, p < 0.001) (see 334 

Supplementary Figure 2). 335 

To visualize the degree of alignment, we plotted heat maps of the mean absolute heading 336 

difference (|∆𝜙𝑖,𝑝|) between the ‘focal’ participant p closest to the group centroid and each 337 

neighbor i (Figure 6). The metric hypothesis predicts greater alignment in the high density 338 

condition32,33, and indeed there is a larger region of cold blues (small heading differences) in the 339 

high density (Figure 6A) than the low density (Figure 6B) condition. On the topological 340 

hypothesis, one would expect the opposite, for the n nearest neighbors interact over longer 341 

distances in the low density condition.  342 

We then analyzed the dependence of alignment on metric distance.  We computed the absolute 343 

heading difference between all pairs of participants i and j (|∆𝜙𝑖,𝑗|), pruned extreme cases 344 

unlikely to interact, and then calculated the mean difference in consecutive 10s time intervals 345 
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and 0.25m distance bins. An LME regression on heading difference in all trials confirmed a 346 

significant effect of metric distance (χ2(1) = 1508.1, p < 0.001); specifically, for every meter 347 

change in distance, there is a 4.74° ± 0.115° (SE) increase in the mean heading difference.  348 

To test the neighborhood predictions, we sorted the heading differences (|∆𝜙𝑖,𝑗|) by metric 349 

distance (0.25m bins) or by topological distance (ordinal number). When plotted as a function of 350 

metric distance (Figure 7A), overall the mean heading difference is smaller (greater alignment) 351 

in the high density condition (blue curve) than the low density condition (red curve). An LME 352 

regression on heading difference confirmed the density effect (χ2(1) = 7.35, p = 0.007), with a 353 

mean difference of 5.77° ± 1.36° (SE) between the high and low conditions.  This finding is 354 

consistent with the metric hypothesis but contrary to the topological hypothesis.  However, the 355 

interaction between density and distance was also significant (χ2(1) = 5.6, p = 0.018): the two 356 

curves cross at a distance of 2.75m, when the mean heading difference reaches 25˚.  At farther 357 

distances, the heading difference becomes larger at high density than low density, inconsistent 358 

with the metric hypothesis.  This unexpected pattern is consistent with a visual neighborhood, for 359 

as distance increases there are more completely occluded neighbors in the high than the low 360 

density condition22 (see Supplementary Figure 3).  Because a pedestrian is not influenced by 361 

these occluded neighbors, the mean heading difference become larger in the high density 362 

condition.   363 

When replotted as a function of topological distance (Figure 7B), the mean heading difference is 364 

still smaller in the high density (blue curve) than the low density (red curve) condition.  This 365 

result indicates greater alignment of ordinally equidistant but physically closer neighbors, 366 

contradicting the topological hypothesis. An LME regression revealed that the density effect is 367 
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significant (χ2(1) = 6.71, p = 0.010), although the interaction (density x ordinal number) is not, 368 

(χ2(1) = 1.67, p = 0.20). 369 

Conclusion.  The swarm experiment shows that heading alignment in real human crowds 370 

depends on density, whether plotted as a function of metric or topological distance. This finding 371 

provides decisive evidence against a topological neighborhood.  The main density effect is 372 

consistent with a metric neighborhood, but the density x distance interaction supports a visual 373 

neighborhood. 374 

Discussion 375 

Previous reports of collective motion in animal groups have found that some species, like 376 

starlings, possess a topological neighborhood that depends on ordinal distance, while others, like 377 

chimney swifts, have a metric neighborhood that depends on physical distance.  The present 378 

research provides the first evidence that the neighborhood of interaction in human crowds is 379 

neither strictly topological nor strictly metric but visual, determined by the laws of optics.   380 

The metric hypothesis predicts that varying density will affect the strength of interaction, 381 

because neighbor influence depends on metric distance. In contrast, the topological hypothesis 382 

predicts that varying density will have no effect, because neighbor influence only depends on 383 

ordinal number.  The visual hypothesis predicts that responses will be influenced by density and 384 

visibility, factors that reflect both metric distance and ordinal number. 385 

In three experiments we found that alignment reliably depended on density, specifically the 386 

proximity of perturbed and unperturbed neighbors. When random neighbors were perturbed, 387 

there was a stronger heading response at high density as the number of perturbed neighbors 388 
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increased (also a stronger speed response). Conversely, when only the nearest neighbors were 389 

perturbed, there was a stronger heading response at low density, for unperturbed neighbors were 390 

farther away and exerted less influence. Measurements of human swarms also revealed a 391 

significant effect of density: we observed greater alignment at high density, regardless of 392 

whether the data were plotted as a function of metric or topological distance. The pattern of data 393 

thus qualitatively rules out a topological neighborhood, is in the expected direction for a metric 394 

neighborhood, but is more closely predicted by a visual neighborhood. 395 

The visual neighborhood is determined by two factors, derived from the viewpoint of a 396 

pedestrian embedded in a crowd21. First, when a neighbor changes heading direction or speed, 397 

this generates corresponding optical motions in the pedestrian’s field of view.  These optical 398 

velocities decrease with metric distance in accordance with Euclid’s law. Second, near neighbors 399 

tend to partially occlude far neighbors, such that visibility decreases with both ordinal number 400 

and metric separation in depth.  The neighborhood’s range of interaction corresponds to the 401 

distance at which nearer neighbors completely occlude all farther neighbors, and thus varies 402 

dynamically with changes in density and visibility. 403 

The visual model not only explains the density effects observed in the present experiments, it 404 

predicts the data in the second experiment much better than the metric model (Figure 4). 405 

Whereas the omniscient metric model describes the decay with distance using a fixed 406 

exponential function, the visual model explains this distance-dependence based on Euclid’s law 407 

and the geometry of occlusion.  Because it is sensitive to variation in neighbor distance and 408 

visibility, the model generalizes to crowds with different densities and distributions of neighbors. 409 

The present results thus add support for a visual neighborhood in human crowds.  410 
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It is possible that previously observed topological and metric neighborhoods also have a visual 411 

basis. Notably, flocks of starlings and chimney swifts appear to have a different structure.  412 

Starlings18 maintain a spatial configuration by keeping a nearest neighbor in four visual 413 

directions in the field of view (±90˚ azimuth to the left and right, ±45˚ elevation up and down). 414 

The nearest neighbor in each quadrant would project the largest image and tend to occlude 415 

farther neighbors in that direction; with some positional drift, this would yield a topological 416 

neighborhood of 4-8 neighbors, consistent with the data. In contrast, roosting chimney swifts23 417 

tend to align their velocities, and alignment decreases gradually with metric distance, from 1.4m 418 

to 4-5m.  Heading responses in swifts might thus be governed by the same optical variables as in 419 

humans (Equation 3), which decrease with metric distance and greater occlusion.  Thus, 420 

nominally ‘topological’ and ‘metric’ neighborhoods could be a consequence of the visual 421 

neighborhood of interaction.    422 

We conclude that the neighborhood of interaction follows naturally from the laws of optics.  The 423 

influence of visible neighbors decays with distance due to Euclid’s law, and the geometry of 424 

occlusion accounts for a further decrease in influence, until the range of interaction is limited by 425 

complete occlusion. 426 

Methods 427 

Virtual Crowd Experiments 428 

Participants.  Ten participants (5M, 5F) completed the first experiment, and 12 participants (7M, 429 

5F) completed the second experiment; one additional participant was removed from the latter 430 

due to tracker error during data collection. All participants had normal or corrected-to-normal 431 
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vision and none reported having a motor impairment. The research protocol was approved by 432 

Brown University’s Institutional Review Board, in accordance with the principles expressed in 433 

the Declaration of Helsinki. Informed consent was obtained from all participants, who were paid 434 

for their participation. 435 

Equipment.  The experiments were conducted in the Virtual Environment Navigation Lab 436 

(VENLab) at Brown University. Participants walked freely in a 12m x 14m tracking area, while 437 

viewing a virtual environment in a wireless stereoscopic head-mounted display (Oculus Rift 438 

DK1, Irvine CA; 90°H x 65°V field of view, 640 x 800 pixels per eye, 60 Hz refresh rate). Head 439 

position and orientation were recorded with a hybrid inertial/ultrasonic tracking system (IS-900, 440 

Intersense, Billerica MA), and used to update the display. The frame rate in the first experiment 441 

varied between 30-60 Hz, as did the tracker sampling rate; in the second experiment, the frame 442 

rate and sampling rate were constant at 60 Hz.  The measured display latency varied between 50-443 

67 ms. 444 

Displays.  The virtual environment consisted of a ground plane with a grayscale granite texture 445 

and a blue sky. A green start pole and a red orienting pole (radius 0.2m, height 3m) appeared 446 

12.73 m apart (the start pole was reduced to 1.3m in the second experiment). The crowd 447 

consisted of 12 virtual humans (WorldViz Complete Characters) presented in the typical 448 

horizontal field of view (90°).  In the first experiment only, 18 additional virtual humans were 449 

placed outside the field of view on two concentric circles to enhance the sense of immersion if 450 

the participant turned their head. The human models were animated with a walking gait with 451 

randomly varied phase. The racially diverse virtual crowd contained equal numbers of men and 452 

women. 453 
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In the first experiment, the 12 manipulated neighbors were initially positioned on two 90˚ arcs 454 

with the participant at the center, symmetric about the participant’s initial walking direction 455 

(toward the orienting pole).  The arc radii were r =1.5m and 3.5m in the high density condition, 456 

or 3.5m and 7.5 min the low density condition. Five neighbors were placed at equal intervals on 457 

the near arc, and seven on the far arc. In the second experiment, the four nearest neighbors 458 

appeared at fixed initial distances (on arcs with r = 1.5, 1.7, 1.9, 2.1 m), and the nearest two or all 459 

four of them were perturbed. The other eight neighbors appeared on separate arcs spaced 0.2m 460 

apart in depth (r = 2.3, 2.5, … 3.7 m) in the high density condition, or 1m apart in depth (r = 3.1, 461 

4.1, … 11.1) in the low density condition. The eccentricity θ of each neighbor was randomly 462 

selected from six equally spaced points on an 80° arc centered on the initial walking direction.  463 

These initial positions were then jittered in polar coordinates, with the radial displacement ∆r 464 

randomly selected from a Gaussian distribution (μ = 0m, σ = 0.15m) and the angular 465 

displacement ∆θ from a separate Gaussian distribution (μ = 0°, σ = 8°). A different crowd 466 

configuration was generated for each trial; all participants received the same set of 467 

configurations, but virtual humans were randomly assigned to the positions. 468 

During a trial, all virtual humans accelerated from a standstill (0 m/s) to a walking speed (1.0 469 

m/s) on a straight path over a period of 3s following a sigmoidal function (cumulative normal, μ 470 

= 0, σ = 0.5s) fit to previous human data. After 2s, the heading direction of a subset of the 12 471 

neighbors was perturbed by ±10˚, all to the right or to the left, over a period of 0.5 s, following a 472 

similar sigmoidal function (μ = 0, σ = 0.083s).  The display continued for another 8s. In the 473 

second experiment, crowd speed was increased to 1.15 m/s, closer to participants’ preferred 474 

walking speed, and the display thus continued for 5.4s. 475 
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The crucial manipulations were the following.  In the first experiment, the perturbed subset (0, 3, 476 

6, 9 or all 12 neighbors) was randomly selected from near and far neighbors. (The speed of the 477 

subset was similarly perturbed by ±0.3 m/s in a separate condition; see Supplementary Data 1).  478 

In the second experiment, only the nearest neighbors (0, 2, or 4) were perturbed.  The four 479 

nearest neighbors always appeared at the same distances, and the density manipulation only 480 

affected the distances of the eight other neighbors.   481 

Procedure. Participants were instructed to walk as naturally as possible, to treat the virtual 482 

pedestrians as if they were real people, and to stay together with the crowd. On each trial, the 483 

participant walked to the green start pole and faced the red orienting pole. After 2s, the poles 484 

disappeared and the virtual crowd appeared; 1s later, a verbal command (“Begin”) was played 485 

and the virtual crowd began walking. The display continued until the participant had walked 486 

about 12m (a duration of 12s in the first experiment and 10.4s in the second); a verbal command 487 

(‘End’) signaled the end of the trial. There were two practice trials to familiarize the participant 488 

with walking in the virtual environment. During this time, the participants could adjust the inter-489 

ocular distance (IOD) of the HMD so that the display was clearly visible.  490 

Design.  First experiment: 5 perturbed subsets (0, 3, 6, 9, 12 neighbors) x 2 densities (high, low) 491 

x 2 perturbations (heading, speed).  There were 8 trials per condition, for a total of 160 trials 492 

presented in a randomized order in two 1-hour sessions.  The 80 heading-perturbation trials are 493 

reported in the text, and the results from the 80 speed-perturbation trials appear in 494 

Supplementary Figure 1. Second experiment: 3 perturbed subsets (0, 2, 4 nearest neighbors) x 2 495 

densities (high, low).  There were 16 heading-perturbation trials per condition, yielding a total of 496 

96 trials presented in a randomized order in a 1-hour session. 497 
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Data Processing.  For each trial, the time series of head position in the horizontal (X–Y) plane 498 

were filtered using a forward and backward fourth-order low-pass Butterworth filter to reduce 499 

the effects of oscillations due to the step cycle and occasional tracker error. Time series of 500 

heading direction and walking speed were then computed from the filtered position data. A 0.6 501 

Hz cut-off was used for computing heading to reduce lateral oscillations on each stride, while a 502 

1.0 Hz cutoff was used for computing speed to reduce anterior–posterior oscillations on each 503 

step. Right and left turn trials were collapsed by multiplying the heading angle on left turns by -504 

1. Speed-up and slow-down trials were collapsed by first (i) normalizing walking speed by 505 

subtracting the walking speed of unperturbed crowd (1 m/s) from participants’ speed time series, 506 

and then (ii) multiplying the normalized speed on slow-down trials by -1, to yield the absolute 507 

change in speed. Final heading and final speed were then computed as the average value during 508 

the last two seconds of each trial (4s to 6s post-perturbation in the first experiment, 2.4s to 4.4s 509 

in the second). To further mitigate the effect of gait oscillations, a mean time series was 510 

computed for each participant in each condition.  Dependent measures included the mean final 511 

heading, and the mean time series of heading, for each participant in each condition (and the 512 

same for absolute speed change in the first experiment). 513 

Statistical Analysis.  We took a linear mixed effects (LME) regression approach, using the fitlme 514 

function (maximum likelihood approximation) in Matlab (R2019b). The dependent variable (e.g. 515 

heading) is regressed on predictor variables that may include categorical fixed effects (e.g. 516 

density), continuous fixed effects (e.g. time), and random effects (e.g. subjects, with unique 517 

intercepts). The residuals were inspected for any obvious heteroscedasticity or deviations from 518 

normality. Main effects and interactions were tested by comparing models in a step-down 519 
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procedure that removes tested terms from the full model, using likelihood ratio chi-squared tests. 520 

Slopes are described for significant effects. 521 

We performed two LME regression analyses: one on participant mean final heading, and the 522 

second on the participant mean heading time series (see Figure 3). Parallel analyses were 523 

performed on the speed data (see Figure S1). 524 

Human Swarm Experiment 525 

Participants.  One group of 10 participants, one group of 16 participants, and one group of 20 526 

participants were tested in separate sessions as part of a larger study.  The protocol was approved 527 

and informed consent was obtained as before, and participants were paid for their time. 528 

Equipment.  Head position was recorded in a large hall with a 16-camera infrared motion 529 

capture system (Qualisys Oqus, Buffalo Grove, IL) at 60Hz. The tracking area (14m x 20m) and 530 

starting boxes were marked on the floor with colored tape. Each participant wore a bicycle 531 

helmet with a unique constellation of five reflective markers on 30–40 cm stalks.  532 

Procedure.  Participants were instructed to walk about the tracking area at a normal speed, 533 

veering randomly left and right, while staying together as a group, for 2 min trials. Participants 534 

began each trial in shuffled positions in one of the starting boxes, corresponding to high and low 535 

density conditions: a 2x2m or 3x3m box for the 10-person group, a 3x3m or 4x4m box for the 536 

16-person group, and a 4x4 or 7x7m box for the 20-person group. At a verbal ‘go’ signal, they 537 

began walking for 2 min, until a ‘stop’ signal. Each group received two trials in each density 538 

condition. 539 

Design. 3 groups (N=10, 16, 20) x 2 densities (high, low).  There were 2 trials per condition, 540 

yielding a total of 12 trials with 24 min of raw data. 541 
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Data processing. The 3D position of the centroid of the markers on each helmet was 542 

reconstructed on each frame using a custom algorithm. Due to limits on the viewing volume and 543 

infrared reflections in the hall, there were many tracking errors, such that 100% of the helmets 544 

were recovered in 45% of all frames. The time series of head position in the 2D horizontal (x,y) 545 

plane was processed and filtered as before, and the heading direction of each helmet was 546 

computed on each time step in which it was successfully tracked; speed did not vary appreciably, 547 

and was not analyzed further.  548 

We measured the density of the swarm in each frame as the number of participants per square 549 

meter (p/m2). Because this measurement depends on knowing the position of every participant, 550 

only frames in which 100% of the helmets were recovered were used in this analysis. We first 551 

determined the boundary of the (x,y) positions of the participants using Matlab’s boundary 552 

function, then computed the area of that polygon using the polyarea function, and finally 553 

calculated density by dividing the number of participants in that frame (p) by the area of the 554 

polygon (m2). Although this method overestimates absolute density somewhat, it captures the 555 

relative density in low and high conditions for each group (with constant N).  For a robust 556 

estimate, we averaged the measured density of all frames in successive 10s segments on each 557 

trial, including only frames in which 100% of helmets were recovered. The mean density of the 558 

trials in each bin in the high and low conditions are plotted as a function of time bin in 559 

Supplementary Figure 2; the error bars represent the SE of the trial means in each time bin, 560 

where each bin includes 1-4 samples.  561 

Simulation Methods 562 
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Individual trials from the human swarm experiments were simulated in Matlab using the Runge-563 

Kutta method (ode45 function). The participant’s position, heading, and speed 2s before the 564 

perturbation were taken as the initial conditions. For the metric model (Equation 1), the input on 565 

each time step was the position, velocity, and speed of the virtual humans in the participant’s 566 

field of view in that trial.  The speed of the virtual crowd was not perturbed in the second 567 

experiment, so the recorded time series of the participant’s walking speed on each trial was 568 

treated as input. For the visual model (Equation 3), the input was the angular velocity, optical 569 

expansion rate, eccentricity, and visibility of each virtual human, which were calculated from 570 

their positions on each time step. The output of both models were time series of the agent’s (x,y) 571 

position, heading, and speed for each trial.  572 

Model comparisons. To compare the simulations with the human data, we first calculated the 573 

mean time series of heading (and speed) for each participant in each condition, and for the 574 

corresponding model agent. We then computed the mean absolute error (MAE) between each 575 

model agent and the participant time series in each condition. Finally, we compared the models 576 

to one another by calculating Bayes Factors (BFvm) based on the MAE between the model and 577 

each subject. Note that the variability in final heading is very small for the models because gait 578 

oscillations and tracker error were not simulated, so we compare the model means with 95% 579 

confidence intervals for the human data in the figures.  580 

Model performance benchmarks. The performance of any model is limited by the inherent noise 581 

in the human data due to gait oscillations and tracker error. To benchmark the lower bound on 582 

error, we estimated the fluctuations in heading when walking on a straight path by computing the 583 

RMSE between each participant’s mean time series of heading on control trials (0 neighbors 584 

perturbed) and a heading of 0˚. Conversely, to benchmark the upper bound on error – the failure 585 
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of a model to respond to a perturbation – we estimated the error for a model that does not 586 

respond to the input by computing the RMSE between each participant’s mean heading time 587 

series on perturbation trials and a heading of 0˚. These benchmarks indicate the range of model 588 

performance, from the best possible performance given the noise in the data to the performance 589 

of a model that does nothing. Of course, the performance of a model that responds 590 

inappropriately would be even worse. 591 
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Figures 691 

 692 

693 

Figure 1. Testing the metric and topological hypotheses. (A) High density: Soft metric 

neighborhood (shaded gradient) predicts decreasing influence of neighbors (white 

figures) with metric distance from a pedestrian (gray figure), while a topological 

neighborhood (dashed lines) predicts decreasing influence with a neighbor’s ordinal 

distance. Metric and ordinal distance are correlated here. (B) Low density: The 

hypotheses are dissociated by manipulating crowd density. Whereas the soft metric 

neighborhood predicts that increasing neighbor distance will weaken their influence, the 

topological neighborhood predicts their influence will remain constant. 

Figure 2. Virtual crowd displays. Participant’s view in the (A) High Density and (B) Low Density 

conditions of the first experiment. Bird’s-eye view in the (C) High Density and (D) Low Density conditions 

of the first experiment and (E, F) the second experiment. “X” indicates the participant’s position. 
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694 

Figure 3. Results and simulations of the first experiment. (A) Mean Final Heading for humans and metric model as a function 

of the number of perturbed neighbors. Shaded regions represent the 95% confidence interval of the human data. (B) Mean 

time series of heading for human data and metric model in the High Density condition; curves represent the number of 

perturbed neighbors. (C) Same in the Low Density condition. (D,E,F) Same data with simulations of the visual model.  
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Figure 4. Results and simulations of the second experiment. (A) Mean Final Heading for humans and metric model as a 

function of the number of perturbed neighbors. Shaded regions represent the 95% confidence interval of the human data. (B) 

Mean time series of heading for human data and metric model in the High Density condition; curves represent the number of 

perturbed neighbors. (C) Same in the Low Density condition. (D,E,F) Same data with simulations of the visual model.  
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Figure 5. Occupancy PDFs for all human swarm trials, plotted relative to the focal participant nearest the centroid of the swarm. 

(A) High Density condition (mean 2.1 p/m2), 6 trials, 4.9 min of data. (B) Low Density condition (mean 1.7 p/m2), 6 trials, 6.2 

min of data. Color temperature represents the discrete probability density of observing a participant in each 0.2m x 0.2m cell, 

with focal participant p at the origin, heading upward. Larger area of hot reds in A confirms the density manipulation. 
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Figure 6. Heat maps of mean heading difference between the focal participant and each neighbor in human swarms. (A) High 

Density condition, 6 trials, 4.9 min of data. (B) Low Density condition, 6 trials, 6.2 min of data. Cells were only included in 

the heat map if they had at least 500 samples, or 8.33 seconds worth of data. Color temperature represents the mean absolute 

heading difference |∆𝜙𝑖,𝑝| between the focal participant p nearest the swarm’s centroid (plotted at the origin, heading upward) 

and each neighbor i in the corresponding 0.2 x 0.2 m cell over all frames. Larger area of cold blues in A indicates greater 

alignment in the high density condition. 
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Figure 7. Mean absolute heading difference between all pairs of participants |∆𝜙𝑖,𝑗| in human swarms, plotted as a function 

of (A) metric distance and (B) topological distance between i,j. The heading difference is smaller overall in the high density 

condition (blue) than in the low density (red) in both plots. Error bars represent the SEM, computed on the mean heading 

difference for all pairs of participants during each 10s interval in all trials (6 at each density). A. The high and low density 

curves represent all heading differences less than 50° for pairs less than 4.5m apart, yielding 4093 estimates in the high and 

4022 in the low density condition. B. Data were re-sorted to obtain heading differences less than 50° for each of the 15 

nearest neighbors in each 10s interval; metric distances ranged up to 8.3m. This yielded 549 estimates in the high and 528 in 

the low density condition. 
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