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Abstract

Beats are periodic amplitude modulations resulting from the superposition of two periodic signals of different frequencies.
Psychophysical experiments by Georg Simon Ohm, Hermann Helmholtz, and others from the 19th century demonstrate
that beats are not only perceived for two close-by frequencies but also at mistuned octaves. However, the physiological
mechanisms of this percept are still debated. Motivated by a field study, in which we observed the behavioral relevance
of beats at high difference frequencies, we here study the beat encoding over a wide range of difference frequencies in the
electric fish Apteronotus leptorhynchus. The activity of P-unit electroreceptor afferents, that share many properties with
mammalian auditory fibers, follows a repetitive pattern with slow modulations of their firing rate reoccurring around
multiples of the frequency of the carrier signal. By mathematical reasoning and supported by simulations of modified
integrate-and-fire models we conclude that neither Hilbert transform, squaring, harmonics of the carrier, nor a threshold
operation are sufficient to extract slow beats around the octave. Raising the thresholded signal to a power of three,
however, is sufficient to explain the repetitive P-unit responses. Since the threshold-nonlinearity of the afferent’s spike
generator could be ruled out, it is most likely the transfer function of the electroreceptor synapse that implements such
a non-linearity. In the auditory system the hair-cell synapse is known to act as a smooth threshold operation. We thus
conclude that this mechanism within each auditory fiber contributes to the perception of beats at mistuned octaves.

Keywords: difference frequency, nyquist frequency, aliasing, A. leptorhynchus, electrosensory, mistuned octave, beats
of mistuned consonance

1. Introduction

Periodic signals are ubiquitous in the auditory system
(Lewicki, 2002; Romani et al., 1982; Köppl, 1997) and the
electrosensory system of wave-type electric fish (Hopkins,
1976). The superposition of two periodic signals that dif-
fer in frequency results in a periodic amplitude modulation
(AM) known as “beat”. Tuning curves of both auditory
fibres and p-type electroreceptor afferents typically decline
with increasing difference frequencies (Rhode and Green-
berg, 1994; Nelson et al., 1997; Walz et al., 2014).

This is in contrast to experiments on human percep-
tion in the 19th century demonstrating beating amplitude
modulations to be perceived not only for close by frequen-
cies, but also for mistuned octaves where the second fre-
quency is close to octaves of the carrier frequency (Roeber,
1834; König, 1876). These and related percepts have been
formalized by Ohm (1839) and Helmholtz (2009) and dis-
cussed to result from aural harmonics or interactions with
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combination tones. These potential mechanisms, how-
ever, have largely been ruled out by masking experiments
(Plomp, 1967).

Modern electrophysiological studies in auditory systems
focused on the encoding of sinusoidal amplitude modula-
tions (SAMs) with frequencies below half the octave of the
carrier (Joris et al., 2004). In contrast to beats, SAMs re-
sult from an interaction of three tones, a carrier flanked
by two stimulating sine waves at plus and minus the SAM
frequency. Thus, the physiological mechanisms underlying
beat perception at mistuned octaves remain an open issue.

Similarly to electrophysiological research in auditory
systems, the encoding of beats in electrosensory systems
has also been studied at low difference frequencies only
(Walz et al., 2014). Recent field studies, however, demon-
strated behaviorally relevant difference frequencies above
half of the octave of the carrier in the context of courtship
and synchronization of spawning (Henninger et al., 2018)
and inter-species detection (beyond 400 Hz, Henninger
et al., 2020).

Wave-type Gymnotiform electric fish generate a sinu-
soidal electric organ discharge (EOD) of a species and
individual specific frequency (Knudsen, 1975; Henninger
et al., 2020). The EODs of two nearby fish superimpose
and thus produce a beat. Beats and their modulations are
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the fundamental signals in electrocommunication. Beat
amplitude declines with distance between the two fish and
beat frequency is modulated by various electrocommuni-
cation signals (Benda, 2020). Beats are encoded by tuber-
ous electroreceptors distributed all over the body (Carr
et al., 1982). T-units fire phase locked to each EOD cycle
and their spike timing encodes phase modulations (Scheich
et al., 1973). P-units respond with changes in their firing
rate to AMs (Bastian, 1981; Nelson et al., 1997; Benda
et al., 2005), similar to auditory fibers. So far, P-unit tun-
ing to beat frequencies has been analyzed in a range up to
300 Hz. Beyond the strongest firing rate modulations in
response to beat frequencies of 60 – 100 Hz the response
declines down to baseline at about 250 Hz (Bastian, 1981;
Benda et al., 2006; Walz et al., 2014).

Here we address the apparent mismatch between P-
unit tuning and behavioral relevant beat frequencies. We
record P-unit activities of Apteronotus lepthorynchus in re-
sponse to a much wider range of difference frequencies than
was used before (−750 ≤ ∆f ≤ 2500 Hz), also exceeding
the ranges observed for inter- and intra species encoun-
ters in the field (Henninger et al., 2018, 2020). Slow beats
repetitively reoccur at octaves of the carrier EOD and P-
unit firing rates follow this pattern known from early psy-
chophysical experiments (Ohm, 1839; Helmholtz, 2009).
By mathematical reasoning and by modelling the signal
transduction pathway (Chacron et al., 2001; Savard et al.,
2011; Sinz et al., 2020) we then explain how single sensory
cells extract beat frequencies at multiple octaves. Finally,
we test our model predictions in behavioral experiments
based on the jamming avoidance response (Watanabe and
Takeda, 1963).

2. Results

We studied the encoding of beats over a wide range of
frequencies by presenting sinusoidal electrical stimuli with
absolute frequencies ranging from 20 up to 3200 Hz to elec-
tric fish of the species A. leptorhynchus. The stimuli su-
perimpose with the fish’s own electric field and result in
beating amplitude modulations. We recorded the spiking
activity of n = 42 P-unit electroreceptors in response to
these beats.

Responses to low difference frequencies P-units
are known to respond to low-frequency beats by modu-
lating their firing rate (Bastian, 1981; Nelson et al., 1997;
Benda et al., 2005; Walz et al., 2014). For a fish with
EOD frequency fEOD = 664 Hz and a stimulus with fre-
quency fstim = 730 Hz, mimicking a fish with higher
EOD frequency, we get a beat at the difference frequency
∆f = fstim − fEOD = 66 Hz (Fig. 1C, top). A P-unit re-
sponds to this amplitude modulation as demonstrated by
the spike raster and the corresponding firing rate (Fig. 1C,
center). The strongest peaks in the power spectrum of the
spike response are at the beat frequency (red) and the re-
ceiver’s EOD frequency (gray circle, Fig. 1C bottom).

When fstim is 66 Hz below fEOD, the resulting beat
is similar to the one discussed above, although at a neg-
ative difference frequency. The P-unit response has the
same features as for the positive difference frequency and
the spectrum has prominent peaks at the same locations
(compare Figs. 1B and C). Signals generated by positive
or negative ∆f differ only in small phase shifts in the car-
rier, encoded by another population of electroreceptors,
the T-units (Scheich et al., 1973).

As fstim increases, the beat frequency increases accord-
ingly and the response strength, characterized by the mod-
ulation depth of the P-unit’s firing rate, declines (Fig. 1D),
confirming previous results (Bastian, 1981; Nelson et al.,
1997; Savard et al., 2011; Walz et al., 2014).

Beat frequency does not match difference fre-
quency for high stimulus frequencies In the ex-
amples discussed so far, |∆f | and the frequency of the
beating pattern induced in the receiver’s EOD are iden-
tical. Increasing (or decreasing) fstim beyond fEOD ±
fEOD/2, however, breaks this relation. Instead, at fstim =
0.1fEOD, 2.1fEOD, or 3.1fEOD the resulting beats have
the same frequency as for fstim = 1.1fEOD, a stimulus
close to the receiver’s EOD frequency (Fig. 1A, E, F, top).
Even for extremely high difference frequencies the result-
ing beat can be rather slow.

P-units respond to an extremely wide range of
stimulus frequencies These slow beats modulate the
P-unit’s spike responses for difference frequencies up to
roughly 1400 Hz, far beyond the known response range
up to ∆f ≈ 300 Hz (Fig. 1C – G). Also, at large nega-
tive difference frequencies corresponding to absolute stim-
ulus frequencies down to 0 Hz, a range commonly assumed
to be primarily driving the ampullary electrosensory sys-
tem (Kalmijn, 1974; Engelmann et al., 2010; Grewe et al.,
2017), we observed clear responses (Fig. 1A). The multiple
ranges of stimulus frequencies clearly driving the P-units
are centered on harmonics of fEOD.

Aliasing structure of beat responses Close to in-
teger multiples of fEOD (i.e. its harmonics) we see slow
beats and strongly modulated spike responses. Towards
odd multiples of fEOD/2, beats get faster and spike re-
sponses get weaker. The position of the strongest peak
in the response power spectrum below fEOD/2 is the fre-
quency of the P-unit’s firing modulation. Plotting this
frequency as a function of fstim reveals a repetitive pat-
tern shaped like a “Toblerone” (Fig. 1H). This zig-zag
pattern resembles the phenomenon of aliasing known from
the sampling theorem, with fEOD/2 being the Nyquist fre-
quency (Fig. S2). This analogy suggests that the carrier,
the receiver’s EOD, samples the stimulus with its peaks,
as has been suggested previously (Sinz et al., 2020). Thus,
fEOD defines the scale in which fstim has to be inter-
preted. Accordingly, from now on we express fstim relative
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Figure 1: Encoding of a wide range of difference frequencies in an example P-unit. A–F Beating amplitude modulation (colored line) of the
carrier EOD (gray, top), spike raster and instantaneous firing rate of evoked P-unit response (center), and corresponding power spectrum
(bottom, gray circle: fEOD, dashed line: fEOD/2, colored circle: strongest frequency below fEOD/2) of a few selected stimulus frequencies.
G Vertical raster plots to a wide range of stimulus frequencies (one trial per frequency) indicate a repetitive structure of P-unit responses.
Colored rasters mark examples shown in panels A–F. H Frequency tuning, fresp, of the P-unit response, i.e. frequency of its firing rate
modulation, retrieved as the strongest frequency below fEOD/2, grows with stimulus frequency and repeats every integer multiple of fEOD.
Colored triangles mark examples shown in panels A–F. I Alternate stimulus frequency axis in multiples of fEOD, i.e. ∆f/fEOD + 1. J
Amplitude tuning curve, quantified as the amplitude of the peak at fresp (square-root of the integral below the peak at fresp of the power
spectrum of the spike response convolved with a Gaussian kernel with σ = 0.5 ms), also repeats at harmonics of fEOD. Strongest responses
are close to multiples of fEOD. Right at odd multiples of fEOD/2 responses are enhanced (arrows).
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to fEOD, which also allows for comparisons across animals
with distinct EOD frequencies (Fig. 1 I).

Periodic amplitude tuning curve The amplitude
Aresp of the largest peak in the response spectrum be-
low fEOD/2 reflects the strength of the P-unit response,
i.e. the modulation depth of its firing rate. The result-
ing tuning curve shows the same repetitive structure as
the frequency of the spike response (Fig. 1 J). Close to
harmonics of fEOD the response is strongest. These max-
ima, however, become smaller the higher fstim. Right at
the harmonics we observe dips in the response amplitudes
which can be attributed to the P-unit’s spike-frequency
adaptation (Benda et al., 2005). Response amplitudes
decline as the stimulus frequency approaches odd multi-
ples of fEOD/2. Exactly at odd multiples of fEOD/2, re-
sponse amplitudes often are markedly elevated (arrows in
Fig. 1 J). For higher stimulus frequencies response ampli-
tude increases again towards the next harmonic. This in-
crease of the response amplitude beyond fstim = 1.5fEOD
was not expected given previous data on the encoding of
amplitude modulations in P-units (Bastian, 1981; Nelson
et al., 1997; Savard et al., 2011; Walz et al., 2014).

Amplitude tuning depends on synaptic filtering
The synapse between P-units and their target neurons
in the electrosensory lateral line lobe acts as a low-pass
filter (Berman and Maler, 1998). The shape of the P-
unit’s amplitude tuning curve strongly depends on this
low-pass filtering. It is relatively flat when computed di-
rectly from the spike trains but becomes more modulated
when the spike train is low-pass filtered (Figs. 2 and S1).
Low-pass filtering the spike train with a physiologically
plausible Gaussian kernel with σ = 0.5 ms attenuates high
beat frequencies while keeping low beat frequencies un-
touched, resulting in a periodically modulated amplitude
tuning curve.

Sensitive cells respond to a larger frequency
range P-unit responses scale with stimulus amplitude
(Bastian, 1981; Nelson et al., 1997) and different P-units
differ in their sensitivities to a global stimulus (Grewe
et al., 2017). To account for both, sensitivity and stimulus
intensity, we quantified the P-unit’s response amplitude to
a standard stimulus, a ∆f = 50 Hz beat (Fig. 2D). This
quantifies the modulation depth of a P-unit’s firing rate
evoked by the 50 Hz beat and ranged from 70 to 360 Hz.

Based on these amplitudes we divided the P-unit record-
ings into three sensitivity categories (Fig. 2D). The re-
sponses of the most sensitive cells show the repetitive alias-
ing structure of the frequency and amplitude tuning curves
up to about 3.5 harmonics (Fig. 2A). Low-pass filtering
with a postsynaptic kernel of 0.5 ms standard deviation
enhances the repetitive structure of the amplitude tuning
curve. The less sensitive a P-unit, the less far its response

follows the expected aliasing frequencies and the weaker
its amplitude tuning curve is modulated (Fig. 2B, C).

In the following sections we explore prerequisites nec-
essary for neurons to extract the aliased frequency of the
amplitude modulations of beats. The resulting theory fully
explains the experimental observations, including the en-
hanced responses at odd multiples of fEOD/2 (arrows in
Figs. 1 J).

Neither the analytic signal nor squaring explains
the aliasing structure of the beat As suggested by
Figs. 1 and 2 above, the aliasing structure of the P-unit
response is inherited from the amplitude modulation re-
sulting from the superposition of the EODs of the two
fish. To understand the P-unit responses we need to un-
derstand how the amplitude modulation of a beat can be
retrieved from the superposition of the two EODs, i.e. how
a peak at the beat frequency can be generated. This is a
generic problem independent of the electrosensory system
and thus we express the problem in terms of two cosine
waves: a carrier, the EOD of the receiving fish, with fre-
quency ω1 = 2πf1 and amplitude one and a stimulus, the
EOD of another fish, with frequency ω2 = 2πf2 and an am-
plitude α measured relative to the amplitude of the carrier
(stimulus contrast). Both signals superimpose:

x(t) = cos(ω1t) + α cos(ω2t) (1)

The resulting signal x(t) shows the characteristic beating
amplitude modulation, but the spectrum has peaks only at
the original stimulus frequencies ±ω1 and ±ω2. There are
no peaks at the beat frequency (Fig. 3A). A non-linear
operation needs to be applied to the signal to generate
spectral peaks at the observed beat frequency. Commonly
used non-linearities to retrieve the amplitude modulation
of a beat are the absolute value of the analytic signal ob-
tained by means of a Hilbert transformation, squaring, or
thresholding (Middleton et al., 2006).

Both the analytic signal and squaring predict the beat
frequency to be identical to the difference frequency. This
is exactly what we expect for low difference frequencies,
i.e. for stimulus frequencies ω2 close to ω1. However,
for higher difference frequencies the beat frequency is pre-
dicted to keep growing (Fig. S3). These non-linearities do
not explain the aliasing structure we observe in the beats
and the P-unit responses (Fig. 1H).

Thresholding explains aliasing at odd multiples
of the carrier frequency A threshold non-linearity

xth(t) = bx(t)c0 =

{
x(t) ; x(t) ≥ 0

0 ; x(t) < 0
(2)

sets all negative values of a signal to zero. Only the pos-
itive half-waves of the beating signal are passed through
(Fig. 3C, left).
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Figure 2: Aliasing structure of population averaged responses. P-unit recordings were classified according to their sensitivity in D. A The
frequency tuning curve of good encoders (n1 = 18) follows the aliased beat frequency up to almost 3.5fEOD. B Medium encoders (n2 = 9)
respond up to almost 3fEOD. C Bad encoders (n = 31) respond up to about 2.5fEOD. Plots show median (solid line) and interquartile
range (shading) of the frequency fresp (top) and amplitude Aresp (bottom) of the strongest peak in the response spectrum below fEOD/2.
Response spectra were computed directly from binary spike times (resolution of 40 kHz, left column) or from spike trains convolved with
a Gaussian kernel with σ = 0.5 ms (right column). D Distribution of each recording’s sensitivity quantified as the amplitude Aresp of the
response evoked by a ∆f = +50 Hz beat with a contrast of 10 % or 20 %. The recordings were categorized as indicated by the dashed lines.
Note, that cells that have been measured with both 10 and 20 % contrast contribute two recordings to the histogram.

To make this operation analytically tractable, we ap-
proximate the thresholding operation, Eq. (2), by a mul-
tiplication with a pulse train of the same frequency ω1 as
the carrier signal (Fig. 3B left):

xth(t) ≈ x(t) · p(ω1t) (3)

The pulse train p(ω1t), Eq. (S8), multiplies positive
halfwaves with one and negative halfwaves with zero
(Fig. 3C left). Note that this approximation is valid only
in the limit α → 0. For larger amplitudes the stimulus
distorts the carrier, shifting also its zero crossings. The
spectrum of the pulse train has a peak at zero frequency,
Eq. (S10), and peaks at all odd multiples of the carrier
frequency ω1, Eq. (S9), (Fig. 3B, right).

According to the convolution theorem a multiplication
in time equals a convolution in the Fourier domain. Thus,
the Fourier spectrum of a thresholded beat (Fig. 3C) is
given by the convolution of the spectrum of the beat
(Fig. 3A) and that of the pulse train (Fig. 3B). A first
component of the resulting spectrum is the convolution of

the carrier (ω1) with the pulse train. This results in peaks
at even multiples of ω1, Eq. (S12), and at ±ω1, Eq. (S13)
(horizontal lines in Fig. 3D). These frequency components
do not make up the amplitude modulation, because they
do not depend on ω2.

The second component of the spectrum, the convolution
of the stimulus (ω2) with the pulse train, provides side
peaks at ±ω2 to all the peaks of the pulse train. These
peaks can explain the aliasing structure of the beat around
odd multiples of ω1, Eq. (S15), and around zero frequency,
Eq. (S16). Since they depend on ω2, they form the diago-
nal lines in Fig. 3D. These peaks fall into the range below
the Nyquist frequency (ω1/2, gray area in Fig. 3C, D, F)
around odd multiples of ω1, indicating slow beat modula-
tions.

A few example spectra of the thresholded beat are shown
in Fig. 3F. While there is a peak below the Nyquist fre-
quency for ω2 at 0.15, 1.15, and 3.15 times ω1 (Fig. 3Fi,
C, Fiii), it is missing around even multiples of ω1 (2.15 and
4.15 times ω1 in Fig. 3Fii, Fiv). In contrast to the am-
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Figure 3: Thresholding is not sufficient to explain full aliasing structure of beats. A A beat generated by summing up two frequencies ω1

and ω2 (left) only contains these two frequencies in its Fourier spectrum (right). B A pulse train, Eq. (S8), used to approximate a threshold
operation, Eq. (2), has peaks at odd multiples of ω1 and at zero. C The thresholded beat, approximated by multiplying the beat with the
pulse train, has a rich spectrum that can be computed by convolving the spectrum of the beat with the one of the pulse train (colored circles).
Here, for ω2 = 1.15ω1 a peak appears at the difference frequency ω2 − ω1 below the Nyquist frequency at ω1/2 (gray area). This peak
describes the slow amplitude modulation of the beat in A. D The position of all peaks of the thresholded beat, Eqs. (S12), (S13), (S15), and
(S16) (solid lines), as a function of stimulus frequency ω2. The black dashed line marks the expected aliased frequencies, and the circle the
only crossing of peaks below the Nyquist frequency (gray area). E Amplitude of the peaks in D below the Nyquist frequency, Eqs. (S15) and
(S16), that basically reflect the the respective Fourier coefficient of the pulse train, Eqs. (S9) and (S10). At the crossing of peaks (circle in D)
amplitudes sum up (arrow). F Further examples of power spectra for various stimulus frequencies as marked by circled numbers in D. Same
color scheme as in C.
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plitude of the analytic signal and to squaring, the thresh-
olding operation introduces many additional peaks in the
spectrum, necessary for explaining some but not all of the
aliasing structure of beats.

Threshold cubed fills in additional beat frequen-
cies How can we fill in the missing components in the
spectrum around even multiples of ω1? Let’s try to make
the threshold operation more non-linear by raising its out-
put to a power of three:

xc(t) = bx(t)c30 (4)

Again, this can be approximated by taking the beat signal
to the power of three and multiplying the result with a
pulse train (Fig. 4A–C). The spectrum of the cubed beat
signal has 23 = 8 peaks, Eq. (S18) (two times convolu-
tion of two peaks with themselves). Of those the peaks
at |2ω1 − ω2| = |ω1 − ∆ω| (Fig. 4D, red and purple) are
the only relevant additions in comparison to the threshold
without exponent. The convolution of these peaks with
the zero-frequency peak of the pulse train fills in the miss-
ing beat frequencies around twice the carrier frequency
(Eq. (S24), Fig. 4E, red and purple). Threshold cubed
can explain beat frequencies up to inclusively three multi-
ples of ω1.

Higher powers would introduce more peaks in the spec-
trum and fill up towards higher multiples of ω1. In the
limit of infinitely high exponents this would approach the
situation of the sampling theorem — the half-waves of the
carrier would get infinitesimally narrow and sample the
stimulus at integer multiples of the carrier period 2π/ω1.
But the higher the power, the more the amplitude modu-
lation is distorted.

The amplitudes of the peaks below the Nyquist fre-
quency decline in a step-wise manner for each harmonic,
Eqs. (S22), (S23), and (S24). At 1

2ω1, 3
2ω1, and 5

2ω1 spec-
tral peaks cross each other (circles in Fig. 4E). Their re-
spective amplitudes add up and result in elevated ampli-
tudes exactly at these frequencies (Fig. 4F, arrows). These
peak crossings explain the elevated P-unit responses at
these frequencies (arrows in Fig. 1 J).

Non-linear spiking dynamics cannot explain re-
sponses to higher beat frequencies Eventually, a
spike generator, here modeled as a leaky integrate-and-fire
neuron (LIF) with adaptation, Eqs. (A.1), (A.3), (A.4), en-
codes the extracted amplitude modulation in a train of ac-
tion potentials (Fig. 5D). Neither the hard threshold non-
linearity the LIF applies on the membrane voltage nor the
smooth voltage-threshold, Eq. (A.2), of the exponential
integrate-and-fire neuron (EIF, Fig. 5E, Fourcaud-Trocmé
et al., 2003) can replace the power of three to extract the
amplitude modulation of a beat resulting from a stimu-
lus at around twice the carrier frequency. The non-linear
dynamics of a spike generator can not generate the alias-
ing structure of the P-unit responses to beats. Rather, a

sufficiently strong static non-linearity (Fig. 5B) has to be
applied to the beat, such that the necessary low-frequency
peak in the spectrum is generated. Subsequent low-pass
filtering then isolates this peak (Fig. 5C) and this is what
the spike generator responds to.

A power of three describes P-unit responses best
For a more systematic evaluation which exponent on the
threshold operation describes the P-unit responses best,
we simulated LIF models using exponents at the thresh-
old non-linearity ranging from p = 0.2 to 5. The resulting
frequency and amplitude tuning curves were compared to
the experimentally measured ones (Fig. 6). LIF models
with a threshold non-linearity without exponent (power of
one), Eqs. (A.1), (A.3), (A.4) (Sinz et al., 2020), were in-
dividually fitted to response characteristics of n = 9 cells.

As predicted, a pure threshold without exponent shows
responses at the zeroth, first and third harmonic (Fig. 3),
but diverges from the measured activity (Fig. 6A) around
the second harmonic (Fig. 6C). Exponents both higher
(Fig. 6D, E, F) and lower than one (Fig. 6B) fill in the
response at the second EOD multiple. Models with pow-
ers of 1.5 and 2.5, and in particular of 0.5, additionally
respond to the forth EOD multiple.

To quantify the model performance we computed mean
squared errors (MSE) between 18 experimentally mea-
sured cells with the 9 cells of similar sensitivity in the
model population. The MSEs between frequency tuning
curves were minimal at powers of about 0.5, 1.5, and 2.5–3
(Fig. 6G, left). The MSEs for the corresponding amplitude
tuning curves showed similar minima but with the small-
est MSE at a power of 3 (Fig. 6H, right). A power of three
indeed describes both the frequency and amplitude tuning
curves of P-unit responses best.

Harmonics of the carrier are not sufficient to ex-
plain aliasing So far our reasoning was based on pure
sine waves. In the electrophysiological recordings, how-
ever, the carrier was a real EOD waveform of A. lep-
torhynchus. Using these EOD waveforms instead of sine
waves for the models tilted the MSE curves slightly to-
wards higher exponents. Exponents smaller than one
increased the MSE, whereas exponents larger than two
further decreased the MSE with a minimum at p = 3
(Fig. 6H). In a model with a pure threshold (p = 1)
the harmonics of the carrier do not contribute to shift the
stimulus frequency to all multiples of fEOD. A wider or
narrower EOD waveform, however, modifies the aliasing
structure introduced by the threshold operation in a way
we do not observe in the data. Adding a power of three
to the threshold makes the P-unit responses more robust
against changes in the EOD waveform (see Fig. S4 and
supplement for detailed explanation).

Ambiguous beats evoke similar behavioral re-
sponses Our results imply that P-unit responses are am-
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Figure 4: Threshold cubed fills in beat frequencies around the second harmonic of the carrier. A The beat cubed (left) has a more pointed
carrier and eight peaks in the positive half of the Fourier spectrum. B Again we approximate the thresholding operation by a multiplication
with a pulse train. C The threshold-cubed beat has a much richer power spectrum compared to the thresholded beat without exponent
(Fig. 3C). The colored markers illustrate the convolution process and the gray shading frequencies below the Nyquist frequency. D Position of
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amplitude modulation of beats, Eqs. (S22), (S23), and (S24). Crossing peaks in E (circles) add up and result in elevated amplitudes (arrows
in F).
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Figure 5: Integrate-and-fire models of P-unit spiking activity. A Superposition of two cosine waves with ω2 = 2.1ω1 results in a beat with an
amplitude modulation oscillating at 0.1ω1. B This signal is thresholded, Eq. (2), (blue) or thresholded and cubed, Eq. (4), (green), potentially
at the synapse between the receptor cells and the P-unit afference. C The dendritic cable of the afferent acts as a low pass filter Eq. (A.4).
D The spike generator is modeled by a leaky integrate-and-fire neuron (LIF) with adaptation, Eqs. (A.1) & (A.3). E Alternatively, we also
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biguous with respect to the absolute stimulus frequency.
Whether the stimulus frequency was close to one, two, or
three times fEOD should not be distinguishable by the fish
based on P-unit responses.

We tested this hypothesis behaviorally by means of
the jamming avoidance response (JAR, Watanabe and
Takeda, 1963). When a receiving fish is stimulated with a
sinusoidal mimic that is close to but below the own EOD
frequency, it will raise its EOD frequency by a few Hertz
on a time scale of about 10 seconds (Fig. 7A). We repeated
the experiment with stimulus frequencies 5 Hz below one
to five times fEOD. Indeed, all the fish tested (n = 5)
responded with a JAR to one, two, and three multiples of
the EOD frequency (Fig. 7B). None of the fish responded
to four times fEOD, but some fish did respond even at five
times fEOD with a very small JAR of less than 1 Hz. The
fish also showed a weak JAR to a stimulus with an abso-
lute frequency of 5 Hz. The JARs to non-zero multiples
of fEOD closely follow the beat amplitudes predicted by a
cubed threshold, Eqs. (S22), (S23), and (S24) (Fig. 7C).
Only the response to the zeroth EODf multiple was much
smaller than expected from the beat amplitude.

3. Discussion

We observed that P-units encode a wide range of stim-
ulus frequencies up to about 3000 Hz (Fig. 1). Superpo-
sition of the EOD carrier and the stimulus led to beating
amplitude modulations. At every integer multiple of the
carrier frequency these AMs are slow, between the integer
multiples AM frequencies were fast. The repeating pat-
tern resembles aliasing known from the sampling theorem
(Fig. S2). In accordance with the beat pattern, the P-unit
tuning curves were also periodic in harmonics of the car-
rier (Fig. 2), but the amplitude of the responses declined
with higher stimulus frequencies.

P-unit tuning to high difference frequencies P-
unit tuning curves for beat stimuli have so far been only
measured for difference frequencies up to about 300 Hz
(Bastian, 1981; Nelson et al., 1997; Benda et al., 2006;
Walz et al., 2014). The amplitude of the response modu-
lation induced by beating amplitude modulations resem-
bled a band-pass tuning. The reduced response to dif-
ference frequencies close to zero (Nelson et al., 1997) re-
flects the high-pass filter induced by the P-units’ fast spike-
frequency adaptation (Benda et al., 2005). Towards higher
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Figure 6: Dependence of LIF model performance on threshold exponent. A Frequency (left) and amplitude tuning curves (right, solid line
indicates population median and shaded area the interquartile range) of n = 18 experimentally measured P-units of highest sensitivity (same as
Fig. 2A). B–F Tuning curves simulated from a population of n = 9 LIF models (Fig. 5 ) that have been fitted to individual P-units. Exponent
p of the threshold non-linearity applied to the beat as indicated and illustrated in the left column. Arrows indicate missing or additional
responses. G Mean squared error (MSE, median with interquartile range) between the tuning curves of each experimentally measured P-unit
shown in A and each LIF model in dependence on the threshold exponent used in the models. Examples from B–F are indicated by the
correspondingly colored circles. Here, both the carrier and the stimulus are pure sine waves. H Same as in G but with an EOD waveform of
A. leptorhynchus as carrier and a pure sine wave as stimulus, resembling the situation in the electrophysiological experiments (see Fig. S4).
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beat frequencies the response was found to steadily decline
towards zero as expected for a spiking neuron (Fourcaud-
Trocmé et al., 2003) and as set by the neuron’s baseline
firing rate (Knight, 1972).

The experimental findings reported here clearly demon-
strate that P-units do show responses to difference fre-
quencies beyond 300 Hz. Instead of the expected steady
decrease, the tuning repeats at harmonics of the EOD
carrier frequency which has profound consequences for
the encoding of chirps, electrocommunication signals that
transiently increase the difference frequency (Benda et al.,
2005). The P-unit response to chirps could be explained
by transient firing rate modulations mediated by the P-
units’ beat tuning curve (Walz et al., 2014). In a field
study the behavioral relevance of chirps at difference fre-
quencies beyond 400 Hz and thus beyond the Nyquist fre-
quency of the female has been shown (Henninger et al.,
2018). A monotonously declining tuning curve would not
suffice to explain how chirps could be encoded at such
high beat frequencies. The repetitive tuning we describe
here increases again beyond the Nyquist frequency and
thus leads to changes in the firing modulation induced by
chirps. The small peaks in the tuning curve at exactly half
fEOD, that can be explained as a crossing of two peaks in
the spectrum (Fig. 4), might add an interesting aspect to
the encoding of chirps.

In this context, the low-pass filtering of a post-synaptic
kernel plays an important role (Fig. S1). If the kernel is
too narrow, then the tuning curve of the P-units is almost
flat and firing rate modulations caused by chirps would be
quite small. If the kernel is too wide, the tuning curve is
only modulated within a narrow range of stimulus frequen-
cies around the harmonics of the carrier. Only for kernels
resembling the experimentally measured postsynaptic po-
tentials (σ = 0.5 ms, Berman and Maler, 1998) is the tun-
ing curve fully modulated without being flat between the
harmonics (Fig. 2). We therefore hypothesize electric fish
with lower EOD frequencies to have correspondingly wider

postsynaptic potentials.

Beat extraction at high difference frequencies
The repetitive tuning curve of P-units is in a way triv-
ial in that it simply follows the amplitude modulations of
beats. But how is this apparent amplitude modulation ex-
tracted from the original signal, which does not contain
the beat frequency in its power spectrum?

Usually, beat frequency is considered as equalling the
difference frequency (Walz et al., 2014; Joris et al., 2004).
A commonly used method to extract amplitude modula-
tions is the magnitude of the analytic signal obtained via
Hilbert transform (Middleton et al., 2006; Longtin et al.,
2008; Carriot et al., 2017; Stamper et al., 2012), which
also predicts the beat frequency to be given by the differ-
ence frequency (Fig. S3A). Similarly, squaring the signal
(Fig. S3B) generates a peak in the spectrum at the dif-
ference frequency. However, the observed beat frequencies
equal difference frequencies only for difference frequencies
below the Nyquist frequency and thus are not sufficient to
explain our results.

Yet another common method for computing amplitude
modulations of, for example, EMG or EEG signals (My-
ers et al., 2003) or acoustic signals (Khanna and Teich,
1989), is thresholding. A threshold, also known as a Rec-
tifying Linear Unit (ReLU) in deep learning, extracts beat
frequencies only at odd harmonics of the carrier (Fig. 3).
Rather, a threshold operation followed by exponentiation
is required to generate peaks in the power spectrum at in-
teger multiples of the carrier frequency (Fig. 4). Neither
the non-linearity of action-potential generation (Fig. 5),
nor higher harmonics of the carrier and the signal are suf-
ficient to substitute an exponentiated threshold to explain
our data (Fig. S4).

In deep learning it is common to apply smooth threshold
functions such as ELU (Clevert et al., 2015) or Softplus
(Glorot et al., 2011). All of these are potential alternatives
for the threshold raised to a power of three we suggest to be
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at work in P-units, because they all could be approximated
by a ReLU raised to a power of three in the vicinity of their
threshold. The same holds true for sigmoidal activation
functions. As they are discussed for the transformation
of a hair-cells membrane voltage by their ribbon synapse
(Peterson and Heil, 2019). Only for larger inputs their
saturation will lead to noticeable deviations.

Sinusoidal amplitude modulations (SAMs) ver-
sus beats For characterizing signal processing of the
electrosensory system (Bastian, 1981) and in particular of
the mammalian auditory system (Joris et al., 2004), SAM
stimuli of various frequencies and amplitudes have been
used. SAM stimuli multiply a carrier with a periodic am-
plitude modulation Eq. (S6) and differ from beat stimuli
by having two peaks in the spectrum instead of a single one
which are located at ±∆f flanking the carrier frequency
(Fig. S5). The additional peak induced by a SAM stim-
ulus already fills in responses at the second harmonic of
the carrier when used in conjunction with a power-of-one
threshold Fig. S5E. An effect that would have obscured the
underlying mechanism, i.e. the power of three threshold,
if we had applied SAMs instead of realistic beats.

Relation to the sampling theorem In the limit
to infinite power the thresholded and exponentiated car-
rier approaches Dirac delta functions positioned at mul-
tiples of the carrier’s period. This pulse train can be
thought to sample the stimulus waveform with the car-
rier frequency exactly like in the setting of the sampling
theorem (Fig. S2). However, the stimulus waveform also
gets transformed by the threshold and the power opera-
tion. The higher the exponent the larger the distortion of
the extracted amplitude modulation. Thus, the exponent
should be not too large in order to maintain an accurate
representation of the amplitude modulation. In this sense,
a sharp threshold without exponent would be ideal.

Physiological mechanisms for beat extraction
The most likely site for the threshold operation are the
ribbon synapses of the electroreceptor cells onto the affer-
ence (Northcutt, 1986) as has been suggested previously
(Chacron et al., 2001). It is quite unlikely that these
synapses act like a perfectly sharp threshold. Rather there
will be a smooth transition in a way that is best described
by a cubic power applied to the threshold (Fig. 5B). In-
deed, cooperativity of calcium channels in the presynapse
has been discussed for hair cells in the auditory system
to result in powers of three or higher (Roux et al., 2006;
Michalski et al., 2017; Peterson and Heil, 2019).

Before the postsynaptic potential reaches the spike-
generation site it is low-pass filtered by the dendrite of the
afferent (Sinz et al., 2020). With the right time-constant
this isolates the low-frequency amplitude modulation but
does not entirely remove the EOD (Fig. 5C).

Sensitivity curves measured for a range of EOD frequen-
cies demonstrate that P-units are tuned to a fish’s EOD
frequency (Hopkins, 1976) and to limit P-unit responses
to stimulus frequencies close to the EOD frequency. The
corresponding band-pass filter is probably caused by elec-
tric resonance in the electroreceptor cells (Viancour, 1979).
Adding a damped oscillator, Eq. (S28), to our P-unit mod-
els, Eqs. (A.1) – (A.4), reproduces P-unit tuning to EOD
frequency (Fig. S6A–B) but does not impair responses to
beats at high difference frequencies (Fig. S6C–D).

Ambiguity in beat perception The decline in re-
sponse amplitude with higher harmonics of the carrier
(Fig. 2) is a consequence of the beat amplitude that gets
smaller with higher harmonics (Fig. 4F). Since the beat
amplitude also depends on the distance between two fish
— the larger the distance the smaller the beat amplitude,
the P-units’ response is ambiguous and the fish should not
be able to resolve this based on the firing rate of the P-
units.

The jamming avoidance response (JAR) is evoked by
stimulus frequencies close to the receivers’s own EOD fre-
quency and also by stimulus frequencies close to harmonics
of the carrier (Watanabe and Takeda, 1963). The ampli-
tude of the JAR closely follows the beat amplitude ex-
tracted by a cubed threshold (Fig. 7). Also the behav-
ioral threshold for detecting a beat at least qualitatively
follows the tuning curve of the P-units (Knudsen, 1974).
This suggests that wave-type electric fish indeed can not
disambiguate stimuli at different multiples of their EOD
frequency.

In contrast, the JAR at stimulus frequencies close to the
zeroth multiple of fEOD is much smaller than the ampli-
tude of the corresponding beat. Such low-frequency stim-
uli also evoke responses in ampullary cells of the passive
electrosensory system (Kalmijn, 1974; Engelmann et al.,
2010; Grewe et al., 2017). Combining ampullary and P-
unit information would allow the fish to disambiguate the
P-unit response and to inhibit the JAR response.

Perception of other wave-type species The wide
range of difference frequencies covered by P-unit responses
(Fig. 2) extends far beyond the range of EOD frequen-
cies covered by conspecific wave-type electric fish (usually
about one octave). Consequently, the fish should be able to
detect the presence of sympatric species covering higher or
lower frequency ranges than conspecifics (Steinbach, 1970;
Hopkins, 1974; Kramer et al., 1981; Stamper et al., 2010;
Henninger et al., 2020). Whether and how the different
species interact or communicate is an open issue that could
be resolved by analyzing electrode-array data recorded in
the field (Henninger et al., 2020).

Beat perception in the auditory system Early
psychophysical experiments with interacting pure tones
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demonstrated that beats are not only perceived at low dif-
ference frequencies but also for mistuned octaves, when the
second tone is close to octaves of the first tone (Roeber,
1834; König, 1876). These experimental findings were for-
malized in the 19th century by Ohm (1839) and Helmholtz
(2009). Underlying physiological mechanisms, i.e. non-
linear mechanisms necessary for extracting beat frequen-
cies, are still debated, in part because the focus of audi-
tory neuroscience has been on the encoding of SAMs (Joris
et al., 2004).

Distortion-product otoacoustic emmissions (DPOEs)
are hallmark non-linear phenomena of the ear that have
been attributed to the mechanic properties of the cochlea
and in particular to the active amplification of outer hair
cells (Brownell, 1990). The most prominent DPOEs are
the cubic distortion, 2ω1 − ω2, and the quadratic distor-
tion, ω2−ω1 (Kujawa et al., 1995), which is the difference
frequency. Both frequencies grow linearly in the stimulus
frequency ω2 and thus can not explain the aliasing pattern
of the beat frequency. Further, aural harmonics and inter-
actions with combination tones have largely been ruled out
by masking experiments (Plomp, 1967).

Our results suggest the non-linear transformation at
the ribbon synapse (Michalski et al., 2017) to generate
distortion products that extract the aliasing structure of
beats. The two tones making up a beat are interacting
within a single hair cell. The lower the characteristic fre-
quency of an auditory fibre and the louder the two tones,
the wider its effective tuning (Sumner and Palmer, 2012;
Evans, 1972), allowing for beats at multiple octaves of the
carrier tone exciting the auditory fibre. This is in line
with beats being better perceived with louder tones and
at higher harmonics the lower the frequency of the carrier
signal (Plomp, 1967) and with a second peak at the oc-
tave of the carrier stimulus observed in the response gain
of auditory fibres to SAMs (Palmer, 1982).

Conclusion The sharp kink introduced by a simple
threshold is a mathematical abstraction. Any physiolog-
ical mechanism implementing this non-linearity, like for
example the activation curve of voltage-gated calcium cur-
rents, has a rather smooth transition. The cubed threshold
we derive from our recordings is a mathematically simple
way for modeling such a physiologically realistic smooth
threshold. In this sense, the ability of the P-units to ex-
tract beats at multiples of the carrier frequency is a by-
product of their physiology. Natural and sexual selection
need to work on the resulting ambigous code for beat fre-
quencies. For the same reason, mammalian auditory fibers
are bound to respond to mistuned octaves and thus should
contribute to the percept of beats at higher difference fre-
quencies.
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Appendix A. Methods

Electrophysiology 42 P-units were recorded from
six weakly electric fish of the species Apteronotus lep-
torhynchus obtained from a commercial tropical fish sup-
plier (Aquarium Glaser GmbH, Rodgau, Germany). The
fish were kept in tanks with a water temperature of 25 ◦C
and a conductivity of around 300µS/cm under a 12h : 12h
light-dark cycle. Body sizes oft the fish were between 15
and 17.5 cm and 11.1 and 13.2 g. EODf varied between
558 and 787 Hz. All experimental protocols complied with
national and European law and were approved by the
Ethics Committee of the Regierungspräsidium Tübingen
(permit no: ZP1-16).

Surgery Prior to surgery, anesthesia was provided via
bath application of a solution of MS222 (120 mg/l, Phar-
maQ, Fordingbridge, UK) buffered with Sodium Bicarbon-
ate (120 mg/l). For the surgery the fish was fixed on a
stage via a metallic rod glued to the skull. The posterior
anterior lateral line nerve (pALLN) above the gills, be-
fore its descent towards the anterior lateral line ganglion
(ALLNG) was disclosed for subsequent P-unit recordings.
During the surgery water supply was ensured by a mouth-
piece, sustaining anaesthesia with a solution of MS222
(100 mg/l) buffered with Sodium Bicarbonate (100 mg/l).

Experimental setup Fish were immobilized by an
initial intramuscular injection of Tubocurarine (Sigma-
Aldrich, Steinheim, Germany; 25–50µl of 5 mg/ml solu-
tion). For the recordings fish were fixated on a stage
in a tank, with a major part of the body immersed
in water. Analgesia was refreshed in intervals of two
hours by cutaneous Lidocaine application (2 %; bela-
pharm, Vechta, Germany) around the operation wound
and the head mounting rod. Electrodes (borosilicate;
1.5 mm outer diameter; GB150F-8P; Science Products,
Hofheim, Germany) were pulled to a resistance of 50–
100 MΩ (model P-97; Sutter Instrument, Novato, CA) and
filled with 1 M KCl solution. Electrodes were fixed in a mi-
crodrive (Luigs-Neumann, Ratingen, Germany) and low-
ered into the nerve. Recordings of electroreceptor affer-
ents were amplified (SEC-05, npi-electronics, Tamm, Ger-
many, operated in bridge mode) and digitized at 40 kHz
(PCI-6229, National Instruments, Austin, TX). RELACS
(www.relacs.net) running on a Linux computer was used
for online spike and EOD detection, stimulus generation,
and calibration.

P-unit identification P-units were identified based
on their firing properties with a baseline firing rate between
64–470 Hz (Grewe et al., 2017; Gussin et al., 2007; Ratnam
and Nelson, 2000), phase locking to the EOD, indicated
by multimodal interspike-interval (ISI) histograms, and by
responses to amplitude modulations of the EOD.

Electric field recordings Global EOD for monitor-
ing EODf was measured with two vertical carbon rods
(11 cm long, 8 mm diameter) in a head-tail configuration.
The signal was amplified 200–500 times and band-pass fil-
tered (3 to 1,500 Hz passband, DPA2-FX; npi electronics,
Tamm, Germany). A local EOD including the stimulus
was measured between two, 1 cm-spaces silver wires lo-
cated next to the left gill orthogonal to its longitudinal
body axis (amplification 200–500 times, band-pass filtered
with 3 to 1,500 Hz passband, DPA2-FX; npi-electronics,
Tamm, Germany).

Stimulation Sine wave stimuli (10–3300 Hz) imitat-
ing another fish were isolated (ISO-02V, npi-electronics,
Tamm, Germany) and delivered via two horizontal car-
bon rods located 15 cm laterally to the fish. Depending
on fEOD of the fish, the stimuli resulted in difference fre-
quencies between −750 and 2495 Hz. Each stimulus was
repeated twice either for 0.5 s (20% of the trials) or 1 s
(80% of the trials). Stimulus amplitude was 10 % or 20 %
of the fish’s local EOD amplitude (contrast) prior to each
stimulation. Cells measured with two different contrasts
contribute two recordings to the subsequent analysis.

Data analysis Data analysis was performed with
Python 3 using the packages matplotlib, numpy, scipy,
sklearn, pandas, nixio (Stoewer et al., 2014), and thun-
derfish (https://github.com/bendalab/thunderfish).

In binary spike trains with a time step of 0.025 ms each
spike was indicated by a value of 40 kHz and all other
time bins were set to zero. Instantaneous firing rates were
computed by convolving the spike trains with a Gaussian
kernel. The standard deviation of the kernels was set to
σ = 0.5 ms or σ = 2 ms. In the frequency domain, are also
Gaussians centered at zero frequency and with a standard
deviation of σf = (2πσ)−1 = 318 Hz or σf = 80 Hz, respec-
tively. Cells with less than 50 different beat frequencies
and cells with no beat frequencies higher than 2.6 EODf
were excluded from the analysis.

Power spectra of the binary spike trains or the instan-
taneous firing rates in response to beat stimuli were com-
puted from fast Fourier transforms on nfft = 4096 long
data segments that overlapped by 50 %. The initial and
last 5 ms of each spike train were excluded from the anal-
ysis.

Modulation depth was estimated as the square root of
the integral of the power spectrum over the 4 frequencies
closest to the beat frequency. Baseline firing rate was cal-
culated as the number of spikes divided by the duration of
the baseline recording (on average 18 s).

Leaky integrate-and-fire models We constructed
leaky integrate-and-fire (LIF) models to reproduce the spe-
cific firing properties of P-units (Chacron et al., 2001; Sinz
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et al., 2020):

τm
dVm
dt

= −Vm + f(Vm) + µ+ βVd −A+
√

2Dξ (A.1)

where τm is the membrane time constant, µ a bias current,
and D is the strength of Gaussian white noise ξ. Whenever
the unitless membrane voltage Vm crosses the threshold of
θ = 1, a spike is generated and the voltage is reset to
Vm = 0.

The static non-linearity f(Vm) equals zero for the LIF.
In case of an exponential integrate-and-fire model (EIF,
Fig. 5), this function was set to

f(Vm) = ∆V e
Vm−1

∆V (A.2)

(Fourcaud-Trocmé et al., 2003), where we set ∆V to 0.1.
Varying ∆V from 0.001 to 0.1 did not change the results.

The prominent spike-frequency adaptation of P-units
(Benda et al., 2005) is modeled by an adaptation current
A with dynamics

τA
dA

dt
= −A (A.3)

and adaptation time-constant τA. Whenever a spike is
generated, the adaptation current is incremented by ∆A

(Benda et al., 2010).
The input to the LIF is the membrane voltage Vd of a

dendritic compartment scaled by β, that low-pass filters
the rectified, Eq. (2), electrosensory stimulus x(t) with a
time constant of τd:

τd
dVd
dt

= −Vd + bxcp0 (A.4)

This dendritic low-pass filtering was needed for reproduc-
ing the loose coupling of P-unit spikes to the EOD, while
maintaining high sensitivity to small amplitude modula-
tions. The rectified stimulus was optionally taken to a
power of p.

The stimulus is the EOD of the receiving fish normal-
ized to an amplitude of one plus the EOD of a second fish.
If not stated otherwise, a superposition of cosine waves,
Eq. (1), was used to mimic the EODs. Realistic EODs
(Fig. 6H) were generated by summing up the first 10 har-
monics whose relative amplitudes and phases have been
extracted from head-tail recordings obtained during mea-
surements of P-unit baseline activity using our thunderfish
software, https://github.com/bendalab/thunderfish.

The 8 free parameters of the P-unit model, τm, µ, β, D,
τA, ∆A, τd, and tref , were fitted to both baseline activ-
ity (baseline firing rate, CV of inter-spike intervals (ISI),
serial correlation of ISIs at lag one, and vector strength
of spike coupling to EOD) and responses to step in- and
decreases in EOD amplitude (onset- and steady-state re-
sponses, effective adaptation time constant) of 9 specific
P-units (table A.1). When modifying the model (e.g. vary-
ing the powers p), we adapted the bias current to restore
the original baseline firing rate.
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Appendix B. Supplement

Appendix B.1. Tuning curve depends on time-scale of
read-out

The strongest peak in the power spectrum of the P-unit
response is at EODf (grey circle in Fig. S1A). The relevant
peak explaining the P-unit response, i.e. the modulation of
its firing rate, appears below EODf/2 (orange circle). The
frequency of this peak shows the aliasing phenomenon and
the corresponding amplitude is only slightly modulated as
a function of stimulus frequency, if the power spectrum is
computed from the binary spike train directly (time step
of 0.025 ms, Fig. S1A).

P-units project onto pyramidal cells in the ELL (Maler,
1979). The postsynaptic potentials low-pass filter the in-
coming P-unit spike trains (Berman and Maler, 1998).
This filtering affects the shape of the P-unit’s tuning
curve (Fig. S1B,C). In particular the EODf component
is strongly attenuated, as well as other peaks at higher
frequencies, like for example the one of the stimulus (blue
circle). For a physiological plausible kernel width of about
1 ms (σ = 0.5 ms for the Gaussian kernel used here,
Berman and Maler, 1998), the corresponding filter only
slightly attenuates the peak at the beat frequency below
EODf/2 while strongly suppressing power at higher fre-
quencies. This filter retains the aliased frequencies but
in addition results in a more strongly modulated tuning
curve. Response amplitudes at high beat frequencies are
more strongly attenuated, resulting in reduced response
amplitudes around odd multiples of EODf/2 (arrows in
Fig. S1B). Using a wider filter attenuates even lower beat
frequencies such that only stimulus frequencies really close
to integer EODf multiples are transmitted (Fig. S1C). The
tuning curve is strongly modulated with large values at low
beat frequencies only and wide regions without responses
in between.

Appendix B.2. Sampling theorem

The zig-zag pattern of the frequency of the P-unit re-
sponse as a function of stimulus frequency (Fig. 1 J and
Fig. 2) resembles the phenomenon of aliasing known from
the sampling theorem. Here, a signal is sampled at specific
time points separated by the sampling interval (Fig. S2).
In case of low stimulus frequencies a single cycle is sampled
at many time points and the stimulus frequency appears
as a peak in the power spectrum as expected (Fig. S2A,B).
Once the stimulus frequency overtakes half of the sampling
rate, however, less than two samples cover a single cycle
of the stimulus and the peak in the power spectrum no
longer is at the stimulus frequency (Fig. S2C–F). Instead,
the peak first moves back towards zero as the stimulus
frequency approaches the sampling rate (Fig. S2C,D). For
even higher stimulus frequencies the peak in the power
spectrum first moves up again towards half the sampling
rate (Fig. S2E,F) and keeps oscillating below this fre-
quency. Half the sampling frequency is also known as
the Nyquist frequency. Stimulus frequencies above the

Nyquist frequency can not be uniquely retrieved from the
spectrum. They are mirrored into the frequency range be-
low the Nyquist frequency, causing aliasing (Fig. S2C–F).

Appendix B.3. Analytic signal does not describe the alias-
ing structure of the beat

The analytic signal corresponding to the original signal
is constructed by means of the Hilbert transform. With
this method any signal can be expressed as a product

x(t) = A(t) cos(ϕ(t)) (S1)

where the amplitude modulation A(t) is the absolute value
of the analytic signal and ϕ(t) is the phase of the analytic
signal. The amplitude of the carrier cos(ϕ(t)) is modulated
by A(t). Whereas the Hilbert transform itself is linear,
taking the absolute value is a non-linear operation.

For the beat (1) we get for the amplitude modulation

A(t) = |x(t)| =
√

1 + α2 + 2α cos((ω2 − ω1)t) (S2)

and for the phase

ϕ(t) =
ω1 + ω2

2
t+ arctan

(
1− α
1 + α

· tan

(
ω1 − ω2

2
t

))
(S3)

(Stamper et al., 2012). This is an exact identity. The
Hilbert transform is just a mathematical trick to transform
any signal into such a product of an amplitude modulation
and a cosine carrier.

For α = 1 (both cosine waves have the same amplitude)
this reduces to the well known identity

x(t) = 2 cos

(
ω2 − ω1

2
t

)
cos

(
ω1 + ω2

2
t

)
(S4)

A carrier signal of frequency (ω1+ω2)/2 is multiplied with
an amplitude modulation with frequency (ω1−ω2)/2. The
latter frequency is half the frequency of the beating am-
plitude modulation.

For small amplitudes α → 0 the expansion of the am-
plitude modulation to first order results in

A(t) ≈ 1 + α cos(∆ωt) (S5)

This amplitude modulation has a constant zero-frequency
component in the Fourier spectrum, and one at the differ-
ence frequency ∆ω = ω2−ω1. For larger amplitudes more
and more harmonics of this peak appear.

This is exactly what we expect for low difference fre-
quencies, i.e. for stimulus frequencies ω2 close to ω1. How-
ever, for higher difference frequencies, the amplitude of the
analytic signal Eq. (S5) suggests that the beat frequency
keeps increasing with increasing difference frequency, no
matter how large the difference frequency (Fig. S3A). It
does not explain the aliasing structure we observe in the
signals and the P-unit responses. This does not imply that
the analytic signal is wrong. Rather the amplitude term
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Figure S1: Influence of post-synaptic low-pass filtering on P-unit responses to beats. Left: Power spectra of a P-unit response to a
∆f = −220 Hz beat. Convolution kernel mimicking post-synaptic filtering is indicated by gray area. Nyquist frequency at fEOD/2 is
indicated by the horizontal dash-dotted line. Right: Frequency (top) together with the expected aliasing frequencies (black dashed line) and
amplitude (bottom) of the strongest peak of a P-unit’s response below fEOD/2. A Spectrum and tuning curves of the raw, binary spike trains
recorded with a resolution of 40 kHz. Frequency tuning follows the aliasing frequencies over the whole measured range up to almost 5fEOD.
The amplitude tuning curve is mostly flat with pronounced peaks at odd multiples of fEOD/2. B A biological plausible post-synaptic filter,
modeled by convolving the spike trains with a Gaussian kernel (σ = 0.5 ms), keeps the frequency tuning, but reduces the amplitude of the
P-unit’s response for stimulus frequencies close to odd multiples of fEOD/2 (arrows). C A wider PSP, modeled by a Gaussian with σ = 2 ms,
degrades the frequency tuning curves and strongly modulates amplitude tuning.
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Figure S2: Sampling theorem visualization: aliasing induced at frequencies higher as the Nyquist f (sampling f/2). Left: Time series. Initial
signal - grey. Sampling points - red. Sampled signal - colored lines.The frequency of the initial signal (grey) increases form A to F. Right:
Power spectrum of the initial signal. Power spectrum of the sampled signal - colored. A, B Initial signal frequency below the Nyquist f -
the frequency of the initial signal and the sampled signal are equal. C, D Frequency of the initial signal above the Nyquist f and below the
sampling f - the sampled frequency moves backwards towards zero. E, F Frequency of the initial signal above the sampling f - the sampled
frequency again moves form zero towards the Nyquist f . G A repetitive curve emerges for higher becoming frequencies of the initial signal.
This curve resembles the one measured here in the data Fig. 1.)
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(S5) simply does not capture the obvious aliasing structure
of the beats. It is hidden in the phase term Eq. (S3).

On a first glance, the phase of the carrier simplifies to
ϕ(t) = ω1t for small amplitudes. However, this is valid
only for α = 0, because only then 1−α

1+α = 1 in Eq. (S3).
The resulting small-amplitude approximation

x(t) ≈ (1 + α cos(∆ωt)) cos(ω1t) (S6)

is in fact not a good approximation. In the Fourier spec-
trum it has two peaks at ω1 ±∆ω instead of only one at
ω1 + ∆ω = ω2 flanking the carrier at ω1. Eq. (S6) no
longer is a beat resulting from the superposition of two
cosine waves, but is what is known in the auditory and
electric fish literature as the sinusoidal amplitude modu-
lation (SAM). The approximation fails, because the 1−α

1+α -
term in Eq. (S3) quickly deviates from one with slope −2
as amplitude increases.

Appendix B.4. Squaring does not retrieve the aliasing
structure of the beat

An alternative method to retrieve amplitude modula-
tions is to square the signal and then low-pass filter it.
Squaring the beat (1), using the binomial theorem and
the trigonometric power reduction formula results in

x2(t) = 1
2 (1 + α2) + 1

2 cos(2ω1t) + 1
2α

2 cos(2ω2t)

+ α cos((ω2 − ω1)t) + α cos((ω1 + ω2)t)
(S7)

While the original signal (1) has two peaks in the power
spectrum at ω1 and ω2 and no peak at the beat frequency,
the power spectrum of the squared signal (S7) has five
peaks, one for each term (Fig. S3A). Shifting and generat-
ing new peaks in the spectrum is a hallmark of non-linear
operations. The squaring operation doubles the two orig-
inal frequencies and creates a new high-frequency peak at
the sum of the two frequencies. In addition, a new peak oc-
curs at zero, representing the non-zero mean of the squared
signal. Another peak appears at the difference frequency
ω2−ω1. This is the amplitude modulation. By subsequent
low-pass filtering this peak can be isolated and that way
the amplitude modulation can be retrieved. However, as
for the analytic signal, none of the five terms explain the
aliasing structure of the beat.

Appendix B.5. Thresholding the beat

Let’s define a pulse train with the same frequency ω1 as
the cosine signal of the carrier:

p(ω1t) =

{
1 ; cos(ω1t) ≥ 0
0 ; cos(ω1t) < 0

(S8)

It assumes one where the cosine is positive and zero where
the cosine is negative. Multiplying a cosine with this pulse
train thus sets the negative half waves to zero.

The Fourier spectrum of the pulse train turns out to
have peaks at odd multiples of ω1 with amplitudes

ck =
ω1

2π

∫ + π
2ω1

− π
2ω1

e−iω1kt dt =
1

πk
sin (π2 k)

=
1

πk
(−1)

k−1
2 , k odd

(S9)

and an additional peak at zero frequency with amplitude

c0 =
ω1

2π
[t]

+ π
2ω1

− π
2ω1

=
1

2
(S10)

Thresholding a cosine with the same frequency ω1 equals
multiplication of the cosine with the pulse train Eq. (S8):

bcos(ω1t)c0 = cos(ω1t) · p(ω1t) (S11)

The corresponding Fourier spectrum is the convolution of
the spectrum of the cosine with peaks of amplitude 1/2 at
±ω1 with the spectrum of the pulse train. The two peaks
of the cosine are shifted to the positions of all the peaks
of the pulse train and multiplied with their amplitude.
Always two neighbouring peaks of the pulse train at odd
multiples of ω1 contribute to a peak at even multiples of
ω1 with amplitude

ãk =
1

2
ck+1 +

1

2
ck−1 =

1

π
(−1)

k
2

1

1− k2 , k even (S12)

The zero-frequency peak of the pulse train gives rise to
peaks at ±ω1 with amplitude

ã±1 =
1

2
c0 =

1

4
(S13)

Because

bcos(ω1t) + α cos(ω2t)c0 ≈
cos(ω1t) · p(ω1t) + α cos(ω2t) · p(ω1t) (S14)

for small contrasts a, the spectrum of the thresholded beat
can be approximated by the spectrum of the thresholded
carrier, Eqs. (S12) and (S13), and the one of the thresh-
olded stimulus. The latter is the convolution of the spec-
trum of the pulse train, Eqs. (S9) and (S10), with the
spectrum of the cosine with peaks of amplitude α/2 at
frequencies ±ω2. Each peak of the pulse train at odd mul-
tiples of ω1 is replaced by a pair of peaks at frequencies
kω1 ± ω2 with amplitudes

ak =
α

2
ck =

α

2

1

πk
(−1)

k−1
2 , k odd (S15)

The zero-frequency peak of the pulse train, Eq. (S10), gives
rise to two peaks at ±ω2 with amplitude

a0 =
α

2
c0 =

α

4
(S16)

The relative amplitudes āk = ak/a0 up to k = 5 mul-
tiples of ω1 of the beat frequencies introduced by thresh-
olding are ā0 = 100 %, ā1 = 2

π ≈ 64 %, ā2 = 0, ā3 ≈ 2
3π =

21 %, ā4 = 0, and ā5 ≈ 2
5π = 13 %.
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Figure S3: Amplitude modulations in analytic and squared signals of beats. Vertical arrows highlight the difference frequency ∆ω = ω2−ω1.
Frequencies below the Nyquist frequency at ω1/2 are marked by the gray band at the bottom. The black dotted line in this frequency band
indicates the folded frequencies at ωf = |ω2 − ω1bω2/ω1e|. A The amplitude modulation Eq. (S5) of a beat computed from its analytic
signal by means of a Hilbert transform has peaks in the spectrum only at 0 and at the absolute difference frequency |∆ω|. B Squaring a beat
retrieves, like the analytic signal, the difference frequency and an offset at zero frequency. In addition, three more peaks appear at 2ω1, 2ω2,
and ω1 + ω2. Neither the analytic signal nor squaring explain the aliasing structure of the beat (dotted line).

Appendix B.6. Threshold cubed

Taking the beat to the power of three results in

x3(t) = (cos(ω1t) + α cos(ω2t))
3 (S17)

= 3
4 (1 + 2α2) cos(ω1t) + 3

4 (2α+ α3) cos(ω2t)

+ 1
4 cos(3ω1t) + 1

4α cos(3ω2t)

+ 3
4α cos((2ω1 + ω2)t) + 3

4α cos((2ω1 − ω2)t)

+ 3
4α

2 cos((ω1 + 2ω2)t) + 3
4α

2 cos((ω1 − 2ω2)t)
(S18)

The dominant peaks depending on ω2 are at ω2 and |2ω1±
ω2| (underlined).

Convolving the spectrum of the cubed beat, Eq. (S18),
with the one of the pulse train, Eqs. (S9) and (S10), ap-
proximating the threshold operation, Eq. (2), boils down
to replace all the peaks in the spectrum of the pulse train
with the ones of the cubed beat shifted to the respective
positions (Fig. 4A–C). In the following calculations we ig-
nore all terms of higher order in α.

The two purely ω1-dependent terms with peaks at ±ω1

and ±3ω1 result in peaks at even multiples of ω1 with
amplitudes

b̃k = 1
2

3
4 (ck+1 + ck−1) + 1

2
1
4 (ck+3 + ck−3)

=
3

4π
(−1)

k
2

(
1

1− k2 −
1

9− k2
)
, k even

(S19)

and in addition in peaks directly at ±ω1 and ±3ω1 with
amplitudes

b̃±1 = 1
2

3
4c0 =

3

16
(S20)

b̃±3 = 1
2

1
4c0 =

1

16
(S21)

(horizontal lines in Fig. 4E). The latter at the third har-
monics of ω1 is a new peak that the threshold without
exponent does not generate.

Convolving the dominant ω2 dependent terms in
Eq. (S17) with the peaks at odd multiples of ω1 of the
pulse train, Eq. (S9), we get peaks at kω1 ± ω2 for odd k
with amplitudes

bk = 1
2

3
4 2αck + 1

2
3
4α(ck+2 + ck−2)

=
3

π
α(−1)

k+1
2

1

k(k2 − 4)
, k odd

(S22)

These are peaks at the same frequencies as for the thresh-
old without exponent, but with different amplitudes.

However, from the convolution with the zero-frequency
term of the pulse train, Eq. (S10), we get additional peaks
at ±ω2 and ±(2ω1 ± ω2) with amplitudes

b0 = 1
2

3
4 2αc0 =

3

8
α (S23)

b±2 = 1
2

3
4αc0 =

3

16
α (S24)

The latter is the one the power of three adds to the folding
frequencies around the second harmonics of ω1.

The relative amplitudes b̄k = bk/b0 of the beat fre-
quencies introduced by a cubed threshold are b̄0 = 100 %,
b̄1 = 8

3π ≈ 85 %, b̄2 = 1
2 = 50 %, b̄3 ≈ 8

15π = 17 %, b̄4 = 0,
and b̄5 ≈ 8

105π = 2.4 %.

Appendix B.7. Harmonics of the carrier are not sufficient
to explain aliasing

In reality the carrier EOD is a complex periodic wave
and thus already provides harmonics at multiples of the
carrier frequency. Wouldn’t that be enough to explain the
aliasing structure of the beat without non-linearities?

At least a threshold is needed. Without any-nonlinearity
the only frequency component depending on the stimulus
frequency would be the stimulus itself. With a threshold,
Eq. (2), approximated by multiplication with a pulse train,
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Figure S4: Influence of higher harmonics of the carrier on aliasing. A An EOD waveform and the corresponding power spectrum of an A.
leptorhynchus used as a carrier signal of frequency ω1 for simulating P-unit responses with the LIF models, Eqs. (A.1), (A.3), (A.4). B The
corresponding pulse train, Eq. (S25), needed to approximate a threshold, Eq. (2), has a duty cycle larger than 50 %. C The enlarged duty
cycle modifies the aliasing pattern of the resulting frequency (top) and amplitude (bottom) tuning curves, Eq. (S26), when using a threshold
without exponent, Eq. (2). For the example EOD waveform shown, the third harmonics and not the second as for a pure sine wave is missing.
Same models as in Fig. 6.

Eq. (S8), the higher harmonics of the carrier EOD would
only add peaks to the resulting spectrum at multiples of
the carrier frequency. The stimulus frequency still would
be just convolved with the spectrum of the pulse train.
As for the sine-wave carrier, the stimulus frequency would
appear as beat frequencies around odd multiples of the
carrier frequency and around zero frequency, Eqs. (S15)
and (S16), but not at even multiples.

However, the harmonics of the carrier EOD modify the
waveform. It is not a sine wave any more that stays posi-
tive for exactly half of the time and negative for the other
half. Instead, the harmonics might distort the waveform
such that we would need a pulse train with a duty cy-
cle other than 50 % to emulate a threshold. For example,
some A. leptorhynchus have a waveform that is wider than
a sine wave at its zero crossings (Fig. S4A). A matching
pulse train would need a higher duty cycle (Fig. S4B). We
parameterize the pulse train by its duty cycle δ to account
for this effect:

p(ω1t; δ) =

{
1 ; −δ πω1

< t mod 2π
ω1
< δ πω1

0 ; else
(S25)

Changing the duty cycle modifies the spectrum of the pulse
train:

ck(δ) =
1

πk
sin(πkδ) , k 6= 0 (S26)

c0(δ) = δ , k = 0 (S27)

(Fig. S4B). In particular, a peak at the second harmonics
of the carrier appears with amplitude c2(δ) = 1

2π sin(2πδ).
This peak is then convolved with the stimulus and fills in
beat frequencies around the second harmonics (Fig. S4C).
The amplitude of the second harmonic of the pulse train
equals zero for δ = 1

2 , grows linearly in δ according to
c2(δ) ≈ 1

2 − δ as the duty cycle deviates from 1
2 , and as-

sumes its maximum value of 1
2π for δ = 1

4 and δ = 3
4 . It

can get as large as the one of the fundamental, if, accord-
ing to c2/c1 = cos(πδ), the duty cycle approaches zero or
one. However, the beat frequencies at the third harmonics
are missing now, because the third harmonics of the pulse
train is reduced by increasing the duty cycle.

To summarize, the harmonics of the carrier themselves
do not contribute to extracting beat frequencies. However,
the threshold operation applied to the non-sinusoidal car-
rier waveform modify the peaks relevant for the beat fre-
quencies. Depending on the duty cycle of the carrier some
harmonics are enhanced whereas others are suppressed.
However, only a threshold cubed reliably reproduces the
measured P-unit responses.

Appendix B.8. Harmonics of the stimulus are also not
sufficient to explain aliasing

Alternatively, we could keep the carrier as a sine wave
and use a realistic EOD for the stimulus. The compo-
nents of the beat spectrum relevant for explaining beat
frequencies result from the convolution of the spectrum of
a pulse-train with a 50 % duty cycle, Eqs. (S9) and (S10),
matching the sinusoidal carrier, with all the harmonics of
the stimulus. For extracting the aliasing structure of the
beat, however, only the fundamental of the stimulus is
relevant. The higher harmonics introduce frequencies de-
pending on multiples of the stimulus frequency and thus
can not explain the beat frequencies that grow directly
proportionally with stimulus frequency.

Appendix B.9. Tuning of P-units to EOD frequency

Silencing the fish’s EOD and measuring the minimum
amplitude of an artificial replacement EOD to make a P-
unit fire action potentials results in V-shaped threshold
curves centered at the fish’s EOD frequency (Fig. S6A,
Hopkins, 1976). The corresponding band-pass filter is
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Figure S5: Model responses to SAM stimuli do not require an exponentiated threshold. A-C Left column: signals in the time domain,
right column: the respective Fourier spectra. A: the receiver’s EOD, B: the sinusoidal modulator with the desired difference frequency ∆ω,
C: The receiver EOD is combined with the modulator according to Eq. (S6). Note: The modulator in B has two peaks at ±∆ω which leads
to additional peaks in the combined signal. D Positions of the major peaks in the combined signal as a function of the stimulus frequency.
Grey band denotes the frequency range below the Nyquist frequency and the dashed line the shows the expected repetitive function. Colored
lines the theoretical prediction of the relevant peaks. E Characteristics of the model response with a power-of-one threshold (left column).
Center: Position of the response frequency normalized to the EOD frequency as a function of stimulus frequency. Dashed line is the repetitive
expectation, solid red line the average and shaded area depicts the interquartile range. Right: response modulation as a function of stimulus
frequency. Solid line is the average, shaded area the interquartile range. In contrast to Fig. 6C, the additional peak introduced by the SAM
stimulus fills in the responses at the 2nd harmonic of the receiver signal. F Same as E but applying a power-of-three threshold.
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Figure S6: . Effects of the P-unit’s EOD frequency filter. A Sensitivity of P-unit afferents to EOD frequency as reported by Hopkins (1976).
The measured stimulus amplitudes were the minimum amplitude required to elicit just noticeable difference in firing rates of the P-units. B
Corresponding sensitivities of our LIF models supplemented by a harmonic oscillator Eq. (S28). The amplitudes elicited an increase in firing
rate of 10 % compared to baseline rate without stimulus. C & D The frequency fresp and corresponding response amplitudes of these P-unit
models to beats still reproduce our observed P-unit tuning to beats despite the EOD filter.
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probably caused by electric resonance in the electrorecep-
tor cells (Viancour, 1979). This could be modeled by a
damped harmonic oscillator filtering the input signal be-
fore it is thresholded at the receptor synapse (Sinz et al.,
2020).

To model this resonance filter we replaced the stimulus
x(t) in the P-unit models, Eqs. (A.1) – (A.4), by the output
y(t) of a harmonic oscillator

d2y(t)

dt2
+ 2ζw0

dy(t)

dt
+ ζw2

0y(t) = x(t) (S28)

multiplied with a normalization factor β. In Eq. (S28) the
external force to the oscillator is the stimulus x(t), ζ is the
damping ratio of the harmonic oscillator, and

w0 =
wR√

1− 2ζ2
(S29)

is the eigen-frequency, where wR = 2πfR is the resonance
frequency that was set to the measured fEOD of each fish.
The normalization factor

β = 70wR

√
(2w0ζ)2 + (w2

R − w2
0)2/w2

R (S30)

ensures that the fish’s EOD is transmitted with a gain of
one through the damped oscillator. The harmonic oscilla-
tor was solved using the differential equation solver from
SciPy.

We varied ζ from 0.7 (almost no damping) to 0.1 (high-
est damping). A stronger damping factor of high frequen-
cies can be compensated with a higher power modification
of the input, with several combinations yielding similar
results.

A mild damping coefficient of ζ = 0.45 and an exponent
p = 5 were sufficient to reproduce both the tuning of P-
unit responses to fEOD as reported by Hopkins (1976)
(Fig. S6B). This model still reproduces the responses to
beats up to three multiples of the fEOD (Fig. S6C, D),
suggesting that the EOD filter does not impede P-unit
responses to high difference frequencies.
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