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Abstract 

Highly multiplexed tissue imaging (MTI) are powerful spatial proteomics technologies that enable in 

situ single-cell characterization of tissues. However, analysis and visualization of MTI datasets 

remains challenging, and we developed the Galaxy-ME software hub to address this challenge. 

Galaxy-ME is a web-based, interactive software hub that enables end-to-end analysis and 

visualization of MTI datasets and is accessible to everyone. To demonstrate its utility, Galaxy-ME was 

used to analyze datasets obtained from multiple MTI assays and evaluate assay concordance in both 

normal and cancerous tissues. Galaxy-ME is a publicly available web resource. 

Main 

Highly multiplexed tissue imaging (MTI) technologies, such as cyclic immunofluorescence (CycIF)1, 

multiplex immunohistochemistry (mIHC)2, Co-Detection by Indexing (CODEX)3, imaging mass 

cytometry (IMC)4, and multiplex ion beam imaging (MIBI)5, are powerful in situ spatial proteomics 

technologies for characterizing tissues at single-cell, and potentially subcellular, resolution. With rapid 

adoption in basic and translational research, MTI has been used to identify differences in healthy and 

diseased tissue organization3, quantify compositional and spatial features associated with cancer and 

other diseases, including disease development6, patient survival7–9, and response to therapy10. MTI is 
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also used extensively in several large tissue atlas consortia to create detailed 2D tissue maps for 

interrogating cellular and spatial relationships. Atlas consortia using MTI include the Human Cell Atlas 

(HCA)11, the Human BioMolecular Atlas Program (HuBMAP)12, and the Human Tumor Atlas Network 

(HTAN)13. 

 

With the substantial growth and use of MTI technologies in the biomedical research community, there 

is an acute need for robust analytical tools and visualizations of MTI datasets. A typical MTI dataset is 

tens or hundreds of gigabytes in size and includes images of a tissue sample from which each 

assayed marker protein is measured, yielding a stack of 30-100 images and tens or hundreds of 

thousands of cells analyzed per sample. A complete software analysis workflow for MTI often uses 

dozens of analysis tools to: (1) perform primary image processing to produce single-cell feature 

tables with marker intensity levels, morphological information, and spatial coordinates and (2) 

complete single-cell analysis to classify individual cells and quantify spatial relationships amongst 

cells. While several computational workflows that execute all tools in sequence for particular MTI 

assays, including CycIF14, CODEX15, mIHC16, and IMC17, have been developed18,19 as well general 

purpose image analysis platforms, such as CellProfiler20, QuPath21, and Fiji22, exist and provide some 

functionality for processing MTI datasets, there remains substantial challenges in accessibility, tool 

integration, and scalability that make it difficult to analyze MTI datasets. Analysis workflows that scale 

to many samples are often executed using a command line text interface, requiring significant 

computational expertise to use. Whereas some desktop applications integrate analysis and 

visualizations together, these applications cannot easily be deployed on disparate infrastructures at 

scale.  

 

To address these challenges, we have developed Galaxy-MCMICRO Ecosystem (Galaxy-ME), a 

user-friendly and highly scalable, web-based software hub for interactive analysis of MTI datasets. 

Galaxy-ME provides a web-based software workbench for MTI analyses that is accessible to all 

scientists, a comprehensive tool and visualization suite for analysis of MTI datasets, and 

infrastructure to ensure that all analyses are scalable and reproducible (Figure 1). Galaxy-ME 

provides software analysis tools for (1) primary image processing to produce single-cell feature tables 

that include marker intensity levels, morphological information, and spatial coordinates; (2) single-cell 

analysis to classify individual cells and quantify spatial relationships amongst cells; and (3) interactive 

visualization of images and analysis results. Galaxy-ME is built on the Galaxy computational 

workbench (https://galaxyproject.org/)23,24, an open-source platform for user-friendly, reproducible, 

and collaborative biomedical data analyses. Galaxy is among the most popular software analysis 

platforms in the world and used by thousands of scientists daily. 

 

Galaxy-ME builds on and substantially advances our prior work developing primary image analysis 

workflows for multiplexed microscopy images via integration of the MCMICRO tool suite19 into 

Galaxy. Galaxy-ME’s advances include (1) expanding MCMICRO with many additional tools for 

analysis, visualization, and dashboarding of MTI datasets to create a tool suite of 17 tools that 

enables end-to-end analysis of MTI datasets, including both prior knowledge and data-driven based 

phenotyping and spatial analyses (Supplemental Table 1); (2) leveraging the full capabilities of 

Galaxy for data analysis, workflow editing and scalable execution, and interactive image viewers and 

dashboards for visualization of MTI datasets; and a (3) fully-featured and web-based platform for 

analysis of MTI datasets. The tools and visualizations in Galaxy-ME represent the current best-
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practice analysis approaches and integrate analysis tools and visualizations from multiple tissue atlas 

consortia including HCA, HuBMAP, and HTAN. Using Galaxy-ME, scientists can analyze datasets 

from several MTI assays, including CycIF, mIHC, and CODEX. 

 

Building on top of the Galaxy platform enables Galaxy-ME to take advantage of the accessibility, 

scalability, and reproducibility features that Galaxy offers. Galaxy-ME uses Galaxy’s web-based 

graphical user interface (GUI), making analysis of MTI datasets widely accessible, regardless of 

computational expertise. The Galaxy-ME GUI makes it simple to move between selecting input 

datasets, running analysis tools/workflows, and visualizing imaging data or single cell analysis results. 

Galaxy-ME’s analysis tools and visualizations are orchestrated and executed on remote computing 

resources by the Galaxy server. By using the Galaxy framework and sufficient remoting computing 

resources, Galaxy-ME can scale its analyses to process collections of imaging datasets that are 

hundreds of terabytes in size. Galaxy and Galaxy-ME are open-source and freely available. There are 

two public web services for using Galaxy-ME, https://cancer.usegalaxy.org/ and 

https://spatialomics.usegalaxy.eu/, and Galaxy-ME can also be downloaded and run locally as well. 
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Figure 1: Galaxy-ME overview, Tools, and Visualizations. a, Galaxy-ME provides a web-based user interface to perform all 

analysis and visualization tasks for multiplexed tissue imaging datasets: primary image analysis and visualization, marker 

quantification, single-cell analyses, and integrated dashboards for visual exploration of both primary and single-cell data. Galaxy-ME 

analyses can be run on a laptop, computing cluster, or a cloud computing platform. All analyses are completely reproducible, and 

running Galaxy-ME on a computing cluster or cloud computing platform makes it possible to complete large-scale analyses. b, 

Galaxy-ME Tools and Visualizations overview of multiplexed tissue imaging analyses that can be performed in Galaxy-ME. These 

include primary image processing, single-cell analyses, and visualizations plus dashboards. 
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To demonstrate utility, Galaxy-ME was used to perform a fully automated analysis on both healthy 

and diseased tissue datasets from three distinct MTI assays (CycIF1, mIHC2, and CODEX3). The 

analysis included primary image processing and single cell analysis to quantify compositional and 

spatial features of the tissues and assess assay concordance. To the best of our knowledge, this is 

the first comparison of concordance across these MTI assays. A supplementary webpage linking to 

all Galaxy histories for this work is available at https://bit.ly/GalaxyME-Histories.  

 

Galaxy-ME was used to perform an in-depth exploration of the compositional and spatial landscape 

using three MTI datasets generated by the HTAN13 consortium where consecutive tissue sections 

from a healthy human tonsil tissue resection were profiled with CycIF, mIHC, and CODEX (Figure 

2a). A Galaxy-ME workflow (Figure 2b) was implemented and applied to segment cells, quantify 

marker intensity, phenotype cells and quantify tissue cellular composition, compute spatial metrics 

between cells, and create Vitessce25 dashboards for interactive analysis (Figure 2c). Mean cell count 

obtained from nuclear segmentation across the three assays was 69,329 cells with a standard 

deviation of 3,152 cells. The physical separation of the non-adjacent slides and assay-specific 

nuclear segmentation performance likely account for differences in total cell counts. The proportion of 

positive cells for the shared markers across the three MTI assays—Pan Cytokeratin, CD45, CD20, 

and CD8—was concordant across the 3 assays, with the exception of CD45, likely due to antibody 

performance issues and illumination artifacts in the CODEX data (Figure S1). Cell populations and 

tissue composition were highly concordant across the assays (Figure 2d). Spatial patterns across 

assays based on the normalized spatial interaction score26 between cell populations were highly 

similar, demonstrating spatial organization is preserved across assays (Figure 2e).  
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Figure 2: Comparison of three multiplex tissue imaging assays on a healthy tonsil specimen. a, Overview of the whole slide tonsil image 

profiled with mIHC (top left) and the region of interest using mIHC (top right), CycIF (bottom left), and CODEX (bottom right) pseudo-colored 

with the 5 shared markers for DNA (blue), Keratin/PanCK (green), CD8 (red), and CD20 (yellow). b, the Galaxy-ME workflow and history used 

for the CODEX tonsil image analysis. c, a Vitessce dashboard, launched out of the CODEX analysis history in Galaxy, includes views of the 

phenotype-labeled segmentation mask overlaid onto the registered image, compositional barplots, UMAP representations, violin plots of marker 

expression, and heatmaps (not shown). Individual cells can be highlighted using a cursor and data representing highlighted cells will be 

spotlighted in each of the plots. d, stacked barplots cell phenotype proportions in the tonsil ROI across each assay. e, barplot grid of pairwise 

spatial interaction scores across cell phenotypes. 
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Galaxy-ME was next applied to datasets generated using CycIF and mIHC on adjacent serial 

sections from an HTAN colorectal cancer (CRC) resection. Analysis with Galaxy-ME was performed 

on 7 regions of interest (ROIs) that showed a variety of tissue compositions (Figure 3a, S2, S3). 

Consistent with the tonsil analysis, total cell counts based on nuclear segmentation were concordant 

across the ROIs for both CycIF and mIHC. In CycIF, 46,510 mean cell counts per ROI were found for 

a total of 325,573 cells; in mIHC, 44,287 mean cell counts per ROI were found for a total of 310,006 

cells (Figure 3b). Overall cell phenotype counts and tissue composition were highly correlated across 

CycIF and mIHC (r=0.89; Figure 3c, S4). To identify common cell type spatial patterns across assays, 

recurrent cellular neighborhoods (RCN)27 were computed across all 7 ROIs using Latent Dirichlet 

Allocation (LDA) and K-means clustering (Figure S5). Across the two assays, 20 RCNs were 

identified with most ROIs displaying highly similar RCN composition (Cosine > 0.88), though ROI 14 

and 15 had more variable composition (Cosine 0.67 and 0.76, respectively) due to lower cell density 

and higher stromal content (Figure 3d, S6). Common RCNs across assays had diverse cell type 

composition (Figure 3e) and were often enriched with epithelial cells (RCNs 1,5,8,14,16,18), M2 

macrophages (RCN10), or CD8 T cells (RCN6) (Figure 3e, S7). Comparing RCNs across assays 

demonstrated that RCNs from both assays captured common spatial structures such as epithelial-

stromal interface, and mixed populations of immune cells, and previously identified lymphoid follicles 

(Figure 3f).  
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Figure 3: Compositional and spatial analysis of colorectal cancer (CRC) tissue assayed using CycIF and mIHC. a, Whole 

slide image of CRC tissue section with DAPI stain imaged by CycIF with regions of interest (ROIs) depicted in rectangular boxes. 

b, CRC total cell counts based on nuclear segmentation for each ROI across the CycIF (blue) and mIHC (red) assays. c, cell 

phenotype proportions for each ROI across the two assays. d, cellular composition of recurrent cellular neighborhoods (RCNs) for 

each ROI across both mIHC and CycIF assays. e, cell phenotype composition across the RCNs shared between assays. f, tissue 

image and computationally-identified RCNs shown side-by-side. Tissue image in ROI13 for CycIF (top left) and mIHC (bottom left) 

and selected RCNs in CycIF (top right) and mIHC (bottom right). Images are colored using four proteins: DNA (blue), PanCK 

(green), CD8 (purple), and CD20 (yellow). RCNs matching these proteins are colored based on ID: RNC0 in blue, RNC1 in pink, 

RNC9 in purple, RNC10 in teal (bottom right). 
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Analysis and visualization of multiplexed tissue imaging datasets remains a challenging problem as 

these datasets are very large and require using many analysis tools and visualizations together, in an 

iterative and interactive manner. Galaxy-ME is an interactive, web-based software hub, tool suite, and 

workflow engine that uniquely centralizes a broad collection of image processing and single-cell 

analytics methods for comprehensive analysis of MTI datasets. Galaxy-ME tools can be connected 

with more than 8,500 other tools available via the Galaxy Tool Shed28, to create analyses that extend 

far beyond imaging, such as using machine learning tools29 or integration with omics data for 

multimodal analysis. By streamlining analysis and visualization of MTI datasets into a web-based, 

graphical user interface, Galaxy-ME overcomes several barriers that other analysis approaches often 

encounter and democratizes access, analysis, and visualization of MTI datasets so that any scientist, 

regardless of their informatics expertise, can work with MTI datasets. 

  

Th analysis of MTI datasets from healthy human tonsil and colorectal cancer tissue specimens with 

Galaxy-ME demonstrates the feasibility of automated analysis across multiple MTI assays with the 

ability to produce high-quality single-cell compositional and spatial results. The high concordance 

found between MTI assays in all facets of analysis—cell counts, tissue composition, and tissue 

spatial organization—provides confidence in both the imaging datasets produced by the multiplex 

tissue imaging assays as well as Galaxy-ME’s analysis tools and workflows. Looking forward, there 

are opportunities to add additional tools and visualizations that extend Galaxy-ME beyond single-cell 

analysis to focus on quantification and organization of larger units of organization such as functional 

tissue units30 or subcellular characteristics of cells. 

Methods 

Primary Image Processing 

Primary image processing in Galaxy-ME is includes all of the MCMICRO19 suite of tools, in addition to 

supplemental tools for key steps (Supplemental Table 1). Image processing steps include: (1) 

illumination correction between microscopy tiles (with the BaSiC31 tool); (2) stitching of tiles into 

channel mosaics (ASHLAR32); (3) registration of channel mosaics into a multi-channel OME-TIFF 

pyramid (ASHLAR, PALOM); (4) single-cell segmentation (UnMICST33 and S3segmenter34, Ilastik35, 

Cellpose36, Mesmer37); and (5) quantification of protein marker intensities for every cell (MCQuant). 

Processing tissue microarrays requires an additional step to dearray sample cores into separate 

images (Unet Coreograph), which is performed after illumination correction and stitching. Single-cell 

segmentation—the process of creating an image mask that assigns pixels into individual indexed 

cells—is a challenging but critical image processing step that can vary dramatically in performance 

between assays and tissues. For this reason, several segmentation tools have been integrated into 

Galaxy-ME so that the best segmentation method can be applied to each dataset. Final outputs from 

primary image processing are (1) a multi-channel pyramidal OME-TIFF file that includes all image 

channels and (2) a cell feature table with mean protein marker intensities and morphological features 

(area, eccentricity, orientation, and solidity) for each cell identified in the segmentation mask. 
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Single-Cell Analysis and Visualization 

Single-cell analysis tools in Galaxy-ME use the cell feature table produced by primary image 

processing for cell phenotyping, compositional analysis, and spatial analysis (Figure 1). Galaxy-ME 

supports single-cell phenotyping using two complementary approaches. First, cells can be gated 

using a biologically-driven, semi-automated hierarchical gating approach using the SciMap27 package 

from MCMICRO. The output of this approach is a distinct phenotype for each cell, such as CD8+ T-

cell or luminal neoplastic tumor cell. The second approach for phenotyping cells is a data-driven 

approach where cells are clustered using community metrics38,39 (e.g. Louvain, Leiden). This 

approach produces clusters that can then be annotated based on the markers enriched in each 

cluster. Galaxy-ME uses spatial analysis methods in SciMap and SquidPy26 to quantify spatial 

interactions, neighbor enrichment between cell types, spatial neighborhoods, and other metrics of 

tissue spatial organization. Galaxy-ME uses the common ANNData format 

(https://anndata.readthedocs.io) for storing single-cell data, allowing for easy integration with existing 

Galaxy tool suites, like ScanPy40 and Seurat41. 

 

There are three primary visualizations available in Galaxy-ME. Avivator is a light-weight and web-

based image viewer built with the Viv42 library that enables viewing multi-channel OME-TIFF images 

hosted on a web server. With Avivator, different image channels can be selected and visualized, and 

it is possible to pan and zoom around images. For additional data viewing, Galaxy-ME provides a tool 

to create Vitessce25 interactive dashboards that include multiple connected visualizations. These 

visualizations include multiplex images augmented with labeled segmentation masks as well as 

phenotype information, UMAP plots, phenotype marker enrichment, and single-cell heatmaps. 

Tool Suite Purpose Number of Tools 

MCMICRO17 Primary image processing 8 

Viv30 Primary image viewing 1 

Cellpose26 Cell segmentation 1 

Mesmer27 Cell segmentation 1 

Scimap17 Single cell phenotyping and spatial 

analysis 

3 

Squidpy29 Single cell spatial analysis 1 

Vitessce31 Dashboard of interactive visualizations 2 

Supplemental Table 1. Tools and visualizations in Galaxy-ME. 
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Automated Image Processing and Cell Classification of SARDANA Samples 

Registered images from the healthy Tonsil and CRC samples were cropped to match annotated 

regions of interest (ROIs) across all MTI assays. Nuclei were segmented using Mesmer on the 

Hematoxylin or DAPI channels with the appropriate image resolution. MCQuant was used to extract 

single-cell mean pixel intensities, morphological characteristics, and spatial coordinate positions. The 

resulting cell feature tables were converted to AnnData format for downstream single cell and spatial 

analysis. 

 

Individual cells were labeled as positive or negative for each protein using a threshold for marker 

positivity that was determined automatically using Scimap (scimap.pp.rescale) and validated with 

manual gating. The marker positivity calls were used to assign cell phenotypes with the hierarchical 

phenotyping tool available in Scimap (scimap.tl.phenotype_cells). For the tonsil sample, across 

CycIF, mIHC and CODEX, the following cell types were called based on marker positivity: pan-

cytokeratin for epithelial, CD8 for cytotoxic T-cells, and CD20 for B-cells. For the CRC sample, cycIF 

and mIHC had more markers in common, so a deeper immune cell classification scheme was used. 

For each sample set, basic compositional metrics, including total cell counts and relative frequency of 

each phenotype were calculated and compared across assays.  

Cross-Assay Spatial Analysis of SARDANA Tonsil Sample  

The Tonsil CycIF, mIHC, and CODEX single cell data, labeled with phenotype, was used for 

subsequent spatial analysis. Spatial neighborhood graphs were constructed for each ROI with 

Squidpy (squidpy.gr.spatial_neighbors) using default parameters (n_neighbors = 6). Spatial patterns 

were quantified for each assay by calculating a normalized (scaled between 0-1) spatial interaction 

score (squidpy.gr.interaction_matrix), a measure of how clustered a group of nodes in a graph are, 

between each phenotype using the neighborhood graphs. 

Cross-Assay Spatial Analysis of SARDANA CRC Sample 

For the CycIF and mIHC CRC images, spatial neighborhood matrices were generated for each ROI 

separately which quantified the frequency of neighbor cell phenotypes within a 30 micron radius for 

every epithelial cell in the tissue. The epithelial cell neighborhood matrices from all ROIs across both 

assays were combined and Scimap’s implementation of Latent Dirichlet Allocation (n_motifs = 10) 

was run on the combined matrix to generate latent space weights. The resulting weights were 

clustered using K-means clustering (k = 20) to generate meta-clusters, or Recurrent Cellular 

Neighborhoods (RCNs)27. Hierarchical clustering was used to find biopsies that had similar RCN 

compositions. RCNs were annotated based on their composition. 

Data Availability 

The tonsil image datasets analyzed are available at https://www.synapse.org/MCMICRO_images, 

and the CRC images are available at https://www.synapse.org/#!Synapse:syn47164089. In addition, 

all datasets will be made available through the HTAN Data Portal.  
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Code Availability 

The Galaxy-ME code repository, including galaxy tool wrappers and Docker files, are available at: 

https://github.com/goeckslab/tools-mti. 
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