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Abstract

Recurrent mutation produces multiple copies of the same allele which may be co-segregating
in a population. Yet most analyses of allele-frequency or site-frequency spectra assume that all
observed copies of an allele trace back to a single mutation. We develop a sampling theory for
the number of latent mutations in the ancestry of a rare variant, specifically a variant observed in
relatively small count in a large sample. Our results follow from the statistical independence of
low-count mutations, which we show to hold for the standard neutral coalescent or diffusion model
of population genetics as well as for more general coalescent trees. For populations of constant
size, these counts are given by the Ewens sampling formula. We develop a Poisson sampling
model for populations of varying size, and illustrate it using new results for site-frequency spectra
in an exponentially growing population. We apply our model to a large data set of human SNPs
and use it to explain dramatic differences in site-frequency spectra across the range of mutation
rates in the human genome.

Recurrent mutation has long been recognized as an important factor of evolution (Fisher, 1928;
Haldane, 1933; Wright, 1938). This is emphasized by recent analyses of single-nucleotide polymor-
phism (SNP) frequencies and variation of mutation rates across the human genome (Aggarwala
and Voight, 2016; Harpak et al., 2016; Seplyarskiy et al., 2021) describing how patterns of variation
depend on the mutation rate, particularly for rare variants. By a rare variant we mean an allele,
such as an alternate base at a SNP, which is observed a relatively small number of times in a large
sample. Unless the mutation rate is very small, indistinguishable copies of the same allele may
descend from multiple mutations. Here we present a sampling theory for the numbers and associated
frequencies of these unobserved or latent mutations in the ancestry of a rare variant.

Humans are on the low end of polymorphism levels among species (Leffler et al., 2012). On
average, multiple mutations should be rare. In the 1000 Genomes Project data, about 1 in 1300 sites
differ when two (haploid) genomes are compared, and SNPs with more than two bases segregating
comprise only about 0.3% of the total SNPs observed (The 1000 Genomes Project Consortium, 2015).
But polymorphism rates vary by two or three orders of magnitude depending on local sequence
context (Aggarwala and Voight, 2016; Harpak et al., 2016; Seplyarskiy et al., 2021). Recurrent
mutation is an important phenomenon for fast-mutating sites. Evidence for this can be found in the
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haplotype structure surrounding rare mutations (Johnson and Voight, 2020) and in the distribution
of their frequencies among sites in large samples (Harpak et al., 2016; Seplyarskiy et al., 2021).

Here we focus on the latter, in particular on the site-frequency spectrum (Tajima, 1989; Braver-
man et al., 1995; Fu, 1995). Deviations in site-frequency spectra compared to standard predictions
may be due to selection (Bustamante et al., 2001; Achaz, 2009; Ferretti et al., 2017), changes
in population size over time (Eldon et al., 2015; Liu and Fu, 2015; Gao and Keinan, 2016) or
population structure (Gutenkunst et al., 2009; Städler et al., 2009; Kern and Hey, 2017). But they
may also be due to multiple mutations, i.e. to violations of the infinite-sites model assumption that
each polymorphism is due to a unique mutation (Fisher, 1930a; Kimura, 1969, 1971; Ewens, 1974;
Watterson, 1975).

The standard site-frequency prediction, which holds for a well-mixed population of constant
large size N and neutral mutation rate u at a locus, is that the number of SNPs where a variant is
found in i copies in a sample of size n should be proportional to θ/i, where θ = 4Nu (Tajima, 1989;
Fu, 1995). This dramatically underpredicts the abundance of rare variants in data from humans,
which is largely due to our recent explosive population growth (Keinan and Clark, 2012; Gazave
et al., 2014; Gao and Keinan, 2016), but the standard neutral model is a useful starting point for
modeling recurrent mutation.

Jenkins and Song (2011) studied the occurrence of one or two mutations at a single site under
the standard neutral coalescent model (Kingman, 1982; Hudson, 1983; Tajima, 1983). They showed
that if two mutations occur and are non-nested (meaning that all descendants of both mutations
can be observed) there will be a shift away from rare variants and toward common ones. An earlier
work focusing on the nested case is Hobolth and Wiuf (2009). Bhaskar et al. (2012) used a similar
approach as Jenkins and Song (2011) to obtain results for one, two or three mutations, up to leading
order in the mutation parameter θ. Sargsyan (2006, 2015) considered two mutations occurring at
two different sites, and Jenkins et al. (2014) assume that two mutations are distinguishable and yield
a tri-allelic polymorphism. These latter works (Sargsyan, 2006, 2015; Jenkins et al., 2014) allowed
for variable population size following the general coalescent approach of Griffiths and Tavaré (1998).
None of these works considered rare variants in particular but their predictions, especially those for
non-nested mutations (Jenkins and Song, 2011; Bhaskar et al., 2012) are helpful for understanding
recurrent mutation.

Two recent large studies of human SNPs observed this predicted shift away from rare variants
and toward common ones at fast-mutating sites. Harpak et al. (2016) surveyed about 8 million
SNPs in a sample of nearly 61 thousand people in version 0.2 of the Exome Aggregation Consortium
database (Lek et al., 2016) for which data were available from other primate species. Among
these, about 93.3% of these were bi-allelic, 6.5% were tri-allelic and 0.2% were quad-allelic. Harpak
et al. (2016) took the presence of identical segregating variants in different species, ranging from
chimpanzees to baboons, as indicative of a higher mutation rate at a site. Consistent with the
hypothesis of multiple latent mutations at fast-mutating sites, they found fewer rare variants at
bi-allelic SNPs for which the minor allele was segregating in another species, and that this effect is
stronger when the other species is closer to humans.

The work we present here builds upon the second of these studies. Seplyarskiy et al. (2021)
looked at rare variants in two datasets, one containing about 292 million variants among nearly 43
thousand individuals in TOPMed freeze 5 (Taliun et al., 2021) and the other containing about 182
million variants among 15 thousand individuals in gnomAD version r2.0.2 (Karczewski et al., 2020).
Variants were divided into 192 types: each of the 3 possible base substitutions at the middle site of
all 64 possible trinucleotides. A classic example of a fast-mutating site in this context would be
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ACG, which readily changes to ATG via a C to T transition at the CpG dinucleotide (Bird, 1980;
Goldman, 1993). The main goals in Seplyarskiy et al. (2021) were to quantify how the rates of each
kind of mutation vary across the genome and to partition this variation into distinct components
correlated with different mutational processes.

Another aim, taken up in the Supplementary Materials of Seplyarskiy et al. (2021), was to
correct for multiple mutations contributing to rare variants. Recurrent mutation was modeled as a
multi-type Poisson process where mutations with lower sample counts occur independently at a
locus to generate the appearance of higher count mutations (Desai and Plotkin, 2008). The expected
counts in the absence of recurrence were taken from the site-frequency spectrum at slow-mutating
sites. The loss of rare variants due to recurrent mutation at fast-mutating sites was quantified for
sites with up to 70 copies of a rare variant. These were considered to have descended from up to
5 mutations. Slow-mutating sites, even with rates up to the genome average in humans, should
conform fairly well to the infinite-sites assumption. Resampling from these as in Seplyarskiy et al.
(2021) is a way of controlling for the myriad unknown factors affecting the site-frequency spectrum,
including growth.

In this work, we present a sampling theory for latent mutations of rare variants at each given
site-frequency count in a large sample. We describe a mathematical population genetic framework
for the Poisson-resampling method in Seplyarskiy et al. (2021) and provide closed-form analytical
expressions for several quantities of interest. We obtain new large-sample results for exponential
growth and use these to illustrate the theory. We apply our results to a different subset of the
gnomAD data than Seplyarskiy et al. (2021), synonymous variants observed in non-Finnish European
individuals in v2.1.1, containing about 834 thousand variants at about 12.3 million sites among 57K
individuals, presorted into 97 bins based on estimates of mutation rate by the method of Seplyarskiy
et al. (2022, in prep.).

We develop and present these results in the next three sections. In Section 1, we begin with the
standard neutral coalescent or diffusion model of population genetics (Ewens, 2004) and demonstrate
a close connection between the Ewens sampling formula (Ewens, 1972) and distributions of latent
mutations. In Section 2, we extend the results to populations which have changed in size, using the
Poisson-sampling models of Watterson (1974a) and Arratia et al. (1992). In Section 3, we compare
predictions for constant size to those for exponential growth and show how the new theory can be
applied to understand the effects of recurrent mutation on counts of rare variants across the range
of human per-site mutation rates.

1 Theory for constant-size large populations

In this section, we begin with a description of recurrent mutation via the well known predictions for
allele frequencies in a population and in a sample at stationarity. We then use conditional ancestral
processes to demonstrate independence of latent mutations of rare variants in a large sample, and
show that their distribution is given by the Ewens sampling formula.

1.1 Stationary distributions and sampling probabilities

Consider a single locus with parent-independent mutation among K possible alleles in a population
which obeys the Wright-Fisher diffusion (Fisher, 1930b; Wright, 1931; Ewens, 2004). Thus, the
population is very large, well mixed, constant in size over time, and there is no selection. One unit
of time in the diffusion process corresponds to 2Ne generations (Ne generations for haploid species)
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where Ne is the effective population size. Each gene copy or genetic lineage experiences mutations
at rate θ/2 and each mutation produces an allele of type i ∈ (1, . . . ,K) with probability πi, with∑

i πi = 1, independent of the allelic state of the parent. At stationarity, the joint distribution of
the relative frequencies x1, . . . , xK−1 of alleles is given by

φ(x1, . . . , xK−1) = Γ(θ)

K∏
i=1

xθπi−1
i

Γ(θπi)
(1)

in which Γ(·) is the Gamma function, and where necessarily xK = 1−
∑

i<K xi (Wright, 1931, 1949).

Conditional on the population frequencies (X1, . . . , XK) the sample counts of alleles (N1, . . . ,NK)
are multinomially distributed. A sample of size n taken from the population contains n1, . . . , nK−1

copies of alleles 1 though K − 1, and necessarily nK = n −
∑

i<K ni copies of allele K, with
probability

p(n1, . . . , nK−1;n) ≡ P [N1 = n1, . . . ,NK−1 = nK−1;n]

=

(
n

n1 · · ·nK

)
E [X1, . . . , XK−1]

=

(
n

n1 · · ·nK

)(
θ(n)

)−1
K∏
i=1

(θπi)(ni)

(2)

(3)

(4)

for ni ∈ (0, 1, . . . , n) constrained by
∑

i ni = n and where k(r) denotes the Pochhammer function or
rising factorial k(k+ 1) · · · (k+ r− 1) with k(0) = 1. The shorthand defined in (2) is used extensively
in what follows.

In applications to DNA, K = 4 and a sample at a given site would contain counts n1, n2, n3, n4

of each of the four nucleotides. The assumption of parent-independent mutation which leads to the
relatively simple expressions (1) and (4) is unrealistic for DNA, but its results are useful in the case
of rare variants in very large samples. In this case, it is likely that the common variant, allele 4 say,
represents the ancestral state of the entire sample and that rare variants (alleles 1, 2 and 3) are due
to recent mutations from the common variant. Then the mutation parameter θπi for i ∈ (1, 2, 3)
captures the production of type-i rare alleles in a specific ancestral background (allele 4).

An instructive special case is K = 2, where we have

φ(x) =
Γ(θ)

Γ(θπ1)Γ(θπ2)
xθπ1−1(1− x)θπ2−1 (5)

for the stationary distribution of the frequency of type 1 in the population Wright (1931), and

p(n1;n) =

(
n

n1

)
(θπ1)(n1)(θπ2)(n−n1)

θ(n)
(6)

for the sampling probability, i.e. that a sample of size n contains n1 copies of allele 1 and n2 = n−n1

copies of allele 2. Any two-allele mutation model can be described as a parent-independent model,
but this is not so in general for K > 2.

Figure 1 shows how the sample frequency distribution p(n1;n) in (6) depends on the mutation
rate for a pair of alleles which differ by an order of magnitude in mutation rate. Three value of θ
are shown (small, blue; middle, orange; large, red) with the small value chosen so that the mutation
rate for allele 2 (θπ2) is equal to the human average of about 1/1300 and the mutation rate for
allele 1 (θπ1) is ten times that. When θ is small, the distribution is U-shaped and nearly symmetric,
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Figure 1: Sample frequency distribution p(n1;n) for n = 100, with π1 = 10π2 and three values of θ (smallest
in blue, medium in orange, largest in red). The smallest θ was chosen so that θπ2 = 1/1300 ∼ 0.00077, i.e.
around the human average. The value of θ increases one-thousand fold from smallest to medium and again
from medium to largest. In all three cases, the probabilities are normalized to sum to one, i.e. conditioned on
the sample being polymorphic (1 ≤ n1 ≤ 99).

given that the sample is polymorphic. When θ is around one, the distribution becomes J-shaped (or
L-shaped if π1 < π2). When θ is large, the distribution has a peak around π1. Graphs of φ(x) (not
shown) display these same shapes, and p(n1;n) will be very close to φ(x)dx when n is large.

1.1.1 Relationship to infinite-sites frequency spectra

We use θ for the per-site mutation parameter. In a collection of L total sites at which (6) holds,
the finite-sites version of the site-frequency spectrum (i.e. the expected number of sites with n1

copies of allele 1 and n2 copies of allele 2) is given the product Lp(n1;n). Infinite-sites mutation
models may be obtained as limits of finite-sites models as L tends to infinity with the total mutation
parameter Lθ remaining finite. So when θ is small, we expect finite-sites results to be close to the
usual (infinite-sites) predictions from the diffusion model (Ewens, 1979, 2004) or the coalescent
model (Fu, 1995). Finite-sites models distinguish between kinds of mutations, subject to different
mutation pressures, whereas infinite-sites models implicitly treat all mutations the same.

From Ewens (1979) equation (8.18) or Ewens (2004) equation (9.18)—see also Wright (1938)
equation (16)—the expected number of sites segregating in the population with frequencies between
x and x+ dx under the infinite-sites model is proportional to 1/x. For comparison to (5) we may
write

φISM (x) ∝ θπ1

x
(7)

for a single site (θ small) approximately under the standard infinite-sites mutation model. For
comparison with (6), we have

pISM (n1;n) ∝ θπ1

n1
(8)

for the approximate single-site probability that there are n1 type-1 alleles in a sample of size n.
Equation (8) has the same form as the usual infinite-sites site-frequency spectrum (Fu, 1995) but
here it is for a specific mutant (allele 1) with a specific ancestral type (allele 2 in the two-allele
model).
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From (5) and (6) with θ small we have

φ(x) = π2
θπ1

x
+ π1

θπ2

1− x
+O

(
θ2
)

(9)

and

p(n1;n) = π2
θπ1

n1
+ π1

θπ2

n2
+O

(
θ2
)

(10)

for n1 ∈ (1, . . . , n − 1). The diffusion result (5) does not admit atoms of probability at x = 0 or
x = 1—see section 10.7 of Ewens (2004) for discussion—but we can interpret (9) intuitively as follows.
If θ is close to zero, most of the time the population will be fixed, containing only allele 1 with
probability π1 and only allele 2 with probability π2. Mutants of type 2 and type 1 are introduced with
rates θπ2 and θπ1 in these two backgrounds, respectively. Then the leading terms in (9) represent a
mixture of two infinite-sites models like (7) with the constants of proportionality specified. Equation
(10) has an identical interpretation, as a mixture of two infinite-sites site-frequency spectra.

Although no closed-form expression like (1) is available except under parent-independent muta-
tion, Burden and Tang (2016, 2017) have shown that the stationary densities for pairs of alleles
under general mutation models take forms identical to (9) when θ is small; see equation (21) in
Burden and Tang (2017). Similarly from a coalescent analysis of general K-alleles mutation, Bhaskar
et al. (2012) obtained leading order terms for sampling probabilities with forms identical to (10)
when θ is small and samples contain just two alleles. For K = 2, the result from Theorem 1 of
Bhaskar et al. (2012) is identical to (10).

1.2 Mutation and the frequencies of rare sample variants

Our goal here is to understand how the frequency spectra of rare variants depend on θ and on the
number of mutation events in the ancestry of the sample under the standard neutral coalescent or
diffusion model of population genetics which assumes constant population size (Ewens, 2004). We
first describe an ancestral process for the sample, then focus on rare variants in a large sample to
obtain predictions about latent mutations.

1.2.1 A conditional ancestral process for rare variants

Here we focus on ordered samples because the calculations are more intuitively related to the familiar
rates of events in the ancestral coalescent process. The results do not depend on the order and so
apply equally to ordered and unordered samples. Using the subscript “o” for ordered and writing
po(n1, . . . , nK) in place of po(n1, . . . , nK−1;n) to facilitate the calculations, we have

po(n1, . . . , nK) =
(
θ(n)

)−1
K∏
i=1

(θπi)(ni) (11)

which differs from the sampling probability in (3) and (4) only by the multinomial coefficient, or
the number of ways a sample containing allele counts n1, . . . , nK can be ordered.

Equation (11) is suggestive, as are (4) and (6), that the sampling structure of the ni copies of
allele i may be related to the Ewens sampling formula (Ewens, 1972). Specifically, from the fact that

(θπi)(ni) =

ni∑
ki=1

S(ki)
ni (θπi)

ki , (12)
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where S
(ki)
ni is an (unsigned) Stirling number of the first kind, we might guess that there is a latent

variable ki which is the number of mutations giving rise to the ni copies of allele i. As in the
usual application of the Ewens sampling formula, in contrast to the total possible number of type-i
mutations in the ancestry of the sample, these latent mutations are just those ki ∈ (1, . . . , ni) most
recent ones which produced the observed alleles.

That is, based on (11) and (12), we suppose that the joint probability of the sample counts
n1, . . . , nK and their numbers of latent mutations k1, . . . , kK is given by

po(k1, . . . , kK , n1, . . . , nK) =
(
θ(n)

)−1
K∏
i=1

S(ki)
ni (θπi)

ki , (13)

and therefore that the probability of k1, . . . , kK conditional on n1, . . . , nK is given by

p(k1, . . . , kK |n1, . . . , nK) =

K∏
i=1

S
(ki)
ni (θπi)

ki

(θπi)(ni)
(14)

which applies to both ordered and unordered samples.

It is straightforward to check that (13) satisfies the corresponding recursive equation for the
sampling probability, obtained using (17) in (15c) below and keeping track of latent mutations (not
shown). It can also be obtained by the approach of Donnelly and Tavaré (1987), which begins with
the Ewens sampling formula, labels mutations with allelic types 1 to K randomly (with probabilities
π1 to πK in our notation) then retrieves the expected K-allele sampling probabilities.

Thus the number of latent mutations of an allele conditional on its sample count follows the
Ewens sampling formula. But reckoned in this way under parent-independent mutation some of the
latent mutations in (13) and (14) are ‘empty’ (Baake and Bialowons, 2008). They do not change the
allelic type. These are a modeling artefact which must be dealt with not only in parent-independent
models but in general mutation models as well the way these are typically implemented (Jenkins
and Song, 2011; Bhaskar et al., 2012; Jenkins et al., 2014; Burden and Tang, 2017; Burden and
Griffiths, 2019). Empty mutations have no empirical significance. Here we show that they almost
never occur in the ancestry of rare variants in large samples.

We make use of the ancestral-process approach developed by Griffiths and Tavaré (1994a,b)
based on recursive equations for sampling probabilities. For the K-allele model we have(

n
θ

2
+

(
n

2

))
po(n1, . . . , nK) =

K∑
i=1

ni
θπi
2

K∑
j=1

po(. . . , ni − 1, . . . , nj + 1, . . .)

+
K∑
i=1

(
ni
2

)
po(. . . , ni − 1, . . .)

(15a)

(15b)

(15c)

with boundary conditions po(0, . . . , ni = 1, . . . , 0) = πi for i ∈ (1, . . . ,K). This is a recursion back
into the ancestry of the sample, in which (15b) and (15c) include all events which could have
produced the sample, and the probabilities of ancestral types required in each case to produce
the sample. It can be derived either a using coalescent approach (De Iorio and Griffiths, 2004) or
a diffusion approach (Burden and Griffiths, 2019). We have kept the common factors of 1/2 in
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(15a), (15b) and (15c) to emphasize that the ancestral process occurs on the diffusion or coalescent
time scale, with mutations happening at rate θ/2 on each ancestral lineage and coalescent events
happening at rate 1 for each pair of ancestral lineages.

Initially these ancestral processes were used to compute otherwise intractable likelihoods analyti-
cally for small samples or by simulation for large samples (Griffiths and Tavaré, 1994a,b). They were
subsequently used to describe the joint sampling of gene genealogies and associated allelic types
under selection (Krone and Neuhauser, 1997; Neuhauser and Krone, 1997), and, in cases were the
sampling probabilities are known, to describe conditional ancestral processes of samples given their
allelic types (Slade, 2000a,b; Fearnhead, 2002; Stephens and Donnelly, 2003; Baake and Bialowons,
2008). We take the latter approach to obtain a large-n approximation for the conditional ancestral
processes of mutation and coalescence for samples containing mostly one type. We set K to be the
common allele, so we will have nK � n1, . . . , nK−1 and nK ∼ n.

Equations (15b) and (15c) include, respectively, all possible mutation events and all possible
coalescent events in the ancestral process which have a non-zero chance of producing the sample
(n1, . . . , nK). Note that the terms with i = j in (15b) are the ‘empty’ mutations of Baake and
Bialowons (2008).

Following Slade (2000b), the conditional ancestral process remains in state (n1, . . . , nK) for an
exponentially distributed time, i.e. leaving that state at rate n(θ + n− 1)/2, then jumps to each
possible ancestral state with probabilities proportional to the terms in (15b) and (15c). Dividing
through by the left-hand side, (15a), we have

1 =
K∑
i=1

niθπi
n(θ + n− 1)

K∑
j=1

po(. . . , ni − 1, . . . , nj + 1, . . .)

po(n1, . . . , nK)

+

K∑
i=1

ni(ni − 1)po(. . . , ni − 1, . . .)

n(θ + n− 1)po(n1, . . . , nK)

(16a)

(16b)

for the total probability of these events given that an event occurs in the ancestral process. These
are, in (16a), mutations on lineages ancestral to alleles of type i which have alleles of type j as
ancestors and, in (16b), coalescent events between lineages ancestral to alleles of type i.

Only the numbers ancestral lineages are tracked in (16a) and (16b). The full ancestry, or gene
genealogy, can be modeled using exchangeability within each allelic type. That is, each of the
ni(ni − 1)/2 pairs is equally likely to be involved in a type-i coalescent event and each of the ni
lineages is equally likely to be the one involved in a type-i mutation event.

Depending on what quantities or aspects of the ancestry are of interest, (16a) and (16b) may be
augmented, simplified or otherwise rearranged. Here we follow Fearnhead (2002) and Baake and
Bialowons (2008), in removing some lineages from the ancestral process once they have experienced
a mutation. This is captured by the identity

po(. . . , ni − 1, . . .) =
K∑
j=1

po(. . . , ni − 1, . . . , nj + 1, . . .) (17)

which can be used as needed in (16a). Our aim here is to model mutation and coalescence in the
ancestry of the rare alleles with counts n1 through nK−1 in the sample. So we follow the ancestry
of the nK common alleles only insofar as this affects the ancestries of the rare alleles. We use (17)
to justify removing ancestral type-K lineages whenever they mutate, and we lump these events
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with coalescent events because their overall effect is the same (nK → nK − 1). Additionally, we
distinguish two kinds of mutation events among the rare alleles: ones in which the ancestral allele
was the common allele K and ones in which it was a rare allele j ∈ (1, . . . ,K − 1).

Making these changes, and using (11) to simplify the ratios of sampling probabilities, we have

1 =
K−1∑
i=1

K−1∑
j=1

niθπi(θπj + nj − δij)
n(θ + n− 1)(θπi + ni − 1)

+
K−1∑
i=1

niθπi(θπK + nK)

n(θ + n− 1)(θπi + ni − 1)

+
K−1∑
i=1

ni(ni − 1)

n(θπi + ni − 1)

+
nK
n

(18a)

(18b)

(18c)

(18d)

in which we have used Kronecker’s delta to accommodate empty mutations, i = j in (18a). Recall
that n =

∑
i ni which will be O(nK) when nK becomes large for given n1 though nK−1. Equation

(18a) contains the probabilities of all mutations on rare-allele lineages which have rare-allele ancestors.
These probabilities are O(1/n2

K) when nK is large. Equation (18b) contains the probabilities of all
mutation events on rare-allele lineages which have common-allele ancestors. These are O(1/nK)
when nK is large. Equation (18c) contains the probabilities of all coalescent events between rare-
allele lineages of the same type, similarly O(1/nK). Finally, (18d) gives the probability of mutation
or coalescence among the common-allele lineages, which is O(1).

Keeping only up to the O(1/nK) terms gives an approximate, large-nK ancestral process with
total rate n(θ+ n− 1)/2 ≈ n2

K/2 and jumps, for i ∈ (1, . . . ,K − 1), from state (n1, . . . , nK) to state

(. . . , ni − 1, . . . , nK + 1) w/prob.
ni
nK

θπi
θπi + ni − 1

, (19)

to state

(. . . , ni − 1, . . .) w/prob.
ni
nK

ni − 1

θπi + ni − 1
, (20)

or to state

(n1, . . . , nK−1, nK − 1) w/prob. 1−
∑

i<K ni

nK
. (21)

This process is dominated by (21), that is by events on lineages ancestral to the common allele
K, which decrease the number of these but leave the counts of rare-allele lineages unchanged.
Although we are not tracing the details of common-allele ancestry, we note that the overwhelming
majority of these events will be coalescent events, since their rate is approximately equal to the
total rate ∼ n2

K/2. The next most frequent will be empty mutation events at rate O(nK), followed
by common-allele mutation events with rare-allele ancestors at rate O(1).

When one of the rarer events occurs in the ancestral process, it involves allele i with probability
ni/nK , then is either a mutation event from a common allele as in (19) or a coalescent event as in
(20). For each allele i ∈ (1, . . . ,K − 1) which is observed at least once in the sample, there will be
exactly ni such events. Again, the empty mutation events captured in (18a) are negligible for large
nK . Note that, the relative probabilities of mutation versus coalescence in (19) and (20) for each
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allele are identical to the standard ones from coalescent theory (Kingman, 1982), only here with θπi
in place of the usual θ. It follows that both the number of latent mutations which produced the ni
copies and the counts of each mutation’s descendants among the ni copies are given by the Ewens
sampling formula (Ewens, 1972; Kingman, 1982; Arratia et al., 1992, 2016).

The events involving the common allele in (21) occur very quickly. But since only a fixed number
of events involving rare alleles are required to resolve the ancestry of latent mutation and coalescence,
the approximation remains accurate until all the rare-allele events have happened, if nK is large
enough. In Appendix section A.1, we study the joint distribution of the times of events among
the rare alleles and the numbers of common-allele ancestors when these rare-allele events occur.
Focusing on the case of two alleles for simplicity, if Ti is the time back to the ith event involving the
rare allele 1, we have

E [T1] ≈


2 log(n2)

n2
if n1 = 1

2
n2(n1−1) if n1 > 1

(22)

which in either case tends to zero as n2 tends to infinity. Further, if N2(Ti) is the random number
of type-2 ancestral lineages left at the ith event involving the rare allele 1, we have

E [N2(Ti)] ≈ n2
n1 − i+ 1

n1 + 1
(23)

suggesting that, despite the rapid decrease of common-variant lineages, the approximation can hold
until the entire ancestry of latent mutation and coalescence is resolved.

Even for the largest rare-variant site-frequency count considered in Seplyarskiy et al. (2021),
there will still be > 1200 common-variant lineages left on average at T70 for the TOPMed data
(n2 ∼ 86000) and > 400 left for the gnomAD data (n2 ∼ 30000). In Section 3.2, we consider
site-frequency counts up to 40 for synonymous exonic sites in gnomAD with many fewer SNPs but
a larger sample size (n2 ∼ 114000) and in this case there should be about 2780 common-variant
lineages left at T40 when the entire ancestry of latent mutation and coalescence among the rare
variants is resolved.

Thus, rare alleles in a large sample will quickly coalesce and mutate. Their ancestors will
be common alleles. If ki ∈ (1, . . . , ni) is the number of mutations in the ancestry of allele i ∈
(1, . . . ,K − 1), then from the rates of mutation and coalescence in (19) and (20) we have

p(k1, . . . , kK−1|n1, . . . , nK−1;n large) ≈
K−1∏
i=1

S
(ki)
ni (θπi)

ki

(θπi)(ni)
(24)

which is the product of independent Ewens distributions.

1.2.2 Latent mutations and sample counts of rare alleles

Here we focus on the case in which a single type of mutation or allele is observed against a background
of a given common allele, as in recent empirical studies (Harpak et al., 2016; Seplyarskiy et al.,
2021). Our goal is to understand how counts of these mutant alleles depend on the number of latent
mutations and on the mutation rate. As before, allele 1 is the focal rare allele and allele K is the
common allele.

First, from (24) we have

p(k1|n1;n large) ≈ S
(k1)
n1 (θπ1)k1

(θπ1)(n1)
(25)
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Figure 2: Panel A shows the probability of observing n1 copies of allele 1 in a large sample given these are
produced by k1 = 1, 2, 3, 4, 5 mutations. Panel B shows the log10-probability of observing n1 copies of allele
1 in a large sample for three different values of θπ1: 0.002, 0.02 and 0.2. Probabilities in both panels are
normalized to sum to one for n1 ∈ (1, 2, . . . , 40).

which sums to one for k1 ∈ (1, . . . , n1). To understand the effects of mutation on the number of
rare alleles, we apply Stirling’s formula as in 6.1.47 of Abramowitz and Stegun (1964) or equation
(1) in Tricomi and Erdélyi (1951) to show that the main dependence of p(n1;n) on n1 and θπ1 is
captured by

p(n1;n large) ∝
(θπ1)(n1)

n1!
. (26)

Using this together with (25) we have

p(n1|k1;n large) ∝ S
(k1)
n1

n1!
(27)

as the approximate dependence of the rare-allele count n1 on the number of latent mutations k1.
Following the logic of Section 1.1.1, we can use (26) and (27) to understand how the site-frequency
counts of a rare allele depend on the rate of production of the allele and on the number of latent
mutations contributing to those counts.

The proportional relations (26) and (27) are sufficient for this if we adopt the usual convention of
normalizing site-frequency counts to sum to one. Figure 2A shows how the site-frequency spectrum
of a rare variant in a large sample depends on the number of mutations which produced the observed
copies of the variant. When all copies descend from a single mutation (k1 = 1), the usual predictions

from the infinite-sites model hold. Thus, putting S
(1)
n1 = (n1 − 1)! in (27) we have

p(n1|k1 = 1;n large) ∝ 1

n1
.

The total number of such sites will depend on θπ1, and in general on the factor (θπ1)k1 in (25) for
larger numbers of latent mutations. But conditional on k1, the normalized site-frequency counts for
a rare variant do not depend on θ, at least to leading order in the sample size n ∼ nK . Further, if
there are k1 > 1 mutations in the ancestry of the rare variant, then n1 cannot be less than k1. This
is illustrated in Figure 2A for k1 = 2 to k1 = 5 latent mutations. A key effect of recurrent mutation
is to give relatively less weight to low site-frequency counts, as found previously by Jenkins and
Song (2011).
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Using (25) and (26) the joint distribution of n1 and k1 obeys

p(n1, k1;n large) ∝ S
(k1)
n1 (θπ1)k1

n1!
(28)

which can be compared to the results of Jenkins and Song (2011). With fixed n1 and large nK in
our model, all mutations in the ancestry of the rare variant will be non-nested mutations; note this
also follows from (18) in Jenkins and Song (2011). In addition, we have shown that the higher-order
terms in θ, i.e. beyond (θπK)k1 , can be neglected when nK is large. Adapting the notation of

Jenkins and Song (2011) in which E
(1,1)
2N ,N is the event that the n1 copies of allele 1 are due to two

non-nested mutations, both from allele K to allele 1, their (21) becomes

p
(
n1, nK , E

(1,1)
2N ,N

)
≈ θ2π2

1

S
(2)
n1

n1!

for large nK (and small θ), which is identical to (28) if k1 = 2.

Numerical computations (not shown) using the unnumbered equation below (10) in Jenkins
and Song (2011), which holds for any θ, reproduce the case of k1 = 2 shown in Figure 2A when
nK is large. This is evident in Figure 3 of Jenkins and Song (2011) for the quantity E2NN . These
computations are difficult for samples beyond the hundreds. Our results for k1 = 3 could potentially
also be compared to the O(θ3) results of Bhaskar et al. (2012) using their Theorem 3 and summing
appropriately.

Figure 2B shows how the site-frequency counts of the rare variant depend on the mutation
parameter of that variant, θπ1. Although Figure 2A shows a dramatic effect of k1 on the site-
frequency counts, Figure 2B suggests that large values of k1 are unlikely. This is evident from (25)
and (28) in that each additional mutation results in an additional factor of θπ1. Note that the
smallest value of θπ1 in Figure 2B is already more than twice the human average. From (26), we
have

p(n1;n large, θ small) ∝ θπ1

n1

which is consistent with (10) in the case where allele 1 is rare in a large sample. Thus, when θπ1 is
small (0.002 and 0.02 in Figure 2B) the site-frequency spectrum under recurrent mutation is very
close to the standard infinite-sites model predictions. When θπ1 is large (0.2 in Figure 2B) the site-
frequency spectrum under recurrent mutation is noticably different, with a dearth of low-frequency
variants and corresponding excesses at higher frequencies. Figure 2B plots site frequencies on a log
scale to better illustrate differences, especially at higher frequencies.

2 Theory for nonconstant populations

Here we extend our analysis to populations which deviate from the standard neutral site-frequency
predictions. We have in mind populations which have changed in size, although other applications
may be possible. Now gene genealogies are the general coalescent trees of Griffiths and Tavaré
(1998), which have same the branching structure of standard coalescent trees but may have different
distributions of coalescence times.

Equation (25) suggests another way to model both the number of copies (n1) of a variant of
interest and the corresponding count of latent mutations (k1) when the variant is rare in a large
sample. Arratia et al. (1992) proved that when the sample size tends to infinity, the numbers of
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alleles in small counts 1, 2, . . . , i in the Ewens distribution converge to independent Poisson random
variables with expected values θ, θ/2, . . . , θ/i. Note that θ/i is the usual expected site-frequency
count of mutants in i copies in the sample under the standard neutral model of a large constant-size
population. A seminal result of Watterson (1974a) is that the numbers and counts of mutations in
a sample from such a multi-type Poisson distribution conform to the Ewens sampling formula when
conditioned on their total size. So we may interpret (25) and other findings in the previous section
within this independent-Poissons sampling framework.

This is exactly the approach in the Supplementary Materials of Seplyarskiy et al. (2021). Again,
human SNP data strongly reject the standard neutral model with site-frequencies ∝ 1/i, owing
largely to the great excess of singletons and other rare variants due to our recent growth (Keinan
and Clark, 2012; Gazave et al., 2014). So we replace 1/i with E[τi]/2, where τi is the total length of
branches with i descendants in the gene genealogy of a sample. For an extension of independent-
Poissons sampling to variants under selection, see Desai and Plotkin (2008). Our notation is different
than in Seplyarskiy et al. (2021) because here we use the coalescent or diffusion time scale.

Under the standard neutral coalescent model, E[τi] = 2/i. For the general coalescent trees of
Griffiths and Tavaré (1998), τi can be expressed in terms of the coalescent intervals, Tk, which
are the lengths of time when there were k ∈ (2, . . . , n) lineages in the ancestry of the sample. In
particular,

E[τi] =

n∑
k=2

kE[Tk]

(
n−i−1
k−2

)(
n−1
k−1

) (29)

(Fu, 1995; Griffiths and Tavaré, 1998).

Watterson (1974a) studied three models. In Model 1, using our notation, mutations arise from
a constant source at rate θ, then propagate or go extinct independently according to a critical
branching process, i.e. with birth rate equal to death rate as for a neutral mutation. The number
of mutations in count i has expected value θµi/i, for a constant µ > 0 which converges to 1 as
the duration of the process increases. Watterson (1974a) proved that the numbers and counts
of mutations follow the Ewens sampling formula when conditioned on their total size, which for
Watterson (1974a) was equivalent to the population size. Models 2 and 3 are the Moran model and
the Wright-Fisher model (Moran, 1958, 1962; Fisher, 1930b; Wright, 1931) and Watterson (1974a)
proved that these have the same limit as Model 1 when the population size is large.

Model 1 is an example of a logarithmic species distribution (Fisher, 1943; Watterson, 1974b;
Arratia et al., 2003; Lambert, 2011). Branching-processes have also been used to describe and infer
the ages of rare alleles (Rannala and Slatkin, 1997; Slatkin and Rannala, 2000; Wiuf, 2000); for
recent developments and a review, see Crespo et al. (2021). Slatkin (2000) used this approach
and an extension of Griffiths and Tavaré (1998) to model the ages of rare alleles in a large sample.
Champagnat and Lambert (2012, 2013) studied the convergence of population frequencies of alleles
for supercritical, subcritical or critical branching processes. All of these works assume that each
allele traces back to a single mutation, as under the infinite-alleles mutation model.

Our approach to modeling recurrent mutation follows that of Watterson (1974a) to Model 1.
Whereas Watterson (1974a) did not specify the source of mutations, here we take it to be the
production of rare variants by mutation from a common variant on the gene genealogy of a large
sample. What for Watterson (1974a) was the total population size is for us the total count of a rare
variant. Allele 1 is our nominal variant of interest, but for simplicity for the moment, we use n, k
and θ in place of n1, k1 and θπ1. As a further notational convenience, we define

τ̄i ≡ E[τi]
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so that θτ̄i/2 is the expected number of mutations with count i in this independent-Poissons sampling
model.

Let (a1, a2, . . .) be the numbers of latent mutations of the variant of interest with counts (1, 2, . . .).
We assume that ai ∼ Poisson(θτ̄i/2) and that ai and aj are independent for i 6= j. Their joint
distribution is then

P (a1, a2, . . .) =
∏
i≥1

(θτ̄i/2)ai

ai!
e−θτ̄i/2

= e−
θ
2

∑
i τ̄i
∏
i≥1

(θτ̄i/2)ai

ai!
(30)

with ai ≥ 0. The total sample size is what would set the upper limits of the product and the
sum above, but we leave these unspecified for now, only imagining that the total sample size is
much larger than the sample count of the variant of interest, so we can model the latter without
restriction.

We are only concerned with ai for i ≤ b, where b is the largest rare-variant count. Thus, the
assumption of independence in (30), which is equivalent to there being no nested mutations in the
ancestry of a rare variant, will only need to be true for τ̄i with i ∈ (1, . . . , b). In Appendix section A.2
we prove that this holds for the trees of Griffiths and Tavaré (1998) for fixed b in the limit as the
total sample size tends to infinity, and that the counts (a1, . . . , ab) converge to independent Poisson
random variables as with expected values (θτ̄1/2, . . . , θτ̄b/2). A condition is that the total height of
the genealogy is bounded, which is a mild assumption ruling out pathological situations such as a
populations whose sizes increase too quickly backward in time.

The count of the variant of interest is n =
∑

i iai and its number of latent mutations is k =
∑

i ai.
Following Watterson (1974a), we consider the probability generating function of n and k, which in
the present case simplifies to

Gn,k(x, y) =
∑

(a1,a2,...)

P (a1, a2, . . .)x
nyk

= e−
θ
2

∑
i τ̄i

∞∑
k=0

( θ2)kyk

k!

(∑
i

xiτ̄i

)k
.

For the details of this derivation, see (82) in the Appendix. The coefficient of xn (and yk) can be
found using (∑

i

xiτ̄i

)k
=
∑
n≥k

xn
∑

(i1,...,ik−1)

τ̄i1 τ̄i2 · · · τ̄ik (31)

where the sum is over

im = 1, . . . , n− (k −m)−
m−1∑
g=1

ig

for m = 1, . . . , k − 1, and with

ik = n−
k−1∑
m=1

im.

Returning to our notation in which n1 is the number of copies of a variant of interest, k1 its
number of latent mutations, θπ1 its mutation parameter, and n is the total sample size, and further
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using τ to show the new dependence on the vector of expected times (τ̄1, . . . , τ̄n−1), we have

p(n1, k1;n large, τ) ≈
( θπ12 )k1

∑
(i1,...,ik1−1)

∏k1
m=1 τ̄im

k1!
e−

θπ1
2

∑n−1
i=1 τ̄i (32)

which is non-zero for n1 = k1 = 0 and n1 ≥ k1 ≥ 1. The sum over (i1, . . . , ik1−1) here is the same as
in (31). It is equivalent to summing over partitions of the integers 1 through n1 into k1 subsets,
where the sizes of the subsets are (i1, . . . , ik1).

It is convenient to decompose (32) as follows. The number of type-1 mutations is Poisson
distributed

p(k1;n large, τ) ≈
( θπ12

∑n−1
i=1 τ̄i)

k1

k1!
e−

θπ1
2

∑n−1
i=1 τ̄i , (33)

with parameter equal to the expected number of type-1 mutations on the gene genealogy of the
sample. Conditional on this, the distribution of the number of times allele 1 appears in the sample
is given by

p(n1|k1;n large, τ) ≈
∑

(i1,...,ik1−1)

k1∏
m=1

τ̄im∑n−1
i=1 τ̄i

, (34)

which depends on the relative expected branch lengths but does not depend on θ or π1.

Alternatively, p(n1;n large, τ) can be computed by summing (32) appropriately, over k1 ∈
(0, . . . , n1). Then

p(k1|n1;n large, τ) ≈ p(n1, k1;n large, τ)

p(n1;n large, τ)
(35)

can be used to estimate the number of independent mutations which produced the observed copies
a rare allele.

The sum over (i1, . . . , ik1−1) in (34) and (32) is straightforward to evaluate but will become
impractical if n1 and k1 become too large. In what follows, we consider k1 ≤ 7 mutations at a each
site. Equation (33) suggests that this will be accurate up to about three expected mutations per
site, because the probability of k1 greater than 7 is just over 1% when (θπ1/2)

∑n−1
i=1 τ̄i = 3. As in

Figure 2, the largest value of n1 we consider is 40. These are not the upper limits of feasibility;
it takes two minutes to evaluate (34) for all k1 ∈ (0, . . . , 7) and n1 ∈ (0, . . . , 40) in Mathematica
version 11.2 (Wolfram Research, Inc., 2017) on a mid-2015 MacBook Pro.

Considering the first three possible values of k1 in (34),

p(n1|0;n large, τ) ≈

{
1 if n1 = 0

0 if n1 ≥ 1

p(n1|1;n large, τ) ≈ τ̄n1∑n−1
i=1 τ̄i

p(n1|2;n large, τ) ≈
∑n1−1

i=1 τ̄iτ̄n1−i(∑n−1
i=1 τ̄i

)2

(36)

(37)

(38)

Equation (36) says simply that if there are no type-1 mutations on the gene genealogy then no copies
of allele-1 will be observed. Equation (37) is the familar result for the site-frequency spectrum,
that it is given by the proportion of branches in the tree that have n1 descendants. Equation (38)
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extends this to two mutations and emphasizes that mutations in the ancestry of a rare allele will be
non-nested when n is large.

For the constant-size model, we can put τ̄i = 2/i in (32) and obtain new expressions corresponding
to (26), (27) and (28),

p(n1;n large) ∝
(θπ1)(n1)

n1!
e−θπ1

∑n−1
i=1 1/i

p(n1; k1, n large) ∝ S
(k1)
n1 k1!

n1!

(
n−1∑
i=1

1

i

)−k1

p(n1, k1;n large) ∝ S
(k1)
n1 (θπ1)k1

n1!
e−θπ1

∑n−1
i=1 1/i

(39)

(40)

(41)

which may be preferable to the previous ones. The expression for p(k1|n1;n large) obtained using
τ̄i = 2/i here is the identical to (25). Figure 2 is also unchanged if (39) and (40) are used instead of
(26) and (27), and normalizing in the same way.

2.1 Relation to K-alleles diffusion results

These new results may be discerned in the sampling probabilities from the diffusion model. For
example, a more detailed treatment of (6) and application of Stirling’s formula gives

p(n1;n) = π2

(θπ1)(n1)

n1!

Γ(1 + θ)

Γ(1 + θπ2)

Γ(n+ 1)Γ(n− n1 + θπ2)

Γ(n+ θ)Γ(n− n1 + 1)

= π2
(θπ1)n1

n1!

Γ(1 + θ)

Γ(1 + θπ2)
e−θπ1 log(n)

[
1 +O

(
1

n

)]
in which we write e−θπ1 log(n) in place of n−θπ1 to emphasize the connection to the gene genealogy.
Using a Taylor series approximation for the Gamma function around 1 we have

Γ(1 + θ)

Γ(1 + θπ2)
= 1− γθπ1 +O(θ2) ≈ e−γθπ1

where γ = 0.577 . . . is Euler’s constant. As
∑n

i=1 1/i ≈ log(n) + γ when n is large, we find that (6)
will be very close to π2 times the right-hand side of (39) for a given n1 when n is large and θ is
small. For reference, note that even the fastest-rate sites in the human genome have θ only equal to
about 0.02 (see Section 3.2 below).

In deriving (32), we assumed that both the number of mutations and their total count (k1 are n1

here) are unbounded. We did not take a formal limit as n→∞, and instead have (θπ1/2)
∑n−1

i=1 τ̄i
for the rate of occurence of type-1 mutations. This is intuitive from the standpoint of coalescent
theory, since

∑n−1
i=1 τ̄i is the average total length of the gene genealogy, but allowing that k1 are n1

could potentially be larger than n makes little sense. These new results (32) through (41) are for
rare alleles only, that is for a given n1 when n is very large.

To relate these new results to the model in Section 1.1, we can follow the logic in Section 1.1.1
and approximate the full sampling probability (6) when θ is small as the sum of two copies of the
independent-Poissons sampling process. Thus, similar to (10), for the two-allele case here we can
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Figure 3: Schematic relating the independent-Poissons model to the classic two-allele diffusion result (6).
Parameters are as in Figure 1, specifcally θπ2 = 1/1300, π1 = 10π2 and n = 100. The blue line shows the
sum (42). The red line shows the first term of that sum. The orange line shows the second term. The plot
extends beyond the biologically plausible values of n1 because the independent-Poissons model allows n1 > n
and n2 > n. Open circles show (6) which closely tracks the blue line across the range of biologically plausible
values, and the red and orange lines for small n1 and small n2 respectively. Biologically implausible are rare
in this case.

approximate the sampling probability p(n1;n) in (6) using

π2

(θπ1)(n1)

n1!
e−θπ1

∑n−1
i=1 1/i + π1

(θπ2)(n2)

n2!
e−θπ2

∑n−1
i=1 1/i (42)

in which we have used result (39) twice, once for type-1 mutations in a type-2 ancestral background
and once for type-2 mutations in an type-1 ancestral background, where it is understood that
π2 = 1− π1 and n2 = n− n1. This can be seen as a sample-based version of the boundary mutation
model (Vogl and Clemente, 2012; Schrempf and Hobolth, 2017; Vogl et al., 2020) but one which
allows for multiple segregating mutations.

Figure 3 plots the two terms in (42) individually, together with their sum (42) and p(n1;n) from
(6). The parameters as the same as the small-θ case in Figure 1, specifically a sample of size n = 100
with θ chosen so that the mutation rate for allele 2 (θπ2) is equal to the human average (1/1300)
and π1 = 10π2. In contrast to Figure 1, the range of n1 (similarly n2) in Figure 3 extends beyond
what is biologically plausible. For these parameters, the expected number of type-1 mutations on
the gene genealogy is about 0.04 and the expected number of type-2 mutations is about 0.004. Only
about 1/50 polymorphic sites where the rare variant is allele 1 are expected to have experienced
more than one mutation, and the corresponding value for sites where the rare variant is allele 2 is
about 1/500. The different probabilites at the boundaries 0 and 100 result both from the ten-fold
greater rate of type-1 versus type-2 mutation on the gene genealogy and the weights π2 and π1 in
(42) which similarly capture the ten-fold difference in the the chance of the ancestral allele being of
type 2 or of type 1, respectively, at stationarity in the Wright-Fisher diffusion model.

3 Theoretical example and data application

Here we illustrate the theoretical and empirical use of (33) and (34). First we describe the
consequences of recurrent mutation in an exponentially growing population compared to those in a

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504427doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504427
http://creativecommons.org/licenses/by-nc/4.0/


population of constant size. Second we explore an entirely empirical application to human SNP data,
which suggests that disparate site-frequency spectra may be explained by differences in mutation
rate (and thus recurrent mutation).

Note that if estimates of the expected fraction of the gene genealogy comprised of branches with
i descendants, that is

τ̄i∑n−1
i=1 τ̄i

=
E[τi]∑n−1
i=1 E[τi]

, (43)

are available, then p(n1|k1;n large, τ) can be computed using (34). In addition, for any estimated
or supposed values of the expected number of mutations on the gene genealogy,

θπ1

2

n−1∑
i=1

τ̄i =
θπ1

2

n−1∑
i=1

E[τi], (44)

the joint distribution of the number of latent mutations, k1, and their total count, n1, is the product
of (33) and (34).

3.1 An exponentially growing population

Consider the simple model of pure exponential growth which has been the subject of a number of
studies (Slatkin and Hudson, 1991; Griffiths and Tavaré, 1998; Polanski and Kimmel, 2003; Chen
and Chen, 2013; Polanski et al., 2017): a population which has reached its current (haploid) size N0

by exponential growth at rate r per generation. On the coalescent time scale of N0 generations,
looking backward in time and setting α = N0r,

N(t) = N0e
−αt (45)

gives the population size at time t in the past. This model is unrealistic because the past population
size approaches zero, but it can be taken as a rough approximation for recent dramatic growth. For
instance, a population of current size N0 = 5×107 with a generation time is 30 years and r = 0.0064,
would have α = 3.2× 105. About 40, 000 years ago, it would have had size 105, and using equation
(7) in Slatkin and Hudson (1991) the pairwise coalescence time would be about 57, 000 years.

The expectation E[τi] can be computed from (29) if the expected coalescent intervals E[Tk] are
known. We use the large-n results of Chen and Chen (2013) for E[Tk] (our notation) to obtain a
simple approximation for E[τi]. With the time scale and notation here, equation (11) in Chen and
Chen (2013) gives

1

α
log

(
2α

(
1

k
− 1

n

)
+ 1

)
(46)

as a large-n approximation for the cumulative expected time for the number of ancestral lineages of
the sample to decrease from n to k. Writing (46) as a continuous function of x = k/n,

f(x) =
1

α
log

(
2α

n

1− x
x

+ 1

)
, (47)

we approximate the expected coalescent interval as

E[Tk] = f(x− dx)− f(x) ≈ −f ′(x)dx

=
2

x (2α(1− x) + xn)
. (48)
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Note that while (48) is a large-n approximation, it allows that α might be of the same order of
magnitude as n. Applying the same approximation to the combinatorial coefficient in (29) gives(

n−i−1
k−2

)(
n−1
k−1

) ≈ x

1− x
(1− x)i. (49)

Finally, we approximate the sum in (46) with the integral

E[τi] ≈
∫ 1

0
xn

2

x (2α(1− x) + xn)

x

1− x
(1− x)idx,

= 2

∫ 1

0

[
1− (1− 2α/n)y

]−1
(1− y)yi−1dy (50)

in which we changed variables (y = 1− x) to make a connection to the hypergeometric function.
Thus we obtain

E[τi] ≈
2

i(i+ 1)
2F1(1, i; i+ 2; 1− 2α/n). (51)

Equation (51) can be evaluated efficiently and the properties of the hypergeometric function are
well know.

The suggested dependence of (51) on 1/i2, rather than the usual site-frequency prediction of
1/i, is consistent with the excess of low-frequency variants expected under population growth. As
Slatkin and Hudson (1991) and others have observed, gene genealogies under very fast exponential
growth are close to star trees. In this extreme, all variants will be singletons. From (51), when α/n
is large, we have

E[τi] ≈


log(2α/n)−1

α/n if i = 1

2
i(i−1)α/n if i ≥ 2

(52)

if terms of order (α/n)−2 or smaller are ignored. Thus singletons will dominate as expected when
α/n is very large.

These results for exponentially growing populations, derived here using a coalescent approach,
are identical in form to some results for “Luria-Delbrück distributions”, especially in application to
cancer, derived using forward-time birth-death or branching processes (Luria and Delbrück, 1943;
Lea and Coulson, 1949; Kessler and Levine, 2013; Ohtsuki and Innan, 2017; Gunnarsson et al.,
2021; Cheek and Antal, 2018; Poon et al., 2021; Durrett, 2013, 2015). In particular, (50) has the
same form as the approximation in equation (4) of Ohtsuki and Innan (2017) and as equation (33)
in Gunnarsson et al. (2021). Equation (52) has the same form as the expression in Theorem 2 in
Durrett (2013) if only the leading-order term is kept in (52) in the case i = 1.

Figure 4 shows the same quanties as Figure 2 but for the pure exponential growth model with
n = 105 and α/n = 3. The value α/n = 3 was chosen to roughly reproduce the ratio of singletons
to doubletons observed for low-rate sites in the gnomAD data in Section 3.2. Figure 4A is directly
comparable to Figure 2A, the only difference being whether E[τi] = 2/i or comes from (51). As
Figure 4A shows, recent rapid growth produces a single-mutation (k1 = 1, blue line) site-frequncy
spectrum with an excess of rare variants and a deficit of common variants. So, compared to the
constant-size case in Figure 2A, there is a diminished tendency to observe high-frequency variants
when the number of latent mutations is larger, and a stronger tendency for the site-frequency count
(n1) to be equal to or close to the number of latent mutations.
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Figure 4: Plots of the same quantities shown in Figure 2 but for a sample of size n = 105 under pure
exponential growth with α/n = 3. Panel A: probability of observing n1 copies of allele 1 in the sample given
k1 = 1, 2, 3, 4, 5 latent mutations. Panel B: log10-probability of observing n1 copies of allele 1 in the sample
for three different mutation rates, corresponding to the values of θπ1: 0.002, 0.02 and 0.2 in Figure 2, but
here expressed in terms of expected numbers of mutations on the gene genealogy (44): 0.024, 0.24 and 2.4.
Probabilities in both panels are normalized to sum to one for n1 ∈ (1, 2, . . . , 40).

To make Figure 4B comparable to Figure 2B, we used (44) with n = 105 and E[τi] = 2/i to
compute the corresponding expected numbers of mutations on the gene genealogy for the three
values of θπ1 in Figure 2 (0.002, 0.02, 0.2). The resulting expected numbers of mutations were 0.024,
0.24 and 2.4, the last being about equal to the value for the highest-rate sites in the gnomAD data
in Section 3.2. We then computed p(n1;n large, τ) by averaging (34) over the distribution (33).
Similar to Figure 2B, the two smaller values of the mutation rate give nearly indistinguishable
results for the total count n1. But there is a dramatic difference for the largest mutation rate. In
Figure 2B the prediction is distinctly L-shaped and thus similar to that for the lowest mutation
rate, which again is 100-fold lower. In contrast, in Figure 4B singletons have a much lower chance of
being observed. In fact, doubletons are slightly more likely than singletons. This relative excess of
doubletons is due to the fact when there are two latent mutations these are highly likely to produce
two copies of the variant under growth (Figure 4A) than under constant size (Figure 2A).

It is also of interest to know how the number of latent mutations in the ancestry of a rare
variant depends on its count. Figure 5 depicts this for a series of increasing counts n1, from 1 to
16. Figure 5A shows the results for constant size, Figure 5B the corresponding results for pure
exponential growth. The expected number of mutations on the gene genealogy is 2.4 in both cases.
Regardless of the demography, if only one copy of the variant is observed, it must be due to one
mutation. Otherwise, the results differ greatly for constant size versus growth. Under constant
size, a variant observed multiple times in the sample can easily be due to a single mutation. Under
growth, higher variant counts are more likely due to multiple mutations.

3.2 Application to human SNP data

We also used (33) and (34) to account for latent mutations in the ancestry of low-count variants in
a subset of the gnomAD data (Karczewski et al., 2020). We took the approach described in the
Supplementary Materials of Seplyarskiy et al. (2021), specifically obtaining estimates of relative
branch lengths (43) from low-rate sites then using our new analytical result (34) to average over
mutation counts. Rather than categorizing variants by trinucleotide context as in Seplyarskiy et al.
(2021), we analyzed data from gnomAD version v2.1.1, presorted into 109 bins based on estimates of
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Figure 5: Probabilities of k1 = 1, 2, 3, 4, 5, 6, 7 latent mutations for increasing values of n1 — 1, 2, 4, 8,
and 16, with blue for 1, orange for 2, and so on — when 2.4 mutations are expected on the gene genealogy
of a sample of size n = 105 (or equivalently θπ1 = 0.2 in the constant-size case). Panel A plots (25) with
θπ1 = 0.2. Panel B shows the same probability computed using (33) and (34) under exponential growth with
α/n = 3.

mutation rate by the method of Seplyarskiy et al. (2022, in prep.) which incorporates information
from the six flanking bases on either side of a SNP, strand asymmetry, expression level, methylation
promoter status. We did not use this information but our analysis assumes that variants within a
bin have the same mutation rate.

The data consist of variant counts for synonymous mutations in the exomes of about 57K
non-Finnish Europeans. Thus n ∼ 114K although this varied by about 2% among sites because we
required that sites were successfully genotyped in a minimum of 112K chromosomes. Importantly
for our application, the data include monomorphic sites, i.e. sites with variant count equal to zero.
gnomAD only provides n for polymorphic sites, so we imputed n for monomorphic sites using the
nearest value at a polymorphic site within 100bp on either side of the focal site. After filtering for
sequencing quality and coverage as well as removing mutation rate bins with fewer than 100 observed
mutations, there are a total of 12, 338, 176 sites in 97 bins and 834, 486 of these are polymorphic.

Figure 6 shows the total numbers of sites (blue circles) and the number of monomorphic sites
(orange circles) in each bin. The great majority of sites are in bins 1 through roughly 25. These
have low mutation rates, as indicated by the close overlap of blue and orange circles, or nearly equal
numbers of total sites and monomorphic sites. The widening gap between the blue and orange circles
reflects the fact that higher-number bins have larger mutation rates. Estimates of the expected
numbers of mutations per site for each bin range from 0.0097 for bin 1 to 2.23 for bin 97, with a
mean of 0.083 (see below).

Each bin contains a mixture of different sequence contexts and different mutations. Again, we
assume that within a bin these all have the same rate. We use θπ1 to denote this rate. Let Si be
the number of sites in a given bin where i copies of a variant are observed in the sample. If a bin
contains L total sites, then with reference to the notation in (2) we may write

E[Si] = LP [N1 = i;n] , i ∈ (0, . . . , n− 1). (53)

Thus we use i in place of n1 to avoid the additional subscript when we apply the results of the
previous sections.

We compare observed and expected site-frequency counts for each bin based on an entirely
empirical fit of our general results (33) and (34). This involves three steps. First, we use (33)
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Figure 6: Blue circles show the total numbers of sites in the gnomAD data for each of the 97 bins. Orange
circles show show the total numbers of monomorphic sites, i.e. sites with variant count equal to zero, in each
bin. Lower mutation-rate bins are on the left, higher mutation-rate bins are on the right. The estimated
mutation rates for bins 1 and 97 and about 9 times smaller and 27 times larger than the average (see text).

and the proportion of monomorphic sites, S0/L, to estimate the total mutation rate in each bin,
θπ1

∑
i τ̄i, i.e as − log(S0/L). Next, based on (37), we use data for low-rate bins to estimate τ̄i/

∑
i τ̄i

as Si/(L− S0) for i ∈ (1, . . . , 40). Finally, we compute the expectations E[Si], i ∈ (1, . . . , 40), for
each bin using the estimated total mutation rate and the total number of sites for that bin. We do
this using (33) and (34), and assuming that the τ̄i/

∑
i τ̄i estimated from low-rate bins holds for all

bins.

We used the combined variant counts for the first five bins to estimate the relative branch
lenghts τ̄i/

∑
i τ̄i. Our estimates of the total mutation rate for these bins range from 0.0097 to 0.037

with an average of 0.021. This is somewhat less than the smallest mutation rate in Figure 4 (also
Figure 2) from which we can infer that these sites are unlikely to be affected by multiple mutations.
Again, over all 97 bins, our estimates range from 0.0097 to 2.23, or about 230-fold from lowest to
highest. The average across all bins is 0.083. Assuming that the latter corresponds to the genome
average mutation rate per site, for which the usual estimate of θ from pairwise differences is about
1/1300 ∼ 0.0077, we can infer that the expected number of mutations between a pair of (haploid)
genomes is about 9× 10−5 for the slowest sites and about 0.02 for the fastest sites.

Figure 7 compares the observed and expected variant counts, Si for i ∈ (1, . . . , 40), for bins 9,
50 and 92, chosen to represent a low-rate bin, a middle-rate bin and a high-rate bin. Figure 9 in the
Appendix gives the plots for all 97 bins. Red circles show the observed counts. Blue lines trace the
expected values. In making these plots, we grouped variant counts for which E[Si] < 1. For bin
50 for example, this was true of variant counts i ∈ [12, 40] as noted in Figure 7B and again in the
50th panel of Figure 9. The values of “mutrate” displayed in these plots are the estimates of the
expected number of mutations per site on the gene genealogy, i.e. the total mutation rate θπ1

∑
i τ̄i,

for each bin based on its proportion monomorphic sites.

The broad pattern from these plots is clear. For small total mutation rates (e.g. Figure 7A)
the site-frequency spectrum is heavily weighted toward rare variants. For large total mutation
rates (e.g. Figure 7C), i.e. when multiple latent mutations are likely, the site-frequency spectrum is
shifted toward higher-frequency variants. As shown in Figure 6, the data contain fewer sites with
intermediate mutation rates. In this case (e.g. Figure 7B), the site-frequency spectrum does show
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Figure 7: Examples of model fit for a (A) low-rate bin, (B) middle-rate bin, and (C) high-rate bin. Red
dots are the data. Blue lines show expectations with “mutrate” θπ1

∑
i τ̄i estimated using the new method.

These are bins 9, 50 and 92 (cf. Figure 6).

the expected intermediate pattern, but subject to considerable sampling error. Across the range of
mutation rates, the empirical model, which uses low-rate sites to estimate relative branch lengths
τ̄i/
∑

i τ̄i and assumes these hold for all sites, fits the data well.

As can be seen in Figure 7A and the first 20 or so panels of Figure 9, the empirical estimates of
τ̄i/
∑

i τ̄i include fluctuations due to sampling error for higher-count variants. The combined data
for the first five bins have Si ranging from 71 to 38 for i ∈ [30, 40]. The presence of these fluctuations
helps illustrate a subtler phenomenon, namely the smoothing which occurs at larger mutation rates
(e.g. Figure 7C). For reference, the combined data for the first five bins have Si in the thousands
for the low-count variants. From these, the estimated chance that a latent mutation is a singleton
is about 64%, followed by 13% for doubletons and 6% for tripletons. By comparison, the chance
is less than 0.1% for each variant with count i ∈ [25, 40]. The predictions E[Si] are smoothed for
higher-count variants at larger mutation rates because they are mixtures. For example, two latent
mutations will come in counts 1 and i− 1, 2 and i− 2, or 3 and i− 3 with approximate relative
proportions 64:13:6.

4 Discussion

In this work, we modeled the mutational ancestry of a rare variant in a large sample. Under the
standard neutral model of population genetics with K-allele parent-independent mutation, we found
that co-segregating rare variants may be treated independently and that the Ewens sampling formula
gives the probabilistic structure of latent mutations in their ancestries. We obtained more general
results, which hold under changing population size, by modeling latent mutations as independent
Poisson random variates.

Our aim has been to describe how the site-frequency spectra of rare variants in large samples
are affected recurrent mutation. The key parameters for a variant in count i turn out to be its
expected total rate of mutation on the gene genealogy of the sample (here denoted θπ1

∑
i τ̄i) and

the expected relative lengths of branches in the gene genealogy which have i descendants (τ̄i/
∑

i τ̄i).
Under the standard neutral model τ̄i = 2/i.

We obtained new results for τ̄i under exponential population growth and used these to illustrate
how recurrent mutation affects the site-frequency spectrum differently than under constant size.
Lastly, we showed that our general results provide a good fit to synonymous variation among a
large number of (non-Finish European) individuals in the human Genome Aggregation Database
(Karczewski et al., 2020), suggesting that, whatever the causes of deviations from τ̄i = 2/i might be
for this sample, differences in mutation rate can explain differences in site-frequency spectra among
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different kinds of sites.

Our application was empirical. We did not fit a demographic model, but following Seplyarskiy
et al. (2021) used low-mutation-rate sites to estimate relative branch lengths and assumed these
hold for all sites. Site-frequency spectra are a rich source of information about population-genetic
phenomena but are of somewhat limited use in disentangling their effects (Myers et al., 2008;
Bhaskar and Song, 2014; Terhorst and Song, 2015; Lapierre et al., 2017; Rosen et al., 2018). When
low-mutation-rate sites are plentiful enough to provide stable estimates of relative branch lengths,
this empirical method offers a way to control for myraid factors and isolate the effects of variation
in mutation rate.

We began with a K-allele model with parent-independent mutation, and used its sampling
probabilities in our computations for constant-size populations. We conjecture that our findings will
hold for general mutation models because conditioning on a rare variant in a large sample means
that the ancestral allele will be the common allele with very high probability. Then the relevant
mutation rate in any model will be the rate of the production of the rare allele from the common
allele.

We have described our general results as being for populations which may have changed in size.
This is appropriate for the general coalescent model of Griffiths and Tavaré (1998) which we used
to portray our results and assumed in the proofs in the Appendix. Strictly speaking, though, the
general coalescent does not require a generative model for the times between coalescent events, Tk
for k ∈ (2, . . . , n). Selection might be part of the reason they differ from the predictions of the
standard neutral coalescent. This may be true, for example, for the synonymous exome data from
gnomAD we analyzed.

In fact, the derivation of (33) and (34), with associated results from (30) to (38), does not even
require interpretation in terms of coalescence times. These equations hold just as well if we replace
θπ1τ̄i/2 with an arbitrary rate parameter λi for the production of mutants in count i, potentially
of an allele which is under selection. The case of a fixed tree, with fixed τi not from a generative
model, considered in the Appendix is an example. The modified Poisson Random Field model of
Desai and Plotkin (2008) is another, in which λi was the rate under additive selection (and the
independent-Poissons assumption was applied to all counts in the sample). We have shown in detail
how our results follow from the standard neutral coalescent or diffusion model and its extension the
general coalescent model. As with our conjecture about general mutation models, we expect these
results can be applied to latent mutations of alleles under various kinds of selection and a range of
demographies (Lange and Fan, 1997; Dorman et al., 2004; Lambert, 2011; Kaj and Mugal, 2016;
Torres et al., 2020; Müller et al., 2022) because they are for rare variants in large samples.
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A Appendix

A.1 Time-dependent conditional ancestral process

Here we study the conditional ancestral process in detail and provide the justification for (22) and
(23).

Let N1(t) and N2(t) be the numbers of rare alleles and common alleles respectively at time t.
From (19), (20) and (21), the stochastic process {(N1(t),N2(t))}t∈R+ is a continuous-time Markov
chain on Z2

+ with total rate of events λ(n1, n2) = n2
2/2 and one-step transitions

(n1, n2)→


(n1 − 1, n2 + 1) w/prob. θπ1

θπ1+n1−1
n1
n2

(n1 − 1, n2) w/prob. n1−1
θπ1+n1−1

n1
n2

(n1, n2 − 1) w/prob. 1− n1
n2

(54)

Let Pn be the probability measure for this process starting at n = (n1, n2), and define the random
times

Ti := inf {t ≥ 0 : N1(t) = n1 − i} (55)

to be the times at which the first coordinate of the process decreases to n1 − i for 1 ≤ i ≤ n1, with
T0 = 0. We have 0 = T0 < T1 < T2 < · · · < Tn1 almost surely under Pn, and the process (N1,N2)
visits the following points in order (n1, n2)→ (n1 − 1, N2(T1))→ · · · · · · → (0, N2(Tn1)).

In Theorem 1 we describe the joint distribution of the hitting times (Ti)n1
i=1 and the locations

(N2(Ti))n1
i=1 as n2 →∞.

Theorem 1. As n2 →∞, the random vector(
n2(Ti − Ti−1),

N2(Ti)
n2

)n1

i=1

(56)

in R2n1
+ converges in distribution under Pn to the random vector(

Zi
(1− Y0)(1− Y1) · · · (1− Yi−1)

, (1− Y1) · · · (1− Yi)
)n1

i=1

,

where Y0 = 0, and {Yi, Zi}n1
i=1 are independent random variables with probability density functions

fYi(y) =(n1 − i+ 1)(1− y)n1−i for y ∈ (0, 1) and

fZi(z) =(n1 − i+ 1)
2n1−i+1

(z + 2)n1−i+2
for z ∈ (0,∞).

Remark 1 (Mean of Tn1). Note that

E[Zi] =

{
2

(n1−i) if 1 ≤ i ≤ n1 − 1

∞ if i = n1

.

Hence for n1 ≥ 2, Theorem 1 implies that En[T1] is of order 1/n2 and gives the second part of (23)
in the main text. In contrast, when n1 = 1, E[Z1] = ∞ and En[Tn1 ] is no longer of order 1/n2.
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Indeed, when n1 = 1,Pn(] = k) = 1
n2

for k ∈ {0, 1, · · ·n2 − 1} by (59). Hence by (57) and Fubinni’s
theorem,

En[T1] =

n2−1∑
k=0

k∑
i=0

En[ξi]Pn(] = k)

=

n2−1∑
k=0

k∑
i=0

2

(n2 − i)2

1

n2

=
2

n2

n2−1∑
i=0

1

(n2 − i)

≈ 2

n2
log n2 as n2 →∞.

These give (22) in the main text.

Remark 2 (Mean of N2(T1)). By (58) and Theorem 1,

lim
n2→∞

E
[
N2(Ti)
n2

]
=

n1

n1 + 1

n1 − 1

n1
· · · n1 − i+ 1

n1 − i+ 2
=
n1 − i+ 1

n1 + 1

for 1 ≤ i ≤ n1. This gives (23) in the main text.

A.1.1 Proof of Theorem 1

To explain the key idea we first establish weak convergence of
(
n2 T1,

N2(T1)
n2

)
, i.e. of the marginal

distribution for i = 1 in (56). By definition, T1 is given by

T1 =

]∑
i=0

ξi, (57)

where ] is the number of downward jumps in second coordinate of the process starting at (n1, n2)

up to the first decrease in the first coordinate. The variables {ξi}]−1
i=0 are the times between these

downward jumps, with ξ] being the time to the final jump starting at (n1, n2 − ]). This last jump
is the one which decreases the first coordinate. Observe that N2(T1) is either n2 − ] or n2 − ]+ 1.
Given ], N2(T1) is equal to{

n2 − ]+ 1, w/conditional prob. θπ1
θπ1+n1−1

n1
n2−]

n2 − ], w/conditional prob. n1−1
θπ1+n1−1

n1
n2−]

(58)

which correspond to a non-empty mutation event and a coalescent event of type 1 respectively.
These follow from (54).

The probability mass function of ] is given by Pn(] = 0) = n1
n2

and, for k ∈ {1, 2, · · · , n2 − n1},

Pn(] = k)

=

(
1− n1

n2

)(
1− n1

n2 − 1

)
· · ·
(

1− n1

n2 − k + 1

)
n1

n2 − k

=
n1

n2

n1−1∏
j=1

n2 − k − j
n2 − j

≈ n1

n2
(1− x)n1−1

(59)

(60)
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as n2 →∞ and k
n2
→ x ∈ (0, 1). Hence Pn(] > n2 − n1) = 0 and, for k ∈ {0, 1, 2, · · · , n2 − n1 − 1},

Pn(] > k) =

(
1− n1

n2

)(
1− n1

n2 − 1

)
· · ·
(

1− n1

n2 − k

)
≈

n1∏
j=1

(
1− k + j

n2

)
≈ (1− x)n1 (61)

as n2 →∞ and k
n2
→ x ∈ (0, 1).

Lemma 1. As n2 →∞, we have convergence in distribution(
n2

]∑
i=0

ξi,
]

n2

)
L−→ (Z1, Y1) .

with Z1 and Y1 as defined in Theorem 1.

Proof of Lemma 1. It suffices to show that

lim
n2→∞

En

[
e
η ]
n2

+ ζ n2T1
]

= n1

∫ 1

0
(1− x)n1−1 e{η x+ 2ζx

1−x} dx (62)

for η ∈ R and ζ ∈ (−∞, 0]. Since ξi ∼ Exp(λ(n1, n2 − i)),

En

[
eζ ξi

]
=

λ(n1, n2 − i)
λ(n1, n2 − i)− ζ

=
(n2 − i)2

(n2 − i)2 − 2ζ
. (63)

By (57), (59) and (63),

En

[
e
η ]
n2

+ ζ n2T1
]

=

n2−n1∑
k=0

Pn(] = k) e
η k
n2 En

[
eζ n2

∑k
i=0 ξi

]
=

n2−n1∑
k=0

Pn(] = k) e
η k
n2

k∏
i=0

En

[
eζ n2 ξi

]
=

n1

n2

n2−n1∑
k=0

e
η k
n2

n1−1∏
j=1

n2 − k − j
n2 − j

pn2(ζ), (64)

where

pn2(ζ) :=

k∏
i=0

λ(n1, n2 − i)
λ(n1, n2 − i)− ζn2

= exp

{
−

k∑
i=0

log

(
1− 2ζn2

(n2 − i)2

)}

≈ exp

{
2ζn2

k∑
i=0

1

(n2 − i)2

}
if

2ζn2

(n2 − i)2
≈ 0

≈ exp

{
2ζ

∫ x

0

1

(1− y)2
dy

}
= exp

{
2ζx

1− x

}
(65)

27

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504427doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504427
http://creativecommons.org/licenses/by-nc/4.0/


if k
n2
→ x ∈ (0, 1) and n2 → ∞. Putting (65) and (60) into (64), we obtain the desired (62) and

thus Lemma 1. �

We now return to the proof of Theorem 1. Lemma 1 implies that (n2 T1, N2(T1)/n2) converges
in distribution to (Z1, 1− Y1) as n2 →∞. Since Y1 < 1 almost surely, we have N2(T1)→∞ in the
sense that

lim
n2→∞

Pn(N2(T1) > M) = 1 for all M ∈ (0,∞). (66)

As in (57), by definition, T2 is given by

T2 = T1 +

]2∑
i=0

ξ
(2)
i ,

where ]2 is the number of downward jumps starting in state (n1 − 1, N2(T1)) up to the second

decrease in the first coordinate, i.e. to n1 − 2. Like before, {ξ(2)
i }

]2−1
i=0 are the times between these

jumps, with ξ
(2)
]2

being the time for first coordinate to hit n1 − 2 starting at the penultimate states
(n1 − 1,N2(T1)− ]2). As in (58), N2(T2) is either N2(T1)− ]2 or N2(T1)− ]2 + 1.

As n2 →∞, N2(T1)→∞ in the sense of (66). Hence the same argument that leads to Lemma
1 can be applied again, starting at the new location (n1 − 1, N2(T1)). More precisely, by computing
moment generating functions as before, and applying the strong Markov property of the random
walk {(N1(t), N2(t))}t∈R+ at the stopping time T1, we obtain the joint convergence(

n2

]∑
i=0

ξi, (n2 − ])
]2∑
i=0

ξ
(2)
i ;

]

n2
,

]2
n2 − ]

)
L−→ (Z1, Z2 ; Y1, Y2)

under Pn as n2 →∞, where {Z1, Z2, Y1, Y2} are independent variables defined in Theorem 1. This
implies the convergence in distribution(

n2T1, n2(T2 − T1) ;
N2(T1)

n2
,
N2(T2)

n2

)
L−→
(
Z1,

Z2

1− Y1
; 1− Y1, (1− Y1)(1− Y2)

)
under Pn, as n2 →∞. Continuing this way, by letting ]i be the number of downward jumps starting
at (n1 − i+ 1, N2(Ti−1)) before hitting the vertical line {(n1 − i, y) : y ∈ Z+} for i ≥ 1, we obtain
the desired convergence in Theorem 1. �

A.2 Low-count branches of general coalescent trees

Here we prove the non-nestedness and Poisson-independence of low-count mutations, which we
assumed in Section 2. We do this first for fixed trees then for the random, general coalescent trees of
Griffiths and Tavaré (1998). We also present the computation of the probability generating function,
Gn,k(x, y), of the count of the variant of interest and its number of latent mutations.

A.2.1 Nested mutation on a fixed tree

Let Tn be a fixed (non random) tree with n leaves. We suppose the tree is ultrametric, that is the
leaves have the same distance Hn from the root. We call Hn the height of Tn. Consistent with the
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main text, we adopt the following notation for some relevant properties of Tn, for the most part
suppressing the dependence on n for simplicity:

1. Tk is the length of the time during which there are exactly k lineages ancestral to the sample,
for k ∈ {2, 3, · · · , n}.

2. τj for j ∈ {1, · · · , n− 1}, is the total length of branches in Tn that have j descendants. We
suppose there are mj such branches with lengths {τj,k}

mj
k=1. Then τj =

∑mj
k=1 τj,k.

3. Ttotal is the total branch length, the sum of all the branches in Tn, which is equal to∑n
k=2 k Tk =

∑n−1
j=1 τj .

4. For a positive integer b, we define a collection {Γ(b)
i }

mb
i=1 of disjoint connected subtrees of the

coalescent tree as follows: Each of the mb branches with b descendants in the sample (say

the i-th one) subtends b leaves in the coalescent tree and gives rise to a subtree Γ
(b)
i which

contains that branch. We say nested mutation up to count b occurs on Tn if there exist

two mutations on Γ
(b)
i ⊂ Tn for some i ∈ {1, 2, · · · ,mb}. Figure 8 illustrates this for b = 4.

1 1

2

22 1 11 1 1 1

Figure 8: Two subtrees in {Γ(4)
i }. The subtree on the left has one mutation which is labeled 1 and has

count four. The subtree on the right has nested mutations, with the mutation labeled 1 in count two and
another labeled 2 also in count two.

We assume that mutations arise as a Poisson point process on the tree with constant rate θ/2
per unit length. Theorem 2 below holds for any fixed ultrametric tree (it can be binary or have
multiple mergers, or even be a star tree).

Theorem 2 (Nested mutation on fixed trees). Let Tn be a fixed ultrametric tree with n leaves. For
any positive integer b and for any θ ∈ (0,∞), the probability that nested mutation up to count b
occurs is bounded above by

min

θ2

8
TtotalHn ,

θ2

8
b3

b∑
j=1

mj∑
k=1

τ2
j,k

 . (67)

In particular, the probability that nested mutation up to count b occurs tends to 0, as n → ∞, if
θ2
(
max1≤k≤mj τj,k

)
τj → 0 for 1 ≤ j ≤ b.

Remark 3. There is good evidence that the upper bound bound θ2

8 TtotalHn is actually small for
humans. For the gnomAD data we analyze in the main text, the expected number of mutations per
site (θTtotal/2) is between about 0.009 and 2.13. So θTtotal/2 is not big with high probability. The
rest of the upper bound, θHn/4, should be proportional to the average pairwise difference per site
(very nearly equal to this for random Kingman coalescent trees and large n) and this ranges from
about 9× 10−5 to about 0.02 for these same data. See Section 3.2.
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Remark 4. The simpler bound θ2

8 TtotalHn can be weaker than the other bound θ2

8 b
3
∑b

j=1

∑mj
k=1 τ

2
j,k

in (67) for large n. For the Kingman coalescent, E[TtotalHn] = O(log n) is larger than E[
∑b

j=1

∑mj
k=1 τ

2
j,k]

since the latter tends to 0 as n→∞, by (70). For a star tree, however, both bounds are approximately
θ2nH2

n (up to a multiplicative constant).

Proof. The total number Mn of mutations on Tn is a Poisson variable with mean cn := θ
2Ttotal.

Given the tree Tn and Mn = k, the k mutations are uniformly distributed on the tree. Hence the

conditional probability that two given mutations are on the same subtree Γ
(b)
i for some i is equal to

mb∑
i=1

|Γ(b)
i |2

T 2
total

,

where |Γ(b)
i | is the total branch lengths of the subtree Γ

(b)
i . Since there are k(k− 1)/2 ways to choose

two mutations out of k,

P(there are 2 mutations on Γ
(b)
i for some i ∈ {1, 2, · · · ,mb})

≤
∞∑
k=0

e−cn
ckn
k!

k(k − 1)

2

mb∑
i=1

|Γ(b)
i |2

T 2
total

=
c2
n

2

mb∑
i=1

|Γ(b)
i |2

T 2
total

=
θ2

8

mb∑
i=1

|Γ(b)
i |

2. (68)

From here we can apply the simple bound
∑mb

i=1 |Γ
(b)
i |2 ≤ TtotalHn to obtain the first bound

θ2

8 TtotalHn in (67). To get the second bound in (67), note that |Γ(b)
i | ≤ bH

(b)
i for all 1 ≤ i ≤ mb,

where H
(b)
i is the height of the subtree Γ

(b)
i .

Furthermore, H
(b)
i is the sum of at most b branch lengths, one from {τj,k} for j = b, b−1, · · · , 2, 1,

and these branches are pairwise disjoint for different i’s (for 1 ≤ i ≤ mb). Hence

mb∑
i=1

|H(b)
i |

2 ≤ b
b∑

j=1

mj∑
k=1

τ2
j,k,

where we used the general inequality |
∑b

k=1 ak|2 ≤ b
∑b

k=1 a
2
k. The bound in (67) now follows by

putting these into (68).

A mutation on a tree (called a latent mutation in the main text) is said to have count j if the
mutation is the most recent mutation in the lineages of exactly j individuals at the leaves of the
tree; see Figure 8.

Theorem 3 (Poisson approximation for counts on a fixed tree). Let Tn be a fixed coalescent tree
with n leaves for n ≥ 2. Let aj be the number of mutations on Tn with counts j. If the probability
that nested mutation up to count b occurs tends to 0 as n→∞, then for any positive integer b and
any θ ∈ (0,∞), the variables {aj}bj=1 are asymptotically independent and aj ∼ Poisson

(
θ
2 τj
)

for
1 ≤ j ≤ b.
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Proof. If there is no nested mutation up to count b, then aj is also equal to the number of mutations
on the branches in Tn that have j descendants, for 1 ≤ j ≤ b. Since these branches have total length
τj and they are disjoint for different j’s, the result follows from the assumption that mutations
occur as a Poisson point process on the tree Tn with rate θ/2.

A.2.2 Nested mutation on random trees

We now suppose the tree Tn is a random binary tree (for n ≥ 2), in particular the general coalescent
tree of Griffiths and Tavaré (1998). For each n ≥ 2, {Tk}nk=2 is a sequence of positive random
variables representing the times during which there are k lineages in Tn. The branching structure
of Tn is independent of the times {Tk}nk=2. Looking forward in time, whenever there is a branching
event, an existing lineage is chosen uniformly at random to split into two.

Following Griffiths and Tavaré (1998, eqn. (2.2)) we let λ(t) be the the population size at time t
in the past divided by the current population size. As in (45), λ(t) = e−αt with α > 0 corresponds
to an exponentially growing population.

Theorem 4 (Nested mutation on random trees for fixed θ). Let b ∈ N. Suppose for 1 ≤ j ≤ b,

lim
n→∞

En

[mj∑
k=1

τ2
j,k

]
= 0, (69)

where the expectation En averages over all realizations of Tn. Then the probability that nested
mutation up to count b occurs is bounded above by Cb,n θ

2, where {Cb,n}n≥2 are constants that tend
to 0 as n→∞. Furthermore, (69) holds for the generalized coalescent trees of Griffiths and Tavaré
(1998) when supt≥0 λ(t) <∞ (which includes any growing population).

Proof. The first statement follows directly from Theorem 2. By the fact
∑mj

k=1 τ
2
j,k ≤

(
max1≤k≤mj τj,k

)
τj

and the Cauchy-Schwarz inequality, we have

En

[mj∑
k=1

τ2
j,k

]
≤

√
En[τ2

j ] En

[(
max

1≤k≤mj
τj,k

)2]
. (70)

Hence assumption (69) is satisfied if

lim
n→∞

En

[(
max

1≤k≤mj
τj,k

)2]
= 0 (71)

lim sup
n→∞

En

[
τ2
j

]
<∞, (72)

for 1 ≤ j ≤ b. The second statement now follows from Lemma 2, Lemma 3, and Proposition 1
below.

Lemma 2 concerns assumption (71). For reference, we note that it is satisfied, and hence (71) is
satisfied, if Tk are exponential variables with parameter λk where

∑∞
k=2

1
λk
<∞. This is true for

the Kingman coalescent which has λk = k(k − 1)/2.

Lemma 2. Suppose lim supn→∞
∑n

k=2 Tk has finite p-th moment, where p > 0. Then max1≤k≤mj τj,k →
0 in Lp, as n→∞.
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Proof. Consider the random tree Tn and recall that Tk is the length of the time during which there
are exactly k lineages ancestral to the sample in Tn. These k lineages are segments of length Tk of
the branches of the genealogy, and each of them is called a line of state k.

Let A
(k,n)
` be the number of descendants in Tn of the `-th line of state k. Note that A

(k,n)
` ≥ 1

for ` ∈ {1, 2, · · · , k}, and
∑k

`=1A
(k,n)
` = n. Since the branching structure is independent of {Tk}nk=2,

we can assume without loss of generality that {A(k,n)
` : 1 ≤ ` ≤ k, 2 ≤ k ≤ n, n ≥ 2} are all defined

on the same probability space. By exchangeability—in particular see Bertoin (2006, Proposition

2.8)—the random vector 1
n(A

(k,n)
1 , · · · , A(k,n)

k ) converges almost surely to a random vector that has
the symmetric Dirichlet distribution on the simplex {(xi)ki=1 ∈ Rk+ : x1 + · · ·+ xk = n}. Therefore,
with probability one,

lim
n→∞

A
(k,n)
` = +∞ for all k ≥ 1 and ` = 1, 2, · · · , k. (73)

Since
∑∞

k=2 Tk is finite almost surely, the trees {Tn}n≥2 have uniformly bounded height almost
surely. So (73) implies that with probability one,

lim sup
n→∞

sup
1≤k≤mj

τjk = 0 for all j ≥ 1.

Since max1≤k≤mj τj,k <
∑n

k=2 Tk, by the assumption on {Tk} and the Dominated Convergence
Theorem, max1≤k≤mj τj,k → 0 in Lp as n→∞.

Next consider assumption (72). For the Kingman coalescent, τj is close to its mean En[τj ] = 2/j
because for n large enough,

Var(τj) = 4σjj ≤
4(j + 1) log n

n
, (74)

where σjj is defined in Fu (1995, eqns. (1)-(2)). This follows from the fact βn(j) ≈ 2 logn
n as n→∞

for each j ≥ 1 (Fu, 1995, eqn. (5)). Hence

lim sup
n→∞

En[τ2
j ] ≤

(
2

j

)2

.

Lemma 3. Suppose there exists a constant C∗ ∈ (0,∞) such that

sup
n≥2

En[T 2
k ] ≤ C∗

k4
for all k ≥ 2. (75)

Then En [τj ] ≤
√
C∗
j for all j ≥ 1 and lim supn→∞En

[
τ2
j

]
<∞.

Proof. For realized values of Tk, the argument in Fu (1995, page 181) gives

τj =

n∑
k=2

k∑
`=1

εk,`(j)Tk =

n∑
k=2

Tk

k∑
`=1

εk`(j),

where εk`(j) = 1{A(k,n)
` =j} is the indicator variable, where A

(k,n)
` is the number of descendants in Tn

of the `-th line of state k defined in the proof of Lemma 2.
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Using the independence between {Tk}k≥2 and the branching structure, and following the notation
in Fu (1995, eqns. (18)-(19)), the conditional expectation of τj , given {Tk}nk=2, is

En[τj | {Tk}nk=2] =
n∑
k=2

Tk k p(k, j) (76)

and that of τ2
j , given {Tk}nk=2, is

En[τ2
j | {Tk}nk=2] =

n∑
k=2

T 2
k

(
kp(k, j) + k(k − 1)p(k, j; k, j)

)
+ 2

∑
k<k′

TkTk′ kk
′ p(k, j; k′, j), (77)

where the deterministic functions p(k, j), p(k, j; k′, j) do not depend on {Tk}. From Fu (1995),

p(k, j) =

(
n−j−1
k−2

)(
n−1
k−1

) =

(
n−k
j−1

)(
n−1
j

) k − 1

j
, p(k, j; k, j) =

(
n−2j−1
k−3

)(
n−1
k−1

)
and for 2 ≤ k < k′ ≤ n,

p(k, j; k′, j) =
k − 1

k′(k′ − 1)
p(k′, j)

+
∑
t

(
k′−k
t−1

)(
k′−1
t

) (k − 1)(k′ − t)
tk′

(
j−1
t−1

)(
n−2j−1
k′−2−t

)(
n−1
k′−1

) ,

where the sum is taken over 1 ≤ t ≤ min{j, k′ − 2, k′ − k + 1}.
The first and the second moments of τi are obtained averaging over {Tk}nk=2 in (76) and (77).

The bound En [τj ] ≤
√
C∗
j follows from the same calculation in Fu (1995, eqn. (22)). By (77), the

fact En[TkTk′ ] ≤ (En[T 2
k ] En[T 2

k′ ])
1/2 and assumption (75), lim supn→∞En

[
τ2
j

]
<∞ holds also for

our random trees.

Remark 5. As in Theorem 2, we can use an alternate assumption than 69. For any positive integer
b, the probability that nested mutation up to count b occurs is bounded above by θ2

8 En [TtotalHn]
which tends to 0 if θ2 En [TtotalHn] → 0. For Kingman coalescent trees, this would require that
θ → 0.

We now check that the assumption (69) in Theorem 4 holds for the generalized coalescent tree
of Griffiths and Tavaré (1998).

Proposition 1. Suppose C0 := supt≥0 λ(t) < ∞. Then {Tk : 2 ≤ k ≤ n, n ≥ 2} satisfy the
conditions in both Lemma 2 (with p = 2) and Lemma 3. In particular, (69) is satisfied and so the
conclusion of Theorem 4 holds.

Proof. The joint distribution of {Tk}nk=2 is determined by the function λ; see Griffiths and Tavaré
(1994b). We can construct {Tk}nk=2 in terms of λ as follows: let {Dn(t)}t∈R+ be a pure death process

with rate
(
k
2

)
at state k ∈ {1, 2, · · · , n}, starting at Dn(0) = n, and let

D(λ)
n (t) = Dn

(∫ t

0

1

λ(u)
du

)
(78)
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be a time-changed pure death process. Then

Tk =

∫ ∞
0

1{D(λ)
n (t) = k}dt = σn−k+1 − σn−k,

for 2 ≤ k ≤ n, where σ1 < σ2 < · · · < σn−1 are the jump times of D
(λ)
n (by convention σ0 = 0).

By (78), the jump times of the pure death process Dn, denoted by σ̃1 < σ̃2 < · · · < σ̃n−1, are
given by

∫ σj
0

1
λ = σ̃j for 1 ≤ j ≤ n−1. Hence, with the convention σ0 = 0, for 0 ≤ j ≤ n−2 we have

σj+1 − σj
C0

≤
∫ σj+1

σj

1

λ(t)
dt = σ̃j+1 − σ̃j .

These give Tk = σn−k+1 − σn−k ≤ (σ̃n−k+1 − σ̃n−k)C0 for all 2 ≤ k ≤ n.

Since σ̃n−k+1 − σ̃n−k is equal in distribution to the analogue of Tk for the Kingman coalescent,
Tk is stochastically dominated by C0 times an exponential variable with parameter k(k − 1)/2 for
all 2 ≤ k ≤ n. The desired statement now follows since (71) and (72) are satisfied.

A.2.3 Replacing τj by its mean

By using the expected coalescence times denoted τ̄i in the main tex, we implicitly assumed that
different sites have different trees and that these are all drawn from the same distribution. Theorem
5 below asserts that even though the mutant counts at each site are conditional on the realization
of the tree at that site, we can replace τj by its expectation En[τj ] in Theorem 3 when the trees are
random and satisfy suitable assumptions. The key reason is that τj is close to its mean, as made
precise in Lemma 4.

Lemma 4. Suppose (75) holds and that the covariance

Cov(Tk, Tk′) ≤
Cn

k(k − 1)k′(k′ − 1)
(79)

for 2 ≤ k < k′ ≤ n and n ≥ 2, where {Cn} is a sequence that tends to 0 as n→∞. Then for each
j ≥ 1, the variance Var(τj)→ 0 as n→∞. In particular, |τj − E[τj ] | → 0 in L2(P) as n→∞.

Proof. By further taking expectations in (76) and (77) with respect to En, we obtain the variance

Var(τj) =En[τ2
j ]− (En[τj ])

2

=2
∑
k<k′

kk′
(
En[TkTk′ ] p(k, j; k

′, j)

−En[Tk]En[Tk′ ] p(k, j)p(k
′, j)
)

(80)

up to an O
(

logn
n

)
term. This follows from Fu (1995, eqns. (24)-(25)) and assumption (75) in Lemma

3. This also leads to (74).

By assumptions (75) and (79), the double sum in (80) is bounded above by

Cn
∑
k<k′

p(k, j; k′, j)

(k − 1)(k′ − 1)
+ C∗

∑
k<k′

p(k, j; k′, j) − p(k, j)p(k′, j)

(k − 1)(k′ − 1)
. (81)
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By Fu (1995, eqns. (29) and (22)), the first and second terms of (81) are of order o(n) and O
(

logn
n

)
,

respectively, as n→∞ for each j ≥ 1. The completes the proof of limn→∞Var(τj) = 0. The latter
implies, by Chebyshev’s inequality, that τj − E[τj ]→ 0 in L2 as n→∞.

Theorem 5 (Poisson approximation for counts across loci). Let {Tn}n≥2 be a sequence of random
coalescent trees which are the generalized coalescent trees of Griffiths and Tavaré (1998). Suppose
supt≥0 λ(t) <∞ and assumption (79) holds. Let aj be the number of mutations on Tn with counts
j. Then for any positive integer b and any θ ∈ (0,∞), the variables {aj}bj=1 are asymptotically

independent and aj ∼ Poisson
(
θ
2 En[τj ]

)
for 1 ≤ j ≤ b, as n→∞.

Proof. By Theorem 4, the probability that nested mutation up to count b occurs tends to 0 as
n→∞. The result then follows from Lemma 4 and Theorem 3.

It can be checked that exponentially growing popolations clearly satisfy supt≥0 λ(t) <∞ and
also assumption (79). The conclusions of Theorems 4 and 5 then hold for the generalized coalescent
trees of Griffiths and Tavaré (1998) when λ(t) = eαt for t ∈ R+ for some α > 0.

Equipped with Theorem 5, we write τ̄i = En[τi] as in the main text and compute the probability
generating function Gn,k of the count of the variant of interest and its number of latent mutations.
The count of the variant of interest is n =

∑
i iai and its number of latent mutations is k =

∑
i ai.

Hence

Gn,k(x, y) =
∑

(a1,a2,...)

P (a1, a2, . . .)x
nyk

= e−
θ
2

∑
i τ̄i

∑
(a1,a2,...)

x
∑
iaiy

∑
ai
∏
i≥1

(θτ̄i/2)ai

ai!

= e−
θ
2

∑
i τ̄i

∑
(a1,a2,...)

∏
i≥1

xiaiyai(θτ̄i/2)ai

ai!

= e−
θ
2

∑
i τ̄i
∏
i≥1

∑
ai≥0

xiaiyai(θτ̄i/2)ai

ai!

= e−
θ
2

∑
i τ̄i
∏
i≥1

ex
iyθτ̄i/2

= e−
θ
2

∑
i τ̄ie

θ
2
y
∑
i x
iτ̄i

= e−
θ
2

∑
i τ̄i

∞∑
k=0

( θ2)kyk

k!

(∑
i

xiτ̄i

)k
(82)

as declared in the main text.
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Figure 9: Plots like those in Figure 7 for each of the 97 mutation-rate bins. (continues on next page)
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Figure 9: (continued from previous page)
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