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Abstract 

Sugarcane mosaic virus (SCMV) is the main etiological agent of sugarcane mosaic disease, 

which affects sugarcane, maize and other economically important grass species. Despite the 

extensive characterization of quantitative trait loci controlling resistance to SCMV in maize, the 

genetic basis of this trait is largely unexplored in sugarcane. Here, a genome-wide association 

study was performed and machine learning coupled to feature selection was used for the genomic 

prediction of resistance to SCMV in a diverse panel of sugarcane accessions. This ultimately led 

to the identification of nine single nucleotide polymorphisms (SNPs) explaining up to 29.9% of 

the phenotypic variance and a 73-SNP set that predicted resistance with high accuracy, precision, 

recall, and F1 scores. Both marker sets were validated in additional sugarcane genotypes, in 

which the SNPs explained up to 23.6% of the phenotypic variation and predicted resistance with 

a maximum accuracy of 69.1%. Synteny analyses showed that the gene responsible for the major 

SCMV resistance in maize is probably absent in sugarcane, explaining why such a major 

resistance source is thus far unknown in this crop. Lastly, using sugarcane RNA sequencing data, 

markers associated with the resistance to SCMV in sugarcane were annotated and a gene 

coexpression network was constructed to identify the predicted biological processes involved in 

SCMV resistance. This allowed the identification of candidate resistance genes and confirmed 

the involvement of stress responses, photosynthesis and regulation of transcription and 

translation in the resistance to this virus. These results provide a viable marker-assisted breeding 

approach for sugarcane and identify target genes for future molecular studies on resistance to 

SCMV. 

Keywords: Saccharum, SCMV, GWAS, Machine Learning, Feature Selection, QTL, RNA-Seq, 

Coexpression Networks 
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1. Introduction 

Sugarcane (Saccharum spp.) is highly economically important in tropical regions worldwide, as 

this plant is not only the world’s most important sugar-producing crop but also an important 

source of renewable energy obtained from its juice and bagasse (Carvalho-Netto et al., 2014; 

ISO, 2022). Brazil has been the leader of the global cultivation of sugarcane for many years and 

is currently responsible for approximately 40% of global production (FAO, 2022). However, 

sugarcane yield is threatened by several diseases, with sugarcane mosaic being of the most 

important at the global scale (Wu et al., 2012). In addition to the characteristic mosaic pattern 

displayed on the leaves, other symptoms of this disease include dwarfing, striping and streaking 

of culms, and shortening of internodes in highly susceptible genotypes (Gonçalves et al., 2007). 

In Brazil, this disease emerged in the beginning of the 20th century; it led to massive yield losses 

and drove the sugarcane industry to the brink of collapse in 1920-30. Damage caused by 

sugarcane mosaic disease has since been controlled with the employment of resistant cultivars 

and the adoption of several practices, such as the planting of healthy setts and roguing of 

nurseries and commercial fields. However, this disease is still a threat to sugarcane production, 

and resistance to it is a primary concern in breeding programs (Gonçalves et al., 2012). 

Three viruses of the Potyviridae family are currently recognized as etiological agents of 

this disease in sugarcane: sugarcane mosaic virus (SCMV), sorghum mosaic virus, and sugarcane 

streak mosaic virus (Hall et al., 1998). SCMV, belonging to the Potyvirus genus, is a widespread 

species and the only one of these viruses found to naturally infect sugarcane in Brazil (Gonçalves 

et al., 2004, 2007, 2011). SCMV has been reported to cause sugarcane yield losses of up to 40-

50% (Costa and Muller, 1982; Smith et al., 1992) while also reducing juice quality (Singh et al., 

2003), sett germination and plant photosynthetic activity (Viswanathan and Balamuralikrishnan, 
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2005; Gonçalves et al., 2007). High yield losses arising from infection by this virus have led to 

the discontinuation of several sugarcane cultivars (Singh et al., 1997). 

SCMV also infects many other closely related Poaceae species, including maize (Zea 

mays); this virus is responsible for extensive losses in maize yields, especially in Europe and 

China (Wu et al., 2012). As a result of being transmitted by various aphid species in a 

nonpersistent manner (Hassan et al., 2003), SCMV is very hard to control in the field, making 

host resistance an important resource to avoid damage caused by this virus. Thus, numerous 

quantitative trait locus (QTL) mapping studies have been performed to investigate the resistance 

of maize to SCMV; these studies resulted in the identification of two major and three minor 

QTLs controlling this trait in this species (Melchinger et al., 1998; Xia et al., 1999; Xu et al., 

1999; Dußle et al., 2000, 2003; Zhang et al., 2003; Wu et al., 2007; Liu et al., 2009; Soldanova 

et al., 2012). Together, the major loci, named Scmv1 and Scmv2, usually explain up to ~60-70% 

of the phenotypic variance observed for resistance (Xia et al., 1999; Dußle et al., 2000; 

Soldanova et al., 2012). Recently, researchers have finely mapped the location of these QTLs 

and identified the causal genes responsible for resistance in maize (Ding et al., 2012; Tao et al., 

2013; Li et al., 2016; Liu et al., 2017). 

However, with respect to sugarcane, data on resistance to this virus are scarce. A few 

phenotypic studies have been performed in Brazil: specifically, researchers have evaluated the 

genotypic correlation of this disease incidence in sugarcane families (Xavier et al., 2013) and 

screened diverse genotypes for resistance (da Silva et al., 2015a, b). In addition, three marker–

trait association studies have been carried out targeting SCMV resistance in this crop (Barnes et 

al., 1997; Pinto et al., 2013; Burbano et al., 2022); however, most included very few genotypes 

(≤50), and all employed dominantly scored markers. This apparent disparity between the 
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information on SCMV resistance available for sugarcane and maize can be partially explained by 

the larger economic importance of the latter species in several countries; however, another 

important factor, i.e., sugarcane’s genomic complexity, has an effect. Modern cultivars are 

derived from a few crosses between two highly autopolyploid species, Saccharum spontaneum 

(2n = 5x = 40 to 16x = 128; x = 8) (Panje and Babu, 1960) and Saccharum officinarum (2n = 8x 

= 80; x = 10) (D'Hont et al., 1998). These hybrids have large (D'Hont et al., 1998), highly 

polyploid (D'Hont and Glaszmann, 2001), aneuploid (Sforça et al., 2019) and duplicated (Aono 

et al., 2021) genomes that hinder sugarcane breeding research. Additionally, studies suggest that 

the majority of sugarcane traits are controlled by many small-effect loci (Gouy et al., 2015; 

Fickett et al., 2019; Pimenta et al., 2021). However, given the existence of Scmv1 and Scmv2 in 

maize, it is odd that no major loci controlling SCMV resistance in sugarcane have been 

identified. 

In view of this crop’s complex genome and the high impact of SCMV on its yield, the 

exploration of novel methodologies is required for the investigation of sugarcane’s resistance to 

this virus. This study aimed to identify markers associated with SCMV resistance and provide 

insights into its molecular basis through the use of state-of-the-art genomic and transcriptomic 

approaches. To achieve this, a panel of Saccharum accessions was assessed by phenotyping for 

SCMV resistance in the field and was genotyped via genotyping by sequencing (GBS), enabling 

the discovery of single nucleotide polymorphisms (SNPs) with information on allele proportion 

(AP) and position in a monoploid set of chromosomes of S. spontaneum. These data were used to 

perform a genome-wide association study (GWAS) to identify markers associated with SCMV 

resistance and to predict genotype attribution to resistant or susceptible groups by the use of 

machine learning (ML) coupled with feature selection (FS). Associated markers were genotyped 
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on additional accessions previously assessed for SCMV resistance for validation and 

subsequently annotated by the use of a newly assembled sugarcane transcriptome. This allowed 

the incorporation of SCMV-associated genes into a coexpression network and thus a broader 

investigation of the molecular basis underlying sugarcane resistance to this virus. 

 

2. Results 

 

2.1. Panel phenotyping and genotyping 

Ninety-seven sugarcane accessions were evaluated for the presence and severity of SCMV 

symptoms in two consecutive years. A skew in the distribution of the data toward the absence of 

symptoms was observed; despite normalization procedures, these data did not follow a normal 

distribution as indicated by a Shapiro–Wilk test (p = 2.2e-16). Based on the occurrence of 

SCMV symptoms, the panel could be divided into two groups: 62 resistant genotypes, which did 

not present symptoms in any block or year, and 35 susceptible genotypes, which presented 

symptoms on at least one occasion. 

Following the construction and sequencing of a GBS library, 3,747,524, 3,152,409, and 

569,360 biallelic SNPs were identified using FreeBayes, SAMtools and the TASSEL-4-POLY 

pipeline, respectively. After filtering procedures were performed and examining the intersection 

between tools, 37,001 of these markers were found to be called by TASSEL4-POLY and at least 

one of the other tools; thus, these markers constituted the final set of reliable SNPs. 
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2.2. Association analyses 

 

2.2.1. Mixed modeling 

Data from 92 accessions of the panel were subjected to mixed modeling genome-wide 

association analyses on GWASpoly, and six different marker-effect models were used. Q-Q plots 

generated by these analyses can be found in Figure S2. In general, most models showed an 

appropriate profile of inflation of p values; exceptions disregarded for further analyses included 

the general model, which presented insufficient control of inflation, and the simplex dominant 

alternative model, which presented deflation. A stringent significance threshold (p < 0.05 

corrected by the Bonferroni method) was used to establish 20 significant marker–trait 

associations, some of which were highly significant (Figure 1); the r2 values of associations 

ranged from 0.017 to 0.299 (Table S3). Several markers were associated with SCMV resistance 

according to more than one model, and nine nonredundant markers were representative of all 

associations. 

 

2.2.2. ML coupled with FS 

Eight ML algorithms for predicting the attribution of sugarcane genotypes to SCMV-resistant or 

SCMV-susceptible groups based on genotypic data were tested. When assessing their potential 

for this task when the full marker dataset was used, the predictive accuracies ranged from 52.8 

(DT) to 66.9% (RF), with a mean of 60.3% (Table 1 and Figure S3). The remaining metrics 

evaluated showed much inferior results, with means of 21%, 26.8% and 20.7% found for 

precision, recall and F1 score, respectively. GP performed particularly poorly, with the mean of 

measurements equal to zero for these three metrics (Table 1 and Figures S4-S6). 
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Therefore, three FS methods were used to reduce the marker dataset and improve model 

performance, and the SNPs identified by at least two of these methods were selected. This 

enabled the identification of a 73-SNP dataset, which led to considerable increases in all the 

metrics of all the models. With the reduced dataset, a mean accuracy of 90.2%, with a maximum 

of 99.7% using MLP, was obtained (Table 1 and Figure S3). Even more pronounced increases 

were observed for the other metrics: the mean precision was 79.6%, with a maximum of 100% 

with MLP (Table 1 and Figure S4); the mean recall was 91.4%, with a maximum of 100% with 

KNN and SVM (Table 1 and Figure S5); and the mean F1 score was 83.6%, with a maximum of 

99.6 with MLP (Table 1 and Figure S6). ROC curves and their AUCs supported the promising 

results of FS in the predictive task. When all the markers were used, all the models presented 

ROC curves rather close to the level associated with chance alone, with AUCs ranging between 

0.46 and 0.57 (Figure 2A). However, when markers selected by FS were used, most ROC curves 

indicated much better model performance, with AUCs of up to 0.99 (Figure 2B). Only DT and 

GP did not show appreciable increases in the AUC; thus, these models were excluded as 

appropriate methods for genomic prediction in this case. 

 

2.3. Marker validation 

Two groups of sugarcane genotypes previously assessed for SCMV resistance were genotyped 

via the MonsterPlex technology to validate markers identified in the association panel. The 

sequencing of the MonsterPlex library generated a total of 38,581,797 single-end reads, 99.8% of 

which presented a mean Q-value greater than 30; these values remained consistently high for the 

first 100 bases of the reads (Figure S7A). These data encompassed 81 of the 92 samples sent for 

analysis; DNA from genotypes 4, 5, 18, 68, 69, 70, 71, 73, 76, 77, and 79 (see Table S2) did not 

amplify well, and consequently, these samples were absent in the sequencing results. 
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Interestingly, ten out of these samples were represented by S. officinarum F1 accessions, with 

only genotype 18 representing a hybrid variety. After trimming was performed, 38,574,693 reads 

were retained, 99.9% of which had a mean Q-value greater than 30 (Figure S7B). Using 

SAMtools and FreeBayes, 53 out of the 82 target SNPs (64.6%) could be called. 

Seven of these SNPs were identified by GWAS as being significantly associated with 

SCMV resistance. When associations involving these markers were tested by linear models, the 

r2 values were overall lower than those of the original panel and were frequently close to zero, 

especially in the small wild accession panel. However, these values remained positive and 

reached as high as 0.236 (Table S4). The remaining 46 SNPs identified belonged to the reduced 

73-SNP dataset identified by FS. These markers were applied to the eight ML models tested, 

which resulted in a mean accuracy of 61.6%, with a maximum of 69.1% by the RF model. This 

model was also among the top-ranking ones in terms of precision (68.6%), recall (94.1%) and F1 

score (79.3%) for the identification of resistant genotypes (Table 2). 

 

2.4. Synteny analyses 

To assess the presence of the two major SCMV resistance QTLs from maize, Scmv1 and Scmv2, 

in sugarcane, the CDSs of the causal genes at these loci were aligned against the S. spontaneum 

genomic sequence employed for SNP calling. Despite the close phylogenetic relation of the two 

species, no hits were found for Scmv1, indicating that this gene is likely absent from the S. 

spontaneum genome. Complementary searches in the genomes of an additional six sugarcane 

accessions also revealed no matches for this gene. The sequence of Scmv2, on the other hand, 

resulted in a 373-bp alignment with 88.7% identity and an E-value of 4.92e-127, corresponding 

to the Sspon.02G0027920-1A gene, which, like the causal gene at Scmv2, encodes an auxin-
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binding protein. This gene is located on chromosome 2A and is 1.7 kb away from the marker 

Chr2A_103190628, which was identified as being associated with SCMV resistance by FS 

(Figure 3). 

 

2.5. Coexpression network construction and marker annotation 

To assemble a de novo sugarcane transcriptome for marker annotation and expression analysis, 

more than two billion (2,477,287,294) sugarcane RNA sequencing (RNA-Seq) reads were 

retrieved from the SRA, 76% of which (1.9 billion) were retained after trimming. The 

transcriptomic reference assembled by Trinity comprised 611,480 transcripts with an N50 of 

1,233 bp, represented by 212,076 longest isoforms (henceforth referred to as “genes”) with an 

N50 of 2,561 bp. The complete assembly contained 83.8% of conserved orthologs from green 

plants, as reported by BUSCO (Table S5). After quantification with Salmon, 131,615 genes were 

discarded for exhibiting very low expression. The remaining genes were used to construct a 

GWGCN. Using the UPGMA method, 64 functional modules were defined in this network, with 

sizes ranging from 58 to 32,980 genes and a mean size of 1,257. 

To annotate the markers identified as associated with SCMV resistance through GWAS 

and FS, the transcriptome assembly was aligned against the S. spontaneum genome used for SNP 

calling, and the closest genes aligned upstream and downstream of each marker were retrieved. 

This enabled the association of 69 markers with 220 isoforms representing 84 genes. Thirty-five 

of these genes were located in 26 modules in the coexpression network; a summary of the 

alignment results is provided in Table S6. Among the annotated genes, a disease resistance 

protein associated with the Chr1A_90316612 marker was particularly interesting. To obtain 

better visualization of the biological processes associated with all the annotated genes, their GO-
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associated terms were retrieved and used for constructing a network using the REVIGO tool 

(Figure 4). The most prominent terms identified were linked to the regulation of transcription 

and translation, stress responses, and organismal development. The “modulation by virus of host 

process” term, which is associated with a peroxisomal oxidase and the marker Chr6A_86163774, 

was also displayed. 

Additionally, the sequence of Scmv2 from maize was aligned against the transcriptome, 

which resulted in several hits, the vast majority of which with TRINITY_DN5998_c0_g1. This 

gene was annotated as an auxin-binding protein and located within functional module 5 in the 

coexpression network—in which four genes close to SCMV resistance SNPs were also located. 

Among the hits with TRINITY_DN5998_c0_g1, the one with the highest E-value (1.07e-176) 

occurred in isoform 9, representing a 524-bp alignment with 88.1% identity. This and all 

isoforms of the gene also presented high-scoring alignments with the region containing 

Sspon.02G0027920-1A. 

As a last strategy to investigate the biological processes involved in SCMV resistance, 

the GO terms of the 14,732 genes present in the 26 modules containing the genes associated with 

resistance were determined. Because these genes were initially associated with a very large 

number of GO terms (3,859 terms in the biological process category), a GO enrichment analysis 

using Fisher’s test with Bonferroni correction was performed before further procedures. The 117 

terms resulting from this analysis were used to construct a TreeMap on REVIGO (Figure S8). 

The main terms found were distinct from those identified based only on the associated genes and 

included “response to salt stress”, “DNA integration”, “regulation of multicellular organismal 

process”, “photosynthesis”, and “seed germination”. 
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3. Discussion 

Despite recent advances in sequencing technologies, genomic studies in sugarcane remain 

considerably hindered by the complexity of sugarcane’s genome (Thirugnanasambandam et al., 

2018). Studies focusing on resistance to viruses are particularly limited due to sugarcane plants’ 

large size and vegetative propagation, which limit the size of controlled experiments and the 

number of genotypes that can be evaluated (da Silva et al., 2015; Pimenta et al., 2021). 

Moreover, the genotypes to be used in such assays can be made virus free only by tissue culture 

(Chatenet et al., 2001; Dewanti et al., 2016), a hard and time-consuming process. However, 

given the extensively reported economic impacts of SCMV infection on this crop’s yield (Costa 

and Muller, 1982; Bailey and Fox, 1987; Smith et al., 1992; Cronje et al., 1994; Singh et al., 

2003), it is remarkable that this work represents the first genome-wide study targeting resistance 

to this pathogen in sugarcane. 

Although our GWAS analysis did not reveal major loci controlling resistance to SCMV 

in sugarcane, it led to the identification of nine SNPs significantly associated with this trait, 

explaining a small (1.7%) to moderate (29.9%) percentage of the phenotypic variation. 

Compared to Scmv1, the major SCMV resistance QTL identified in maize, which explains 54-

56% of the variation alone (Xia et al., 1999; Soldanova et al., 2012), these findings might seem 

modest. However, they fit in the upper range of those of other mapping studies in sugarcane; 

with the exceptions of resistance to brown and orange rust (Daugrois et al., 1996; Yang et al., 

2018), markers explaining 10% or less of the phenotypic variation in traits of agronomic 

importance are common in this crop (Gouy et al., 2015; Fickett et al., 2019). Specifically, for 

resistance to SCMV, previous studies identified markers explaining 5-14% of the variance 

observed individually (Pinto et al., 2013; Burbano et al., 2022) or up to ~40% together (Barnes 
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et al., 1997). The apparent quantitative nature of resistance to SCMV in sugarcane attests to the 

limitations of traditional marker-assisted breeding in this crop and demonstrates the need for the 

deployment of high-throughput genotyping and specific methodologies for association analyses 

in sugarcane. 

One finding from our study that contributes to the understanding of this panorama is the 

absence of a gene that is highly homologous to ZmTrxh, the causal gene at Scmv1, in the S. 

spontaneum genome. The expression of ZmTrxh, which encodes an atypical thioredoxin that acts 

as a molecular chaperone, is necessary to disrupt infection by SCMV (Liu et al., 2017). This 

phenomenon could involve SCMV’s RNA silencing suppressor helper-component proteinase 

(HC-Pro), which has been shown to interact with a maize ferredoxin (Cheng et al., 2008). These 

proteins are part of the ferredoxin–thioredoxin system, which is directly involved in 

photosynthesis (Buchanan, 1991) and might interfere with the suppression of silencing by 

SCMV HC-Pro and thus with resistance to this virus. Similar to other Poaceae (Liu et al., 2017), 

close orthologs of ZmTrxh are not present in S. spontaneum, resulting in the lack of this specific 

resistance mechanism in this crop. Since ZmTrxh is absent even in a few maize lines, its presence 

in other sugarcane genotypes cannot be completely ruled out. However, BLASTn alignments of 

its sequence were also performed against those of all other sugarcane genomes available to date, 

none of which returned significant alignments with the ZmTrxh sequence. Because sugarcane has 

a very narrow genetic basis (Panje and Babu, 1960), this gene is likely to be absent in other 

genotypes of commercial relevance. 

In addition to performing a GWAS, ML algorithms coupled with FS were employed to 

predict genotype resistance or susceptibility to SCMV. Similar to previous works in which this 

genomic prediction methodology was applied to sugarcane to evaluate resistance to brown rust 
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(Aono et al., 2020) and sugarcane yellow leaf virus (Pimenta et al., 2021), very promising results 

for several metrics were achieved. These results are considerably superior to those obtained by 

Barnes et al. (1997), who predicted sugarcane resistance to SCMV with an accuracy of 76% 

based on random amplified polymorphic DNA markers. Importantly, our results arose from a 

highly restricted SNP set obtained by FS, composed of only 73 markers, none of which had been 

identified by GWAS. A similar joint learning methodology that is based on FS and ML and 

combines classification and regression strategies has recently been shown to be highly suitable 

for the genomic prediction of several agronomic traits of sugarcane and polyploid forage grass 

species (Aono et al., 2022). 

Unlike Scmv1, the causal gene at the second major SCMV resistance QTL from maize 

(Scmv2) has an ortholog in the S. spontaneum genome. Interestingly, one marker identified 

through FS (Chr2A_103190628) was found to be close (1.7 kb) to this region. Linkage 

disequilibrium is high in sugarcane, persisting for up to 2-3.5 Mb (Yang et al., 2019b; Pimenta et 

al., 2021). Thus, it is possible that this marker is linked to Sspon.02G0027920-1A, the S. 

spontaneum gene syntenic to the auxin-binding protein gene at Scmv2 (Ding et al., 2012). This is 

an indication of the potential suitability of FS methodologies for the identification of QTLs, 

which is supported by other studies in which researchers analyzed traits controlled by many loci 

(Zhou et al., 2019). 

To apply the findings of our study to sugarcane breeding, validation of the markers 

associated with SCMV resistance was performed. For sugarcane, validation of individual SNPs 

was successfully achieved only for resistance to orange rust (Yang et al., 2018; McCord et al., 

2019). In the context of genomic prediction, SNP validation in sugarcane test populations was 

recently implemented by Hayes et al. (2021), who employed single-dose markers obtained 
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through a SNP chip and achieved mean predictive accuracies of 29-47% for various agronomic 

traits. Due to the high cost of chip genotyping (De Donato et al., 2013; Bajgain et al., 2016) and 

the importance of including allele dose information in polyploid genetic studies (de Bem 

Oliveira et al., 2019; Aono et al., 2020), the MonsterPlex technology was chosen for the 

validation of our GBS-based markers. However, a few issues arose with this method, with failure 

in the amplification of a considerable percentage of sugarcane genotypes (~22%) and loci 

(~35%). 

To some extent, this is expected from the technique, which does not guarantee the 

successful amplification and sequencing of all targets. The nonamplification of some genotypes 

might have been a consequence of the genomic reference used for SNP calling—the genome of 

S. spontaneum, a species different from that of almost all the genotypes for which amplification 

failed (S. officinarum). Because the majority of modern sugarcane cultivars that should be 

targeted by marker-assisted breeding are hybrids of these two species (Panje and Babu, 1960), 

failures in the amplification of whole genotypes are expected to be minimized. However, this 

highlights the importance of providing high-quality sequence data for genetically complex 

species such as sugarcane, which would certainly contribute positively to the research and 

breeding of this crop. Nevertheless, this low-cost targeted sequencing technology has the 

potential to be a viable approach for sugarcane marker-assisted breeding, especially if coupled to 

the ML-based genomic prediction approach used in this study, which effectively reduces the 

number of markers to be genotyped, contributing to the cost effectiveness of the process. The 

good results regarding predictive accuracy (69.1%), precision (68.6%), recall (94.1%) and F1 

value (79.3%) obtained with the RF model are a strong indicator that this approach can be 

adopted for other traits of economic importance in sugarcane. 
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Another objective of the present work was to contribute to the elucidation of the 

molecular processes involved in sugarcane resistance to SCMV. To do so, RNA-Seq data was 

employed to annotate the markers identified as being associated with resistance and to construct 

coexpression networks to further investigate biological processes linked to them. Although 

RNA-Seq data from sugarcane plants infected with SCMV are available (Akbar et al., 2020), 

they include data from only two biological replicates, which equates to a very low sample 

number for network modeling—the WGCNA developers recommend a minimum of 15 samples 

to avoid noise and biologically meaningless inferences (Langfelder and Horvath, 2017). The 

summarization of GO terms from genes close to markers directly associated with SCMV 

resistance revealed a few general processes previously associated with responses to this virus; 

these included stress responses and the regulation of transcription and translation (Akbar et al., 

2020; da Silva et al., 2020). 

A more detailed examination of marker annotations revealed several genes previously 

linked to resistance to plant viruses; in many cases, these associations were established by RNA-

Seq or proteomics. This is the case for allantoinases (Vuorinen et al., 2010), GLO oxidases 

(Varela et al., 2017), alpha-galactosidases (Naqvi et al., 2019), WD repeat-containing protein 

homolog genes (Şahin-Çevik et al., 2019), and pentatricopeptide repeat-containing proteins, 

which have also been associated with resistance to SCMV in maize through GWASs 

(Abdelkhalek et al., 2018; Gustafson et al., 2018). Similarly, Shen et al. (2021) identified a 

ribonuclease H protein gene at a QTL responsible for potyvirus resistance in soybean and 

showed that the expression of this gene was upregulated in resistant cultivars and influenced 

viral accumulation. 
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However, there is much more compelling evidence of associations with virus resistance 

in plants for other candidates identified in our study. For instance, resistance gene analogs with 

nucleotide-binding site leucine-rich repeat (NBS-LRR) motifs, such as RGA5, are often involved 

in disease resistance by their ability to recognize pathogenic effector proteins and induce 

effector-triggered immunity (Sekhwal et al., 2015). RGA5 specifically has been shown to bind 

effectors of a fungal pathogen in rice (Cesari et al., 2013), but NBS-LRR proteins also 

participate in the recognition and resistance to potyviruses (Ma et al., 2018; Xun et al., 2019). 

The existence of preliminary evidence of associations between polymorphisms in NBS-LRR 

protein genes and SCMV resistance in sugarcane (Brune and Rutherford, 2005) strengthens the 

hypothesis that RGA5 could in fact act as a resistance protein against infection by this virus. 

Several genes that may represent susceptibility factors to SCMV were also annotated. For 

instance, a chloroplast carbonic anhydrase has been identified as a salicylic acid-binding protein 

that plays a role in the hypersensitive response of tobacco (Slaymaker et al., 2002). Furthermore, 

an Arabidopsis homolog of this protein was subsequently shown to interact with potyviral HC-

Pro, weakening host defense responses and facilitating viral infection (Poque et al., 2018). A 

lower abundance of carbonic anhydrase was also associated with successful infection by 

Tobamovirus (Konakalla et al., 2021). In Arabidopsis, SCE1, a SUMO-conjugating enzyme, has 

been shown to interact with potyviral RNA-dependent RNA polymerase, and SCE1 knockdown 

resulted in increased resistance to turnip mosaic virus (Xiong and Wang, 2013). This protein also 

interacts with the replication initiator protein of begomoviruses and interferes with their 

replication (Castillo et al., 2004, 2007). 

Additionally, three proteins that have chaperone activity and also participate in resistance 

to viruses were annotated. DNAJ and DNA-like proteins such as C76 and DNAJ 10 have been 
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shown to interact with the coat protein of potyviruses, benefitting viral infection and replication 

(Hofius et al., 2007; Zong et al., 2020). Similarly, a heavy metal-associated isoprenylated plant 

protein was shown to interact with the Pomovirus movement protein, affecting virus long-

distance movement (Cowan et al., 2018). Interestingly, transcripts of two chaperones and a 

heavy metal-associated isoprenylated protein differentially accumulated in response to SCMV in 

sugarcane (da Silva et al., 2020). Another protein annotated in the present study that has been 

shown to interact with the potyviral movement protein P3N-PIPO is a beta-glucosidase, possibly 

facilitating viral spread through the plant (Song et al., 2016); beta-glucosidase genes have also 

been found in QTLs for resistance to SCMV and other potyviruses (Gustafson et al., 2018; 

Rubio et al., 2019). Thus, it would be of great value to perform yeast two-hybrid assays 

including these host proteins and SCMV coat and movement proteins, the results of which could 

elucidate the involvement of these proteins in the replication and movement of SCMV. 

Finally, the increase in the number of enriched GO terms associated with resistance 

through our GWGCN analysis sheds light on the complex network of biological processes 

involved in resistance to SCMV. The investigation of modules in coexpression networks can 

reveal sets of genes that are modulated together to execute specific functions; this is based on the 

“guilt-by-association” principle, which proposes that components (in our case, genes) with 

correlated biological functions tend to interact in networks such as GWGCNs (Oliver, 2000; 

Wolfe et al., 2005). According to the results of our analysis, biological processes enriched in 

SCMV resistance-associated modules included stress responses, regulation of transcription and 

translation, and a process that has long been known to be affected by SCMV infection (Irvine, 

1971) but has not been featured by the analysis of genes directly associated with resistance—

photosynthesis. Recent transcriptomic and proteomic studies have shown that infection by 
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SCMV indeed affects the regulation of genes and proteins involved in these processes (Wu et al., 

2013; Chen et al., 2017; Akbar et al., 2020; da Silva et al., 2020). Notably, the results of our 

coexpression network analyses indicate that the expression of genes identified in the present 

study as being associated with SCMV resistance are also associated with those controlling such 

processes; thus, those genes possibly play roles in their regulation during viral infection. 

Our study indicates that resistance to SCMV in sugarcane has a more quantitative nature 

than in maize, which is in accordance with what has been observed for most traits in this crop. It 

also provides evidence that the ML-based strategy employed represents a viable approach for 

marker-assisted breeding in sugarcane; this strategy should therefore be assessed for its efficacy 

for other quantitative traits of economic importance. The annotation of identified markers via a 

transcriptomic assembly and analysis of gene coexpression networks showed that associated 

genes participate in key mechanisms of resistance to SCMV. These findings also revealed strong 

candidates for future investigation of resistance to this virus, which could help elucidate the 

molecular mechanisms involved in it. 

 

4. Experimental procedures 

 

4.1. Plant material 

The plant material employed in the present study has been described elsewhere (Pimenta et al., 

2021). The experimental population consisted of a panel of 97 sugarcane genotypes comprising 

wild accessions of S. officinarum, S. spontaneum and Saccharum robustum; traditional sugarcane 

and energy cane clones; and commercial cultivars from Brazilian breeding programs. The 

accession names and pedigree information are available in Table S1. A field experiment 
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following a randomized complete block design with three blocks was established in May 2017 at 

the Advanced Center for Technological Research in Sugarcane Agribusiness located in Ribeirão 

Preto, São Paulo, Brazil (4°52’34” W, 21°12’50” S). Plants were grown in 1-meter-long three-

row plots with row-to-row and interplot spacings of 1.5 and 2 meters, respectively. Each row 

contained two plants, totaling six plants of each genotype per plot. Infection by SCMV isolate 

RIB-2 (Burbano et al., 2022) was allowed to occur under natural conditions in conjunction with 

high inoculum pressure and a high incidence of aphid vectors. 

 

4.2. Phenotyping 

Plants were phenotyped in two cropping seasons: plant cane in February 2018 (9 months after 

planting) and ratoon cane in July 2019 (9 months after the first harvest). The severity of SCMV 

symptoms was assessed by 2-3 independent evaluators, who classified the top visible dewlap 

leaves in each plot by the use of a diagrammatic scale consisting of four levels of increasing 

intensity of mosaic symptoms (Figure S1). 

The data normality was assessed by the Shapiro–Wilk test, and normalization was carried 

out using the bestNormalize package (Peterson, 2017) in R software (R Core Team, 2011). The 

best linear unbiased predictors (BLUPs) were estimated with the breedR R package (Munoz and 

Rodriguez, 2014) using a mixed model, as follows: 

𝑌𝑖𝑗𝑚 =   𝜇 + 𝐵𝑗 + 𝑌𝑚 + 𝐵𝑌𝑗𝑚 + 𝐺𝑖(𝑗𝑚) + +𝑒𝑖𝑗𝑚  

where Yijm is the phenotype of the ith genotype considering the jth block and the mth year of 

phenotyping. The trait mean is represented by μ; fixed effects were modeled to estimate the 

contributions of the jth block (Bj), the mth year (Ym) and the interaction between block and year 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.18.504288doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.18.504288
http://creativecommons.org/licenses/by-nc-nd/4.0/


(BYjm). Random effects included the genotype (G) and the residual error (e), representing 

nongenetic effects. 

 

4.3. Genotyping 

The library preparation and sequencing methods used were thoroughly described by Pimenta et 

al. (2021). Briefly, genomic DNA was extracted from the leaves and used for the construction of 

a GBS library following the protocol by Poland et al. (2012). For operational reasons, 94 out of 

the 97 genotypes of the panel were included in the library; genotypes 87, 88 and 95 were 

excluded (see Table S1). Two 150-bp single-end sequencing libraries were prepared, and their 

contents were sequenced on a NextSeq 500 instrument (Illumina, San Diego, USA). After 

checking the sequencing quality, three tools were used for SNP calling: SAMtools version 1.6 

(Li et al., 2009), FreeBayes version 1.1.0-3 (Garrison and Marth, 2012) and the TASSEL4-

POLY pipeline (Pereira et al., 2018). A monoploid chromosome set obtained from the S. 

spontaneum genome (Zhang et al., 2018) that included the A haplotype and unassembled 

scaffolds was used as a genomic reference. After variant calling, VCFtools version 0.1.13 

(Danecek et al., 2011) was used to retain biallelic SNPs with a minor allele frequency of 0.1, a 

maximum of 25% missing data and a minimum sequencing depth of 50 reads. SNPs identified by 

TASSEL and at least one other tool were then selected, and the ratio between alleles (allele 

proportions, APs) was obtained for each marker. 
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4.4. Association analyses 

 

4.4.1. Mixed modeling 

Association analyses were performed using mixed linear modeling in the GWASpoly R package 

(Rosyara et al., 2016). For these analyses, APs were transformed into genotypic classes with a 

fixed ploidy of 12 in the vcfR R package (Knaus and Grünwald, 2017), as proposed by Yang et 

al. (2019a). A realized relationship model (MMT) matrix (VanRaden, 2008), built in GWASpoly, 

was included as a random effect, and three principal components from a principal component 

analysis performed with genotypic data were included as fixed effects. Six marker-effect models 

were used for association analyses, namely, general, additive, simplex dominant reference, 

simplex dominant alternative, diploidized general and diploidized additive models. Q-Q plots of 

-log10(p) values of the markers were generated for all the models, and Manhattan plots were 

constructed for models with appropriate inflation profiles. The Bonferroni correction method 

with α = 0.05 was used to establish the significance threshold for associations. The phenotypic 

variance explained by each marker (r2) significantly associated with SCMV resistance was 

estimated using a linear model in R. 

 

4.4.2. ML coupled with FS 

Following a genomic prediction approach previously employed for sugarcane (Aono et al., 2020; 

Pimenta et al., 2021), ML algorithms coupled with FS were used to predict the attribution of 

genotypes to two groups: those that presented mosaic symptoms at any block or year 

(susceptible) and those that did not present symptoms in any case (resistant). Eight ML 

algorithms implemented in the scikit-learn Python 3 module (Pedregosa et al., 2011) were tested: 
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adaptive boosting (AB) (Freund and Schapire, 1997), decision tree (DT) (Quinlan, 1986), 

Gaussian naive Bayes (GNB) (Friedman et al., 1997), Gaussian process (GP) (Rasmussen, 

2003), K-nearest neighbor (KNN) (Cover and Hart, 1967), multilayer perceptron (MLP) neural 

network (Popescu et al., 2009), random forest (RF) (Breiman, 2001) and support vector machine 

(SVM) (Cristianini and Shawe-Taylor, 2000). Three FS techniques were employed to obtain 

feature importance and create subsets of marker data: gradient tree boosting (FS1) (Chen and 

Guestrin, 2016), L1-based FS through a linear support vector classification system (FS2) 

(Cristianini and Shawe-Taylor, 2000) and univariate FS using analysis of variance (FS3) (Geurts 

et al., 2006), which were also implemented in scikit-learn. The markers selected by at least two 

of these FS methods were identified and used with the referred ML algorithms to classify 

genotypes as resistant or susceptible. To implement a cross-validation strategy, a stratified K-

fold (k=5) repeated 100 times for different data configurations was used. The following metrics 

were evaluated: accuracy (proportion of correctly classified items), recall (items correctly 

classified as positive among the total quantity of positives), precision (items correctly classified 

as positive among the total items identified as positive), and the F1 score (the harmonic mean of 

precision and recall). The area under the receiver operating characteristic (ROC) curve (AUC) 

was also calculated for all the models using scikit-learn and plotted with the ggplot2 R package 

(Wickham, 2011). 

 

4.5. Marker validation 

Markers significantly associated with SCMV resistance were subjected to validation in two 

additional panels with sugarcane genotypes previously assessed for this trait. The first panel 

comprised 28 wild accessions, including representatives of S. officinarum, S. spontaneum, S. 
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robustum, Saccharum barberi, and interspecific hybrids (da Silva et al., 2015a), and the second 

panel comprised 64 Brazilian varieties and elite clones from the three main sugarcane breeding 

programs in Brazil (da Silva et al., 2015b). These 92 genotypes (Table S2) were used for 

validation using MonsterPlex Technology (Floodlight Genomics, Knoxville, USA). DNA was 

extracted from leaves following the methods described by Aljanabi et al. (1999) or using the 

GenElute Plant Genomic DNA Miniprep Kit (Sigma–Aldrich, St. Louis, USA). DNA samples 

and marker flanking sequences were sent to Floodlight Genomics, where multiplex PCR was 

used to amplify ~100-bp fragments containing markers, which were then sequenced on a HiSeq 

platform (Illumina, San Diego, USA). Trimmomatic version 0.39 (Bolger et al., 2014) was used 

to trim the single-end sequencing reads using a 5-bp sliding window with a minimum average 

Phred quality score of 20 and removing reads shorter than 30 bp. The trimmed reads were 

aligned to reference flanking sequences using Bowtie2 version 2.2.5 (Langmead and Salzberg, 

2012), and SNP calling was performed using SAMtools and FreeBayes. After APs/genotypic 

classes were obtained for each locus, linear models in R were used to estimate marker r2 values 

for each panel, and ML models were used to predict resistance phenotypes as previously 

described. 

 

4.6. Synteny analyses 

For synteny analyses, the coding DNA sequences (CDSs) of the causal genes at Scmv1 and 

Scmv2 were retrieved from the MaizeGDB database (Portwood et al., 2019) and aligned against 

the S. spontaneum genome sequence using BLASTn (Altschul et al., 1990). Synteny plots were 

constructed using Circos software version 0.69.9 (Krzywinski et al., 2009). The Scmv1 CDS was 

also aligned to the genome sequences of S. spontaneum Np-X (Zhang et al., 2022), S. 
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officinarum LA Purple (SRA Bioproject accession PRJNA744175), and the hybrids SP70-1143 

(Grativol et al., 2014), R570 (Garsmeur et al., 2018), SP80-3280 (Souza et al., 2019), and CC01-

1940 (Trujillo-Montenegro et al., 2021). 

 

4.7. Coexpression network construction and marker annotation 

To annotate markers associated with SCMV and investigate their expression profile, RNA-Seq 

data supplied by Marquardt et al. (2019) was used. This study provided data from samples with 

five biological replicates, each made up of four to five bulked leaves, which were considered 

suitable for the construction of a highly robust coexpression network. Sequencing data were 

downloaded from the Sequence Read Archive (SRA; BioProject PRJNA474042) and trimmed 

with Trimmomatic version 0.39 (Bolger et al., 2014), with the default parameters. 

A de novo transcriptome was assembled using Trinity version 2.5.1 (Grabherr et al., 

2011), with the minimum contig length set to 300 bp. The completeness of the assembly was 

evaluated with BUSCO version 5.1.2 (Simão et al., 2015) using datasets of conserved orthologs 

from Viridiplantae. Annotations were performed with Trinotate (Bryant et al., 2017) and 

included homology searches of sequences in the UniProt database, domain identification 

according to information in the Pfam database, and predictions of signal peptides with SignalP 

and transmembrane domains using TMHMM. Salmon version 1.1.0 software (Patro et al., 2017) 

was used for transcript quantification, with the default parameters used. Genes with a mean of 

less than 5 transcripts per million (TPM) in at least one sample type were filtered out to avoid 

genes expressed at low levels, and genes with no variance across quantifications were excluded 

using the WGCNA package (Langfelder and Horvath, 2008). 
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A global weighted gene coexpression network (GWGCN) was constructed with 

WGCNA. Pairwise Pearson correlations of TPM values that considered a power function to fit a 

scale-free independence were used. For that, a soft threshold power beta estimation of 25, 

corresponding to an r² value of 0.85, was estimated and generated a scale-free topology model. 

Functional modules in the network were defined by the use of the unweighted pair group method 

with arithmetic mean (UPGMA) based on a topological overlap matrix and dynamic dendrogram 

pruning based on the dendrogram only. 

To annotate markers associated with SCMV resistance and locate them in the network, 

the de novo transcriptome assembly was aligned against the S. spontaneum genomic reference 

used for SNP calling via BLASTn, and the closest genes upstream and downstream of each 

marker at a maximum distance of 2 Mb were retrieved. The following parameters were used: a 

minimum of 90% identity, a minimum E-value of 1e-50, and best hit algorithm overhang and 

edge values of 0.1. Similarly, the CDSs of the causal genes at Scmv1 and Scmv2 were aligned 

against the transcriptome assembly using BLASTn with the default parameters. 

All genes present in the network modules containing genes associated with SCMV 

resistance were recovered and used for a Gene Ontology (GO) enrichment analysis with the 

topGO R package (Alexa and Rahnenfuhrer, 2010) in conjunction with Fisher’s test with a 

Bonferroni correction with α = 0.01. The REVIGO tool (Supek et al., 2011) was used for the 

visualization and analysis of GO categories of the genes associated with SCMV resistance and in 

enriched categories associated with the genes in the network modules. 
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Tables 

Table 1. Predictive ability of machine learning (ML) models for predicting SCMV 

resistance before and after feature selection (FS). The ML models tested were adaptive 

boosting (AB), decision tree (DT), Gaussian naive Bayes (GNB), Gaussian process (GP), K-

nearest neighbor (KNN), multilayer perceptron neural network (MLP), random forest (RF) and 

support vector machine (SVM). 

Model Accuracy Precision Recall F1 

Before Feature Selection 

AB 60.7 23.8 36.6 27.3 

DT 52.8 30.7 29.5 29.2 

GNB 54.4 30.9 31.7 28.9 

GP 66.3 0.00 0.00 0.00 

KNN 59.6 18.1 30.9 21.6 

MLP 55.3 54.6 38.3 43.0 

RF 66.9 8.2 38.8 13.2 

SVM 66.6 1.4 8.4 2.4 

Mean 60.3 21.0 26.8 20.7 

After Feature Selection 

AB 86.2 70.0 87.9 76.5 

DT 66.4 50.4 52.1 49.2 

GNB 96.7 95.2 95.6 94.9 

GP 93.2 81.7 98.2 88.4 

KNN 95.7 87.3 100.0 92.8 

MLP 99.7 100.0 99.3 99.6 

RF 85.6 57.5 98.6 70.7 

SVM 98.1 94.5 100.0 96.9 

Mean 90.2 79.6 91.4 83.6 
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Table 2. Predictive accuracy, precision, recall and F1 scores of machine learning (ML) 

approaches employed to predict groups associated with SCMV resistance in the validation 

panel. The ML models tested were adaptive boosting (AB), decision tree (DT), Gaussian naive 

Bayes (GNB), Gaussian process (GP), K-nearest neighbor (KNN), multilayer perceptron neural 

network (MLP), random forest (RF) and support vector machine (SVM). 

Model Accuracy (%) Precision (%) Recall (%) F1 (%) 

AB 61.7 64.7 86.3 73.9 

DT 59.3 61.8 92.2 74.0 

GNB 46.9 61.8 41.2 49.4 

GP 65.4 65.3 96.1 77.8 

KNN 64.2 63.8 100.0 77.9 

MLP 63.0 69.1 74.5 71.7 

RF 69.1 68.6 94.1 79.3 

SVM 63.0 54.0 79.1 64.2 

Mean 61.6 63.6 82.9 71.0 
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Figure legends 

Figure 1. Manhattan plots generated from association analyses in which the best linear 

unbiased predictor (BLUP) values of SCMV symptom severity were used. Four different 

models were used: additive, simplex dominant reference (1-dom-ref), diploidized general (diplo-

general) and diploidized additive (diplo-additive) models. On the x-axis, S represents scaffolds 

not associated with any of the Saccharum spontaneum chromosomes. 

Figure 2. Receiver operating characteristic (ROC) curves and area under the curve (AUC) 

results concerning the performance of machine learning models for predicting SCMV 

resistance in which the full marker dataset (A) and markers selected by feature selection 

(FS) (B) were used. The machine learning models tested were adaptive boosting (AB), decision 

tree (DT), Gaussian naive Bayes (GNB), Gaussian process (GP), K-nearest neighbor (KNN), 

multilayer perceptron neural network (MLP), random forest (RF) and support vector machine 

(SVM). 

Figure 3. Synteny plot of Scmv2 on chromosome 3 of Zea mays (blue) and Saccharum 

spontaneum A chromosomes (red). The red and black ticks represent markers associated with 

sugarcane mosaic virus (SCMV) resistance by association mapping and feature selection (FS), 

respectively. 

Figure 4. Network of Gene Ontology (GO) biological process terms obtained from genes 

associated with sugarcane mosaic virus (SCMV) resistance. 
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