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Importance  25 

Klebsiella pneumoniae is a major cause of healthcare-associated infections that are increasingly 26 

difficult to treat due to the emergence of multi-drug resistant strains. In particular, strains 27 

expressing extended-spectrum β-lactamases and carbapenemases have attained global notoriety, 28 

with the World Health Organization listing these strains as a “critical-priority” for the 29 

development of new therapeutics. Access to a diverse collection of strains for testing is critical 30 

for this endeavor, but few resources currently exist. Similarly, pivotal research of the genetic 31 

determinants underlying the pathogenesis of hypervirulent lineages is hampered by the lack of 32 

standardized, comparator strains. Herein we describe a panel of 100 diverse K. pneumoniae 33 

constructed to maximize genetic and phenotypic diversity from a repository of over 3,800 34 

clinical isolates collected over 19 years. The panel, and all associated metadata and genome 35 

sequences, is provided at no cost and will greatly assist efforts by academic, government, and 36 

industry research groups.     37 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.504361doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504361


 
 

3

Abstract  38 

Klebsiella pneumoniae are a leading cause of healthcare associated infections worldwide. In 39 

particular, strains expressing extended-spectrum β-lactamases (ESBLs) and carbapenemases pose 40 

serious treatment challenges, leading the World Health Organization (WHO) to designate ESBL 41 

and carbapenem-resistant Enterobacteriaceae (CRE) as “critical” threats to human health.  42 

Research efforts to combat these pathogens can be supported by accessibility to diverse and 43 

clinically relevant isolates for testing novel therapeutics. Here, we describe a panel of 100 44 

diverse K. pneumoniae isolates publicly available to assist the research community in this 45 

endeavor. 46 

Whole-genome sequencing (WGS) was performed on 3,878 K. pneumoniae clinical isolates 47 

housed at the Multidrug-Resistant Organism Repository and Surveillance Network. The isolates 48 

were cultured from 63 facilities in 19 countries between 2001 and 2020. Core-genome multilocus 49 

sequence typing and high-resolution single nucleotide polymorphism based phylogenetic 50 

analyses captured the genetic diversity of the collection and were used to select the final panel of 51 

100 isolates. In addition to known multi-drug resistant (MDR) pandemic lineages, the final panel 52 

includes hypervirulent lineages and isolates with specific and diverse resistance genes and 53 

virulence biomarkers. A broad range of antibiotic susceptibilities ranging from pan-sensitive to 54 

extensively drug resistant isolates are described. The panel collection, all associated metadata 55 

and genome sequences, are available at no additional cost and will be an important for the 56 

research community and for the design and development of novel antimicrobial agents and 57 

diagnostics against this important pathogen.  58 
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Introduction 59 

Klebsiella pneumoniae are a leading cause of nosocomial infections resulting in pneumonia, 60 

bacteremia, surgical site, and urinary tract infections (1). A member of the problematic ESKAPE 61 

(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 62 

baumannii, Pseudomonas aeruginosa, Enterobacter) group of pathogens (2), “classical” K. 63 

pneumoniae (cKp) are associated with prolonged outbreaks, increased disease burden, and high 64 

mortality rates (3, 4). The prevalence of cKp infections has steadily increased since 2005, 65 

primarily driven by strains acquiring extended-spectrum β-lactamases (ESBLs) and 66 

carbapenemases conferring resistance to 3rd generation cephalosporins and carbapenem 67 

antibiotics (5, 6). These multidrug resistant (MDR)-cKp clones are a threat to the medical 68 

community as antibiotic treatment options are limited and non-susceptibility to all antibiotics has 69 

been reported (7). In alignment, the World Health Organization (WHO) ranks K. pneumoniae 70 

among the critical priority list for the development of therapeutics (8).  71 

In parallel to hospital-acquired MDR-cKp, severe community-acquired infections caused by so 72 

called “hypervirulent” K. pneumoniae (hvKp) lineages have also emerged (9). These invasive 73 

strains are generally susceptible to antibiotics and generally occur in healthy hosts causing 74 

meningitis, liver abscesses, endophthalmitis, and soft tissue infections (9). hvKp strains are 75 

associated with the acquisition of large virulence plasmids and/or mobile elements encoding 76 

virulence determinants such as siderophores [e.g aerobactin (iuc), salmochelin (iro), 77 

yersiniabactin (ybt)], metabolite transporter peg-344, genotoxic polyketide colibactin (clb), and 78 

regulators of mucoviscosity and capsular polysaccharide (rmpA and rmpA2) (10, 11). While 79 

there are distinct clinical and genetic differences between the two main pathotypes of K. 80 

pneumoniae, there has been a concerning emergence of convergent lineages that carry both MDR 81 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.504361doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504361


 
 

5

and virulence determinants (12–14). This confluence of MDR-cKp and hvKp has provided 82 

additional impetus to develop novel antibiotics and therapeutics (15).  83 

The K. pneumoniae population is diverse consisting of over 250 clonal phylogenetic lineages and 84 

an estimated accessory genome of >100,000 protein coding sequences (6, 16). Despite hundreds 85 

of clones that can cause infections, a few “high-risk”, globally disseminated, MDR-cKp lineages 86 

(e.g. ST-11, ST-14, ST-101, ST-147, ST-258, ST-307) contribute to the majority of infections 87 

(6). For example, the dissemination of KPC-type carbapenemases is largely attributed to the 88 

well-studied, clonal ST-258 lineage, which is now endemic in many countries, including the 89 

United States (17–19). More recently, carbapenem resistant ST-307 and ST-147 clonal lineages 90 

carrying various carbapenemases (NDMs, OXA-48-like, and KPC) have emerged and are 91 

circulating in countries such as the United States (19), Germany (20), and in Italy (21). In 92 

contrast, unrelated hvKp lineages are mainly described from the Asian Pacific Rim countries and 93 

are predominately ST-23, ST-86, ST-65, ST-380, and ST-66 lineages (6, 9). These hvKp strains 94 

are associated with very few capsular polysaccharide types K1, K2, and/or K5, in contrast to the 95 

substantial diversity of K-loci found in cKp strains (22). The significant genomic diversity and 96 

constantly changing epidemiology highlights the importance of using the K. pneumoniae 97 

population structure for identifying diverse isolates when developing effective targets for 98 

treatments and diagnostics against problematic MDR-cKP, hvKp, and emerging clones. 99 

In this report, we utilized the large repository of 3,878 clinical K. pneumoniae maintained by the 100 

Multidrug-Resistant Organism Repository and Surveillance network (MRSN) (23) and collected 101 

globally between 2001 and 2020. Comparable to our previous work (24, 25) we constructed a 102 

reference panel of 100 K. pneumoniae clinical isolates that captures the extensive genetic 103 

diversity of this species, as well as variable antibiotic resistance gene content and virulence gene 104 
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content along with a wide range of antimicrobial susceptibility profiles. This panel is available to 105 

the research community at no extra cost to aid in the design and development of novel 106 

therapeutics and diagnostics for this critical pathogen.  107 

  108 
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Results 109 

Global K. pneumoniae population structure and collection diversity  110 

3,878 K. pneumoniae clinical isolates were collected over a 19-year period (2001 to 2020) from 111 

across the U.S. and globally in collaboration with the U.S. Department of Defense’s Global 112 

Emerging Infections Surveillance (GEIS) branch. After removal of serial isolates from the same 113 

patients, 3,123 primary isolates from 2,760 patients were analyzed by core-genome multilocus 114 

sequence typing (cgMLST) to generate a minimum spanning tree revealing the genomic diversity 115 

of the population (Fig. 1A). The isolates were recovered from 63 healthcare facilities across 6 116 

continents including North America (63%), Asia (17.6%), Europe (8.9%), South America 117 

(5.0%), Africa (4.7%), and Oceania (0.4%). The majority were cultured from urine (46%), 118 

followed by respiratory (11%), perianal surveillance swabs (10%), wound (9%), blood (9%), and 119 

body fluid (2%) cultures. In silico MLST using the scheme designed by Diancourt et al. (26) 120 

identified 480 ST’s with 260 (54%) found in isolate(s) from a single patient. Despite the large 121 

number of ST’s, 34% of the isolate collection is represented by 6 globally problematic clones: 122 

ST-15 (7.8%), ST-147 (5.9%), ST-258 (5.8%), ST-307 (5.3%), ST-14 (4.8%), and ST-16 (4.6%) 123 

(6). Clonal lineages were associated with lower allelic diversity (e.g. ST-258 maximum of 87 124 

allelic differences) however, extensive diversity was observed within other lineages (e.g. 1,312 125 

allelic differences within ST-37) (Fig. 1A).  126 

Selection of a nonredundant, genetically diverse panel of K. pneumoniae 127 

Based on the cgMLST analysis, an initial subset of 346 isolates (11%) was selected to represent 128 

the maximum genetic diversity of the collection and to minimize clonal redundancy (Fig. 1A, 129 

red dots). This subset, encompassing 143 STs, was further compared using a maximum 130 

likelihood single nucleotide polymorphism (SNP)-based phylogenetic tree (Fig. 1B). In an effort 131 
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to provide a pragmatic panel, 100 isolates were selected from the subset and analyzed by core 132 

genome SNP-based phylogeny (Fig. 2 and Table S1). This final panel of 100 isolates 133 

encompassed 94 STs, including 6 novel ST’s, and retained substantial diversity in gene content. 134 

The core genome encompassed 3,034 genes with the pangenome consisting of 21,419 genes 135 

(Fig. S1). Similar to previous studies (27, 28), the most prevalent predicted O antigen types, 136 

involved in the composition of cell surface lipopolysaccharide, were O1, O2, and O3, which 137 

were found in 81% of the panel isolates, followed by types O4 (10%), O5 (5%), and unknown 138 

(4%) (Table S1). The panel also contains 54 distinct capsular polysaccharide types, with K2 type 139 

being the most prevalent (n = 7).  140 

Distinct virulence gene content in the K. pneumoniae panel isolates 141 

Acquired K. pneumoniae virulence loci associated with the hvKp pathotype were characterized 142 

in the panel isolates. Thirty isolates in the final panel carried the ybt siderophore gene cluster 143 

found on chromosomally inserted integrative conjugative elements (ICEKp). The ICEKp3 144 

lineage (encoding ybt9 sequence type) was the most prevalent and found in 8 isolates from ST-145 

11, ST-15, ST-16, ST-101, ST-147, ST-307, ST-340, and ST-1271 (Table S1). Seven isolates 146 

carried clb, encoding the genotoxic colibactin, in conjunction with ybt (lineage 1, 12, and/or 17) 147 

that were associated with the ICEKp10 lineage, as previously described (29). The iro gene 148 

cluster encoding salmochelin synthesis and the regulators for hypermucoidy and capsule 149 

expression, rmpA and/or rmpA2, were identified in 3 isolates. Notably, 8 isolates harbored the 150 

aerobactin-encoding iuc genes, including 2 known hvKp lineages (ST-380 and ST-86) with the 151 

predicted serum resistant K2 capsular serotype (22). Further, 6 isolates carried the iuc loci in 152 

addition to ESBL genes (blaCTX-M-14 or blaCTX-M-15) (Fig. 1C). Alarmingly, 2 of these genotypic 153 
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convergent isolates also carried the blaNDM-1 carbapenemase including the recently characterized 154 

epidemic ST-147 isolate, MRSN 752729, from a nosocomial outbreak in Italy (12).  155 

AMR gene content and antimicrobial susceptibilities of the final panel  156 

64 distinct antibiotic susceptibility profiles were observed in the final 100 isolate panel (Fig. 2 157 

and Table S1). Using the susceptibility criteria developed by Magiorakos et al. (30), 1 isolate 158 

was pan drug resistant (PDR), 28 were extensively drug resistant (XDR), 46 isolates were MDR, 159 

7 were non-MDR, and 19 were pan-susceptible to all antibiotics tested. Notably, 56 isolates were 160 

non-susceptible to the 3rd generation cephalosporins tested (ceftazidime and ceftriaxone), 24 161 

were non-susceptible to carbapenems (imipenem and meropenem), and 10 were non-susceptible 162 

to the newer β-lactam/β-lactamase inhibitor, ceftazidime-avibactam.   163 

Overall, AMR genes known to confer non-susceptibility were detected in all 100 genomes with 164 

135 distinct alleles identified from 40 antibiotic families (Table S1).  The majority of intrinsic 165 

blaSHV class-A β-lactamase alleles detected were blaSHV-1 and/or blaSHV-11 (16). In 59 isolates, 166 

blaSHV and/or blaCTX-M ESBLs were detected, with blaCTX-M-15 (n = 44) being the most prevalent. 167 

Three isolates (MRSN 750999, 680172, 27106) carried blaSHV-27 as their sole ESBL gene (31), 168 

but were susceptible to the 3rd generation cephalosporins. The blaGES-5 ESBL was found in a 169 

single isolate, MRSN 28183, resulting in non-susceptibility to 3rd generation cephalosporins and 170 

ceftolozane-tazobactam.  171 

Carbapenemase genes encoding IMP, KPC, NDM, OXA-48-like, and VIM enzymes were 172 

present in 24 isolates. Eleven isolates produced OXA-48-like β-lactamases (OXA-48, -181, -232) 173 

capable of hydrolyzing carbapenem antibiotics, with OXA-48 being the most common (n = 7). 174 

All OXA-48-like positive isolates co-produced the ESBL CTX-M-15 (except a single isolate, 175 

MRSN 13748, with CTX-M-14) and as expected were non-susceptible to ceftazidime, cefepime, 176 
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aztreonam, imipenem, and meropenem. Three OXA-48-like carrying isolates also co-produced 177 

NDM-1 or -5 enzymes including lineages ST-147, ST-16, and the well-studied hvKp lineage ST-178 

23 (Table S1). As expected, all 10 isolates carrying genes encoding the Ambler class B Metallo-179 

β-lactamases (MBL; IMP, NDM and VIM variants) were non-susceptible to ceftazidime-180 

avibactam. As carbapenemase non-susceptibility can also be mediated through mutations in the 181 

outer membrane proteins (OmpK35 and/or OmpK36) in conjunction with the expression of an 182 

ESBL and/or acquired AmpC β-lactamases (32, 33), all strains were examined for known 183 

mutations in these genes. Variations in OmpK35 and/or OmpK36 were observed in 15 isolates, 184 

of which 12 carried a carbapenemase and were non-susceptible to all carbapenem antibiotics 185 

tested. The remaining three isolates had OmpK35 mutations only and were susceptible to the 186 

carbapenems. In the final panel, only 4 isolates carried an acquired AmpC β-lactamase (blaFOX-5, 187 

blaDHA-1, or blaCMY-4) and all lacked OmpK mutations. Notably, 7 isolates had a truncated mgrB, 188 

known to mediate colistin resistance (Table S1), and five were resistant (MIC > 4) to colistin by 189 

broth microdilution (BMD). As the Clinical and Laboratory Standards Institute (CLSI) 190 

guidelines (34) do not recognize susceptible breakpoints for colistin the remaining two isolates 191 

with a truncated mgrB (791403 and 375436) were assigned intermediate interpretation (MIC ≤ 192 

0.25 and 1, respectively), as reported previously (12).  193 

Forty-two isolates were susceptible to all three aminoglycosides tested (amikacin, gentamicin, 194 

and tobramycin) while 9 isolates were pan resistant to all aminoglycosides. All pan resistant 195 

isolates carried a 16S rRNA methyltrasferase, with the exception of MRSN 430405 for which no 196 

acquired methyltransferase gene was identified (Table S1). Specifically, five of the pan resistant 197 

isolates (5881, 366562, 365679, 517281, and 613682) carried methytransferase genes rmtH, 198 

rmtF1, or rmtB1 and the remaining three (MRSN 27778, 607210, 368001) carried armA. MRSN 199 
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752729 also carried armA but was susceptible to amikacin and gentamicin.  Reduced 200 

susceptibility was confirmed by BMD (amikacin, MIC=16; gentamicin, MIC=1). Further 201 

analysis of the armA sequence revealed a missense mutation at nucleotide position 617 (A to T) 202 

resulting in an amino acid substitution of isoleucine to lysine.   203 
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Discussion 204 

In 2017, the WHO identified ESBL and carbapenemase-resistant Enterobacteriaceae as a 205 

“Critical’ threat to human health. Similarly, the U.S. CDC named carbapenem-resistant and 206 

ESBL-producing Enterobacterales as “urgent” and “serious” threats, respectively (35). As a 207 

result, there has been a renewed and concerted effort to develop novel therapeutics and 208 

diagnostics to combat these organisms. This has been reflected at the highest level of the U.S. 209 

Government with the publication of the Presidential U.S. National Action Plan for Combating 210 

Antibiotic-Resistant Bacteria (CARB) (36). This document outlined strategies to combat this 211 

threat, including access to diverse isolates for testing. In response to these demands, the U.S. 212 

Department of Defense, through the MRSN, has published distinct panels (with corresponding 213 

metadata and genomes) for the ESKAPE pathogens Acinetobacter baumanii (24) and 214 

Pseudomonas aeruginosa (25). Herein we expand these panels by constructing a novel panel of 215 

K. pneumoniae isolates that, to our knowledge, is the only comprehensive panel publicly 216 

available for research and development. The panel was designed to encompass the maximum 217 

genetic diversity of the species, ensuring a diverse range of antibiotic susceptibilities, AMR 218 

genes and virulence genes. 219 

Other panels and characterized K. pneumoniae strains exist, however, they mainly focus on the 220 

identification of antibiotic resistant mechanisms and were not designed to encompass the 221 

diversity of the species. For example, the U.S. CDC and FDA have collaborated to produce the 222 

AR Isolate Bank that contains multiple isolate panels for a range of bacterial pathogens and 223 

resistance mechanisms (https://wwwn.cdc.gov/arisolatebank/Overview) and this panel has 224 

proven to be an excellent resource to test the activity of antibiotic combinations (37). However, 225 

in addition to testing antibiotics, strain diversity is critical for assessing the efficacy of many 226 
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emerging therapeutics including phage therapy, vaccines, and capsule polysaccharides targeted 227 

approaches (38–40). The main structural receptor for anti-Klebsiella phages is the external 228 

capsular polysaccharide however recent work suggests that phages also attach to other outer 229 

membrane structures below the capsule, including the O-antigen (41, 42). The panel described 230 

herein represents 54 of the 77 distinct capsule types identified by serological methods (43) and 8 231 

predicted O serotypes (27, 44), providing a robust representation of outer membrane protein 232 

diversity to test anti-Klebsiella phages. Besides therapeutics, the understanding of K. 233 

pneumoniae pathogenesis is rapidly evolving, in particular the understanding of virulence factors 234 

that can accurately predict pathogenic potential of strains. For example, not all hvKp strains are 235 

equally virulent in murine models of infection despite carrying well-characterized virulence 236 

biomarkers (45). Herein we describe hvKp and convergent strains with diverse biomarkers to aid 237 

in these ongoing research efforts. 238 

The epidemiology of K. pneumoniae over the past two decades has been characterized by widely 239 

geographically distributed “high risk” clones and the constant emergence and dissemination of 240 

new clonal groups (6). This panel not only captures the most important MDR-cKp (ST-258, ST-241 

15, ST-11, ST-307, ST-147) and hvKp clones (ST-23, ST-380, ST-65, ST-86) currently 242 

circulating, but also encompasses the overall diversity of the species, an approach that 243 

maximizes the potential of the panel to include emerging strains, or those that may emerge in the 244 

future. To this end, the panel includes 6 novel lineages, including an XDR ST-5445 lineage 245 

carrying blaCTX-M-15, and 5 genomic convergent lineages that have not been previously described 246 

(ST-268, ST-1399, ST-48, ST-2071, ST-37). Furthermore, close attention was paid to selecting 247 

rare clones that cause localized epidemics in different regions of the world. Clones ST-43, ST-248 

268, ST-340, ST-392 are all represented in the panel and have been reported previously as 249 
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harboring NDM carbapenemases and circulating in hospitalized patients in Iran (46). Similarly, a 250 

ST-340 clone carrying a NDM carbapenemase was recovered from patients at a tertiary care 251 

hospital in South Korea (47) and infections with ST-231 and/or ST-395 clones have been 252 

identified in local hospitals in Oman (48) and South India (48, 49). A genomic surveillance study 253 

from 2013 to 2014 found ST-231, ST-340, ST-323 (carrying various ESBLs and carbapenemase 254 

genes) clones all linked to nosocomial transmission events from 4 hospitals in Melbourne 255 

Australia (50). In our panel collection the XDR clone ST-340 was collected in Asia in 2015 256 

while the MDR clones ST-323 and ST-231 were recovered from North America in 2016 and 257 

2018, respectively. Interestingly these localized epidemic clones have yet to globally disseminate 258 

despite being highly antibiotic resistant. 259 

Notably, a strong association between antibiotic susceptibility and the presence of AMR genes 260 

and/or mutations was observed, with few exceptions. For example, isolates carrying blaSHV-27 261 

ESBL had a non-ESBL phenotype. However, this discrepancy is most likely due to a base-pair 262 

substitution (A to C) in the promoter region that was previously reported in SHV-27-producing 263 

isolates susceptible to cephalosporins (51). Similarly, isolate MRSN 752729 carrying a missense 264 

mutation in armA 16s rRNA methyltransferase had increased susceptibility to all aminoglycoside 265 

antibiotics. Previous studies report that point mutations in armA can result in the inability to bind 266 

to the 16S rRNA and consequently block methylation resulting in susceptibility to 267 

aminoglycosides (52). Lastly, in this study the single GES-5-producing isolate (MRSN 28183) 268 

conferred non-susceptibility to ceftazidime, ceftriaxone, and ceftolozane-tazobactam but was 269 

susceptible to cefepime and carbapenem antibiotics. The GES-5 variant has a single amino acid 270 

substitution (G170S) compared to wild-type GES-1 and has been shown to confer activity 271 

against carbapenem antibiotics (53), yet, studies have also shown GES-5 producing K. 272 
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pneumoniae to have minimal to no carbapenemase activity (54, 55), consistent with our 273 

observations. 274 

In summary, this study describes the construction of a panel of 100 unique K. pneumoniae 275 

isolates from an extensive collection of over 3,800 K. pneumoniae isolates collected from across 276 

the globe. The panel encompasses the diversity of the species, includes both antibiotic 277 

susceptible and non-susceptible isolates, and captures known epidemic clones as well as sporadic 278 

ones. Furthermore, this panel captures diverse genomic convergent and hvKp strains that are 279 

rapidly emerging worldwide and are of considerable concern (15, 45). While identifying these 280 

convergent lineages does not accurately predict clinical outcomes, availability of these 281 

characterized isolates (including phylogeny, genome, and AST) will aid in the research and 282 

development of infection-control measures to improve patient care. This panel and all metadata 283 

and genomes are publicly available at no additional charge and represent an invaluable resource 284 

for genotypic and phenotypic research of this important pathogen.   285 
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Materials and Methods 286 

K. pneumoniae repository. The MRSN collects and analyzes MDR organisms across the 287 

Military Healthcare System in the United States (23) and around the world in collaboration with 288 

the US Department of Defense’s (DoD) Global Emerging Infections Surveillance (GEIS) branch. 289 

All samples are housed in a central repository, which currently contains over 100,000 isolates, 290 

including 3,878 K. pneumoniae that were cultured from 2,760 patients between 2001 and 2020.  291 

Refinement of K. pneumoniae repository. To reduce redundancy in the initial 3,878 isolate set, 292 

successive isolates after the first from the same patient that shared the same ST were removed 293 

unless isolates were cultured from a different body site (e.g. urine vs blood) or were cultured >6 294 

months apart. All isolates from the same patient with different STs were retained. This 295 

refinement resulted in a final dataset of 3,123 isolates available for analysis. 296 

Antibiotic susceptibility testing.  AST was performed in the MRSN’s College of American 297 

Pathologists (CAP)-accredited laboratory using the Vitek 2 with the AST-95 and AST-XN09 298 

cards (bioMerieux, NC, US). Nineteen antibiotics representing 11 different antibiotic families 299 

were tested and interpreted using Clinical and Laboratory Standards Institute (CLSI) guidelines 300 

(CLSI 2018). Susceptibility results were used to classify the isolates as pan drug resistant (PDR) 301 

(non-susceptible to all antibiotics tested), extensively drug resistant (XDR) (non-susceptible to 302 

≥1 agent in all but ≤2 families), MDR (non-susceptible to ≥1 agent in ≥3 antibiotic families), and 303 

non-MDR (non-susceptible to 1 or 2 categories) using a modification of the criteria defined by 304 

Magiorakos et al (30). When necessary, MICs were repeated in triplicate using broth 305 

microdilution and CLSI guidelines (CLSI 2018).   306 

Whole-genome sequencing and data analysis. Briefly, isolates were sequenced on an Illumina 307 

MiSeq or NextSeq benchtop sequencer (Illumina, Inc., CA, US) and analyzed as previously 308 
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described (24). Where appropriate, long read sequencing was performed with the Oxford 309 

nanopore MinION sequencer (Oxford Nanopore Technologies), as previously described (12). In 310 

silico MLST typing, virulence loci, polysaccharide capsule (K) loci, and lipopolysaccharide (O) 311 

loci typing were performed using Kleborate v2.0.1 (56). Novel MLST STs were determined 312 

using the Klebsiella PasteurMLST sequence database (https://bigsdb.pasteur.fr/klebsiella). 313 

AMRFinderPlus v3.9.8 (57) and ARIBA v2.14.4 (58) were used to identify resistance alleles. 314 

Basic assembly statistics are available (see Table S2 in the supplemental material). 315 

cgMLST analysis. The draft genomes of all 3,878 K. pneumoniae isolates were uploaded and 316 

analyzed using Ridom SeqSphere+ (59) using the K. pneumoniae cgMLST scheme 317 

(https://www.cgmlst.org/ncs). To be included in the analysis, isolates had to contain 90% of the 318 

2,358 genes included in the cgMLST scheme. The resulting minimum spanning tree (MST) was  319 

then used to select 346 strains that capture the diversity of the strain collection.  320 

Core-genome SNP analysis. PanSeq (60) was run with a fragmentation size of 500 bp to find 321 

sequences with ≥95% identity in ≥95% of the isolates to generate the core genome single 322 

nucleotide polymorphism (SNP) alignment for the initial set of 346 isolates. RAxML (v8.2.11) 323 

(61) was used to generate a phylogenetic tree for the core SNP alignment. The SNP-based 324 

phylogeny was built from a 317-kb variable position alignment using the general time reversible 325 

(GTR) GAMMA model and the rapid bootstrapping option for nucleotide sequences, using 100 326 

replicates. Using this approach, 100 strains were selected to represent the final diversity panel.  327 

For the final diversity set of 100 isolates, reads were checked for contamination at the species 328 

level with Kraken2 (v2.0.8-beta) (62) and at the strain level using ConFindr (v0.4.8) (63) with 329 

parameters bf=0.05 and q=30, as previously described (24). A phylogenetic tree of the 100 330 

isolates was constructed with PanSeq and RAxML as described above. The SNP-based 331 
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phylogeny was built from 169-kb variable position alignment. For all 100 isolates included in the 332 

panel, genome annotations were performed using NCBI Prokaryotic Genome Annotation 333 

Pipeline (v4.8) and core and pangenomes were calculated with Roary (v3.12.0) (64). The final 334 

100 genomes have been deposited in the National Center for Biotechnology Information under 335 

BioProject PRJNA717739. 336 

Diversity panel availability. The final K. pneumoniae diversity panel has been deposited at BEI 337 

resources (https://www.beiresources.org/) and is currently available for research purposes under 338 

catalogue #NR-55604.  339 
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Figure Legends 592 

Figure 1.  Genomic diversity of K. pneumoniae in the MRSN collection A) cgMLST 593 

minimum spanning tree of the 3,123 K. pneumoniae genomes. Isolates with an identical MLST 594 

profile are represented within a single circle. Initial subset of isolates selected are indicated by 595 

filled red circles (n = 346) and the final panel isolates are indicated by filled purple circles (n = 596 

100). B) Core genome SNP phylogenetic tree of 346 K. pneumoniae isolates initially selected to 597 

represent the breadth of K. pneumoniae diversity. The final 100 isolates selected for the panel are 598 

indicated in purple triangles. C) Heatmap indicating the combination of virulence/resistance 599 

scores for all panel isolates. In silico prediction using the Kleborate typing tool and visual 600 

inspired from Lam and coauthors (54). The number of isolates with a specific score are indicated 601 

in the boxes. Convergent isolates are indicated by the dashed black box and listed in the table 602 

below. All convergent isolates are carrying the iuc loci and an ESBL and/or carbapenemase gene.  603 

Figure 2. Characteristics of the K. pneumoniae diversity panel. Core genome SNP-based 604 

phylogenetic tree of the 100 genomes in the final diversity panel. Sequence-type (ST), virulence 605 

score (see legend), capsule polysaccharide locus, KL-type, and AMR status (see legend and text 606 

for additional details) are indicated in the columns.  The assigned antimicrobial resistance 607 

phenotype for each antibiotic tested is indicated by the maroon squares- a result of non-608 

susceptible (filled) or susceptible (open). The light blue circles indicate the presence of a known 609 

antimicrobial resistance gene, and the orange circles indicate the presence of a known 610 

mutation/truncation. AMK, amikacin; GEN, gentamicin; TOB, tobramycin; ATM, aztreonam; 611 

SAM, ampicillin/sulbactam; CAZ, ceftazidime; CRO, ceftriaxone; FEP, cefepime; CZA, 612 

ceftazidime/avibactam; C/T ceftolozane/tazobactam; IPM, imipenem; MEM meropenem; CIP, 613 
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ciprofloxacin, LVX, levofloxacin; TZP, piperacillin/tazobactam; SXT, Sulfamethoxazole-614 

Trimethoprim; TET, Tetracycline; TGC, Tigecycline.  615 
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