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Abstract 

Nowadays, although single-cell multi-omics technologies are undergoing rapid 

development, simultaneous transcriptome and proteome analysis of a single-cell 

individual still faces great challenges. Here, we developed a single-cell simultaneous 

transcriptome and proteome (scSTAP) analysis platform based on microfluidics, high-

throughput sequencing and mass spectrometry technology, to achieve deep and joint 

quantitative analysis of transcriptome and proteome at the single-cell level for the first 

time. This platform was applied to analyze single mouse oocytes at different meiotic 

maturation stages, reaching an average quantification depth of 19948 genes and 2663 

protein groups in single mouse oocytes. This reliable quantitative two-omics dataset of 

single cells provided an important resource for understanding the relationship between 

the transcriptome and the proteome in cells. Based on the correlation analysis of RNAs 

and proteins in the same single cell, we demonstrated the expressive heterogeneity of 

transcriptome and proteome during the cellular biological process. Specially, we 
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analyzed the meiosis regulatory network during oocyte maturation with an 

unprecedented depth at the single-cell level, and identified 30 transcript-protein pairs 

as specific oocyte maturational signatures, providing crucial insights into the regulatory 

features of transcription and translation during oocyte meiotic maturation.  

 

Keywords 

Single-cell multi-omics, microfluidics, shotgun proteomics, RNA sequencing, oocyte 

meiotic maturation 

 

Introduction 

Cellular heterogeneity is a fundamental property of various cellular systems, which 

not only refers to the genetic heterogeneity, but also includes the heterogeneity of 

cellular components during biological processes. Single-cell multi-omics technology 

can provide an effective tool to deeply recognize the cellular heterogeneity, benefiting 

the comprehensive understanding of the natural laws of human life activities1-2. 

Nowadays, various single-cell RNA sequencing techniques including 10× Genomics3, 

Smart-seq24, and Seq-well5-6 have been developed and are used in studies of single-cell 

heterogeneity7-8 and cell atlas9-10. Meanwhile, via the combination of the single-cell 

RNA sequencing technique with the genome and epigenome sequencing technique, 

multi-omics sequencing of genome, epigenome, and transcriptome at the single-cell 

level has been achieved, such as the DR-seq11, G&T-seq12, scMT-seq13, scM&T-seq14, 
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and sci-CAR15 techniques. 

In spite of the significant progress of single-cell transcriptome and epigenome 

sequencing techniques, the single-cell proteomic analysis technique is still in the 

developing stage. Unlike nucleic acids, proteins are biochemical components that 

cannot be amplified, which presents great challenges to the analytical techniques, 

especially in the analysis of single-cell samples usually with a total protein content of 

around 200 pg in a mammalian somatic cell. At present, the targeting strategy using 

specific antibodies to label the targeted proteins is frequently adopted to achieve single-

cell proteomic analysis, and several types of labeling antibodies are widely used, 

including fluorescent-labeled antibodies in imaging16, inorganic element-labeled 

antibodies in CyTOF17, and nucleic acid-labeled antibodies in high-throughput 

systems18. Most of these techniques can typically detect tens to hundreds of pre-targeted 

proteins in single cells, due to the limitation in the number of different antibody species 

and their specificity. The mass spectrometry (MS)-based technique coupled with the 

shotgun strategy provides an effective way to achieve non-targeted and deep single-cell 

proteome analysis. Recently, some MS-based systems such as SCoPE-MS19, Nested 

Nanowell chip20,21, Evosep22, and PiSPA23 could achieve much deeper proteomic 

analysis with over 1000 protein groups identified in single cells, and even reaching up 

to 3000 protein groups using the PiSPA platform. These progress demonstrated a 

significant breakthrough in single-cell protein identification depth, although they have 

not reached a comparable level to transcriptome sequencing. 

According to the “central dogma”, mRNA is the template for protein synthesis, and 
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proteins are the direct executor of cellular functions. Currently, it is still difficult to 

accurately predict the expression of proteins from transcriptional information alone. 

Therefore, simultaneous analysis of transcriptomes and proteomes in single cells is 

essential for the comprehensive characterization of cellular activities. However, despite 

the great progress in single-cell transcriptome and proteome analysis technology, 

simultaneous transcriptome and proteome analysis in single-cell individuals is still 

challenging, due to the extremely low amounts of total mRNAs and proteins in single 

cells as well as the difficulty in the cooperation between the two-omics analysis 

operations. Recently, a few techniques for simultaneous transcriptome and proteome 

analysis of single cells have been developed mainly combining the nucleic acid-labeled 

antibody-based protein identification approach with the RNA sequencing technique, 

such as CITE-seq24 and REAP-seq25, achieving simultaneous analysis of mRNAs and 

cell surface proteins in single cells. In addition, in order to analyze the intracellular 

proteins, the SCBC approach has been developed based on microfluidic chips26, in 

which the antibodies are immobilized in the chamber of the chip to capture and measure 

specific proteins in single-cell lysates, while free mRNAs are enriched and analyzed 

using the magnetic beads-based sequencing method. InCITE-seq27 is another type of 

intracellular protein analysis method developed on the basis of the CITE-seq technique, 

using modified double-chain nucleic acids binding antibodies for simultaneous analysis 

of proteins and transcriptome inside single cells. In addition, DBiT-seq28 and DSP29 are 

spatial multi-omics techniques for simultaneous transcriptome and proteome analysis 

of tissue sections at single-cell resolution from 10 μm to 50 μm. Since these multi-
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omics techniques are all developed based on antibody strategy for the analysis of 

proteins, the analysis depth of proteomics ranged from 4 to 82 targeted proteins, which 

is still limited in many biomedical researches. 

In view of the advantages of the MS-based proteomic analysis technique in non-

targeted and in-depth proteome analysis, the MS-based single-cell multi-omics 

technique has undergone rapid progress in recent years. Due to the incompatibility of 

principle and method between MS technique and RNA sequencing technique, current 

single-cell multi-omics studies based on MS technique usually conduct parallel analysis 

of transcriptome and proteome for different batch cells from the same samples. On the 

basis of the SCoPE-MS technique, Slavov’s group has developed the SCoPE2 

technique30 and achieved the parallel analysis of single-cell transcriptome and proteome 

in differentiated monocyte samples with two batches of cells by combining the SCoPE2 

technique with 10× Genomics. It is generally believed that the ideal single-cell multi-

omics analysis should be capable of acquiring the multi-omics information from the 

same single-cell individual, rather than from different cells in the same sample. 

However, to achieve simultaneous multi-omics analysis in a single cell using the mass 

spectrometry technique based on the shotgun strategy still faces great technical 

challenges, owing to its complex multi-step sample pretreatment as well as the 

difficulty in cooperating with the sequencing operation. 

Here, we developed a single-cell simultaneous transcriptome and proteome (scSTAP) 

profiling platform based on the microfluidic and label-free shotgun proteomic 

technique. This platform is capable of completing single cell capture, enzyme-assisted 
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cell lysis, nanoliter-scale precise sample splitting, MATQ-seq31-based single-cell 

transcriptomic analysis and MS-based single-cell proteomic analysis. With the platform, 

we achieved deep and quantitative transcriptome and proteome analysis of single mouse 

oocytes. Based on the two-dimensional data obtained from each individual cell, the 

interaction networks of transcriptome and proteome during oocyte meiotic maturation 

were analyzed with an unprecedented depth.  

 

Results and discussion 

Simultaneous analysis of transcriptome and proteome in single cells 

The aim of this work is to develop a platform and workflow to achieve the 

simultaneous analysis of MS-based proteomes and full-length sequencing-based 

transcriptomes in the same single-cell individuals. At present, single-cell proteome 

analysis technique plays a speed-determining role in the development of single-cell 

multi-omics analysis techniques, because the amount of proteins contained in a single 

cell is extremely small and proteins cannot be amplified, leading to greater challenges 

than single-cell transcriptome analysis. For the analysis of transcriptome and proteome 

in a single-cell individual, the primary problem to be solved is how to separate and 

transfer the very small amount of RNAs and proteins existing in the single cell for 

respective transcriptome sequencing and proteome analysis. 

Based on our previously-developed sequential operation droplet array (SODA) 

technique32,33, which enables precise metering and manipulation of liquids in the 
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nanoliter to picoliter range, we developed an approach called precise sample splitting 

(PSS) to achieve the quantitative division of single-cell samples in the nanoliter range 

for simultaneous transcriptome and proteome analysis. To realize such a 

straightforward multi-omics analysis strategy adopting the precise splitting of 

microsamples for separate multi-omics analysis, two prerequisites should be met. One 

prerequisite is that the system should have the ability to precisely split single-cell 

lysates in the nanoliter range, since nanoliter-scale sample volumes were usually 

adopted in most of the reported single-cell proteome analysis systems to depress the 

excessive dilution and the adsorption loss of ultra-trace proteins. Only when a system 

has such a quantitative sample splitting capability can it precisely and reproducibly 

control the splitting volumes and ratios for each single-cell samples, so as to ensure the 

comparability between the datasets of transcriptome and proteome obtained from 

different single cells. The other prerequisite is that after the single cell is lysed and 

before the lysate is divided, the cellular components should be uniformly distributed in 

the single-cell lysate solution. Otherwise, even if the sample splitting can be performed 

quantitatively, the uneven distribution of the single-cell components such as RNAs and 

proteins will cause inconsistency in the component content between the two aliquots. 

This will lead to inaccurate quantitative results, deteriorating the reliability of single-

cell multi-omics analysis results and the comparability of datasets from different single-

cell samples. Besides the two prerequisites, a higher requirement for the PSS-based 

single-cell multi-omics analysis is that the performance of the simultaneous two-omics 

analysis should not have a remarkable decrease in the identification depth compared 
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with the single-omics analysis. 

For the precise liquid manipulation in the single-cell multi-omics analysis, we used 

an improved SODA system to perform the precise sample splitting and multi-step 

sample pretreatment. Its precision in manipulating hundreds of nanoliter of liquids (e.g. 

500 nL) was 5.4% (coefficient of variation [CV], n = 12), which could meet the 

requirement for quantitative splitting of single-cell samples in the present work. For the 

choice of the reactor, in order to reduce the loss of RNAs and proteins absorbed on the 

surface of the reactors, as well as the loss during the multi-step pretreatment process, 

we choose the commercial insert tubes with a tapered bottom and hydrophobic surface 

in each tube as the stationary droplet reactors, which could be directly coupled with the 

commercial autosampler of the liquid chromatography. The tapered bottom of the insert 

tubes was used to load the nanoliter-scale sample droplets and conduct in-situ multi-

step sample pretreatment. 

Optimization and Performance of the scSTAP platform 

The workflow of scSTAP platform is shown in Figure 1, including the steps of single 

cell capture, cell lysis and sample splitting, transcriptome analysis, and proteome 

analysis. In the cell lysis, good results were obtained in the consistency analysis of both 

proteome and transcriptome in two splitting droplets with enzyme assisted lysis (Figure 

2A, Figure S1), which validated the reliability of the quantification results of proteome 

and transcriptome as well as the applicability of this scSTAP platform in the joint 

analysis of single-cell multi-omics. In addition, we compared the quantitative results 
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between an intact and a half of cells. In order to minimize the effect of different cell 

states on the experimental results, we chose the fully-grown oocytes at a stably 

biological state as the tested samples. The results showed that there was no significant 

difference between the identification depth of the intact and the half of cells (Figure 3A, 

Figure S2).  

With the optimized conditions, the data independent acquisition (DIA) mode was 

used for single oocyte proteomic analysis. For validation of this workflow, we prepared 

a quality control (QC) sample containing forty mouse oocytes and analyzed it 

repeatedly with an injection amount equivalent to a single oocyte for each run. In the 

correlation analysis of the QC sample (n = 5), the correlation coefficients (CCs) of 

proteome expressions in the QC sample were all higher than 0.97 (Figure 2B). 

According to the results of Venn diagram, 85% of the total protein groups had been 

quantified in all runs (Figure 2C). In addition, the median variation coefficient of these 

quantified protein groups was less than 20% among five replicates (Figure S3). These 

results indicated that this scSTAP platform had a good repeatability in proteome 

analysis. 

  To evaluate the performance of this scSTAP platform in actual proteome analysis, we 

applied it to analyze single mouse oocytes at different maturation stages, including a 

total of 18 oocytes at fully grown germinal vesicle (GV) stage and 18 oocytes arrested 

in second meiotic metaphase (MII) stage. In the proteomics analysis, we quantified an 

average of 2703 proteins in all the single oocyte samples (Figure 2D). After the data 

accumulation, a total of 3363 proteins were quantified in these oocyte samples, among 
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which 1600 proteins expressed in all the GV samples and 1927 proteins expressed in 

all the MII samples. Based on the expression matrix of the quantified proteins, oocytes 

at GV and MII stages could be well clustered using the unsupervised cluster approach, 

and the clustering result was consistent with the morphological analysis result (Figure 

2E). Similar to the reported results34, some stable proteins in oocytes, such as ACTB, 

DPPA5a, RPS9, and DPPA3 had low variations of expression (CV < 30%) among all 

the single-cell samples, while the expression of some variable proteins had a significant 

difference between oocytes at GV and MII stages (Figure 2F), demonstrating the 

reliability of the proteome quantification data obtained by the scSTAP platform. 

  The performance of MATQ-seq used in the present workflow was evaluated by 

comparing its sequencing results with that using the Smart-seq2 method. In the 

identification performance, an average of 22224 and 18168 genes were identified in 

single oocyte samples with the MATQ-seq (n = 6) and Smart-seq2 (n = 6) methods, 

respectively (Figure 3B). Especially, for the low-abundance genes with the reads per 

million mapped reads (RPM) less than 10, the performance of the MATQ-seq method 

was significantly higher than that of the Smart-seq2 method (Figure 3C). In addition, 

there was no obvious 3′- or 5′-end bias observed in the mapped read coverage of the 

MATQ-seq method (Figure S4). In the quantification performance, the CCs of RPM in 

the single oocyte samples (n = 6) were all higher than 0.80 (Figure 3D). 

Deep transcriptome and proteome profiling of single mouse oocytes. 

With the optimized scSTAP platform and workflow, we conducted the single-cell 
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multi-omics analysis to achieve the simultaneous deep transcriptome and proteome 

profiling of mouse oocytes at the GV and MII stages. An average quantification depth 

of 19948 genes and 2663 protein groups were obtained in single oocytes (Figure 4A). 

To explore the variance of oocytes during meiotic maturation, the single-cell multi-

omics profiles were subjected to clustering analysis. In the principle component 

analysis (PCA) of the transcriptome dataset, the main contributing genes of the first 

principal component (PC1) were DCAF1 for positive and PRDX2 for negative. 

Correspondingly, the top contributing genes of the first principal component (PC1) in 

the PCA of the proteome dataset were CPEB1 and BPGM. However, based on these 

PCA results for transcriptome (Figure 4B) and proteome (Figure 4C), the shared nearest 

neighbors (SNN) algorithm could not distinguish the single oocytes at GV and MII 

stages significantly, and the information from transcriptome and proteome could not be 

jointly analyzed. To further conduct the joint analysis of the multi-omics dataset, we 

analyzed the transcriptome and proteome expression matrix of single mouse oocytes 

based on the unsupervised weighted nearest neighbor (WNN) clustering analysis35. 

Based on the matrix of weighted coefficient for the transcriptome and proteome, the 

contribution of both the transcripts and proteins could be well taken into account in the 

joint analysis of multi-omics. The UMAP visualization results showed that single 

oocyte samples at GV and MII stages could be precisely distinguished using the WNN 

algorithm (Figure 4D). 

To further investigate the dynamic patterns of multi-omics profiles, we analyzed the 

differentially expressed transcripts and proteins in single oocytes at GV and MII stages. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.504335doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504335
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

Based on the statistical calculation, 2392 differentially expressed transcripts (Figure 

4E) and 127 differentially expressed proteins (Figure 4F) were identified between GV 

and MII oocytes using the limma package in R (p < 0.05; fold change [FC] of log2 

expression > 2). Particularly, based on the matrix of weighted coefficient from the 

WNN algorithm, we obtained the joint expression matrix of transcriptome and 

proteome. On the basis of this joint expression matrix, 166 differentially expressed 

RNA-protein pairs were identified (Figure 4G), and 30 transcript-protein pairs were 

identified as specific oocyte maturational signatures. Among these pairs, 5 related genes 

were known biomarkers including CPEB136, GTSF137, GDF938, CELF139, and 

ZAR1l40, while other genes could be considered as potential biomarker candidates. 

Regulatory networks of single mouse oocytes during meiotic maturation 

To understand the characteristics of multi-omics profiles in regulatory network 

analysis, we focused on the key components of the “Oocyte Meiosis” pathway under 

two dimensions involving the expressions of RNAs and proteins during oocyte meiotic 

maturation. In the protein-protein interaction analysis (Figure S5), the differential 

expression of the proteome was more significant than the transcriptome. Notably, 

CPEB1 and GTSF1 were significantly downregulated in both transcriptome and 

proteome, while the expression patterns of BUB1b, SLBP, H1foo, and RBX1 were 

downregulated at the RNA level and upregulated at the protein level. These results 

showed that the expression of RNAs and proteins were not always consistent in the 

cellular biological processes, and the expression level of proteins could represent the 
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state of the cells much more realistically. In addition, the expression of FBXO43, 

MYT1, CDC20, and CDC25c were absent in the proteomic analysis results, which 

implied that the depth of the single-cell proteome analysis should be further improved. 

Long non-coding RNAs (lncRNAs) were also identified in this single-cell multi-

omics profiles, which could not be translated into proteins, but had important functions 

in regulatory. Based on the GENCODE database, an average of 3389 lncRNAs were 

expressed in the GV-stage oocytes and an average of 2568 lncRNAs were expressed in 

the MII-stage oocytes. According to the differential expression analysis results of the 

transcriptome, 21 differentially expressed transcripts were identified as lncRNAs and 

only the function of Platr14 had been reported to be associated with embryonic 

development41. Among these lncRNAs, the expression of C86187 and Gm1965 were 

high (RPM > 500) enough to merit further investigation. 

 

Conclusions 

Single-cell multi-omics technique is an important means to explore life activities at 

the single-cell level. Current multi-omics approaches can only achieve the analysis of 

the genomes, epigenomes, and transcriptomes from the same single cells. In the present 

work, we developed the scSTAP-based single-cell multi-omics analysis platform to 

realize the simultaneous in-depth analysis of the transcriptome and proteome in single 

cells. The deep and quantitative transcriptome and proteome datasets from the same 

single-cell individuals were obtained for the first time. These data provide an 
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unprecedented opportunity to understand the correlation between the transcriptome and 

proteome expression at the same individual level of single cells. Different from the 

conclusion obtained in previous studies that the transcriptome and proteome expression 

were poorly correlated, we found that even though the transcripts and proteins 

expressed of many (~50%) genes had low correlations (CCs < 0.3), at the individual 

gene level, the transcript and protein expression of some genes were highly correlated, 

and even the transcript expression of several genes were negatively correlated with the 

protein expression. These findings show that the transcription and translation process 

in the single-cell level is a complex multifactorial regulatory process, which provides 

crucial insights into the studies of cellular regulatory networks. We believe such a 

single-cell transcriptome-proteome analysis approach will provide a powerful tool with 

broad application in single-cell and biomedical research and will promote new 

breakthroughs in cellular and molecular biology, e.g. providing the solid data 

foundation for the study of the transcriptome-protein relationship—a fundamental 

biological question related to the central dogma. 

Oocytes, as an important type of single-cell samples with reproductive and genetic 

ability, are one of the important objects in single-cell multi-omics research. At present, 

few research has been done on the proteome analysis of oocytes, and the analysis depths 

are still limited to hundreds of proteins42,43, while no research has been conducted on 

the simultaneous analysis of transcriptome and proteome in single oocytes. Our 

approach not only realized the simultaneous analysis of transcriptome and proteome in 

the same single mouse oocytes, but its analysis depth also exceeds the results of the 
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conventional single-omics approaches34,44, which could provide important technical 

support for research on the reproductive development and quality assessment of oocytes. 

In the future, the scSTAP approach could be further improved by adopting the multi-

labeling transcriptome and proteome analysis techniques, such as using barcodes in 

RNA-sequencing and tandem mass tags (TMT) in proteomic analysis, to significantly 

increase the throughput of single-cell multi-omics analysis. Its application could also 

be extended to more different sources and types of single-cell samples. Furthermore, 

the present platform could also be further developed to achieve the simultaneous 

analysis of three-omics or more within a single-cell individual, such as genomics, 

epigenomics, transcriptomics, proteomics, and metabolomics analysis, by taking the 

advantage of the SODA technique in flexibly manipulating trace amounts of liquids as 

well as utilizing other existing single-cell omics analysis techniques.  
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Figures 

 

Fig. 1 Schematic diagram of the scSTAP platform and workflow for single-cell 

multi-omics analysis. The workflow includes the steps of single cell capture, cell lysis 

and sample splitting, transcriptome analysis, and proteome analysis. In the single cell 

capture, a capillary probe of the droplet manipulation module was used to pick up a 

single target cell into an insert tube reactor. In the cell lysis, the Lys-C and RapiGest 

solutions were used to lyse the single cell sample. In the precise sample splitting, the 

capillary probe was used to precisely split the cell lysate into two aliquots. The 

transcriptome of one aliquot was analyzed by the MATQ-seq workflow including the 

reverse transcription, PCR amplification, library preparation, and DNA sequencing. 

The proteome of the other aliquot was analyzed using shotgun proteomics method 

including protein reduction, alkylation, digestion and LC-MS/MS analysis. 
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Fig. 2 Performance of proteome analysis of the scSTAP platform. (A) Consistency 

analysis of single-cell sample splitting in proteome analysis. (B) Correlation coefficient 

of proteome expressions in the QC sample (n = 5). (C) Venn diagram of the identified 

protein groups in the QC sample (n = 5). (D) Identification numbers of protein groups 

in the oocyte samples at GV stage (n = 18) and MII stage (n = 18). (E) tSNE cluster 

visualization in single-cell proteome analysis of the oocyte samples at GV stage (n = 

18) and MII stage (n = 18). (F) Comparison of the typical protein intensity in the oocyte 

samples at GV stage (n = 18) and MII stage (n = 18). ***, p = 6.08 × 10−27 for PLAT, p 

= 3.67 × 10−21 for BUB1b, p = 1.38 × 10−14 for EZHIP and p = 7.90 × 10−13 for BCL2l10. 

**, p = 2.17 × 10−3 for RPS9 and p = 2.12 × 10−3 for DPPA5a. *, p = 1.51 × 10−2 for 

DPPA3 and p = 1.05 × 10−2 for ACTB. 
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Fig. 3 Performance of transcriptome analysis of the scSTAP platform. (A) Venn 

diagram of the identified genes in the intact single oocyte and a half of single oocyte 

samples. (B) Identification numbers of genes in single oocyte samples at GV stage using 

MATQ-seq (n = 6) and Smart-seq2 (n = 6). (C) Comparison of the gene numbers using 

MATQ-seq (n = 6) and Smart-seq2 (n = 6) in single oocyte samples at GV stage. **, p 

= 0.0022 for 0 < RPM ≤ 10, and p = 0.0022 for RPM > 100. Not significant (n.s.), p = 

0.31 for 10 < RPM ≤ 100. (D) Correlation analysis of gene expressions in the single 

oocyte samples using MATQ-seq (n = 6). 
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Fig. 4 Cluster analysis and differential expression analysis of single mouse oocytes 

during meiotic maturation. (A) Identification numbers of protein groups and genes in 

single mouse oocytes at GV stage (n = 9) and MII stage (n = 6). In average, 2599 ± 278 

protein groups and 22242 ± 1059 genes were quantified in the single mouse oocytes at 

GV stage. In addition, 2759 ± 130 protein groups and 16509 ± 3037 genes were 

quantified in the single mouse oocytes at MII stage. (B-C) Principal component analysis 

of single mouse oocytes at GV and MII stages based on expression matrix of 

transcriptome (B) and proteome (C). (D) UMAP cluster analysis of single mouse 
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oocytes at GV and MII stages for the multi-omics joint analysis based on the weighted 

nearest neighbor (WNN) algorithm. (E-F) Volcano diagrams of differential expressed 

transcripts (E) and proteins (F) in single mouse oocytes at GV and MII stages. (G) 

Volcano diagrams of differential expressed genes in both transcriptome and proteome 

from single mouse oocytes during meiotic maturation. 
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Methods 

Establishment of the scSTAP platform 

The scSTAP platform was composed by three modules, including a single-cell 

capture & droplet manipulation module, a single-cell transcriptomic analysis module 

and a single-cell proteomic analysis module. The single-cell capture & droplet 

manipulation module was built on the basis of the sequential operation droplet array 

(SODA) strategy previously developed in the authors’ group32,33. It consisted of a 

syringe pump, a capillary probe with a tapered tip and a microscope, which were 

installed on x-y-z translation stages. The single-cell transcriptomics analysis module 

included a thermocycler, a sonicator, and a sequencing system. The single-cell 

proteomic analysis module was composed of a nanoflow-liquid chromatograph with an 

autosampler and a trapped ion mobility spectrometry-mass spectrometer. A capillary 

column with an integrated MS spray tip was prepared with C18 stationary phase. 

Mice and collection of oocytes 

The study followed the ethical guidelines of the Animal Research Committee of 

Zhejiang University. Wild-type (WT) female C57BL/6J mice were purchased from 

Beijing Weitahe Laboratory Animal Technology Co. All mice acclimated for a week in 

a controlled environment with 12 h light per day, air humidity of 50–70%, and 

temperature between 20 °C and 22 °C. To collect the oocytes at fully grown GV stage, 

around six-weeks-old to eight-weeks-old female mice were injected with 7 IU of 

pregnant mare serum gonadotropin (PMSG) and humanely sacrificed 44 h later. Then 
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the oocytes at fully grown GV stage were collected in the M2 medium. For collecting 

the oocytes arrested in second meiotic metaphase (MII stage), approximately 48 h after 

PMSG (7 IU) injection, 7 IU of human chorionic gonadotropin was injected into female 

mice. After an additional 20 h, cumulus-oocyte complexes (COCs) were surgically 

removed from fallopian tubes. Then the oocytes at MII stage were collected in the M2 

medium from COCs after digestion of 300 IU/mL hyaluronidase. 

Procedures of the scSTAP platform 

A schematic workflow of the scSTAP platform for single-cell multi-omics analysis 

is shown in Figure 1. First, single oocyte cells were sucked into the capillary probe and 

pushed into the insert tube reactors to form nanoliter-scale droplets encapsulating a 

single cell in each droplet. Next, an enzyme assisted method was used to perform the 

cell pre-lysis by sequentially adding Lys-C and RapiGest solutions into each droplet. 

After the cell lysis, the droplets containing cell lyses were split into two aliquots using 

the capillary probe connected with the syringe pump. One aliquot was added into RNase 

inhibitor and Triton X-100 solutions for analysis of transcriptome, and the other aliquot 

left in the reactor was used for proteomic analysis. 

In the single-cell transcriptomic analysis, the droplet was analyzed by the MATQ-

seq technique31 including the reaction of reverse transcription and second-strand 

synthesis in PCR tubes. Briefly, in the reverse transcription, the reverse transcription 

mix was added into each droplet, and the droplets were treated with ten cycles of 

annealing (ramping from 8 °C to 50 °C) on the thermocycler. After reverse transcription, 
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the residual primers were digested by T4 polymerase at 37 °C for 40 min and 80 °C for 

20 min, and then the RNAs were digested by RNase-H and RNase-If at 37 °C for 15 

min and 72 °C for 15 min. Next, dC-tailing and second strand synthesis were performed 

according to the protocol described in the MATQ-seq technique31. The PCR 

amplification of the droplets were conducted with a 28-cycle PCR program. 

In the single-cell proteomic analysis, the droplet was analyzed using an improved 

deep single-cell proteomic technique developed by the authors’ group. Briefly, tris(2-

carboxyethyl)-phosphine (TCEP), iodoacetamide (IAA), and trypsin solutions were 

sequentially added into the droplet to achieve protein reduction, alkylation, and 

enzymatic digestion. 

Library preparation and sequencing 

After PCR amplification, pooled libraries were purified with 1.2X AMPure XP beads 

into PCR-grade water. The ABclonal Rapid Plus DNA Lib Prep kit of Illumina was 

used to construct the PCR product library according to the protocol provided with the 

kit. The cDNA was firstly sheared to 300 bp using a Covaris S220 sonicator. End repair 

and A-tailed was then performed using a NGS Fast DNA Library Prep kit of Illumina. 

T4 DNA ligase was used to ligate adaptors to samples. Libraries were then diluted and 

sequenced on a NovaSeq 6000 machine by Haprolos, using the NovaSeq S4 reagent kit 

v1.5 (300 cycles). 
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LC-MS/MS analysis 

After the pretreatment, the droplet containing the digested peptides was injected into 

the capillary column by the autosampler of the liquid chromatograph. The MS/MS 

analysis of the separated peptides was performed by the mass spectrometer equipped 

with a nano-spray ion source. The acquisition mode of diaPASEF was used in the 

analysis of the oocyte samples, with an isolation width of 25 m/z, and collision energy 

range of 20–47.3 eV in collision-induced dissociation (CID). For the conditions of data 

dependent acquisition (DDA) in the PASEF mode, the mass range was 300–1500 m/z 

and the capture width was 2–3 m/z, while the collision energy range was the same as 

the diaPASEF mode. 

Data analysis 

The raw transcriptome sequencing data were trimmed using Cutadapt (version 4.0) 

to remove primer sequences, followed by trimming of the extra bases generated by dC-

tailing. The reads were then mapped to the genome using STAR software (version 

2.7.10a). Gene annotations were performed using Gene Code Annotation Release M29 

(GRCm39, GENCODE). After retrieving the mapping information of the reads, feature 

counts were used to count the gene expression level. The numbers of total reads were 

summarized to normalize the gene expression. The unit of RPM is defined as the reads 

per one million total reads. Gene expression level is defined by the number of reads of 

a gene divided by the total number of reads of all genes and multiplied by 1,000,000. 

In addition, the raw data of the Smart-seq2 method were provided by LC-Bio Co. 
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(Hangzhou, China). 

The raw data of proteomics were analyzed by Spectronaut software (version 

15.6.211220.50606) with the default settings against the UniProt database 

(UP000000589_10090.fasta, Mus musculus: 21,985 entries). The post analysis and 

visualization of bioinformatics data were conducted by corresponding R packages. The 

interaction networks were analyzed by STRING database (version 11.5) and visualized 

by Cytoscape software (version 3.9.1). 
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