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Abstract 3 
 4 

 5 

Medulloblastomas (MBs) are the most common malignant childhood brain tumors, yet the 6 

origin of the most aggressive subgroup-3 form remains elusive, impeding development of effective 7 

targeted treatment strategies. Previous cell-type analyses of mouse cerebella or human counterparts 8 

from frozen tissue nuclei have not fully defined the compositional heterogeneity of MBs. Here, we 9 

undertook an unprecedented single-cell profiling of freshly-isolated human fetal cerebella at 10 

different developmental stages to establish a reference map for delineating the hierarchical cellular 11 

states in MBs. We identified a unique transitional cerebellar progenitor connecting neural stem cells 12 

to neuronal lineages in human fetal cerebella. Intersectional analysis revealed that the transitional 13 

progenitors were enriched in aggressive MB subgroups, including group-3 and metastatic tumors. 14 

Integrated single-cell multi-omic profiling revealed underlying regulatory networks in the 15 

transitional progenitor populations, including transcriptional determinants HNRNPH1 and SOX11, 16 

which are correlated with clinical prognosis in aggressive group-3 MBs. Genomic profiling and Hi-17 

C analyses identified de novo long-range chromatin loops juxtaposing HNRNPH1/SOX11-targeted 18 

super-enhancers to cis-regulatory elements of MYC, an oncogenic driver for group-3 MBs. 19 

Targeting the transitional progenitor regulators inhibited MYC expression and MYC-driven group-3 20 

MB growth. Together, our integrated single-cell atlases of human fetal cerebella and MBs reveal 21 

important cell populations predisposed to transformation and regulatory circuitries underlying 22 

tumor cell state evolution and oncogenesis, highlighting hitherto unrecognized transitional 23 

progenitor intermediates predictive of disease prognosis and potential therapeutic vulnerabilities. 24 

  25 
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Introduction 1 

Medulloblastomas (MBs), the most common malignant childhood brain tumors1,2, are 2 

classified broadly into four major subgroups: Sonic Hedgehog (SHH), Group-3 (G3), and Group-4 3 

(G4) MBs, which all arise from the cerebellum 1,3, and WNT MB, which originates from the lower 4 

rhombic lip in the dorsal brainstem 1,4. The developing cerebellum is composed of distinct neural 5 

cell types which arise from 3 distinct progenitor zones with spatiotemporally specific 6 

developmental hierarchies 5,6. GABAergic neuronal lineage cells arise from the cerebellar 7 

ventricular zone (VZ) adjacent to the fourth ventricle with Purkinje cells accounting for the large 8 

majority of neuronal populations in the early cerebellar anlage5,6. Glutamatergic lineages arise from 9 

the dorsally located rhombic lip (RL). RL-derived granule cell progenitors (GCP) exit the RL and 10 

migrate rostrally over the developing cerebellar anlage to form the external granule cell layer (EGL), 11 

where they proliferate and differentiate to granule neurons. The RL also gives rise to additional 12 

glutamatergic populations including unipolar brush cells (UBC) which exit the RL and migrate 13 

directly into the cerebellar anlage 5,6. 14 

Our understanding of the origins of cerebellar tumorigenesis is largely informed by molecular, 15 

cellular, and histological analyses from rodent models7-9. However, compared to the mouse 16 

cerebellum, the human cerebellum has a 750-fold larger surface area with higher cell numbers and 17 

increased foliar and lineage complexity 10-12. The developing human cerebellum has expanded 18 

primary progenitor populations relative to rodents including the expansion of the cerebellar VZ to 19 

include a sub-ventricular zone (VZSVZ) and compartmentation of the RL into a RLVZ and RLSVZ 13,14. 20 

The reactivation of embryonic developmental programs and emergence of stem-like cell plasticity 21 

have been implicated in tumorigenesis and treatment resistance in various types of cancers 22 

including MB15-17.  Despite recent bulk and single-cell transcriptomic profiling of the developing 23 

human brain 18,19, prenatal development of the human cerebellum remains incompletely 24 

characterized. Histological and single-nucleus RNA-seq (snRNA-seq) analyses of human fetal 25 

cerebella revealed RL progenitors distinct from those in the mouse cerebellum 13,14. This suggests 26 

that the developing mouse cerebellum may not fully recapitulate the cells-of-origin or cell types in 27 

human cerebellar tumors. However, snRNA-seq is limited by lower amounts of mRNA in nuclei 28 
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compared to whole cells, which may present a challenge for identifying rare or transient cell 1 

populations 20,21. 2 

Deconvolution analysis of mouse cerebellar cell types and MBs suggests that SHH and G4 3 

MBs resemble granular cell progenitors (GCP) and unipolar brush cells (UBCs), respectively 7,8,22. 4 

However, mouse analogs of human G3 MB, the most aggressive tumor among MB subgroups with 5 

MYC amplification and the worst prognosis 23-25, have not been identified based on mouse 6 

cerebellar cell types, and the cell-of-origin for G3 MB remains elusive.  Here, we carried out an 7 

unparalleled single-cell transcriptomics profiling of whole cells from freshly isolated human fetal 8 

cerebella to define cell identities, dynamics of transitional cell states, and their lineage trajectories 9 

during early human fetal cerebellar development. We further compared them to single-cell 10 

transcriptomes of MB subgroups to elucidate the developmental programs and cell populations that 11 

are vulnerable to tumor transformation. We identified a previously unrecognized transitional 12 

intermediate progenitor population in the human fetal cerebellum as a potential cell of origin for 13 

aggressive MBs such as G3 tumors. Moreover, integrative single-cell multi-omics (scRNA-14 

seq/snATAC-seq) together with deep-sequencing 3D chromosome Hi-C analyses revealed unique 15 

tumor driver networks and enhancer hijacking events correlated with the growth of aggressive G3 16 

MBs, pointing to potential therapeutic avenues for treatment of these deadly pediatric brain tumors. 17 

 18 

Results 19 

Single-cell transcriptomic analysis reveals previously uncharacterized transitional 20 

intermediate progenitors in the human fetal cerebellum 21 

To characterize the cellular diversity of prenatal progenitors during human cerebellar 22 

development, we isolated fresh cerebellar tissues from aborted fetuses at post-conception weeks 23 

(PCW) 8 to 17 of gestation and profiled approximately 95,542 cells by 10x Genomics single-cell 24 

RNA sequencing (scRNA-seq) after quality control and doublet removal 26. Higher numbers of 25 

genes or read counts per cell were obtained in the scRNA-seq data from fresh fetal cerebellar tissues 26 

than those from the snRNA-seq and Split-seq experiments13 (Extended data Fig. 1a). Unsupervised 27 

clustering of individual cell transcriptomes visualized by t-SNE 27 identified 23 clusters in fetal 28 
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 5 

cerebella (Fig. 1a and Supplementary Table 1). Clustering was independently verified with UMAP 1 

plotting (Extended data Fig. 1b). Similar to previously identified mouse and human cell types 7,13, 2 

we annotated the major cell types in human fetal cerebella by interrogating the expression patterns 3 

of canonical markers for different cell lineages including neural stem cells (NSCs), GCP lineage 4 

cells, unipolar brush cells (UBC) and their progenitors (UBC_P), Purkinje cells, GABA 5 

interneurons, microglia, monocytes, glial progenitors, oligodendrocytes, ependymal cells, vascular 6 

cells, and endothelial cells; the frequencies of these cell types varied over time post-conception (Fig. 7 

1a,b).   8 

To focus on neural cell types, the presumed origin of MB, in more depth, we investigated cell 9 

lineage trajectories by utilizing Monocle analysis28, which can robustly infer branching trajectories 10 

along with developmental decisions in an unsupervised manner. We predicted the NSC population 11 

based on the stemness score as the start point and showed a trajectory through an intermediate 12 

population that we refer to as transitional cerebellar progenitors (TCPs) to the three main neuronal 13 

lineage branches, GCP, UBC and Purkinje cell lineages (Fig. 1c). Similarly, cell trajectory analysis 14 

by STREAM 29  also predicted the TCP state in the developmental hierarchy of cerebellar neural 15 

precursor cells (Extended data Fig. 1c). To define the expression dynamics along the trajectory, we 16 

used Slingshot pseudo-time analysis 30 through a diffusion map approach and found a successional 17 

gene expression pattern from NSCs (e.g., SOX2, NES, HES5) to TCPs (e.g., HNRNPH1, SOX11, 18 

CTNNB1) (Fig. 1d and Extended data Fig.1d). From PCW 8 to PCW 17 there was an increase in the 19 

proportion of Purkinje, then GCP and UBC lineage cells (Fig. 1e), consistent with known dynamic 20 

changes in the cellular composition of these major cerebellar cell types 13. Importantly, TCP cells 21 

were abundantly derived from samples at PCW 12 and 13, a transitional period from the first to 22 

second trimester, but their frequency gradually decreased after PCW 14 (Fig. 1e), suggesting that 23 

they are a transient cell population in fetal development. Further sub-clustering analysis of cell 24 

cycle indicated that a TCP population also expressed cell-cycle genes in G1/S and G2/M phases and 25 

a proliferative marker Ki67 (Extended data Fig. 1e), suggesting that a subset of TCPs is in a mitotic 26 

state. 27 

To validate the robustness of our cluster-specific gene expression observations, we plotted the 28 
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expression of signature genes that are enriched in each cell population and showed that the signature 1 

genes are highly cell-type-specific in distinct progenitor cells (Fig. 1f, g). Among them, the TCP 2 

population was enriched in expression of HNRNPH1 and SOX11, and was distinct from previously 3 

defined NSC, GCP, and UBC lineage cells (Fig. 1f, g and Extended data Fig. 1f). The gene 4 

expression signature of TCP cells partially overlapped with but is distinct from that of RL cells, a 5 

unique population in the human fetal cerebellum 13 (Extended data Fig. 2a-d).  6 

To determine if the human cerebellar progenitor populations had orthologs in the mice, we 7 

compared the populations we identified to published reference profiles of developing mouse 8 

cerebella 7 by using a Support-Vector-Machine (SVM) algorithm for two-group classification 31 and 9 

LIGER analysis 32. The majority of cerebellar populations of human fetuses shared similarity with 10 

mouse counterparts (Fig. 1h and Extended data Fig. 2e,f). However, molecular features of the TCP 11 

population were not present in any known mouse cerebellar cell population (Fig. 1h and Extended 12 

data Fig. 2e-g), suggesting that TCPs are a newly identified neural progenitor population in human 13 

fetal cerebella. Our observations revealed that the human fetal cerebellum consists of diverse cell 14 

populations including NSC, GCP and UBC lineage cells, as well as a previously unrecognized 15 

transitional intermediate phenotype, TCPs. Thus, single-cell differential gene expression analyses 16 

allow us to categorize distinct neural lineage progenitors during a heterogeneous developmental 17 

window of human fetal cerebella. 18 

 19 

In vivo validation of the intermediate progenitors in the human fetal cerebellum  20 

To validate TCPs as a spatiotemporally specific progenitor population during human fetal 21 

cerebellar development, we examined the expression of HNRNPH1 and SOX11, the most highly 22 

enriched TCP signature markers, in human fetal cerebella. We found that HNRNPH1+ and SOX11+ 23 

TCP cells were increased in regions adjacent to the NSC (SOX2+) niche in the VZ from PCW 9 to 24 

PCW 12, a transitional period from the first to second trimester (Fig. 2a), but reduced progressively 25 

after the second trimester beginning at PCW 14 (Fig. 2a, b). This is consistent with the transient 26 

expression pattern of TCP cells based on lineage trajectory analysis.  27 

In the developing posterior lobule, a RL progenitor cell pool was identified in the human RL 28 
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region that has not been detected in other organisms 13,14. Markedly, we found that the TCP cell 1 

population with robust expression of HNRNPH1 and SOX11 was highly enriched in the transitional 2 

zone adjacent to the cell dense RL region at PCW 12 compared with other stages (PCW 9, 14 ad 16) 3 

(Fig. 2c,d), consistent with their transient cell states, and in the RLVZ region, while low expression 4 

of the TCP signature markers were detected in the RLSVZ region  (Fig. 2e). Similar to the cerebellar 5 

VZ, expression of HNRNPH1 and SOX11 was detected in a population of SOX2+ NSCs in the RL 6 

transitional zone (Fig. 2f). 7 

Our trajectory analysis predicted that the TCP population may give rise to GCP (ATOH1+) and 8 

UBC (EOMES+) populations (Fig. 1). To validate this in situ, we examined the transitional zone for 9 

each of these populations for TCP markers. We detected a sparse population of HNRNPH1+ cells 10 

that co-labeled with EOMES and PAX6 in the transitional zone (Fig. 2g,h), wherein PAX6+ 11 

progenitors can give rise to both GCPs and UBCs 33. This is in line with a potential lineage 12 

trajectory from TCPs to UBC populations through PAX6+ TCP intermediates. In addition, a 13 

population of ATOH1+ GCP progenitors in the posterior EGL layer were also co-labeled with 14 

HNRNPH1 (Fig. 2i). Consistent with the hypothesis that a population of TCPs contributes to the 15 

development of GCPs, UBCs, and Purkinje cells, pseudo-temporal ordering of cell state evolution 16 

by Slingshot 30 and STREAM 29 analyses revealed that a cell lineage trajectory initiated in NSCs 17 

branches through the TCP subpopulation, which may serve as a precursor to generate GCP and 18 

UBC lineage cells (Fig. 2j,k and Extended data Fig. 3). 19 

 20 

Single-cell transcriptomic analyses reveal intermediate TCP-like cells in aggressive 21 

medulloblastoma 22 

Although GCP and UBC cells have been implicated as the cells of origin for SHH and G4 MBs, 23 

respectively 7,8, the cellular origin for G3 MBs has not been determined.  To identify progenitor 24 

cells in the developing cerebellum that reflect the molecular features of cerebellar MBs (SHH, G3, 25 

and G4 MB), we first compared the human fetal cerebellar cell-type profiles to bulk transcriptomes 26 

of the MB cohorts from the Children Brain Tumor Tissue Consortium using CIBERSORTx 34. 27 

Consistent with previous observations 7,8, the transcriptomic signatures of SHH-MB from children 28 
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 8 

(>3 years old) and infants (≤ 3 years old) displayed strong similarity to GCPs (Fig. 3a), although 1 

child SHH tissues also exhibited weak similarity to the TCP signature. In addition, the 2 

transcriptome profile of G4 MBs resembled that of UBCs (Fig. 3a). Strikingly, of the MB subgroups 3 

evaluated, G3 MB tissues (including MYChigh and MYClow tumors) had the strongest similarity to 4 

human fetal TCPs (Fig. 3a).  5 

To further define the cellular identity of cerebellar MBs at the single cell level, we 6 

characterized a cohort of 26 MBs, including tumors from 18 patients newly diagnosed with MB, 7 

using scRNA-seq and snATAC-seq (the assay for transposase-accessible chromatin-seq) in matched 8 

tissues. These tumors included four SHH-MBs (45,731 cells), nine G3 MBs (82,834 cells), and 9 

thirteen G4 MBs (77,521 cells) with a median of 7,926 cells for scRNA-seq and 9,342 cells for 10 

snATAC-seq per tumor (Supplementary Table 2). We also included in our analysis previously 11 

reported transcriptomics data from 8 MB tumors 7. Next, we determined the transcriptional 12 

similarity between cell populations in MB tissues and distinct normal cell populations of the 13 

developing human cerebellum. Analysis of the tumor cell landscape identified TCP-like populations 14 

in all G3, G4, and SHH MBs in addition to tumor subtype-specific cell clusters such as populations 15 

enriched in MYC, NRL, and RPL in G3 MBs (Fig. 3b), populations enriched in EOMES, MYCN, 16 

NRL in G4 MB cells (Fig. 3c), and populations enriched in MYCN, GAP34, and MGP in SHH MBs 17 

(Fig. 3d). Unsupervised VECTOR trajectory analysis 35 predicted that the TCP-like cells in SHH, 18 

G3, and G4 MB tumors were in an undifferentiated state along developmental trajectories toward 19 

different cell types in each MB subgroup (Extended data Fig. 4a-c). Consistently, reciprocal analysis 20 

of the overlaps between tumor cells and primary fetal cerebellar tissues using ProjecTILs36, an 21 

algorithm for reference atlas projection, revealed that the MB tumor cells from G3, G4 and SHH 22 

subgroups also exhibited TCP cells/states present in the human fetal cerebellum (Extended data Fig. 23 

4d-g).  24 

Correlation between cell clusters observed in MB subgroups with human fetal cerebellar cell 25 

types showed that TCP-like cells in tumor tissues transcriptionally mimicked the normal TCP cell 26 

populations with high similarity scores, whereas neoplastic cells in G4 MBs (such as EOMES+ and 27 

MYCN+ clusters) and in SHH MBs (such as MGP+ and GAP43+ clusters) had gene signatures 28 
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similar to UBCs and GCPs, respectively (Fig. 3e). Consistent with this, using the expression 1 

signatures of normal human cerebellar cell populations to decompose the transcriptomes of a cohort 2 

of human MB subgroup tumors with CIBERSORTx 37, we found that TCP-like populations were 3 

present in the MB subgroups with higher abundances in G3 and G4 MBs than in SHH-MBs (Fig. 4 

3f). As shown in Fig. 3g, all TCP-like cells in MB tumors exhibited the TCP signatures including 5 

HNRNPH1, SOX11, RASGEFIB, and CTNNB1. HNRNPH1 and SOX11 are elevated in a variety of 6 

cancers and involved in tumorigenesis 38,39, while CTNNB1 can drive tumor formation in the 7 

cerebellum if normal lineage restriction is lifted 40. In addition to TCP signature genes, TCP-like 8 

populations in individual SHH, G3, and G4 MB tumors also expressed subgroup-specific signatures: 9 

The SHH-MB TCP-like cells expressed PDLIM3, MGP, GAP43, and NHLH2; G3-MB TCP-like 10 

cells expressed MYC, PVT1, LMO3, HLX, IMPG2, NRL, and CRX; and G4-MB TCP-like cells 11 

expressed EOMES, LMX1A, GABRB3, NEUROD2, BARHL1, and KCNA1 (Fig. 3g and 12 

Supplementary Table 3). These observations suggest that there is a tumorigenic evolution of TCP 13 

cells into specific neoplastic TCP-like cells in individual MB subgroups, possibly caused by distinct 14 

driver mutations.  15 

Next, we generated cell-state plots based on the marker gene expression 41 to analyze the 16 

distributions of tumor cell states in different MB subgroups. We observed specific enrichment of 17 

tumor cell states associated with MB subgroups (Fig. 3h). In contrast to the relatively restricted 18 

tumor cell state in SHH MB, we detected a MYC+ and NRL+ cell states as well as a state with a G4 19 

MB-like signature in G3 MBs (Fig. 3h). The G4 MB tumors were enriched in G4 MB-specific states 20 

and also a cell state with an NRL+ G3 signature (Fig. 3h). These observations suggest that a cohort 21 

of G3 and G4 tumors may have cells with either mixed or intermediate plastic states.  22 

 23 

Distinct tumor cell populations in G3 and G4 MBs 24 

G3 and G4 MBs share a certain degree of similarity in terms of signature genes based on bulk 25 

transcriptome and DNA methylation profiles 8,42. It has been proposed that there may exist 26 

intermediate cell populations exhibiting characteristics shared between G3 and G4 tumors based on 27 

the analysis of selected G3- and G4-expressing gene sets 8. To evaluate this hypothesis, we analyzed 28 
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two MBs (BT-309 and BT-325) that showed a mixture of G3 and G4 signatures based on a DNA 1 

methylation profiling array (Methylation EPIC; Fig. 4a). The analysis with the previously defined 2 

group 3/4 B/C scoring of selected marker genes 8 suggested a small population of cells with the 3 

profiles overlapping those of both G3 and G4 tumor cells (Extended Data Fig. 5a), while the 4 

majority of G3 and G4 cells were non-overlapping. However, unbiased single-cell clustering 5 

analysis of transcriptomes revealed distinct G3 and G4 tumor cell populations without appreciable 6 

intermediate states expressing both G3 and G4 signatures (Fig. 4b, c). This observation suggests 7 

that a mixture of distinct G3 and G4 tumor populations underlies the heterogeneity of the tumors 8 

with mixed G3 and G4 signatures. Moreover, distinct cell states were detected within both G3 and 9 

G4 MB tumors (Fig. 4d). Single cell copy number variation (CNV) analysis further confirmed that 10 

G3- and G4-like populations with distinct CNV patterns were present within the individual tumors 11 

(Extended data Fig. 5b). Together, these data suggest that a cohort of G3 and G4 MB tumors may 12 

harbor a mixture of G3- and G4-specific cell populations rather than a G3/G4 cell state continuum. 13 

 14 

Frequency of TCP-like cells and G3 MB gene signature increases during metastasis  15 

The primary BT-325 tumor, which harbored both G3-like and G4-like tumor cells, 16 

metastasized to the leptomeningeal surface of the brain. When compared with the primary tumor 17 

cells, the metastatic tumor had a substantial increase in frequencies of both TCP-like cells and 18 

MYC+ G3-like tumor cell populations but a decrease in G4-like cells (Fig. 4e-g). Similarly, cell-19 

state plot 41 indicated an enrichment in TCP-like and MYC+ tumor cell states in the metastatic tumor 20 

coupled with a decrease in EOMES+ G4-like cell states when compared to the primary tumor (Fig. 21 

4h). The gene signatures of TCP-like and MYC+ G3 tumor cells were enriched in the metastatic 22 

tumor (Fig. 4i). Furthermore, CNV analysis using a bulk DNA methylation array confirmed MYC 23 

gene amplification on chromosome 8 in the metastatic tumor (Fig. 4j), which is in accordance with 24 

the higher level of MYC expression in the metastatic tumor compared to the primary tumor (Fig. 4k). 25 

Similar increase in frequencies of TCP-like cells during metastasis was also observed in additional 26 

paired primary and metastatic G3 tumors analyzed by single-cell RNA-seq profiling or 27 

histochemistry (Extended data Fig.5c-f), which is in concordance with the high rate of metastasis in 28 
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G3 tumors 43. These data suggest that TCP-like cells are enriched selectively in the metastatic 1 

tumors. 2 

 3 

Integrating single-cell omics identified core regulatory networks driving TCP transformation 4 

in aggressive MBs 5 

To decipher how dynamic accessibility at cis-regulatory elements (CREs) relates to the gene 6 

regulatory programs in TCP-like cells from aggressive G3 and G4 MBs, we performed single-nuclei 7 

ATAC-seq (snATAC-seq) to evaluate chromatin accessibility landscapes. High-quality nuclei were 8 

obtained from a set of fresh G3 and G4 MB tumors for which matched scRNA-seq data were also 9 

generated (Fig. 5a,b and Extended data Fig. 6a,b). By integrating scRNA-seq and snATAC-seq 10 

datasets using an ArchR software 44, we identified reproducible cell populations based on their 11 

epigenomic profiles that corresponded to gene expression profiles (Fig. 5c, d). Utilizing the marker 12 

gene integration matrix, we annotated all major cell populations including G3-like TCPs, MYC- and 13 

NRL-enriched clusters in G3 MBs, and G4-like TCPs, EOMES- and KCNA1-enriched clusters in G4 14 

MBs (Fig. 5c, d). By correlation of accessibility of promoter and gene body elements with target 15 

gene expression 45, we found that the positively correlated peak-to-gene pairs were mostly 16 

subcluster-specific (Fig. 5e). The subcluster-specific genes associated with open accessible 17 

chromatin included SOX11, HNRNPH1, RASGEF1B, and EIF5A in TCP-like subpopulations of 18 

both G3 and G4 MBs. In MYC+ G3 MB subpopulations, the genes were MYC, YTHDF2, MARK4, 19 

and AKT2 while in EOMES+ G4 MB subpopulations they were EOMES, LMX1A, and MYCN (Fig. 20 

5e). To further validate these findings, we analyzed cluster-based pseudo-bulk ATAC-seq signals 21 

and showed locus-specific chromatin accessibility at the gene bodies linked to different MB 22 

subgroups (Fig. 5f). The signals of open chromatin peaks corresponded to MB subgroup-enriched 23 

genes such as the MYC and NRL loci in G3 tumor cells, EOMES and LMX1A in G4 tumor cells, and 24 

SOX11 and HNRNPH1 loci in TCP cells (Fig. 5f). 25 

To determine the temporal relationship between chromatin accessibility and gene expression, 26 

we ordered the accessibility peak-to-gene pairs based on their CRE accessibility as a function of the 27 

integrated pseudotime. We identified paired accessible chromatin regions correlated to target gene 28 
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expression in G3 and G4 MB tumor cells (Fig. 5g,h). This systematic analysis showed that the CRE 1 

accessibility of TCP-like cell states in G3 tumors appeared to precede that of the MYC+ tumor cell 2 

cluster, which was followed by NRL+ tumor cell cluster (Fig. 5g). Motif analysis indicated an 3 

enrichment of binding motifs for SOX11, HNRNPH1, and TWIST1 in the TCP-like subpopulation, 4 

whereas TCF3 and MYC were enriched in the MYC+ G3 subpopulation, and NR2F1 and PAX5 5 

motifs were enriched in the NRL+ G3 subpopulation (Fig. 5g). Gene ontology (GO) analysis of 6 

ATAC-seq peaks and transcription factor (TF) motifs differentially enriched in G3 MB clusters 7 

showed an enrichment of epithelial cell development, epithelial-to-mesenchymal transition (EMT), 8 

and TGFβ/BMP signaling in the TCP-like population, while MYC+ and NRL+ subpopulations 9 

exhibited enrichment in cell-cycle phase transition, cell migration, and Notch signaling, and 10 

enrichment in photoreceptor cell development and Hippo signaling pathways, respectively (Fig. 5g). 11 

The enrichment in EMT, TGFβ signaling, and cell migration has been shown to contribute to the 12 

high metastatic potential of G3 MBs 46,47. 13 

Similarly, we identified the subcluster-specific ATAC-seq peaks and TF motifs differentially 14 

enriched in G4 MBs. The accessibility of the TCP-like population emerged prior to that of the 15 

KCNA1+ and EOMES+ cell clusters. As in the TCP-like population in G3 tumors, an enrichment of 16 

epithelial cell development, neural progenitor cells, and UBC signatures such as LMX1A, was 17 

observed in TCP-like cells in G4 tumors (Fig. 5h). The KCNA1+ clusters were enriched in cell-cell 18 

adhesion, regulation of neuronal progenitors, and MAPK signaling pathways, while the EOMES+ 19 

G4 subpopulation was enriched in neuronal development, and HIF-1 and PI3K signaling pathways 20 

(Fig. 5h). The most enriched TF motifs in G4-like TCP cells were SOX11 and NEUROG1. In 21 

EOMES+ G4 subpopulations, FOXG1 and LMX1A motifs were enriched, whereas RORA and 22 

PKNOX1/2 motifs were enriched in KCNA1+ G4 subpopulations (Fig. 5h).  23 

To identify positive transcriptional regulators that control gene expression restricted to TCP-24 

like-cell populations, we integrated snATAC-seq and scRNA-seq data to identify TFs with gene 25 

expression scores that are positively correlated to changes in the accessibility of their corresponding 26 

motifs 44. TCP-like cell populations in G3 and G4 MBs showed an enrichment of TFs such as HLX, 27 

CRX, OTX2, BARHL1, and LMX1A in addition to TCP markers HNRNPH1 and SOX11 (Fig. 5i; 28 
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Extended data Fig. 6c and Supplementary Table 3). We further identified the subtype-resolved CRE 1 

sites co-accessible with the promoters of potential drivers for MBs including OTX2 and HLX, genes 2 

enriched in TCP-like cells in G3 tumors (Fig. 5j), as well as BARHL1 and PAX6, genes enriched in 3 

TCP-like cells in G4 tumors (Fig. 5k). Thus, integrating scRNA-seq and snATAC-seq allowed us to 4 

map CREs to genes and to identify the transcriptional regulators enriched at tumor subcluster-5 

specific CREs or putative enhancers. Co-accessibility of regulatory CREs and target gene loci might 6 

contribute to expression of MB subtype-specific drivers and their oncogenic programs.  7 

TCP-associated enhancer-hijacking promotes oncogenic programs in aggressive G3 MB  8 

Given that TCP signature markers SOX11 and HNRNPH1 were identified in CREs in TCP cell 9 

populations, we performed a Cut&Run genomic occupancy assay 48 in patient-derived MYC-driven 10 

G3 MB tumor cell lines (MB-004 and MB-002) compared with control non-transformed cells, 11 

human NSCs (hNSCs) and human astrocytes, to identify the direct targets of SOX11 and 12 

HNRNPH1 (Fig. 6a). We found that HNRNPH1 and SOX11 co-occupied the enhancer and 13 

promoter regions near transcriptional start sites marked by activating histone marks H3K27ac and 14 

H3K4me3 49 (Fig. 6b). Signals of the activating H3K27ac mark were higher in G3 MB cells than 15 

hNSCs or human astrocytes (Fig. 6c and Supplementary Table 4), suggesting a potential higher 16 

level of gene activation in G3 MB cells than control cells. HNRNPH1 and SOX11 targeted common 17 

and unique genomic loci in G3 MB cells (Fig. 6a, boxed). GO analysis indicated that the unique 18 

targets in G3 MB cells were associated with the genes regulating G3 MB oncogenesis (MYC, OTX2, 19 

PVT1, and CIP2A), TGFβ/BMP signaling (SMAD2 and TGFBR3), mitotic Ser/Thr kinase signaling 20 

(PLK1 and MAPK1), and cell cycle regulation (CHEK1, TOP2A, PCNA, and MCM2) (Fig. 6d). 21 

Consistently, expression of these genes was higher in G3 MB cells than control cells (Fig. 6e). 22 

Notably, HNRNPH1 and SOX11 targeted unique enhancer/promoter elements of the G3 signature 23 

genes, MYC and OTX2, in G3 MB cells but not in hNSCs or human astrocytes (Fig. 6f). Analysis of 24 

the consensus sequence motifs associated with sites targeted by HNRNPH1 and SOX11 using the 25 

HOMER program revealed binding motifs for TFs for cell growth such as SMAD4, TCF3, SOX21, 26 

and TEAD4 (Fig. 6g), wherein TGFβ/SMAD and HIPPO/TEAD signaling pathways have been 27 

shown to regulate tumor growth and metastasis 46,47,50. Thus, our results suggest that HNRNPH1 and 28 
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SOX11 may cooperate with these TFs to regulate downstream gene expression that drives the G3 1 

tumorigenic and metastatic programs.  2 

To determine whether SOX11/HNRNPH1-occupied enhancers correspond to distal regulatory 3 

elements for activation of G3 MB driver genes, we performed Hi-C chromosome conformation 4 

capture in patient-derived G3 MB (MB-004) and G4 MB (UPN3550) tumor cells and detected 5 

unique genomic looping in the two cell lines (Extended data Fig. 7a, b). To further define the 6 

chromatin interactions induced by structural variations, we used a NeoLoopFinder algorithm 51 to 7 

reconstruct local Hi-C maps surrounding breakpoints. We identified unique structural variation (SV) 8 

events that may impact gene expression in G3 MB and G4 MB cells and revealed distinct sets of the 9 

interacting genomic loci involved in neo-loop formation at loop anchors (Extended data Fig. 7c, d). 10 

The neo-loop formation through inter-chromosomal translocation in G3 MB cells placed potential 11 

promoter/enhancer elements on a chromosome 11 segment close to the promoter of the genes on 12 

chromosome 19 (Extended data Fig. 7e) such as PPP1R14A (CPI-17), which has been shown to 13 

drive oncogenic RAS signaling in human cancers 52. Consistently, expression of PPP1R14A was 14 

higher in the G3 MBs compared to SHH- and G4 MBs (Extended data Fig. 7f). These observations 15 

suggest that inter-chromosomal translocation or SV events might activate potential oncogenic 16 

drivers through enhancer-hijacking for tumorigenic programs in aggressive G3 MBs. 17 

Hi-C analysis indicated that the topologically associated domains in G3-MB cells harbored 18 

unique long-distance interactions with the enhancer and promoter regions of MYC (Fig. 6h). 19 

Analysis of super-enhancers based on large clusters of active transcriptional enhancers with 20 

H3K27ac depositions 53 identified a set of potential super-enhancers at the regulatory elements near 21 

the gene loci such as OTX2, DUX4, CASC8 and MYC in G3 MB cells (Extended data Fig. 8a). By 22 

integrating the long-range interacting sites with enhancer occupancy of HNRNPH1 and SOX11 in 23 

G3-MB cells and hNSCs, strikingly, we uncovered de novo chromatin interaction loops linking the 24 

distal super-enhancer clusters bound by HNRNPH1 and SOX11 upstream of CASC8 to the active 25 

promoter/enhancer elements of the MYC locus in the G3 MB cells but not in hNSCs (Fig. 6h), 26 

suggesting that this long-range chromatin looping of super-enhancers juxtaposing to the MYC locus 27 

may promote MYC expression in G3 MB cells, in keeping with high MYC expression in G3 MBs. 28 
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CRISPR interference (CRISPRi) targeting of SOX11/HNRNPH1 binding motifs in the distal super 1 

enhancers, but not a control enhancer site, resulted in significant downregulation of MYC expression 2 

in G3-MB cells (Fig. 6i), suggesting a critical role of the upstream super enhancers for MYC 3 

expression in G3-tumors. In addition, ChIP-qPCR assays showed that the level of H3K27ac 4 

occupancy on the enhancer/promoter in the loci of MYC and OTX2, another G3-MB-oncogenesis-5 

associated gene, was reduced substantially when either SOX11 or HNRNPH1 was knocked-down in 6 

G3 MB cells to a level nearing that of hNSCs (Fig. 6j and Extended data Fig. 8b). In contrast, this 7 

long-range interaction loop conformation was not detected in G4-MB cells (Fig. 6h), suggesting a 8 

unique enhancer hijacking event in the MYC locus for driving the oncogenic process in G3 MB.  9 

 10 

TCP-like signature gene expression is critical for G3 MB growth 11 

Based on the TCGA dataset, the expression level of TCP marker HNRNPH1 was higher in G3 12 

MB than other MB subgroups (WNT, SHH, and G4), whereas SOX11 expression was the highest in 13 

G4 MB (Fig. 7a). Notably, patients with high TCP scores (calculated for each patient as the 14 

weighted sum of expression of TCP signature genes) in G3 MB had worse prognosis than those 15 

with low TCP scores (Fig. 7b), while the prognostic impact was not observed in other MB 16 

subgroups (WNT, SHH and G4 MB) (Extended data Fig. 9a-c). 17 

To verify that protein products of the TCP marker genes are also expressed, we performed 18 

immunostaining for HNRNPH1 and SOX11 in a set of human MB tissues. We detected expression 19 

of both HNRNPH1 and SOX11 in G3- and G4-MB tissues (Fig. 7c) and co-expression of 20 

HNRNPH1 and SOX11 in the nucleus of a population of cells in G3 MBs (Fig. 7d). Given that 21 

HNRNPH1 and SOX11 also co-occupied CREs in G3-MB cells, we performed a proximity ligation 22 

assay (in situ PLA) to determine if SOX11 and HNRNPH1 can physically interact. Expression of 23 

HNRNPH1 and SOX11 was detected in the same foci in the nuclei of G3-tumor cells, and depletion 24 

of HNRNPH1 abrogated the PLA signal (Fig. 7e). These data suggest that HNRNPH1 can directly 25 

interact with SOX11 and is critical for the complex formation in G3-MB tumor cells. 26 

To determine the roles of HNRNPH1 and SOX11 in the growth of G3- and G4-MB tumor cells, 27 

we depleted tumor cells of HNRNPH1 or SOX11 using shRNAs expressed by lentivirus vectors. 28 
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We found that silencing of HNRNPH1 or SOX11 in a patient-derived G3-MB cell line (MB-004) 1 

substantially reduced expression of MYC (Fig. 7f) and the genes related to G3 MB-associated 2 

signature, EMT, and TGF-beta signaling, while increasing expression of neuronal differentiation 3 

genes (Extended data Fig. 10a-c). In addition, knockdown of HNRNPH1 or SOX11 inhibited tumor 4 

sphere formation in G3-MB-derived cell lines MB-004 and D425 (Fig. 7g, h). Moreover, the growth 5 

of patient-derived G3-MB cell lines (MB-002 and MB-004) as well as a patient-derived G4-MB cell 6 

line (UPN3550) was substantially reduced upon HNRNPH1 or SOX11 silencing (Fig. 7i), in contrast, 7 

depletion of either factor did not substantially impair the growth of normal human NSCs or 8 

astrocytes. Silencing HNRNPH1 or SOX11 also significantly increased cell apoptosis (Fig. 7j). 9 

Furthermore, an in vivo xenograft analysis showed that SOX11 or HNRNPH1 depletion 10 

significantly inhibited the growth of tumors from the MYC-driven G3 MB-004 cells and prolonged 11 

animal survival (Fig. 7k, l). The tumors depleted of HNRNPH1 or SOX11 had decreased 12 

proportions of Ki67+ proliferative cells, while an increase in apoptosis detected by cleaved caspase 13 

3 staining (Fig. 7m and Extended data Fig. 10d). These results suggest that expression of the TCP 14 

signature genes HNRNPH1 and SOX11 is critical for the growth of aggressive G3 MB tumors. 15 

 16 

Discussion 17 

Spatiotemporal dynamics of cellular states, lineage transitions, and their functional plasticity 18 

during human cerebellar development and tumorigenesis are not fully understood 1,9. By scRNA-seq 19 

of whole cells from freshly isolated fetal tissues and immunohistochemistry-based validations, we 20 

identified a previously unrecognized transitional progenitor population in the human fetal 21 

cerebellum. These cerebellar TCP cells were enriched during a narrow time window around the 22 

first-to-second-trimester transition stage PCW 12, a critical period critical for neuronal lineage 23 

specification, proliferation, and migration 14,54,55, and diminished thereafter. Lineage trajectory 24 

analyses predict that TCP cells exhibit features of undifferentiated and transitory cell states with the 25 

potential to give rise to different cerebellar cell types including GCP, UBC, and Purkinje cell 26 

lineages. 27 

A recent study using single-nucleus snRNA-seq profiling from frozen fetal cerebellar tissues 28 
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identified different neural cell types but failed to identify the TCP subpopulation, although human 1 

RL cells were identified and characterized13. Our TCP gene signature partially overlaps that of RL 2 

cells13, yet the populations are distinct. Whole-cell scRNA-seq from fresh tissues used in the present 3 

study has been shown to identify cell types more representative of cell populations of the starting 4 

tissues than does snRNA-seq 20,21, which may account for study differences. Further analysis is 5 

needed to determine differential study outcomes.  6 

Our cross-species analyses of single-cell datasets between human and mouse cerebella do not 7 

detect an appreciable TCP-like population in mice. Although sparse SOX11+/HNRNPH1+ cells are 8 

distributed throughout mouse embryonic cerebella (Extended data Fig. 11), they are not enriched in 9 

the RL region, in stark contrast to robust developmental enrichment of TCP cells in the human 10 

cerebellar transitional zone of the RL, which is evolutionarily expanded in humans 14. This suggests 11 

that TCP cells might represent cerebellar intermediate precursors similar to transit-amplifying 12 

progenitors for human neocortical expansion 56. Such differences across species might explain why 13 

mouse model systems do not fully recapitulate human MB. Thus, the developmental hierarchy and 14 

plasticity of diverse progenitors we uncovered here may provide an important framework for 15 

deciphering the cell types critical for normal physiological functions and understanding 16 

perturbations that lead to MB.  17 

Currently, the developmental origin and evolution of G3 MB remain elusive. By intersecting 18 

cellular states across developing fetal cerebella and MB subgroups, we discovered that TCP and 19 

tumor cell populations are interconnected by tumor-subtype-specific transitory states in G3, G4, and 20 

SHH MB, suggesting that the TCP-like cells serve as a transition state in these MB subgroups. 21 

Although it is possible that malignant transformation could occur in other lineage precursors 22 

through de-differentiation into a TCP-like cell as a cancer stem cell, our integrated single-cell omics 23 

and lineage trajectory analyses indicate that TCP-like cells may transition toward G3 tumors and 24 

might serve as a point of a tumor cell origin during G3-MB tumorigenesis. The subgroup-specific 25 

transitory TCP-like progenitors within different MBs may reflect intrinsic oncogenic mutations and 26 

cellular plasticity of TCP cells along distinct lineage trajectories, which may contribute to inter- and 27 

intra-tumoral heterogeneity as well as therapy resistance 15,16,57. Our intersectional studies provide 28 
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new insights into the dynamics of cerebellar lineage transitions along with potential cell origins of 1 

aggressive MB, suggesting that TCP cells in early human fetal cerebella are predisposed to 2 

malignant transformation during MB tumorigenesis.  3 

A recent study using SMART-seq suggests a cell-state continuum among G3 and G4 MBs 4 

based on a set of selected genes 8. However, our unbiased single-cell clustering predicts distinct 5 

populations of prototypical G3 and G4 tumor cells within a cohort of G3 and G4 tumors, rather than 6 

a continuous spectrum between G3 and G4 tumor cells. The underlying discrepancy remains to be 7 

determined. The small set of the predefined genes might potentially diminish the distinction 8 

between cell types since they are also expressed in both G3 and G4 tumors to a certain extent 8, 9 

while a much higher number of cells and genes are assessed in our 10x Genomics sequencing 10 

platform. Our observation suggests that G3 and G4 MB cell populations might not interconvert, 11 

although our data does not exclude the possibility that a less differentiated progenitor cell is 12 

common to G3 and G4 MB tumors.  13 

Metastasis is associated with poor prognosis and highly associated with G3 or G4 MBs43,58. 14 

The molecular and cellular nature of metastatic driving events in MB remain elusive. Our single-15 

cell profiling of paired primary and metastatic MBs revealed a substantial increase in the proportion 16 

of transitional TCP-cells and MYC+ tumor cells in the metastatic tumors, suggesting that the TCP-17 

like subpopulation and G3 tumor lineage cells drive metastatic tumor formation. We found that a 18 

TCP-like cell signature is associated with poor prognosis in G3 MB but not G4 MB. The higher 19 

proportions of the TCP-like cells or MYC+ TCP-like cells in G3 MBs compared to G4 MBs (Fig. 20 

3e-h) might contribute to the difference in survival outcomes. In addition, the lower rhombic-lip-21 

derived WNT MB, which has the best prognosis, does not appear to show an enrichment of the 22 

TCP-like cluster 59 (Extended data Fig. 12). Nonetheless, our findings at single-cell resolution 23 

suggest that tumor cells endowed with TCP-like characteristics might potentiate MB metastasis. 24 

Integrated single-cell omics (scRNA-seq/snATAC-seq) analyses identified transcriptional 25 

regulatory networks in TCP-like populations and potential therapeutic targets for aggressive MBs. 26 

Targeting TCP-like cells through depletion of HNRNPH1 or SOX11 inhibited the growth of the 27 

aggressive G3 MB tumor cells. Moreover, 3D chromatin structure analysis revealed long-distance 28 
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spatial looping of HNRNPH1/SOX11-bound super-enhancers juxtaposed to MYC 1 

promoter/enhancer elements, which was uniquely present in MYC-driven G3 tumor cells but not G4 2 

tumor or hNSC cells. Thus, TCP cell identity determinants (HNRNPH1 and SOX11), which are 3 

upregulated in multiple cancers 38,39, not only define the TCP-like state but also can harbor long-4 

range super-enhancers to promote expression of oncogenes such as MYC through enhancer 5 

hijacking events, suggesting that TCP cells might be highly susceptible to oncogenic transformation. 6 

Together, our data provide insights into the potential origin, lineage plasticity, and human-specific 7 

nature of MB subtypes, as well as their intra- and inter-tumoral heterogeneity in malignancy, while 8 

revealing a targetable vulnerability for therapeutic intervention of aggressive MB. 9 
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Methods 1 
 2 
Human tissue collection  3 

Human fetal and tumor tissues were obtained from the Children’s Hospital of Fudan University 4 
and XinHua Hospital at the Shanghai Jiao Tong University School of Medicine, and Obstetrics and 5 
Gynecology Hospital of Fudan University. Informed consents for the use of tissues for research 6 
were obtained in writing from donors or the patients’ parents. The study was approved by individual 7 
institutional review board at the Children’s Hospital of Fudan University, XinHua Hospital at the 8 
Shanghai Jiao Tong University School of Medicine, and Obstetrics and Gynecology Hospital of 9 
Fudan University. Fresh cerebellar tissues from aborted fetuses and tumors after surgery were 10 
collected and digested by Collagenase IV (2μg/ml, Thermo Fisher, #17104019) enzymatic 11 
dissociation for 20�min at 37�°C after mechanically dissociation. Clinical information including 12 
age, sex, localization and MB subgroup are provided in Supplementary Table 1. 13 
 14 
Animal experiments 15 

Immunodeficient NOD SCID gamma (NSG) mice were obtained from the Cincinnati 16 
Children’s Hospital Medical Center (CCHMC) animal core. Mice of either sex were used and fed (4 17 
or less mice per cage) in a vivarium with a 12 hrs light/ 12 hrs dark cycle. All studies complied with 18 
all relevant animal use guidelines and ethical regulations. The animal studies were approved by the 19 
IACUC (Institutional Animal Care and Use Committees) of the Cincinnati Children’s Hospital 20 
Medical Center, USA. In the xenograft model, MB tumor cells were transduced with lentivirus 21 
targeting HNRNPH1 or SOX11 for 20 hours, and 2×105 cells suspended in 3μl PBS with 1μl 22 
Matrigel (Corning, #356234) were stereotactically injected into the cerebellum of NSG mice. 23 
Animals were monitored and bioluminescence images were captured weekly and harvested when 24 
they become moribund.  25 

 26 
Medulloblastoma cell line culture 27 
Medulloblastoma cell lines D425, D283 and D458 were obtained from American Tissue Culture 28 
Collection (ATCC, Rockville, MD, USA). UPN3550 cells were isolated from a group 4 MB 29 
patient's primary tumor tissue, which was proved by the institutional reviewing board at the 30 
Cincinnati Children’s Hospital. MB-002 and MB-004 cells were provided by Drs. Rachid Drissi and 31 
Martine Roussel at St Jude Children’s Research Hospital. Cells were cultured in neurobasal medium 32 
(Sigma; SCM003) with 2% B-27, 1 μg/ml heparin, 2 mM L-glutamine and 1% 33 

penicillin/streptomycin, 25 ng/ml FGF and 25 ng/ml EGF at 37℃ in an atmosphere of 5% CO2. 34 

 35 
Immunostaining, immunohistochemistry and immunoblotting 36 

The immunostaining procedures were followed the method as previously described60. Briefly, 37 
cerebellar tissues were fixed with 4% PFA for 45 min and washed five times with PBS and 38 
dehydrated with 30% sucrose overnight, then blocked with OCT frozen embedding media (CRYO-4, 39 
Polarstat Inc.) and cryosectioned at 14 μm thickness. For adherent cells, cells were seeded on the 40 
coverslips and fixed with 4% PFA for 10 min and washed five times with PBS, then in blocking 41 
solution for 30 min. We used primary antibodies, including mouse anti-SOX2 (Santa Cruz 42 
Biotechnology; Cat#sc-365964), rabbit anti-SOX11 (Sigma, Cat#HPA000536; Thermo 43 
fisher, Cat#14-9773-82), rabbit anti-HNRNPH1 (Abcam, Cat#ab154894; Bethyl Laboratories, 44 
Cat#A300-511A), rat anti-EOMES (Invitrogen, Cat#14-4875-52), mouse anti-PAX6 (Santa Cruz 45 
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Biotechnology, Cat#sc-81649), mouse anti-ATOH1 (Thermo Fishe,; Cat#H00000474-M09), rabbit 1 
anti-c-Myc (Cell Signaling, Cat#5605),  rabbit anti-Ki67 (Thermo Fisher, Cat#MA5-14520), rabbit 2 
anti-Cleaved Caspase 3 (Cell Signaling, Cat#9661) and mouse-anti BrdU (BD Bioscience, 1:500) 3 
antibody with proper dilutions. For BrdU staining, BrdU pulse-labeled (10 μΜ, 2 hours at 37�) 4 
cells were denatured with 0.1N HCl for 1 h in water bath at 37 °C. After denaturation, cells were 5 
neutralized with 0.1 M Borax, pH 8.5 (Sigma) for 10 min. Cells were washed with PBS 3 times and 6 
blocked with 5% normal donkey serum (Sigma-Aldrich) in wash buffer for 1 h at room temperature. 7 
Secondary antibodies conjugated to Cy2, Cy3 or Cy5 were from Jackson ImmunoResearch 8 
Laboratories. Tissues or cells were mounted with Fluoromount-G (SouthernBiotech) for microscopy. 9 
Immunofluorescence-labeled images were acquired using a Nikon C2+ confocal microscope. Cell 10 
images were quantified in a blinded manner.  11 

For paraffin-embedded tissues, sections were dewaxed and hydrated using xylene and ethanol 12 
respectively. We performed antigen retrieval before permeabilization as previously described60. 13 

Slides were treated in 0.6% H2O2 in methanol for 30min at 37℃ and blocked in 5% normal donkey 14 
serum in PBST for 1h at room temperature. SOX11 and HNRNPH1-expressing cells in MB tissues 15 
were quantified using the described methods 61. In brief, 0–5 denote different degrees (intensity and 16 
density) of IHC staining; 5 is the maximum and 0 is the minimum degree. The final score of the 17 
patients = SI (score of intensity) × SD (score of density). 18 

For the western blot analysis, cells were lysed with RIPA lysis buffer (Millipore) 19 
supplemented with phosphatase and protease inhibitor cocktail (Roche). Protein concentration of 20 
each sample was determined by BCA assay using the BCA kit (Beyotime) according to 21 
manufacturer’s instructions and equal amounts (5-15 μl) were loaded and separated by 12% SDS-22 
PAGE gel. PVDF membrane (Millipore) was used for gel transfer and the membrane was probed 23 
with primary antibodies as indicated, followed by secondary antibodies conjugated with HRP. The 24 
signal was detected with Super Signal West Pico/Femto Chemiluminescent Substrate (Thermo 25 
Scientific).  26 
 27 
Generation and processing of DNA methylation data 28 

All single-cell MB patient samples sequenced in this study were analyzed using Illumina 29 
Infinium Methylation EPIC BeadChip arrays according to the manufacturer’s instructions. Data 30 
were generated from total genome DNA isolated from freshly frozen tissue samples. 31 
Medulloblastoma subgroup predictions were obtained from a web-platform for DNA methylation-32 
based classification of central nervous system tumors 33 
(https://www.molecularneuropathology.org/mnp). Resulting assignment of samples to SHH, Group 34 
3 and Group 4 subgroups were used for all downstream analyses. CNV analysis from EPIC 35 
methylation array data was performed using the conumee Bioconductor package 36 
(http://bioconductor.org/packages/conumee/). 37 
 38 
scRNA-seq and scATAC-seq using 10x Genomics platform 39 

For scRNA-seq on the 10x Genomics platform, single cells were processed through the 40 
GemCode Single Cell Platform using the GemCode Gel Bead, Chip and Library Kits (10X 41 
Genomics) according to the manufacturer’s instructions. The concentration of the single-cell 42 
suspension was assessed with a Trypan blue count and the sample will be used if there are more 43 
than 90% viable cells. Approximately 10,000–30,000 cells per sample were loaded on the 44 
Chromium Controller and generated single-cell GEMs (gel beads in emulsion). GEM-reverse-45 
transcription, DynaBeads clean-up, PCR amplification and SPRIselect beads clean-up were 46 
performed using Chromium Single Cell 3′ Gel Bead kit. Indexed single-cell libraries were generated 47 
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using the Chromium Single Cell 3′ Library kit and the Chromium i7 Multiplex kit. Size, quality, 1 
concentration and purity of the cDNAs and the corresponding 10×library was evaluated by the 2 
Agilent 2100 Bioanalyzer system. Amplified cDNA and final libraries were assessed on an Agilent 3 
BioAnalyzer using a High Sensitivity DNA Kit (Agilent Technologies). 4 

For snATAC-seq on the 10x Genomics platform, single-cell libraries were generated using the 5 
GemCode Single-cell instruments and the Single Cell ATAC Library & Gel Bead Kit and ChIP Kit 6 
from 10x Genomics, according to the manufacturer’s instructions. The samples were incubated at 7 
37°C for 1 h with 10 μl of transposition mix (per reaction, 7 μl ATAC Buffer, and 3 μl ATAC 8 
Enzyme (10x Genomics)). Following the generation of nanoliter-scale GEMs, GEMs were reverse 9 
transcribed in a C1000 Touch Thermal Cycler (Bio-Rad) programmed at 72°C for 5 min, 98°C for 10 
30 s, 12 cycles of 98°C for 10 s, 59°C for 30 s, and 72°C for 1 min, and held at 15°C. After reverse 11 
transcription, single-cell droplets were broken and the single-strand cDNA was isolated, cleaned up 12 
and amplified. Amplified cDNA and final libraries were assessed on an Agilent BioAnalyzer using a 13 
High Sensitivity DNA Kit (Agilent Technologies). All the libraries were sequenced on NovaSeq 14 
6000 (Illumina) at a depth of approximately 400M reads per sample.  15 
 16 
scRNA-Seq processing and quality filtering 17 

For 10X genomics datasets, we used Cellranger v5.0.1 to align reads to the human reference 18 
sequence. The raw base call (BCL) files were demultiplexed into FASTQ files. The FASTQ files 19 
were aligned to the reference human genome GRCh38 (hg38) to generate raw gene-barcode count 20 
matrices. When clustering multiple samples together, we aggregated the multiple runs together to 21 
normalize on sequencing depth and re-computed the gene-barcode matrices.  22 

For quality control and normalization of scRNA-seq, we utilize the Seurat program 23 
(https://satijalab.org/seurat/articles/pbmc3k_tutorial.html) in R version 4.0.3 by reading in the data 24 
which are the reads in the output of the cellranger pipeline prom 10x, returning a unique molecular 25 
identified (UMI) count matrix. Low-quality cells were identified and removed from the datasets 26 
based on the cell with <200 genes expression and high mitochondrial gene content (5 s.d. above 27 
median). Doublets were detected and filtered using the R package DoubletFinder v.2.0.2 with 28 
default settings. The cells with low-abundance genes or genes expressed in <3 cells were also 29 
removed from the datasets. By defaulting in Seurat, we employ a global-scaling normalization 30 
method “LogNormalize” that normalizes the feature expression measurements for each cell by the 31 
total expression, multiplies this by a scale factor (10,000 by default), and log-transforms the 32 
result. Next, we apply a linear transformation (‘scaling’) that is a standard pre-processing step using 33 
all genes or variable genes. Then, we perform principal component analysis (PCA) to get the linear 34 
dimensional reduction after the data scaling.  35 
 36 
Clustering analysis, visualization and annotation 37 

Clustering analysis was performed with the R package Seurat (v.4.0.3). Highly variable genes 38 
were detected using Seurat’s pipeline62, calculating average expression and dispersion for each gene, 39 
diving genes into bins and computing a z-score for dispersion within each bin. We used a z-score of 40 
0.5 as the cut-off of dispersion, and a bottom cut-off of 0.0125 and a high cut-off of 3.0 for average 41 
expression. Linear dimensionality reduction was performed using PCA, and statistically significant 42 
principal components were selected using the elbow and jackstraw methods from Seurat. The 43 
clusters of cells were identified by a shared nearest neighbor (SNN)-modularity-optimization based 44 
clustering algorithm from Seurat. We then visualized these clusters using t-distributed stochastic 45 
neighbor embedding (t-SNE), uniform manifold approximation and projection (UMAP), or 46 
Monocle 3. Cluster cell identity was assigned by manual annotation using known cell-type marker 47 
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genes and computed differentially expressed genes (DEGs) using the FindAllMarkers function in 1 
the Seurat package (one-tailed Wilcoxon rank sum test, P values adjusted for multiple testing using 2 
the Bonferroni correction. For selecting DEGs, all genes were probed provided they were expressed 3 
in at least 25% of cells in either of the two populations compared and the expression difference on a 4 
natural log scale was at least 0.2. Manual annotation was performed iteratively, which included 5 
validating proposed cell clusters with known markers and further investigating clusters for which 6 
the gene signatures indicated additional diversity. 7 
 8 
Pseudo-time cell state trajectory analysis 9 

For the fetal cerebellum trajectory analysis, cells were grouped using ‘UMAP’ clustering 10 
algorithm. Cell state transition directions were inferred by Monocle 3, STREAM, or VECTOR 11 
programs which provides an unsupervised solution for determining the starting cells. For 12 
order_cells function in Monocle 3, the barcodes of selected clusters were normalized using Monocle 13 
dPFeature or Seurat to remove genes with low expression and perform PCA analysis on the 14 
remaining genes, for significant principal components (PCs) selection63,64. Differential gene 15 
expression analysis was performed using a generalized linear model, and the top 1,000 genes per 16 
cluster were selected and fit into a principal graph within each partition using 17 
the learn_graph function. For Slingshot cellular trajectory analysis 30 of fetal cerebella, the input 18 
matrix was filtered and normalized by the R package Seurat and cell types were annotated and 19 
provided as labels for Slingshot.  For the single-cell pseudo-time trajectory in tumor tissues, cells 20 
were aggregated the multiple patients together to normalize on sequencing depth and re-computed 21 
the gene-barcode matrices using canonical correlation analysis (CCA). 22 
 23 
Deconvolution analysis 24 

CIBERSORTx34 was applied to perform the deconvolution analysis of the bulk and scRNA-seq 25 
tumor data against the human cerebellar clusters except mitotic cells. The transcriptomes of the 26 
tumor data (bulk RNA-seq or clusters of scRNA-seq) were used as the input mixture online 27 
(https://cibersortx.stanford.edu/runcibersortx.php), and the signature matrix input was the human 28 
fetal cerebellum cluster expression matrix after removal of cell cycle related genes (~1,400), 29 
ribosome biogenesis genes (~300), mitochondrial and apoptosis-related genes (~100), to avoid bias 30 
in the deconvolution process. Quantile normalization was disabled and 100–500 permutations for 31 
significance analysis were run. 32 
 33 
Cell cycle analysis of human scRNA-seq tumor samples 34 

Cell cycle phase-specific annotations were used to define the cell cycle status for each 35 
individual cell65. We assign each cell a score using CellCycleScoring function in R version 4.0.5, 36 
based on its expression of G2/M and S phase markers. These marker sets should be anticorrelated in 37 
their expression levels, and cells expressing neither are likely not cycling and in G1 phase.  38 
 39 

Inferred CNV Analysis from scRNA-seq  40 

Malignant cells were identified by inferring large-scale chromosomal copy-number variations 41 
(CNVs) in each single cell based on a moving averaged expression profiles across chromosomal 42 
intervals by inferCNV 66. We combined CNV classification with transcriptomic-based clustering 43 
and expression of non-malignant marker genes to identify malignant and non-malignant cells. Non-44 
malignant cells displayed high expression of specific marker genes and no apparent CNVs. 45 
 46 
Filtering cells by TSS enrichment and unique fragments of the scATAC-seq 47 
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Enrichment of ATAC-seq accessibility at TSSs was used to quantify data quality without the 1 
need for a defined peak set. Calculating enrichment at TSSs was performed as previously 2 
described67, and TSS positions were acquired from the Bioconductor package from ‘TxDb. 3 
Hsapiens.UCSC.hg38.knownGene. Briefly, Tn5-corrected insertions were aggregated ±2,000 bp 4 
relative to each unique TSS genome-wide (TSS strand-corrected). The calculated TSS enrichment 5 
represents the maximum of the smoothed profile at the TSS. We then filtered all scATAC-seq 6 
profiles to keep those that had at least 1000 unique fragments and a TSS enrichment of 0.5. To 7 
minimize the contribution of potential doublets to our analysis, we removed snATAC-seq profiles 8 
that had more than 100,000 unique nuclear fragments. 9 
 10 
Gene regulatory network and motif enrichment analysis of scRNA-seq and scATAC-seq data 11 

To characterize underlying gene regulatory network and infer transcription factor activities in 12 
our scRNA-seq dataset, we used the single-cell regulatory network inference and clustering package 13 
to identify gene regulatory modules and retain those with a cis-regulatory binding motif for 14 
upstream regulators. We merged scRNA-seq and scATAC-seq datasets to create a common peak set, 15 
and quantify this peak set in each experiment. We load the peak coordinates for each experiment 16 
and convert them to genomic ranges using the GenomicRanges::reduce function to create a common 17 
set of peaks to quantify in each dataset. We use the detailed settings and parameters as default 18 
according to Signac (https://satijalab.org/signac/). ArchR package 44 was used for integrated 19 
scRNA-seq and scATAC-seq analyses according to default parameters, including quality control 20 
and cell filtering, dimension reduction, genome browser visualization, gene expression data 21 
preprocessing and cell annotation, DNA accessibility data processing, joint data visualization, 22 
differential accessibility and motif enrichment.  23 

For nominating the marker genes and potential drivers, we utilized ArchR 44 to identify the 24 
enriched TFs whose inferred gene scores are correlated to their chromVAR TF deviation z-scores. 25 
The gene scores were calculated based on the summed chromatin accessibility and normalized 26 
across all genes to a user-defined constant (default of 10,000) according to the ArchR package 44. 27 
Based on the gene scores and positive TF-regulators identified from ArchR, we nominated top 30 28 
TFs or highly expressed genes (excluding non-coding genes or ribosomal proteins) as potential 29 
drivers or marker genes.  30 

 31 

Two-Dimensional Representation of SC-Derived Cell States and Group 3/4-B/C score 32 

Tumor cell clusters were used for computing subtype expression scores for each tumor cell in 33 
the datasets as previously described 41. Cell clusters were separated into G3-MYC, G3-NRL, G4- 34 
and SHH-clusters. To visualize the enrichment of subsets of cells, across the two-dimensional 35 
representation, we calculated for each cell the fraction of cells that belong to the respective subset 36 
among its 100 nearest neighbors, as defined by Euclidean distance, and these fractions were 37 
displayed by colors. In addition, we used the previously defined group 3/4 B/C score system based 38 
on selected G3- and G4-expressing genes (top 30 genes from each metaprogram) 8 for the 39 
overlapping cell-state analysis in G3 and G4 MBs. 40 

 41 
Generation of Hi-C libraries and analysis 42 
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MB004 (G3 MB) and UPN3550 (G4 MB) cells were processed for Hi-C library construction 1 
using the Arima Hi-C Kit following the manual (Arima Genomics, # A510008). Briefly, five 2 
million cells were cross-linked with 1% formaldehyde for 10 mins at room temperature and then 3 
quenched with 0.2M Glycine. Cell pellets were washed with cold PBS and lysed with lysis buffer to 4 
release nuclei and then permeabilized and in situ digested. KAPA Hyper Prep kit was used for 5 
library amplification (KAPA, KK2802). Hi-C libraries were sequenced 2×150bp on a NovaSeq 6 
6000 instrument (Illumina). Juicer were used to process raw reads and generate Hi-C contact 7 
matrices (.hic files), aligning to reference genome hg38 to generate Hi-C contact matrices (.hic 8 
files). Contact matrices were visualized using Juicebox. 9 

Bam files were used as input, with low-quality reads filtered out. We used Peakachu and 10 
diffPeakachu to call and compare loops in Hi-C data from both G3 MB and G4 MB cell lines in Hi-11 
C data, then used diffPeakachu to compare one cell line with another cell line. Tumor subtype–12 
specific loops were then merged using BEDTools pair to pair function with a negative slop of 10 kb. 13 
Hi-C breakfinder pipeline 68 was used to identify large structural translocations, deletions, and 14 
inversions. To identify neo-loops or enhancer hijacking events, we used a NeoLoopFinder pipeline 15 
as previously described algorithm 51. 16 
 17 
Targeting distal interacting enhancers using CRISPRi  18 

MB-004 cells were transduced with the enti-dCas9-KRAB-T2A-GFP virus (Addgene # 71237). 19 
sgRNAs targeting SOX11/HNRNPH1-binding motifs in the distal enhancers were designed using 20 
the CHOPCHOP program (https://chopchop.cbu.uib.no). GFP-reporter positive cells were flow-21 
sorted 2 days transduction. DNA oligonucleotides were annealed and ligated into the lentiGuide-22 
Cherry vector (Addgene # 170510) at the BsmBI restriction enzyme cutting sites. The sgRNA 23 
sequences were confirmed by Sanger sequencing. The lenti-vectors expressing each pair of gRNAs 24 
targeting distal enhancers were packaged in 293T cells using pMD2.G (Addgene # 12259) and 25 
psPAX (Addgene # 12260). The lentiGuide-Cherry lentiviruses carrying sgRNAs were concentrated 26 
from the virus-containing medium by ultracentrifuging and transduced into dCas9-KRAB-T2A-27 
GFP-expressing MB-004 cells (MOI < 1). RNAs were then extracted from the GFP+/Cherry+ cells 28 
after 72 hr culture, and cDNAs were prepared using SuperScript® III First-Strand Synthesis System 29 
(Invitrogen) according to the manufacturer’s instructions. qRT-PCR was performed to quantify gene 30 
expression using SYBR FAST qPCR Master Mix. All sgRNA and qRT-PCR sequences used for 31 
validation can be found in Supplementary Table 5. 32 

 33 
ChIP–qPCR 34 

ChIP-qPCR assays were performed as previously described 69. Briefly, cells (2 x 106) were 35 
transduced with lentivirus expressing non-targeting shRNA control, shHNRHNP1, or shSOX11 for 36 
60 hours (selected with puromycin) and then fixed with 1% formaldehyde for 10 min at room 37 
temperature and quenched with 0.2M glycine. Sonicated chromatin was prepared in buffer (10 mM 38 
Tris-HCl pH 8.0, 1 mM EDTA, 0.5 mM EGTA and protease inhibitor cocktail) and then incubated 39 
with 4 μg H3k27ac antibody (Abcam, ab4729) overnight at 4 C. Magnetic protein A/G beads were 40 
incubated to each ChIP reaction for 1 hr at 4 C. ChIP DNAs were eluted into 200 μl elution buffer at 41 
65 °C for 20 min and extracted with phenol/chloroform. Purified DNAs were subjected to qRT-PCR 42 
assay for quantifying H3K27ac occupancy on the enhancers.  Sequences of ChIP-qPCR primers are 43 
listed in Supplementary Table 5. 44 
 45 
Cut & Run-seq and data processing 46 
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Cut & Run-seq was performed as previously described60. Briefly, 200,000 cells were harvested 1 
and washed twice and captured by the addition of 10�µl pre-activated concanavalin A coated 2 
magnetic beads (Bangs Laboratories-BP531). Cells were then resuspended in 100�µl cold 3 
Antibody Buffer and 1�µl antibody (H3K4me3, EpiCypher #13-0041; H3K27Ac, Active Motif 4 
#39133; SOX11, Sigma #HPA000536 or HNRNPH1 Abcam #ab154894) was added for incubating 5 

on nutator overnight at 4�℃ . Cells were washed twice in 1�ml Digitonin Buffer (20�mM 6 
HEPES-KOH pH 7.5; 150�mM NaCl; 0.5�mM Spermidine; 1×Roche cOmpleteTM; 0.05% 7 
digitonin), and then resuspended with CUTANA pAG-MNase in 50�µl Digitonin Buffer. After 8 
wash twice, samples were quickly mixed with 100�mM CaCl2 to a final concentration of 2�mM 9 

and incubation at 4℃ for 30 min and reaction was quenched by Stop Buffer. The cleaved fragments 10 

were released by incubating the tube for 30�min at 37�℃ and then purified by Qiagen MinElute 11 
PCR Purification Kit. Libraries were prepared with NEBNext® Ultra™ II DNA Library Prep Kit 12 
for Illumina® (E7645) and sequenced by NovaSeq PE150. 13 

Cut & Run-seq reads were aligned to the reference human genome version hg38 with the 14 
program BOWTIE v2.3.4.1. Aligned reads were stripped of duplicate reads with the program 15 
sambamba v0.6.8. Peaks were called using the program MACS v2.1.2 with the narrow and broad 16 
peaks mode for Cut & Run-seq. Motif enrichment analysis was performed for both HNRNPH1- and 17 
SOX11-bound sites using HOMER findMotifsGenome function with -size 1000 -mask settings. TFs 18 
with high-expression level in G3 MB cell lines and significant H3K27Ac enrichment in G3 MB-19 
specific enhancers were identified as G3 MB-specific active motifs.  20 
 21 
Statistical and Survival Analysis 22 

All analyses in this research were performed using Microsoft Excel, GraphPad Prism 6.00 (San 23 
Diego California, https://www.graphpad.com) or RStudio (https://www.rstudio.com/ and R v.4.0.3, 24 
R Development Core Team, 2016). We use the “cor” function in R to calculate the Pearson 25 
correlation coefficient. Statistical significance was determined using two-tailed Student’s t tests as 26 
indicated. One-way ANOVA test was performed by multiple comparisons following Turkey’s 27 
ranking tests when comparing multiple groups. Data are shown as mean ± SEM. Values of p < 0.05 28 
denoted a statistically significant difference. Quantifications were performed from at least three 29 
experimental groups in a blinded fashion. The n value was defined as the number of experiments 30 
that were repeated independently with similar results. Animal survival time is the date of euthanasia 31 
when the mouse showed signs of death based on the suggestions of veterinarian. No statistical 32 
methods were used to predetermine sample sizes, but our sample sizes are similar to those generally 33 
employed in the field. No randomization was used to collect all the data, but data were quantified 34 
with blinding. 35 
 36 
 37 
  38 
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Figure Legends 1 
Fig. 1. Single-cell atlas of early developing human fetal cerebella 2 
a, t-SNE visualization of transcriptionally distinct cell populations from 95,542 single cells in PCW 3 
8-17 human fetal cerebellar tissue. TCPs are circled. 4 
b, t-SNE maps of cell populations at indicated developmental stages. One tissue at each stage was 5 
used for the scRNA-seq analysis.  6 
c, Left: t-SNE map of human cerebellar populations with neural cell types indicated in red. Middle: 7 
UMAP visualization of neural cell types from fetal cerebella. Right: Prediction of fate transitions 8 
using Monocle 3. TCPs are boxed. 9 
d, Left: A zoom-in view of trajectories, Right: Heatmap with spline curves fitted to differentially 10 
expressed genes. Pseudo-temporal trajectories grouped by hierarchical clustering (k=3).  11 
e, Upper: Proportion of each cell population at each developmental stage. Lower: Graph of 12 
proportion of TCPs at each developmental stage. 13 
f, Median-scaled ln-normalized gene expression of selected markers for identified fetal cerebellum 14 
cell states.  15 
g, Representative marker gene expression in NSC, TCP, GCP, UBC progenitor (UBC_P) or UBC, 16 
and Purkinje cells.  17 
h, A matrix for cross-validation with an SVM classifier of the identified cell types between the 18 
mouse cerebellum and human fetal cerebellum.  19 
 20 
Fig. 2. Identification of a novel transitional progenitor intermediate in human fetal cerebella 21 
a, Upper, hematoxylin and eosin (H&E) of midsagittal sections of PCW 9-16 human fetal cerebella. 22 
Scale bar: 500 μm. Middle and lower panels show immunostaining for SOX2/HNRNPH1 and 23 
SOX2/SOX11 from the boxed areas in the upper panels at the corresponding stages, respectively. 24 
Green arrows; the rhombic lip. Scale bar: 100 μm. 25 
b, The percentage of cells positive for HNRNPH1 and SOX11 at indicted stages (two 26 
samples/stage). VZ, ventricular zone; SVZ, subventricular zone. 27 
c, Midsagittal sections of PCW 12 human fetal cerebellum immunostained for HNRNPH1 and 28 
SOX11 in the RL transitional zone (TZ) (yellow boxed area). Scale bar: upper left, 500 μm; upper 29 
right and lower, 100 μm; inset, 30 μm. Arrows, co-labeled cells. RL, the rhombic lip. DAPI (blue), 30 
counterstain. 31 
d, Quantification of TCP cells per 0.1 mm2 in the TZ region from two samples/stage.  32 
e, Immunostain for SOX11 and HNRNPH1 in the RL (RLSVZ and RLVZ) from the red-boxed area in 33 
panel c at PCW 12. Scale bar: 100 μm. 34 
f, Midsagittal sections of PCW 12 human fetal cerebellum immunostained for SOX11 and 35 
HNRNPH1 in the RL TZ region. DAPI (left), tissue counterstain. Scale bar: left, 500 μm, middle 36 
and right panels, 100 μm. 37 
g, h, Representative images (g) and the quantification (h) showing PCW 12 fetal cerebella stained 38 
for HNRNPH1 and neuronal lineage markers PAX6 and EOMES. Boxed areas are shown at a high 39 
magnification in the right panels. Arrows indicated co-labeled cells. Scale bars: 500 μm (left); 50 40 
μm (right panels). DAPI (blue), counterstain. *p < 0.05; **p < 0.01; ***p < 0.001; two-tailed t-test; 41 
n = 3 tissues. Data are mean and s.d. 42 
i, The EGL region of PCW 12 human fetal cerebellum stained for ATOH1 and HNRNPH1. Scale 43 
bar: left, 200 μm; right, 50 μm. Arrows indicate co-labeled cells. 44 
j, Trajectory analyses from NSC to UBC (lower) and TCP to GCP (upper) lineages in the fetal 45 
cerebellum and representative marker gene expression in the different populations.  46 
k, Schematic model showing a potential transition through the TCP population into GCP and UBC 47 
lineages during the development of human fetal cerebella.  48 
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Fig. 3. Single-cell transcriptomics reveals intermediate TCP-like progenitors in aggressive MB 1 
subgroups 2 
a, CIBERSORTx deconvolution analyses of human fetal cerebellar cell populations against bulk 3 
transcriptomes of human MB subgroups from CBTTC cohort. 4 
b-d, UMAP visualization of b) G3 MB cells (n = 90,672 cells) from 9 patients, c) G4 MB cells (n = 5 
45,731) from 13 patients, and d) SHH MB cells (n = 61,254 cells) from 4 patients. The cells are 6 
color-coded for indicated populations identified based on expression of representative marker genes. 7 
e, Heatmap of cell populations in human MB subtypes identified based on comparisons to normal 8 
human fetal cerebella cell populations. 9 
f, Predicted fraction of cells in human MB subgroup cohorts42,70 using CIBERSORTx 10 
deconvolution. 11 
g, Heatmap showing marker gene expression in pseudo-bulk normal fetal TCPs and TCP-like tumor 12 
cells in SHH, G3, and G4 MBs. 13 
h, Two-dimensional cell-state plots of tumor subpopulations in indicated MB subgroups. Each 14 
vertex corresponds to one key cellular state along the transformation. The positions of tumor cell 15 
phenotypes (dots) indicate relative scores for the meta-modules, and color scales represent the count. 16 
 17 
Fig. 4. Distinct tumor cell populations in primary and metastatic medulloblastomas 18 
a, DNA methylation-based subgroup prediction scores for G3 and G4 MB samples. Samples with a 19 
mixture of G3 MB and G4 MB scores, samples G3 #7 (BT-309) and G4 #1 (BT-325), were further 20 
analyzed. 21 
b and c, UMAP visualizations for the distributions of G3 MB and G4 MB cells from b) BT-309 and 22 
c) BT-325 tumors based on the subgroup-specific gene expression scores.  23 
d, Heatmap of the marker genes in BT-309 and BT-325 MB samples showing mixed G3 and G4 24 
cell populations.  25 
e, UMAP of merged cells from the BT-325 primary and metastatic tumors. 26 
f, Split plot of cell populations from BT-325 primary and metastatic samples.  27 
g, Cell compositions between matched BT-325 primary and metastatic tumors.  28 
h, Two-dimensional cell-state plots and proportions of tumor subpopulations in BT-325 primary 29 
and metastatic MB. Each vertex corresponds to one key cellular state along the transformation. The 30 
colors represent the count. 31 
i, Dot plot displaying the expression of selected marker genes for the BT-325 primary and 32 
metastatic tumors. The size of the dot reflects the percentage of the cells that express the gene 33 
(Exp.). Average expression levels of the genes are color coded. 34 
j, CNV analysis of chromosome 8 based on DNA methylation showing the MYC gene amplification 35 
in the metastatic tumor of BT-325. 36 
k, Dot plot showing the expression levels of G3 and G4 marker genes in the BT-325 primary (x-37 
axis) and metastatic (y-axis) tumors. Red and green indicate higher and lower expression, 38 
respectively, in the metastatic tumor compared to the primary tumor. 39 
  40 
Fig. 5. Single-cell omics reveals unique regulatory networks in transitional progenitor-like 41 
subpopulations in G3 and G4 MBs 42 
a, Workflow for integrating scRNA-seq and snATAC-seq data analysis using ArchR.  43 
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b, UMAPs of scATAC-seq from G3 MBs (n = 2 patients) and G4 MBs (n = 3 patients) with 1 
reference to scRNA-seq classification of cell clusters. 2 
c, d, The gene integration matrix from scRNA-seq and snATAC-seq (left panel) and alignment for 3 
key TCP- and MB-related marker genes (right panels) in c) G3 MB samples (n= 2 patients) and d) 4 
G4 MB samples (n = 3 patients). The individual cell types are indicated by colors. The integrated 5 
gene activity of G3 or G4 signature genes is shown in the right panels.  6 
e, Heatmap showing correlation of accessibility of promoter regions with target gene expression for 7 
tumor cell types.  8 
f, Pseudo-bulk ATAC-seq tracks at the indicated gene loci in G3 and G4 MB cells.  9 
g, h, Heatmaps of scaled accessible peak-to-gene links identified along the integrated pseudotime 10 
trajectory from g) TCP-like to G3 MB and h) TCP-like to G4 MB subclusters. Enriched 11 
transcription factor motifs are also shown. 12 
i, Dot plot showing positive transcriptional regulators identified in the TCP-like cells from G3 and 13 
G4 MB compared to other tumor subclusters. x-axis, the correlation of TF motif enrichment to TF 14 
gene expression. y-axis, ΔTF deviation scores between TCP-like cells and other subclusters. 15 
j, k, Genome accessibility track visualization of marker genes with peak co-accessibility in j) TCP-16 
G3-like cells in G3 MB (OTX2 and HLX) and k) TCP-like cells in G4 MB (BARHL1 and PAX6).  17 
 18 
Fig. 6. TCP regulators mediate de novo oncogenic deregulation through enhancer hijacking in 19 
G3 MB 20 
a, Heatmaps of Cut&Run peaks detected using indicated antibodies in G3 MB cells and human 21 
NSCs showing ±1,000 bp around transcriptional start sites (TSS). 22 
b, Signals of H3K4me3, H3K27ac, HNRNPH1, and SOX11 peaks plotted relative to the TSS. 23 
c, Signals of H3K27ac peaks at TSSs in G3 MB cells and NSCs. 24 
d, Enrichment analysis of pathway terms for genes co-occupied by HNRNPH1 and SOX11 in G3 25 
MB cells. 26 
e, Heatmap showing the relative density of indicated genes occupied by the H3K27ac, HNRNPH1, 27 
and SOX11 in G3 MB cells (MB-004) and human NSCs.  28 
f, Genomic tracks for H3K27ac, SOX11 and HNRNPH1 occupancy at MYC (upper) and OTX2 29 
(lower) loci of human NSCs and G3 MB cells (MB-004).  30 
g, Consensus motif analysis using HOMER for HNRNPH1 and SOX11 based on their genomic 31 
occupancy. The five most highly represented motifs are shown.  32 
h, Hi-C map of long distance intrachromosomal interaction in G3 MB cells (MB-004) and G4 MB 33 
cells (UPN3550). H3K27ac, SOX11, and HNRNPH1 occupancy (middle) and pseudo-bulk genome 34 
co-accessibility (lower) in the MYC locus and long-distance regulatory elements in human NSCs 35 
and G3 MB cells are shown. 36 
i, Proposed model for the contribution of enhancer hijacking to MYC expression. 37 
j, MYC expression was significantly downregulated by CRISPRi targeting SOX11/HNRNPH1-38 
binding motifs (I, II, II, IV except for V) relative to control sgRNAs (**p < 0.01; ***p < 0.001; n.s: 39 
non-significant; two-tailed t-test; n = 6 for all regions). Data are mean and s.d.  40 
k, Relative enrichment of H3K27ac occupancy on the indicated enhancers (Enh1 and Enh2) or 41 
promoter (Pro) in MB-004 cells transduced with non-targeting shRNA control (shCtrl), shSOX11, 42 
or shHNRNPH1 and in control hNSCs (*p < 0.01; **p < 0.01; ***p < 0.001; two-tailed t-test; N = 3 43 
for all regions). Data are mean and s.d. 44 
 45 

Fig. 7. Targeting TCP regulators inhibits aggressive MB growth 46 
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a, HNRNPH11 (left) and SOX11 (right) expression in subgroups of Cavalli’s cohort dataset 47. ***p 1 
< 0.001, two-tailed unpaired Student’s t-test. 2 
b, Kaplan-Meier analysis of overall survival of patients with cerebellar MBs (SHH, G3, and G4 3 
MBs) based on the TCP signature gene expression in Cavalli’s MB cohorts47. Significance was 4 
determined by log-rank test. 5 
c, Representative images of human G3 and G4 MB tissue stained for HNRNPH1 (left) and SOX11 6 
(right). Scale bars: 100 μm. 7 
d, Representative images showed the colocalization of HNRNPH1 and SOX11 immunostaining 8 
(arrows) in G3 MB tissues. Scale bars: 2 μm. 9 
e, Representative images showed the proximity ligation assay analysis of the HNRNPH1-SOX11 10 
association (arrow) in G3 MB (MB-004) cells treated with lenti-shCtrl or lenti-sh HNRNPH1. Scale 11 
bars: 10 μm. 12 
f, Representative immunoblots for SOX11, MYC, and HNRNPH1 in MB-004 cells treated with 13 
control or shRNAs targeting HNRNPH1 (shHNRNPH1) or SOX11 (shSOX11). For gel source data, 14 
see supplementary Fig. 1. 15 
g, h, Images (g) and quantification (h) of tumor spheres formed by MB-004 or D425 cells treated 16 
with shCtrl, shSOX11, or shHNRNPH1. Scale bars: 200 μm. **p < 0.01, ***p < 0.001, one-way 17 
ANOVA with post hoc Tukey's test. 18 
i, Cell viability of indicated cells transduced with shHNRNPH1 (left) or shSOX11 (right) measured 19 
by WST-1 assay. n=3 independent experiments; **p < 0.01, ***p < 0.001, one-way ANOVA with 20 
post hoc Tukey's test. 21 
j, Representative immunostaining images of cleaved caspase 3 (upper) and quantification (lower) in 22 
MB-004 cells treated with shCtrl, shSOX11, or shHNRNPH1. **p < 0.01, ***p < 0.001, one-way 23 
ANOVA with post hoc Tukey's test. Scale bars: 100 μm. 24 
k, Bioluminescent imaging of the NSG mice transplanted with MB-004 cells transduced with shCtrl, 25 
shSOX11, or shHNRNPH1 at indicated days. 26 
l, Survival curves of NSG mice transplanted with MB-004 cells treated with shCtrl, shSOX11, or 27 
shHNRNPH1 (n=10 animals/group). **p< 0.01; log rank test. 28 
m, Quantification of Ki67 (left) and cleaved caspase 3 (right) positive cells in xenograft tumors 29 
induced by MB-004 cells treated with shCtrl, shSOX11, or shHNRNPH1. **p < 0.01, ***p < 0.001, 30 
one-way ANOVA with post hoc Tukey's test. 31 
 32 
 33 
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