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ABSTRACT

A modeling is a mathematical tool, like a microscope, which allows consequences to logically follow from a set of assumptions
by which a real world problem can be described by a mathematical formulation. It has become indispensable tools for
integrating and interpreting heterogeneous biological data, validating hypothesis and identifying potential diagnostic markers.
The modern molecular biology that is characterized by experiments that reveal the behaviours of entire molecular systems is
called systems biology. A fundamental step in synthetic biology and systems biology is to derive appropriate mathematical
model for the purposes of analysis and design. This manuscript has been engaged in the use of mathematical modeling in the
Gene Regulatory System (GRN). Different mathematical models that are inspired in gene regulatory network such as Central
dogma, Hill function, Gillespie algorithm, Oscillating gene network and Deterministic vs Stochastic modelings are discussed
along with their codes that are programmed in Python using different modules. Here, we underlined that the model should
describes the continuous nature of the biochemical processes and reflect the non-linearity. It is also found that the stochastic
model is far better than deterministic model to calculate future event exactly with low chance of error.

Keywords: Mathematical models, Central dogma, Hill function, Gillespie algorithm, Oscillating gene network, Deterministic
modeling, Stochastic modeling

1 Introduction
Mathematical modeling is a process by which a real world problem is described by a mathematical formulation. However,
neither all details of single processes will be described nor all aspects concerning the problem will be included. Models are
designed to focus on certain aspects of the objects of study. A simple sketch of the mathematical modeling of systems biology
is shown in figure 1 which is inspired from the reference1. The current modern molecular biology that is characterized by
experiments that reveal the behaviours of entire molecular systems is called systems biology2.

(Biological) Interpretation
of the analytical results

Mathematical analysis

Description in mathematical terms

Formulation of the problem

Figure 1. Mathematical formulation for interpreting the analytical biological result
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A main problem in systems biology is to find an appropriate mathematical formulation. Then, for further studies of the
model, common mathematical tools can be used or new ones are developed. Further, a model should be as simple and detailed
as necessary or vice versa. One mathematical formulation may be appropriate for several real-world problem, even from very
different domains.

Real world problem

Characterization of the system

Mathematical model

Mathematical analysis of the model

Validation

Comparison with experimental results

Solution of the problem

Make changes

Figure 2. Mathematical model to solve the real world problem

A great challenge of modelling is to bring together the abstract, mathematical formulation and concrete experimental data.
The modelling process can be roughly described as shown in figure 2. The figure 2 is inspired from the reference3.

Mathematical modeling has been applied to biological systems for decades, but with respect to gene expression, too few
molecular components have been known to build useful, predictive models. There are many different modelling approaches and
their number is still increasing. Some of the very famous models in molecular biology are discussed in this manuscript. In
section 2 we discuss about the Central dogma. In section 3 Hill function is discussed while Oscillating gene network in section
4, Gillespie algorithm in section 5 and Deterministic vs Stochastic modelings in section 6. Finally, the aspects and scope of
mathematical modeling to the above stated models are discussed in section 7. The codes used for the modelling are shown in
the appendix along with a brief explanation and a much detailed version on github1.

2 Central Dogma
Central dogma of molecular biology is an explanation of the flow of genetics information within a biological system. It is often
stated as "DNA makes RNA and RNA makes proteins"4. The transfer of information from nucleic acid to nucleic acid, or
from nucleic acid to protein may be possible but transfer from protein to protein or from protein to nucleic acid is impossible.
Information means here precise determination of sequence either of bases in the nucleic acid or of amino acid residue in protein.

The dogma is a framework for understanding the transfer of sequence information between information-carrying bio-
polymers in the most common or general case in living organism. There are 3 major classes of such bio-polymers: DNA and
RNA (both nucleic acids) and protein. There are 3*3 = 9 conceivable direct transfer of information that can occur between
these. The dogma classes these into 3 groups of 35:

• 3 general transfers(believed to occur normally in most cells),
1github.com/aaditya-pdgupta/mathematical-modeling-in-biology
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• 3 special transfers(known to occur, but only under specific conditions in case of some viruses or in a laboratory),

• 3 unknown transfers(believed never to occur).

The general transfers describe the normal flow of biological information: DNA can be copied to DNA (DNA replication),
DNA information can be copied into mRNA, (transcription), and proteins can be synthesized using the information in mRNA
as a template (translation).

The coupled differential equations representing the model of Central dogma are shown in equation 1 & equation 2.

dm
dt

= km − γmm (1)

d p
dt

= kpm− γp p (2)

where

• p is protein

• m is mRNA

• km is the production rate for the mRNA

• γm is the degradation rate for mRNA

• γp is the degradation rate of protein

• kp is the production rate for the proteins
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Figure 3. Abundance of mRNA over time with the initial
conditions: km = 0.2, γm = 0.05, kp = 0.4, γp = 0.1
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Figure 4. Abundance of mRNA over time with the initial
conditions: km = 0.5, γm = 0.1, kp = 0.7, γp = 0.2

The figures 3 & 4 show the relation between abundance of mRNA and protein over time. Along the y-axis, we have the
time axis and along x-axis we have abundance of both mRNA and protein. We observe that M(blue line) denotes mRNA in the
above figure 3 & 4 while P(red line) denotes protein. In figure 3 both of them starts at zero and then they increases until they
reach their steady state. The steady state for mRNA is 4 and for protein is 16 above. The abundance of protein is more than
mRNA because it depends upon the mRNA production ( kp ∗m ) while mRNA production is independent (km).

If we change the initial parameters such as km, γm, kp, γp greater than that are used in figure 3, we came to know that the
steady state for both mRNA and protein increases by same amount and the nature of the curves remain almost same which is
shown in figure 4. In figure 4 the steady state approaches faster than that in figure 3 due to larger degradation rate.

3 Hill Function
The so called Hill function were introduced by A.V Hill in 1910 to describe the binding of oxygen to hemoglobin. Subsequently,
they have been widely used in biochemistry, psychology and mathematical modeling gene expression6. Different mathematical
frameworks have been proposed to derive the mathematical model. In particular the use of sets of nonlinear ordinary differential

3/16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2022. ; https://doi.org/10.1101/2022.08.17.504297doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504297
http://creativecommons.org/licenses/by-nc-nd/4.0/


equation(ODE) has been proposed to model the dynamics of the concentrations of mRNAs and proteins. These models are
usually characterized by the presence of highly nonlinear Hill function terms7. Hill functions follow from the equilibrium state
of the reaction in which n ligands simultaneously bind a single receptor6.

The Central dogma of molecular biology states that DNA makes and RNA makes proteins. The process by which DNA
is copied to RNA is called transcription and by which RNA is used to produce protein is translation. The Hill function is
expressed as follow:

• Activation Hill function

• Repression Hill function

3.1 Activation Hill Function
In this function Gene first (G1) acts as an activator for Gene second (G2) and it increases the probability of transcription often
by increasing probability of RNA polymerase binding.

The coupled differential equations representing the model of activation Hill function are shown in equation 3 & equation 4.

dG1

dt
= k1 − γ1G1 (3)

dG2

dt
=

[
Gn

1
cn +Gn

1

]
k2 − γ2G2 (4)

where

• k1 is production rate of G1

• γ1 is degradation rate of G1

• k2 is production rate of G2

• γ2 is degradation rate of G2

• c = constant

• n = hill constant
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Figure 5. Number of gene over time with the initial
conditions: k1 = 0.5, γ1 = 0.1, k2 = 0.5, γ2 = 0.05, n=5, c=5
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Figure 6. Number of gene over time with the initial
conditions: k1 = 8, γ1 = 3, k2 = 6, γ2 = 2, n=4, c=1

The figures 5 & 6 show the relation between Gene first (G1) and Gene second (G2) over time. Along the x-axis, we have the
time axis and along y-axis we have number of Gene first (G1) and Gene second G2. We observe that G1 (blue line) denotes
Gene first in the above figure 5 & 6 while G2 (red line) denotes Gene second. Here, (G1) quickly get activated and reaches to
the steady point while G2 delays in figure 5. This is because for activating the G2, G1 should be produced.

If we change the initial parameters such as k1, γ1, k2, γ2 greater than that are used in figure 5 above we came to know that
the steady state for both Gene first (G1) and Gene second (G2) changes and the nature of the curves also changes which is
shown in figure 6. If G1 be the zero than the production rate of gene two will also be zero.
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3.2 Repression Hill Function
In this function, Gene first (G1) acts as an repressor for Gene second (G2) and it decreases the probability of transcription often
by decreasing probability of RNA polymerase binding. The damping of protein production by a repressive agent occurs linearly
but fluctuations can show a maximum at intermediate repression8.

The coupled differential equations representing the model of repression Hill function are shown in equation 5 & equation 6.

dG1

dt
= k1 − γ1G1 (5)

dG2

dt
=

[
cn

cn +Gn
1

]
k2 − γ2G2 (6)

where

• k1 is production rate of G1

• γ1 is degradation rate of G1

• k2 is production rate of G2

• γ2 is degradation rate of G2

• c = constant

• n = hill constant
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Figure 7. Number of gene over time with the initial
conditions: k1 = 0.5, γ1 = 0.1, k2 = 0.5, γ2 = 0.05, n=5, c=5
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Figure 8. Number of gene over time with the initial
conditions: k1 = 4, γ1 = 0.8, k2 = 0.3, γ2 = 0.5, n=7, c=3

The figures 7 & 8 show the relation between Gene first (G1) and Gene second (G2) over time. Along the x-axis, we have the
time axis and along y-axis we have number of Gene first (G1) and Gene secondG2. We observe that G1(blue line) denotes Gene
first in the above figure 7 & 8 while G2(red line) denotes Gene second. Here ((G2) quickly get activated and reaches to the
peak point but G1 protein start repressing it and suddenly it goes down in figure 7 . This show that G1 act as repressor in this case.

If we change the initial parameters such as k1, γ1, k2, γ2 greater than that are used in figure 7, we came to know that the
Gene first (G1) approaches near to zero. If G1 is very large, than the gene two will reach the peak point but k2 approaches very
close to zero but never can be zero.

4 Oscillating Gene Network

Oscillating gene is a gene that is expressed in a rhythmic pattern or in periodic cycles9, 10. Oscillating genes are usually circadian
and can be identified by periodic changes in the state of an organisms. Oscillating gene model is a complex gene network.
Same as above, the Central Dogma of molecular biology states that DNA makes and RNA makes proteins. The process by
which DNA is copied to RNA is called transcription and by which RNA is used to produce protein is translation.

For this model, let us consider Gene first as (G1), Gene second as (G2) and Gene third (G3). G1 activates the G2 and
facilitates the transcription of G2 as a result G2 get transcribed. It is positive interaction. G2 does same for the G3 and facilitates
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the transcription of G3 as a result G3 get transcribed. But G3 comes back to repress the transcription of G1. G3 is inhibiting the
expression by blocking the transcription of G1. It is known as negative feedback because it is cascading G1 being transcribed
and then activating G2 which later transcribed and helps in activating G3. But G3 is negatively feeding back. This cause
oscillation during stimulation.

The coupled differential equations representing the model of Oscillating gene network are shown in equation 7 , equation 8
& equation 9.

dG1

dt
=

[
cn

cn +Gn
3

]
k1 − γ1G1 (7)

dG2

dt
=

[
Gn

1
cn +Gn

1

]
k2 − γ2G2 (8)

dG3

dt
=

[
Gn

2
cn +Gn

2

]
k3 − γ3G3 (9)

where

• k1 is production rate of G1

• γ1 is degradation rate of G1

• k2 is production rate of G2

• γ2 is degradation rate of G2

• k3 is production rate of G3

• γ3 is degradation rate of G3

• c = constant

• n = hill constant
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Figure 9. Number of gene over time with the initial
conditions: k1 = 0.5, γ1 = 0.1, k2 = 0.5, γ2 = 0.01, k3 = 0.5,
γ3 = 0.1, n=9, c=1

0

2

4

Nu
m

be
r G1

G2
G3

0

2

Nu
m

be
r

0 25 50 75 100 125 150 175 200
Time

0

2

Nu
m

be
r

Figure 10. Number of gene over time with the initial
conditions: k1 = 0.8, γ1 = 0.1, k2 = 0.7, γ2 = 0.2, k3 = 0.8,
γ3 = 0.2, n=6, c=2

The figures 9 & 10 show the relation between Gene first (G1), Gene second (G2) and Gene third (G3) over time. Along the
x-axis, we have the time axis and along y-axis we have number of Gene first (G1), Gene second G2 and Gene third (G3). We
observe that G1(blue line) denotes Gene first, G2(red line) denotes Gene second and G3(green line) denotes Gene third. In
figure 9, we find oscillation with 3G network. Gene third G3 is repressing G1 which is negative feedback. Here G1 is being
produced that leads to G2 production and G2 is produced which leads to the production of G3. But G3 produced stops G1 from
being produced. So that we get waves like this.

If we change the initial parameters such as k1, γ1, k2, γ2, k3 and γ3 greater than that are used in figure 9 came to know that
the nature of oscillation of all gene remain same but peak points of the all gene varies from figure 9 for figure 10.
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5 Gillespie Algorithm
The Gillespie algorithm(or occasionally the Doob-Gillespie algorithm) generates a statistically correct trajectory(possible
solution) of a stochastic equation system for which the reaction rates are known. The algorithm was first presented by Doob in
the mid 1940s11, 12. It was implemented by Kendall in the 1950s13, 14. However it wasn’t until the mid 1970s15, 16 that Gille-
spie re-derived the method by studying physical systems that it became widely used17. It is also sometime called as SSA method.

For this let consider a gene as x and some mRNA is transcribed from x with production rate k and it will be degraded
with rate γx. For this list, all the rate in array as r = [k , γx]. For this, let choose a time point of the reaction. If we are at time
t which could be zero or can be any time between algorithm. Then next time is going to be t + τ . Here we choose τ from
exponential random distribution with the parameter lambda which is the sum of all rates at time t. After choosing the time
point it is important to know whether it will be production of mRNa or breakdown of mRNA. The rate for breakdown depends
on the current level of x. If there will be x zero than γx will be zero and there will be only production. But suppose, if we
have couple of x with some positive number. So to choose the event going to happen we take random draw between two of
them and weight the probabilities accordingly. Here probability of production of mRNA that means probability of x going to x
+ 1{ P( x→ x + 1) = ( k

∑(r) )} and probability of breaking down of mRNA is that means probability of x - 1 { P( x→ x - 1) = ( γx
∑(r) )}.

The differential equation representing the model of repression Gillespie algorithm is shown in equation 10.

dx
dt

= k− γx (10)

Events Rates
x → x + 1 k
x → x - 1 γx

where

• k is the production rate for mRNA

• γx is the degradation rate for mRNA
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Figure 11. Quantity of mRNA over time with the initial
conditions: k=2, γ = 0.1
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Figure 12. Quantity of mRNA over time with the initial
conditions: k=3, γ = 0.4

The figures 11 & 12 show the relation between quantity of mRNA and protein over time. Along the y-axis, we have the
time axis and along x-axis we have abundance of both mRNA and protein. We observe that M(blue line) denotes quantity of
mRNA in the above figures 11 & 12. If we do the stimulation for hundred times or thousand times it will show average steady
state near about 20 for above figure 11. Since it is stochastic model the steady state is not real because it is fluctuating near the
steady state.
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If we change the initial parameters of k and γ greater than above figure 11, we came to know that fluctuation is more and
hard to find the steady state in figure 12.

6 Deterministic vs Stochastic Modelings
Deterministic modeling allows us to calculate a future event exactly without the involvement of randomness. Stochastic
modeling allows us to calculate a future event exactly with the involvement of randomness. In deterministic there is each set
of initial condition so there is only one trajectory. Through this model we get smooth curve. The difference with stochastic
model is that stochastic model involves some random component. Due to amalgamation of noise from different source,
micro-array expression profiles becomes inherently noisy leading to significant impact on the Gene Regulatory Networks (GRN)
reconstruction process. Micro-array replicates (both biological and technical), generated to increase the reliability of data
obtained under noisy conditions, have limited influence in enhancing the accuracy of reconstruction. Therefore instead of the
conventional GRN modeling approaches which are deterministic, stochastic techniques are becoming increasingly necessary18.

The trajectory of deterministic modeling is completely defined by the initial parameters and conditions due to no involvement
of randomness but in stochastic modeling with the same parameters and same initial conditions we get different trajectories
running at different times. In computational biology one motive for using stochastic modeling is to calculate random variation
in system which is not possible through deterministic modelings. Here, we will discuss about oscillating gene network same as
above for stochastic modeling calculation.

The coupled differential equations representing the model of Stochastic modelings are shown in equation 11 , 12 & 13.

dG1

dt
=

[
cn

cn +Gn
3

]
k1 − γ1G1 (11)

dG2

dt
=

[
Gn

1
cn +Gn

1

]
k2 − γ2G2 (12)

dG3

dt
=

[
Gn

2
cn +Gn

2

]
k3 − γ3G3 (13)

Events Rates

G1 → G1 +1
[

cn

cn+Gn
3

]
k1

G1 → G1 −1 γ1G1

G2 → G2 +1
[

Gn
1

cn+Gn
1

]
k2

G2 → G2 −1 γ2G2

G3 → G3 +1
[

Gn
2

cn+Gn
2

]
k3

G3 → G3 −1 γ3G3

where

• k1 is production rate of G1

• γ1 is degradation rate of G1

• k2 is production rate of G2

• γ2 is degradation rate of G2

• k3 is production rate of G3

• γ3 is degradation rate of G3

• c = constant

• n = hill constant

The figures 13 & 14 show the relation between Gene first (G1), Gene second (G2) and Gene third (G3) over time. Along the
x-axis, we have the time axis and along y-axis we have number of Gene first (G1), Gene second (G2) and Gene third (G3). We
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Figure 13. Number of gene over time with the initial
conditions: k1 = 2, γ1 = 0.1, k2 = 2, γ2 = 0.1, k3 = 2,
γ3 = 0.1, n=9, c=1
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Figure 14. Number of gene over time with the initial
conditions: k1 = 3, γ1 = 0.2, k2 = 2.5, γ2 = 0.2, k3 = 3,
γ3 = 0.1, n=10, c=2

observe that G1(blue line) denotes Gene first, G2(red line) denotes Gene second and G3(green line) denotes Gene third in both
figure 13 & 14. Each one have the oscillations but there is unevenly space because of the stochastic nature of this model. In
compared to previous oscillator topic we did deterministic ODEs model which was smooth but this is stochastic so they are still
oscillating but it is much more random.

If we change the initial parameters such as k1, γ1, k2, γ2, k3 and γ3 greater than the above figure 13, we came to know that
the nature of oscillation of all Gene remain same but peak points of the all Gene varies from figure 13 and some what oscillates
in rapid speed in less time in figure 14.

7 Discussion
As mentioned above, this manuscript has been engaged in the use of mathematical modelling in the Gene Regulatory System
(GRN). Here, we underlined that the model should describes the continuous nature of the biochemical processes and reflect the
non-linearities. We used the gene expression rates by ordinary differential equations (ODEs) where the expression rates were
approximated by means of difference quotients. For the modeling, Python modules were used. Python has many excellent
and well-maintained libraries that facilitate high-level scientific computing analyses. The modules such as numpy19 which
offers a numerical processing library that supports multi-dimensional arrays, scipy20 which offers a scientific processing library
providing advanced tools for data analysis, including regression, ODE solvers and integrator, linear algebra and statistical
functions, matplotlib21 which offers a plotting library with tools to display data in a variety of ways were used in Anaconda22

software. The dynamical behavior of gene expressions which are represented by a system of ordinary differential equations
were solved using "odeint" from scipy module. Further we also considered the different parameters to solve the different ODEs.
Finally, the change of dependent variable with respect to time were plotted in different models under study.

In Central dogma, we observe that flow of genetic information in a biological system is steady after a certain time, and the
abundance of both mRNA and protein depends on the production. Likewise in Hill function we observe that it is a parameters
which increases or decreases the probability of RNA polymerise binding. In Oscillating gene network, we observe that it
is a positive complex network also known as negative feed back. In Gillespie algorithm, we observe that it is an algorithm
for predicting the time point of the reaction between the mRNA and proteins. In the Deterministic vs Stochastic modelings,
we observe that deterministic model can calculate the future event with out randomness but stochastic can calculate future
with randomness. We also discussed about the randomness of gene over a time which causes the significant impact on the
Gene Regulatory Network (GRN). The Stochastic model is far better than Deterministic model to calculate future event
exactly with low chance of error. We are able to predict the future event using different parameters. Thus, modeling is a
mathematical tool, like a microscope, which allows consequences to logically follow from a set of assumptions. It may allow to
understand importance of specific mechanisms/assumptions in biological processes. However, mathematical modeling can also
be misleading if used inappropriately.
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Appendix
The code that was used in order to study different types of modeling in biological systems are shown here. This will help to
reproduce the solutions to the models discussed above.

Central Dogma
The code for the Central Dogma problem that is used in order to generate the plots is shown here:

1 # We need some modules (Python libraries) in the following.

2 # Usually, such modules are loaded in the first cell of a notebook.

3 # The modules that we need concern numerical calculations,

4 # solving the ordinary differential equations, and plotting them later.

5

6 # modules necessary for plotting

7 import matplotlib.pyplot as plt

8 # integrate a system of ordinary differential equations

9 # initial value problem

10 from scipy.integrate import odeint

11 # module to make available data structures and routines

12 # for numerics

13 import numpy as np

14

15 y0 = [0,0] # 0 protein and 0 mRNA

16 t = np.linspace(0,200,num=100) # 100 means hundred different point

17

18 k_m = 0.2

19 gamma_m = 0.05 #degradtion rate should be less than production rate

20 k_p = 0.4

21 gamma_p = 0.1

22

23 #putting the params to array which will be passed in this offer

24 params = [k_m, gamma_m, k_p, gamma_p]

25

26 def dogma(variables, t, params):

27 m = variables[0]

28 p = variables[1]

29 #they are the first, second and so on element of the params

30 #arraygamma_m = params[1]

31 k_m = params[0]

32 k_p = params[2]

33 gamma_p = params[3]

34 dmdt = k_m - gamma_m * m

35 dpdt = k_p * m - gamma_p * p

36 return([dmdt,dpdt])

37

38 #, is used for storing args and we get y matrix with two column one for p

39 #another for m and row for every time point

40 y = odeint(dogma, y0, t, args=(params,))

41 # to plot and label the plot

42 plt.plot(t,y[:,0], color="b", label="M")

43 plt.plot(t,y[:,1], color="r", label="P")

44 plt.xlabel("Abundance")

45 plt.ylabel("Time")

46 plt.legend()

47 plt.grid()

48 plt.show()
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Hill function
The code for the Hill function problem that is used in order to generate the plots is shown here:

Activation Hill Function

1 import matplotlib.pyplot as plt

2 from scipy.integrate import odeint

3 import numpy as np

4

5 # 0 for G1 and 0 for G2

6 y0 = [0,0]

7 # 100 means hundred different point

8 t = np.linspace(0,200,num=100)

9

10 # degradtion rate should be less than production rate

11 k_1 = 0.5

12 gamma_1 = 0.1

13 k_2 = 0.5

14 gamma_2 = 0.05

15 n = 5

16 c = 5

17

18 # putting the params to array which will be passed in this offer

19 params = [k_1, gamma_1, k_2, gamma_2, n, c]

20

21 def activation(variables, t, params):

22 #they are the first, second and so on element of the params

23 # and arraygamma_m = params[1]

24 G1 = variables[0]

25 G2 = variables[1]

26 k_1 = params[0]

27 gamma_1 = params[1]

28 k_2 = params[2]

29 gamma_2 = params[3]

30 n = params[4]

31 c = params[5]

32 dG1dt = k_1 - gamma_1 * G1

33 dG2dt = (G1**n / (c**n + G1**n)) * k_2 - gamma_2 * G2

34 return([dG1dt,dG2dt])

35

36 #,is used for storing args and we get y matrix with two column one

37 # for G1 another for G2 and row for every time point

38

39 y = odeint(activation, y0, t, args=(params,))

40

41 plt.plot(t , y[:,0], color="b", label="G1")

42 plt.plot(t , y[:,1], color="r", label="G2")

43 plt.xlabel("Time")

44 plt.ylabel("Number")

45 plt.legend()

46 plt.grid()

47 plt.show()

Repression Hill Function

1 import matplotlib.pyplot as plt

2 from scipy.integrate import odeint
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3 import numpy as np

4

5 # 0 for G1 and 0 for G2

6 y0 = [0,0]

7 # 100 means hundred different point

8 t = np.linspace(0,200,num=100)

9

10 #degradtion rate should be less than production rate

11 k_1 = 0.5

12 gamma_1 = 0.1

13 k_2 = 0.5

14 gamma_2 = 0.05

15 n = 5

16 c = 5

17

18 #putting the params to array which will be passed in this offer

19 params = [k_1, gamma_1, k_2, gamma_2, n, c]

20

21 def repression(variables, t, params):

22 #they are the first, second and so on element of the params

23 #and arraygamma_m = params[1]

24 G1 = variables[0]

25 G2 = variables[1]

26 k_1 = params[0]

27 gamma_1 = params[1]

28 k_2 = params[2]

29 gamma_2 = params[3]

30 n = params[4]

31 c = params[5]

32 dG1dt = k_1 - gamma_1 * G1

33 dG2dt = (c**n / (c**n + G1**n)) * k_2 - gamma_2 * G2

34 return([dG1dt,dG2dt])

35

36 #, is used for storing args and we get y matrix with two column one for G1

37 # and another for G2 and row for every time point

38 y = odeint(repression, y0, t, args=(params,))

39

40 plt.plot(t , y[:,0], color="b", label="G1")

41 plt.plot(t , y[:,1], color="r", label="G2")

42 plt.xlabel("Time")

43 plt.ylabel("Number")

44 plt.legend()

45 plt.grid()

46 plt.show()

Oscillating Gene Network
The code for the Oscillating gene network problem that is used in order to generate the plots is shown here:

1 import matplotlib

2 import matplotlib.pyplot as plt

3 from scipy.integrate import odeint

4 import numpy as np

5

6 y0 = [0,0,0]

7 t = np.linspace(0,200, num=100)

8
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9 k_1 = 0.5

10 gamma_1 = 0.1

11 k_2 = 0.5

12 gamma_2 = 0.1

13 k_3 = 0.5

14 gamma_3 = 0.1

15 n = 9

16 c = 1

17

18 params = [k_1, gamma_1, k_2, gamma_2, k_3, gamma_3, n, c]

19

20 def sim(variables, t, params):

21 G1 = variables[0]

22 G2 = variables[1]

23 G3 = variables[2]

24 k_1 = params[0]

25 gamma_1 = params[1]

26 k_2 = params[2]

27 gamma_2 = params[3]

28 k_3 = params[4]

29 gamma_3 = params[5]

30 n = params[6]

31 c = params[7]

32 dG1dt = (c**n / (c**n + G3**n)) * k_1 - gamma_1 * G1

33 dG2dt = (G1**n / (c**n + G1**n)) * k_2 - gamma_2 * G2

34 dG3dt = (G2**n / (c**n + G2**n)) * k_3 - gamma_3 * G3

35 return([dG1dt,dG2dt,dG3dt])

36

37 y = odeint(sim,y0,t, args=(params,))

38

39 f, (ax1, ax2, ax3) = plt.subplots(3, sharex=True, sharey=False)

40 line1, = ax1.plot(t , y[:,0], color="b",label="G1")

41 line2, = ax2.plot(t , y[:,1], color="r",label="G2")

42 line3, = ax3.plot(t , y[:,2], color="g",label="G3")

43 ax1.set_ylabel('Number')

44 ax1.set_xlabel('Time')

45 ax1.legend(handles=[line1,line2,line3])

46 plt.grid()

47 plt.show()

Gillespie Algorithm
The code for the Gillespie algorithm that is used in order to generate the plots is shown here:

1 import matplotlib.pyplot as plt

2 from scipy.integrate import odeint

3 import numpy as np

4 import random

5

6 x = [0] # x represent mRNA

7 t = [0] # t represnt time point

8

9 tend = 1000 # simulation end time

10

11 k = 2 # production rate

12 gamma = 0.1 # degradation rate

13
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14 while t[-1] < tend:

15 # gives latest value of x

16 current_x = x[-1]

17 rates = [k, gamma * current_x]

18 rate_sum = sum(rates)

19 # tau is the time points for next event

20 tau = np.random.exponential(scale=1/rate_sum)

21 t.append(t[-1] + tau)

22 rand = random.uniform(0,1)

23 # production event

24 if rand * rate_sum > 0 and rand * rate_sum < rates[0]:

25 x.append(x[-1] + 1)

26 # production event

27 elif rand * rate_sum > rates[0] and rand * rate_sum < rates[0] + rates[1]:

28 x.append(x[-1] - 1)plt.plot(t,x)

29

30 plt.xlabel("time")

31 plt.ylabel("mRNA quantity")

32 plt.grid()

33 plt.show()

Deterministic vs Stochastic modelings
The code for the Deterministic vs Stochastic modelings problem that is used in order to generate the plots is shown here:

1 import matplotlib.pyplot as plt

2 from scipy.integrate import odeint

3 import numpy as np

4 import random

5

6 G1 = [0] # Gene first time interval

7 G2 = [0] # Gene second time interval

8 G3 = [0] # Gene third time interval

9 t = [0] # time point of new event

10

11 tend = 1000

12

13 k_1 = 2

14 gamma_1 = 0.1

15 k_2 = 2

16 gamma_2 = 0.1

17 k_3 = 2

18 gamma_3 = 0.1

19 n = 9

20 c = 1

21

22 # -1 means last value of t array

23 while t[-1] < tend:

24 current_G1 = G1[-1]

25 current_G2 = G2[-1]

26 current_G3 = G3[-1]

27 rates = [(c**n / (c**n + current_G3**n)) * k_1, gamma_1 * current_G1,\

28 (current_G1**n / (c**n + current_G1**n)) * k_2, gamma_2 * current_G2,\

29 (current_G2**n / (c**n + current_G2**n)) * k_3, gamma_3 * current_G3]

30 rate_sum = sum(rates)

31 # tau is the next point of time for event

32 # the scale is the mean of distribution
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33 tau = np.random.exponential(scale=1/rate_sum)

34 t.append(t[-1] + tau)

35 rand = random.uniform(0,1)

36 # G1 production event

37 if rand * rate_sum < rates[0]:

38 G1.append(G1[-1] + 1)

39 G2.append(G2[-1])

40 G3.append(G3[-1])

41 # G1 decay event

42 elif rand * rate_sum > rates[0] and rand * rate_sum < sum(rates[:2]):

43 G1.append(G1[-1] - 1)

44 G2.append(G2[-1])

45 G3.append(G3[-1])

46 # G2 production event

47 elif rand * rate_sum > sum(rates[:2]) and rand * rate_sum < sum(rates[:3]):

48 G1.append(G1[-1])

49 G2.append(G2[-1] + 1)

50 G3.append(G3[-1])

51 # G2 decay event

52 elif rand * rate_sum > sum(rates[:3]) and rand * rate_sum < sum(rates[:4]):

53 G1.append(G1[-1])

54 G2.append(G2[-1] - 1)

55 G3.append(G3[-1])

56 # G3 production event

57 elif rand * rate_sum > sum(rates[:4]) and rand * rate_sum < sum(rates[:5]):

58 G1.append(G1[-1])

59 G2.append(G2[-1] )

60 G3.append(G3[-1] + 1)

61 # G3 decay event

62 elif rand * rate_sum > sum(rates[:5]) and rand * rate_sum < sum(rates[:6]):

63 G1.append(G1[-1])

64 G2.append(G2[-1] )

65 G3.append(G3[-1] - 1)

66

67 f, (ax1, ax2, ax3) = plt.subplots(3, sharex=True, sharey=False)

68 line1, = ax1.plot(t , G1, color="b",label="G1")

69 line2, = ax2.plot(t , G2, color="r",label="G2")

70 line3, = ax3.plot(t , G3, color="g",label="G3")

71 ax1.set_ylabel("Number")

72 ax3.set_xlabel("Time")

73 ax1.legend(handles=[line1,line2,line3])

74 ax1.grid()

75 ax2.grid()

76 ax3.grid()

77 plt.show()
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