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Abstract 

Metastases arise from a subset of cancer cells that disseminate from the primary tumor; 

however, the factors that contribute to proliferation of cancer cells in a secondary site are 

incompletely understood. The ability of cancer cells to thrive in a new tissue site is 

influenced by genetic and epigenetic changes that are important for disease initiation and 

progression, but these factors alone do not predict if and where cancers metastasize. 

Specific cancer types metastasize to consistent subsets of tissues, suggesting that 

factors within the primary tumor influence the tissue environments where cancers can 

grow. Using pancreatic cancer as a model, we find that primary and metastatic tumors 

are metabolically similar to each other and that the tumor initiating capacity and 

proliferation of both primary- and metastasis-derived cells is favored in the primary site 

relative to the metastatic site. Moreover, propagating lung or liver metastatic cells in vivo 

to enrich for tumor cells adapted to grow in the lung or the liver does not enhance their 

relative ability to form large tumors in those sites, change their preference to grow in the 
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primary site, nor stably alter their metabolism relative to primary tumors. To assess 

whether this preference for the primary site is specific to pancreatic cancer, we analyzed 

liver and lung cancer cells and find that these cells also best form tumors in the tissue 

that corresponds to their primary site. Together, these data suggest that the cancer 

tissue-of-origin influences the metabolism of both primary and metastatic tumors and may 

impact whether cancer cells can thrive in a metastatic site. 

 

One-Sentence Summary: Tissue-of-origin is a major determinant of metastatic tumor 

metabolism and accessing the right metabolic environment may contribute to why 

cancers metastasize to specific tissues.  

 

Metastasis contributes to the high mortality of patients with cancer. Metastases arise from 

a subset of cancer cell clones within the primary tumor (1); however, why some clones 

thrive in new tissue sites and what determines which tissue sites will support proliferation 

of metastatic cancer cells is incompletely understood. It is known that formation of 

metastasis is a rare event (2). The fact that metastases are derived from a subset of 

clones found in a primary tumor may suggest that only those cancer cells that are adapted 

to grow in the new tissue site are selected for during metastasis. Oncogenic mutations 

are important contributors to primary tumor initiation and disease progression (3), but 

despite extensive efforts, causal genetic determinants of metastasis have not been 

identified. This has led to the speculation that epigenetic alterations must be involved in 

allowing cancer cells to thrive in new tissue sites; however, consistent gene expression 

programs that predict which cancers can grow in any specific tissue have also not been 
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found. These data argue that genetic factors alone do not predict metastasis (4), and the 

fact that cancers arising in different tissue sites tend to metastasize to distinct subsets of 

tissue locations that are characteristic of that tumor type argues that some property of the 

primary tumor influences the specific tissues to where cancer cells can metastasize. 

Nevertheless, the properties of the primary tumor environment that are shared with the 

metastatic tumor environment to allow metastasis are not well understood. 

  

One factor that could be shared between primary and metastatic sites and might influence 

whether tumors can grow in each location is nutrient availability, as metabolism is a 

property of cancer that is influenced by tissue environment (5). Genetic events, such as 

oncogenic Ras signaling, contribute to metabolic changes in cancer (6–8); however, 

cancer tissue-of-origin and tumor location also influence cancer metabolic phenotypes (9, 

10). The nutrients available to cancer cells in tumors depends on tissue location and 

cancer type (11–13), and it has been proposed that tumor cells exhibit metabolic plasticity 

to allow proliferation in a metastatic site, a model whereby metastatic tumors adapt their 

metabolism to deviate from the primary tumor and match that of the metastatic site (14, 

15). However, tumor metabolic gene expression better resembles the tissue-of-origin for 

a cancer than it does tumors arising in other tissues (16, 17), and differences in nutrient 

availability across tissues might constrain the tissue of origin-shaped metabolism of 

cancer cells and limit where cells can thrive as metastases (11, 16–18). This model would 

predict metabolic similarities between the primary and the metastatic tumors and that the 

metabolism of the metastatic tumor is determined by the tissue-of-origin, a possibility that 

has not been tested. This led us to investigate how well primary- and metastasis-derived 
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cancer cells can grow in different tissues, and how metastatic tumor metabolism relates 

to the primary tumor. 

 

Pancreatic ductal adenocarcinoma (PDAC) has a high incidence of metastasis, and the 

genetically engineered LSL-KrasG12D/+; Trp53R172H/+; Pdx-1-Cre (KPC) mouse pancreatic 

cancer model recapitulates many features of the human disease including a propensity 

to metastasize (19, 20). Over a period of 6-8 months, KPC mice develop tumors in the 

pancreas and frequently develop metastatic lesions in the liver, and occasionally in the 

lung (19), a metastatic pattern similar to that observed in patients. To study primary and 

metastatic PDAC cells, cancer cells were isolated from primary tumors and matched liver 

or lung metastases that arose in the KPC model, and that proliferated at similar rates 

when cultured in standard conditions in vitro (Fig. S1). To determine whether the cells 

derived from primary or metastatic tumors exhibit a preference to form tumors in different 

tissues in a mouse when competed against each other, cancer cells from matched 

primary tumors or liver metastases were engineered to express either mCherry or GFP, 

such that equal numbers of cells expressing different fluorescent proteins could be mixed 

and implanted into the pancreas, liver, or flank (subcutaneous) in syngeneic C57BL/6J 

mice (Fig. S2A). We confirmed that the labeled cell populations had approximately 

equivalent representation prior to implantation (Fig. S2B), and that all cells could form 

tumors of similar size in the pancreas when injected individually, or co-injected as a mixed 

population (fig. S2C). When a mixed population of cells derived from primary tumors and 

liver metastases were implanted in the pancreas, the resulting tumors were enriched for 

primary tumor-derived cells when analyzed by either flow-cytometry or 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.504141doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504141


 6 

immunohistochemistry (Fig. S2D-E). When a mixed population of cells was implanted in 

the liver, liver metastases-derived cells were more abundant, even though primary tumor-

derived cells also contributed to the resulting tumor (Fig. S2F-H). Interestingly, when a 

mixed population of primary- and liver metastasis-derived cells were implanted in the 

flank, the resulting tumor was derived primarily from one of the two cell populations (Fig. 

S2I). These data are consistent with tumors at either the primary or a metastatic site being   

derived from a subset of cancer cells, and are consistent with prior studies suggesting 

that cancer cells can be selected to metastasize to specific sites (21). 

 

To determine whether a subset of cancer cells contributing to the bulk of the resulting 

tumors reflects selection for cells that are best adapted to grow in a given tissue, or 

whether stochastic processes related to metastasis being a rare event also contribute (2), 

we labeled the same cancer cells with either mCherry or GFP, mixed them in equal 

proportions (Fig. 1A), and implanted the mixed population into the pancreas, liver, or 

flank. Even though the different labeled cancer cells were derived from the same cell 

population, in most instances, either an mCherry or GFP labeled cell was found to be the 

dominant clone in tumors that formed regardless of site (Fig. 1B-D). These data are 

consistent with observations of clonal dominance in pancreatic cancer in both primary 

and metastatic sites (22), but also raise the possibility that the presence of primary tumor 

subclones in metastases reflects, at least in part, that relatively few cells contribute to a 

bulk tumor.  
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Several studies have noted that the availability of specific nutrients can determine 

whether cancer cells can thrive in a metastatic site (23); however, those studies have 

focused on how metabolism of a specific tissue metastasis might differ from a primary 

tumor, and a comprehensive analysis of both the metabolic similarities and differences 

for primary and metastatic tumors is lacking. To begin to assess whether accessing a 

metastatic tissue environment with sufficient similarity to the primary site is important to 

support the metabolism of metastatic cancer cells, we implanted primary- or liver 

metastasis-derived PDAC cells into the pancreas or liver to form tumors in mice. 

Assessment of transplanted tumors was necessary to study the metabolism of 

metastases, because it was not possible to isolate large enough metastatic tumors from 

the KPC model for functional analysis of metabolism. Assessment of implanted tumors 

also allows comparison of tumors within a predictable time window that enables analysis 

of isotopically-labeled glucose fate in tumor tissue in conscious, unrestrained tumor 

bearing mice (24). Mice were analyzed after a 6 hour 13C-glucose infusion, a time where 

metabolite labeling approaches steady state allowing comparison of glucose fate between 

tissues (24). Similar 13C-glucose enrichment was observed in plasma of labeled-glucose 

infused mice bearing either pancreatic tumors or liver metastatic tumors (Fig. S3A), and 

minimal differences in glucose fate were observed when comparing how metabolites were 

labeled in tumors growing in the pancreas and liver (Fig. 1E-L).  

 

To extend these findings to a second mouse model of pancreatic cancer, we utilized 

cancer cells isolated from the LSL-KrasG12D/+; Trp53-/-; Pdx-1-Cre (KP-/-C) mouse model 

of PDAC (25, 26), and implanted those cells into the pancreas, liver, and flank to again 
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assess the fate of U-13C glucose in tumors arising in each location, as well as in the 

normal pancreas and liver. While a different labeling pattern was observed when 

comparing metabolites from tumors to metabolites from the normal pancreas and liver, 

minimal differences in labeling were present in pancreatic tumors growing in different 

tissue sites (Fig. S3B-I). These data argue that in both pancreatic cancer models studied, 

glucose is metabolized similarly in both primary and metastatic tumors even though 

glucose metabolism in the tumors differs from that observed in normal pancreas and liver. 

 

To further study the metabolic relationship between primary pancreatic tumors, matched 

liver metastases, normal pancreas, and normal liver, we assessed overall metabolite 

levels in the tissues harvested from age-matched normal as well as tumor bearing mice. 

Unsupervised clustering of metabolites suggest that the metabolic profile of normal liver 

is distinct from the other samples (Fig 1M). Moreover, this type of analyses revealed 

minimal separation between the primary tumors, liver metastases, and the normal 

pancreas when the same data was analyzed using two different approaches, relative to 

normal liver (Fig. 1M-N). Of note, although we observe variability across samples, we do 

not find evidence of consistent changes in metabolites that distinguish primary and liver 

metastatic tumors from KPC mice (Fig. S3J).Taken together with the data assessing 

glucose fate, these data suggest that pancreatic tumors have a similar metabolic 

phenotype in both the primary site and in liver metastasis, and that the metabolic 

phenotype of a liver metastatic pancreatic tumor more closely resembles the tissue-of-

origin than it does the metastatic tissue.  
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We next examined relative metabolite levels in cultured pancreatic cancer cells derived 

from primary tumors and liver metastases and found metabolite levels were similar across 

different independently derived paired primary and metastatic cells such that clustering 

based on metabolites did not uniformly segregate primary cells from liver metastatic cells 

(Fig. S4A). To examine whether nutrient utilization differs between primary- and liver 

metastasis-derived cancer cells in culture, we examined glucose metabolism by 

assessing the fate of U-13C-glucose. Although some differences in glucose fate in culture 

were observed across different cells derived from primary and liver metastases, these 

differences were not consistent across multiple paired primary and liver metastatic lines 

from independent mice (Fig S4B-J). Taken together, these data argue that any metabolic 

differences that exist between primary and liver metastatic PDAC cells are not maintained 

in standard culture, and thus are not determined by stable genetic or epigenetic regulation 

of metabolism. 

 

If the need to access a tissue environment with enough similarity to the primary tissue 

site is a barrier to metastasis, we reasoned that this may result in metastatic cancer cells 

retaining a preference to grow in the primary site. For instance, if a specific nutrient 

environment is needed to support the growth of tumors in either the primary and the 

metastatic sites, this would be better represented in the primary tissue and result in 

differences in the rate of tumor growth in different sites. To examine this possibility, we 

implanted cells derived from either primary tumors or matched liver metastases into the 

pancreas or liver, as well as into the flank as a neutral site that is commonly used to 

assess tumor growth in mice (Fig. 2A). In all cases we implanted the same number of 
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cells in each site, and after a fixed period of four weeks we assessed tumor weight where 

possible, or weight of the tumor bearing organ, as well as the wet tissue weight of the 

corresponding normal tissue from age-matched mice. We found that cancer cells from 

both primary and liver metastatic tumors were able to form tumors at all sites but observed 

a clear preference for cancer cells derived from both primary tumors and liver metastasis 

to form tumors in the pancreas, with much larger tumors forming in this organ than in the 

liver or flank (Fig. 2B, Fig. S5A-B). Interestingly, cancer cells formed tumors that grew to 

a similar size in each organ site regardless of whether the cells were derived from a 

primary or a liver-metastatic lesion. Tumors in each site were also histologically similar 

regardless of whether they were derived from a primary tumor or a liver metastasis (Fig. 

2C, Fig. S5C). Proliferation of cells derived from primary or a liver-metastatic lesion, as 

determined by Ki-67 staining, was also similar in tumors at each site (Fig. 2D and Fig. 

S5D). Repeating this analysis with an independently derived matched primary and liver 

metastasis cell pair also showed a preference for both primary- and liver metastasis-

derived cells to form large tumors in the pancreas (Fig S5E). These data argue that the 

pancreas better supports the growth of pancreatic cancer cells as tumors, even if those 

cancer cells are derived from liver metastasis. 

 

To examine whether the tumor initiating capacity of primary- and liver metastasis-derived 

cells differ in different tissue locations, we implanted different numbers of either primary- 

or liver metastasis-derived pancreatic cancer cells into the pancreas or liver and 

determined the minimal number of cells competent to form tumors in each site. We found 

that both primary- and liver metastasis-derived cells have a similar tumor initiating 
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capacity at each site; however, more cells are needed to form a tumor in the liver than 

are needed to form tumors in the pancreas (Fig. 2E-F). These data further support the 

notion that pancreatic cancer cells retain a preference to grow in the primary site even if 

they are derived from a liver metastasis. 

 

To assess whether PDAC lung metastatic cells also retain a preference to grow in the 

pancreas, we performed similar experiments using independently derived cells from 

matched primary, liver, and lung metastases arising in KPC mice (Fig. 2G). Cells derived 

from either liver metastases or lung metastases can form tumors in both the liver and 

lung; however, by far the largest tumors developed in the pancreas with the smallest 

tumors in the flank (Fig. 2H and Fig. S5F-L). These data argue cancer cells from 

metastasis retain a preference to grow in the primary site and may not adapt entirely to 

conditions in the metastatic site. 

 

Propagation of cancer cells in metastatic sites has been used to select for cancer cells to 

grow in a particular tissue site and study metastasis, including assessment of metabolic 

differences between primary and metastatic tumors (27–29). Of note, these studies have 

largely examined the ability of selected cells to seed metastases when implanted in the 

primary site (29), and it remains unclear whether cells selected to seed metastatic sites 

also improve in their ability to grow in the different tissue sites once they arrive at that 

site. To answer this latter question, tumor cells derived from lung or liver metastases 

arising in KPC mice were propagated in vivo by three rounds of repeated implantation 

and passaging in the lung or liver respectively (Fig. 3A and Fig. S6A). Lung metastatic 
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cancer cells selected for in this manner efficiently formed lung tumors when injected via 

tail vein (Fig. S6B), and natural lung metastases developed in mice when these cells were 

implanted to form tumors in the pancreas (Fig. S6C). These same properties were present 

in the parental cells derived from a natural lung metastasis (Fig. S6B-C), which are 

otherwise infrequent in the KPC model (19). Propagating liver metastatic cancer cells as 

liver tumors in vivo resulted in more efficient tumor formation when implanted in the liver 

or when injected via tail vein (Fig. S6D-E). Of note, formation of liver nodules was not 

observed following tail vein injection of parental cells derived from liver metastases, 

arguing that in vivo passaging in the liver results in an increased ability to seed liver 

tumors. 

 

Despite passaging cancer cells as tumors in the lung or liver, when their ability to form 

tumors in different tissue sites was quantitatively assessed over a defined time window, 

the in vivo selected cells still formed larger tumors in the pancreas (Fig. 3B-E and Fig. 

S6F). Again, cells derived from both liver and lung metastases were able to form tumors 

at all sites, with the largest tumors forming in the pancreas and the smallest in the flank. 

Notably, similar size tumors were observed at each site regardless of where the cells 

were derived and whether they were passaged previously as tumors in the liver or lung. 

These data support a model where the pancreatic cancer cells retain a preference to grow 

in the primary site, even when repeatedly passaged in a metastatic tissue site. 

  

We next examined whether propagation of tumor cells in different tissues alters their 

metabolic phenotype. We first examined metabolites extracted from tumors that were 
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generated from cells derived from spontaneous lung metastases (P0) and from cells 

derived from in vivo selected lung metastases (P3) and compared those to metabolite 

levels extracted from primary pancreatic tumors as well as from age-matched normal lung 

or normal pancreas tissue. The small size of tumors that formed in the lung prevented 

assessment of metabolite levels when tumors are growing in that site, however we could 

assess metabolites extracted from the large tumors that formed in the pancreas to 

determine whether propagating cells in the lung stably selects for tumors with altered 

metabolism. We find that unsupervised clustering representation of the data as a heat 

map revealed that the pancreatic tumors derived from tumors that were generated from 

lung metastases, spontaneous or selected, metabolically cluster together with the primary 

tumor (Fig. 3F). When the same dataset was clustered using unsupervised K-means 

clustering, one in vivo adapted tumor clustered with the normal lung while the remaining 

tumor samples clustered together (Fig. 3G). These data suggest that passaging cancer 

cells as tumors in the lung, for the most part, does not select for stable alterations in 

metabolism that are retained when these cells are grown in the pancreas. 

 

To assess whether a preference for cancer cells to form tumors in the pancreas is 

because this is the tissue of origin for the cancer cells considered, or the pancreatic 

microenvironment is more permissive to tumor growth, we asked whether cancer cells 

derived from different cancers also have a preference to grow in their primary tissue site 

compared to the pancreas. First, we considered primary lung adenocarcinoma cells 

derived from the LSL-KrasG12D/+; Trp53fl/fl; Ad-Cre mouse lung cancer model (30). Primary 

lung cancer cells did not grow well as tumors in the pancreas, yet these cells formed large 
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tumors in the lung of syngeneic mice (Fig. 4A). Of note, this preference to grow in the 

lung relative to the pancreas was the opposite of what we observed with pancreatic 

cancer lung metastasis-derived cells (Fig. S6G). Next, we performed a similar experiment 

using mouse hepatocellular carcinoma (HCC)-derived cells (31, 32). These HCC cells 

were transplanted into the pancreas or liver of syngeneic mice, and tumor burden 

assessed after four weeks. While there was some variability between mice, HCC cells 

implanted into liver trended toward larger tumors relative to tumors that formed in the 

pancreas even after accounting for normal tissue weight (Fig. 4B and Fig. S6G). This 

preference for HCC-derived cells to grow in the liver relative to pancreas was again 

opposite of what was observed when compared directly to pancreatic cancer liver 

metastasis-derived cells (Fig. S6G). These data support that cancer cells retain a 

preference to grow in their tissue of origin relative to a metastatic site.  

 

To further examine whether metastatic tumors retain the same metabolism as the primary 

site, we queried an available dataset to determine whether metabolic gene expression is 

conserved between primary, liver, and lung metastases in the KPC pancreatic cancer 

model (22). Analysis of metabolic genes from this single-cell RNA-seq (scRNA-seq) 

dataset revealed significant overlap between primary PDAC and liver metastases when 

all cells were analyzed (Fig. 4C). Of note, when the analysis was restricted to the most 

abundant clonal populations in the tumor samples in the dataset, despite evidence for 

heterogeneity in metabolic gene expression among cancer cells isolated from both the 

primary tumor and the metastases, the same heterogeneity in metabolic gene expression 

appeared to be present in cells derived from both the primary and metastatic sites (Fig. 
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4D-E, Fig. S7A). Interestingly, when barcoded cancer cells injected into the pancreas 

were subsequently traced across tissues, these clones cluster differently based on 

metabolic gene expression but do not segregate by tissue site (Fig. 4E, Fig. S7B). Thus, 

metabolic heterogeneity in these cells is driven by clonal relationships between cells and 

not the tissue environment where the cells are growing. That is, these data argue that 

despite heterogeneity in metabolic gene expression among pancreatic cancer cells 

isolated from each tissue site, and metabolic heterogeneity among cancer cell clones, 

there is not selection for a clone with a specific global change in metabolic gene 

expression to grow as a metastasis. Rather, these data suggest that PDAC cancer cells 

retain a similar metabolic gene expression program to support tumor growth regardless 

of site. 

  

To assess whether these same findings are found in human pancreatic cancers, we 

analyzed expression of metabolic genes from available patient tumor-derived RNA-seq 

datasets (33, 34). Consistent with tissue-of-origin having a stronger influence on 

metabolic gene expression than tissue site, we find significant overlap of metabolic gene 

expression between primary pancreatic tumors and liver metastatic pancreatic tumors, 

and that this metabolic gene expression is distinct from that observed in primary liver 

cancer and normal liver tissue (Fig. 4F and Fig. S7C-D). Notably, the human pancreatic 

cancer liver metastases that overlap most with primary liver cancer samples contain a 

higher degree of contamination with normal hepatocytes as determined by higher 

expression of hepatocyte markers (Fig. 4F and Fig. S7C-D).  
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These data do not rule out that some phenotypes are selected for to enable cancer cell 

growth in metastatic sites; however, the finding that metastases have a similar metabolic 

program as the primary tumor argues that cancer cells retain many aspects of a metabolic 

program that is defined by the tissue-of-origin even when exposed to a new metastatic 

tissue environment. Thus, despite evidence for specific metabolic adaptions that can 

promote growth of cancer in specific tissues (13, 35–39), it appears that the metabolic 

plasticity of cancer cells is not as flexible as often assumed (15). Rather, it supports a 

model where a metabolic program derived from the cancer tissue-of-origin constrains 

where cancer cells can grow. A relative lack of metabolic plasticity may explain why 

chemotherapies that target metabolism remain effective in treating both primary and 

metastatic tumors, with patients selected for treatment based on the cancer tissue-of-

origin. Moreover, this model may underlie, at least in part, why particular cancer types 

metastasize to stereotyped locations, as accessing a nutrient environment that is similar 

enough to the primary tumors may be necessary to support the metabolic program that 

is selected for within the primary tumor. Better understanding the impact of different tissue 

nutrient environments on proliferation of cancers arising in different sites will be important 

to further test this hypothesis and could inform the selection of treatment modalities for 

patients based on the pattern of metastasis for a given primary tumor.  
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Materials and Methods 

Animal studies 

All studies were approved by the MIT committee on Animal Care under protocol number 

#0119-001-22.  For autochthonous models, KrasG12D/+; Trp53R172H/+; Pdx1-Cre (KPC) (40) 

and KrasG12D/+; Trp53R172H/+; Pdx1-Cre; LSL-tdTomato (KPCT) (19) mice from a mixed 

129/Sv and C57Bl6/J background as well as pure C57Bl6/J genetic background were 

used. Both male and female pure C57Bl6/J mice were used for all transplantation 

experiments. For metabolomics experiments normal tissue was isolated from age-

matched 6-month-old mice while tumors and paired liver metastases were isolated from 

the same 6–8-month-old animals. Animals were housed under 12-hour light and 12-hour 

dark cycle, and co-housed with littermates with ad libitum access to water and food, 

except immediately following surgical procedures. 

Tumor transplantation 

Both male and female animals were used for these studies. For subcutaneous, 

pancreatic, or intrahepatic transplantation studies, C57B16/J mice aged approximately 

6-8 weeks were injected with 100,000 cells PDAC cells derived from primary or 

metastatic tumors arising in KPC or KPCT mice at the indicated site. To deliver cancer 

cells to the 
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lung, 100,000 cells were injected via tail vein. Mice were euthanized 4 weeks post 

injection of tumor cells or at signs of animal distress. All mice within the same 

experimental group were euthanized at the same time point. 

 

For limiting dilution studies, mice were injected with the indicated number of cells and 

monitored twice a week for signs of tumor burden. The tumor initiating capacity was 

calculated using ELDA software (http://bioinf.wehi.edu.au/software/elda/). At least 3 mice 

were included for each condition.  

 

For cell competition experiments, pancreatic cancer cells derived from primary or liver 

metastatic tumors were engineered to express either mCherry or GFP and mixed in equal 

numbers. Pre-injection representation was confirmed using flow cytometry (BD LSR-II). 

100,000 cells containing the mixed population were injected into the pancreas, liver, or 

subcutaneously, and after tumors formed, they were excised, digested, and analyzed by 

flow cytometry to determine relative representation in the tumor.  

 

For metastatic stie adaptation experiments, cells from liver and lung metastatic tumors 

arising in the KPC model were isolated and cultured for less than 10 population doublings. 

Cells from the lung metastases were then transplanted into the lung via tail vein injection. 

Resulting tumors were dissociated and re-transplanted into secondary recipient mice 

without in vitro propagation. This process was repeated three times. A similar approach 

was taken with the liver metastases where cells were propagated in the liver. Mice were 

euthanized at different time points based on established and approved criteria, and 
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following the last round of in vivo selection, tumors were dissociated and cultured for less 

than 5 population doublings before use in transplantation experiments (P0 refers to the 

parental cells (prior to in vivo adaptation); P3 refers to the tumor and tumor cells derived 

from three round of in vivo adaptation). 

 

Cell isolation and cell culture 

Cells were isolated from primary and metastatic mouse pancreatic tumors as described 

previously (41). Briefly, tumors were exteriorized, minced, and digested with collagenase 

XI (Sigma C9407) and dispase II (Roche 04942078001) and plated in DMEM. RIL-175 

mouse hepatocellular carcinoma cells were derived from hepatic tumors established in 

C57BL/6 mice as previously described (31). Lung adenocarcinoma cells were obtained 

from the LSL-Kras(G12D); Trp53fl/fl; Ad-Cre mouse lung cancer model as previously 

described (42). Cells were cultured in DMEM (Corning 10-013-CV) supplemented with 

10% heat inactivated fetal bovine serum. Penicillin-streptomycin was added only at the 

time of cell isolation from mice. Cells were regularly tested for mycoplasma contamination 

using the MycoAlert Plus kit (Lonza).  

 

Isotope labeling experiments in cultured cells 

Cells were plated in 6-well plates, and the next day cells were washed three times with 

warm PBS, and DMEM without glucose and pyruvate supplemented with 10% dialyzed 

FBS and 10 mM U-13C-glucose (Cambridge Isotope Laboratories) was added for 24 hours 

prior to metabolite extraction. 
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Glucose infusions 

Infusion of U-13C glucose (Cambridge Isotope Laboratories) into control or tumor bearing 

mice was performed as previously described (24, 43). Three-weeks after implantation of 

cancer cells, animals underwent surgical catheter implantation in the jugular vein 3-4 days 

prior to labeled glucose infusion. Mice were fasted for 4 hours prior to starting the infusion 

and animals remained conscious and mobile for the duration of the infusion. Labeled 

glucose was delivered at a rate of 0.4 mg/min for 6 hours, and then plasma and tumor 

tissue was isolated and flash frozen for analysis by mass spectrometry.  

 

Metabolite Extraction  

To analyze glucose in plasma, 10 L of plasma was extracted with 100% methanol and 

dried down with nitrogen and derivatized with 50 L of 2 wt% hydroxylamine hydrochloride 

(2% Hox) in pyridine followed by incubation at 90C for 60 min. 100 L of propionic 

anhydride was added, and samples were incubated at 60C for 30 min, followed by 

evaporation under nitrogen at room temperature overnight. The next day, dried samples 

were dissolved in 100 L of ethyl acetate and transferred to glass vials for analysis by 

GC-MS.  

 

For tissue metabolite analysis, the harvested tissues were rinsed briefly in ice-cold blood 

blank saline and flash frozen in liquid nitrogen. Frozen tissues were then ground into 

powder using a pre-chilled mortar and pestle. The tissue powder was then weighed into 

pre-chilled tubes and extracted with methanol (containing 500 nM each of 17 isotopically 

labeled 13C/15N amino acids (Cambridge Isotope Laboratories, Inc.)): chloroform: water 
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(6:3:4 v/v/v), vortexed for 10 min and centrifuged for 10 min at maximum speed. Polar 

metabolites were transferred to Eppendorf tubes, dried under nitrogen gas, and 

resuspended in different volumes of water containing labeled non-standard amino acid 

mix (Cambridge Isotope Laboratories, MSK-NCAA-1) to account for differences in starting 

tissue weight. 

 

For cultured cells, cells were seeded at 30,000 cells/well in a 6 well dish in 2 mL of medium 

and incubated for 72 hour, or 100,000 cells were plated and incubated overnight. Media 

was aspirated from cells and then washed rapidly in ice cold bank saline followed by 

addition of 500 mL ice-cold 80% methanol in water containing 500 nM each of 17 

isotopically labeled 13C/15N amino acids (Cambridge Isotope Laboratories). Alternatively, 

for metabolite analysis by GC-MS, cells were extracted in equal parts 80% methanol 

(containing 2.5 ng/mL norvaline internal standard) and chloroform. Samples were 

vortexed 10 min at 4C and spun at 16,000 xg for 10 min at 4C. Equal volume of the 

polar fraction was transferred to a new tube and dried down under nitrogen and frozen at 

-80C prior to analysis by mass spectrometry. 

 

Gas chromatography-mass spectrometry 

GC-MS was used to analyze metabolites as previously described (44). Briefly, dried 

metabolite extracts were dissolved in 16 mL methoxamine (MOX) reagent (ThermoFisher 

TS-45950) and incubated at 37C for 90 min. 20 mL N–methyl–N–(tert–

butyldimethylsilyl)trifluor-oacetamide + 1% tert–Butyldimethylchlorosilane (Sigma 

375934) was added to the sample and incubated at 60C for 1 hour. Samples were 
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centrifuged for 5 min and 20 mL of the derivatized sample was transferred to GC vial for 

analysis using a DB-35MS column (Agilent Technologies 122-3832) installed in an Agilent 

7890 gas chromatograph coupled to an Agilent 5975C mass spectrometer. The helium 

carrier gas was used at a constant flow rate of 1.2mL/min. One microliter of the sample 

was injected at 270C. After injection, the GC oven was held at 100C for 1 min, increased 

to 300C at 3.5C/min. The oven was then ramped up to 320C at 20C/min and held for 

5 min at 320C. The MS system operated under electron impact ionization at 70 eV and 

the MS source and quadrupole was held at 230C and 150C, respectively. The detector 

was used in scanning mode and the scanned ion range was 100-650 m/z. Total ion counts 

were determined by integrating appropriate ion fragments for each metabolite using El-

Maven software (Elucidata).  

 

Liquid chromatography-mass spectrometry 

Metabolite profiling was conducted on a QExactive bench top orbitrap mass spectrometer 

equipped with an Ion Max source and a HESI II probe, which was coupled to a Dionex 

UltiMate 3000 HPLC system (Thermo Fisher Scientific, San Jose, CA). External mass 

calibration was performed using the standard calibration mixture every 7 days. Typically, 

samples were reconstituted in 50 uL water and 2 uL were injected onto a SeQuant® 

ZIC®-pHILIC 150 x 2.1 mm analytical column equipped with a 2.1 x 20 mm guard column 

(both 5 mm particle size; EMD Millipore). Buffer A was 20 mM ammonium carbonate, 

0.1% ammonium hydroxide; Buffer B was acetonitrile. The column oven and autosampler 

tray were held at 25∘C and 4∘C, respectively. The chromatographic gradient was run at a 

flow rate of 0.150 mL/min as follows: 0-20 min: linear gradient from 80-20% B; 20-20.5 
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min: linear gradient form 20-80% B; 20.5-28 min: hold at 80% B. The mass spectrometer 

was operated in full-scan, polarity-switching mode, with the spray voltage set to 3.0 kV, 

the heated capillary held at 275∘C, and the HESI probe held at 350∘C. The sheath gas 

flow was set to 40 units, the auxiliary gas flow was set to 15 units, and the sweep gas 

flow was set to 1 unit. MS data acquisition was performed in a range of m/z = 70–1000, 

with the resolution set at 70,000, the AGC target at 1x106, and the maximum injection 

time at 20 msec. Relative quantitation of polar metabolites was performed with 

TraceFinder™ 4.1 (Thermo Fisher Scientific) using a 5-ppm mass tolerance and 

referencing an in-house library of chemical standards. Data were filtered according to 

predetermined QC metrics: CV of pools <25%; R of linear dilution series <0.975. Data 

was normalized to cell number from a separately plated set of samples collected at the 

time of metabolite extraction.  

 

For untargeted metabolomics, data were acquired as described above, with ddMS2 data 

collected on pooled samples using a Top-10 method, with stepped collision energies of 

15, 30 and 45 V. The resolution was set at 17,500, the AGC target was 2x105, the max 

IT was 100 ms, and the isolation window was set at 1.0 m/z. Data were analyzed using 

Compound Discoverer 3.1 (Thermo Fisher Scientific) and by including an in-house mass-

list. P-values were adjusted according to the Benjamini-Hochberg method.  

 

Cell proliferation  

30,000 cells were plated in a 6 well plate in 2 mL of DMEM with 10% FBS and cultured 

for at least 12 h. Cells were washed once, and media was replaced with fresh DMEM at 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.504141doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504141


the time of cell counting on day 0 using a Cellometer Auto T4 Plus Cell Counter 

(Nexcelom Bioscience). Cells counted again 3 days later, and doublings per day was 

calculated using the formula:  Proliferation rate (Doublings/day) = Log2(Final cell count 

(day 3)/initial cell count (day 0))/3 (days). 

 

Flow cytometry  

Tumors were dissected, minced, and digested at 37C for 30 min with 1 mg/mL 

Collagenase I (Worthington Biochemical, LS004194), 3 mg/mL Dispase II (Roche, 

04942078001), and 0.1 mg/mL DNase I (Sigma, D4527) in 5 mL PBS. After 30 min, cells 

were incubated with EDTA to 10 mM at room temperature for 5 min. Cells were filtered 

through a 70 mm cell strainer, washed twice in PBS, and cells resuspended in flow 

cytometry staining buffer (Thermo Fischer, 00-4222-57) for fluorescent protein expression 

analysis on a BD-LSR II flow cytometer.  

 

Immunohistochemistry  

Tissue was fixed in formalin for at least 24 h. Sections from formalin fixed paraffin 

embedded tissues were stained using antibodies against mCherry (1:500 dilution; Novus 

Biologicals: NBP1-96752), GFP (1:250 dilution; Novus Biologicals: NB600-308), pan-

cytokeratin (1:500 dilution; abcam: ab133496), or Ki67 (1:250 dilution; Novus Biologicals: 

NB110-89717). Antibodies were diluted in 10% normal goat serum diluted 1:2 (Thermo 

Fischer: 50062Z) in PBS-T. 

 

Histology and image analysis 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.504141doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.504141


Histology sections were scanned using Aperio Digital Scanning and imported into Aperio 

eSlide Manager. Image analysis was done using Fiji software. Tumor area and total area 

was calculated for all the sections and the net tumor area was calculated by dividing the 

tumor area by the total area. The number of nodules in the lung was calculated manually. 

 

RNA-sequencing analysis of mouse tumors 

Metabolic gene expression analysis of mouse tumors was done using pancreatic tumors 

single cell RNA-sequencing data from a published source (22). PCA plots depict analysis 

of metabolic genes from entire cell populations. For mouse single-cell RNA-seq data 

analysis, after normalizing to total counts, metabolic genes were analyzed from primary, 

liver, or lung metastases and UMAP plots for the most abundant samples were generated 

using scanpy version 1.8.0 to determine overlap between gene expression across tissue 

sites. For single cell analysis, lineage tracing of the most represented cell clones from the 

study permitted analysis of individual clonal populations and UMAP plots depict overlap 

between gene expression across overrepresented clones within the tumor across 

different tissue sites. Pearson correlation was also found between pairs of single cells 

using the scores for the top 20 PCs. 

 

RNA-sequencing analysis of human tumors 

FASTQs for bulk RNA expression profiles were downloaded from the relevant repository 

(TCGA, https://toil.xenahubs.net; Metastatic PDAC, dbGaP Study Accession 

phs001652.v1.p1) and all data were processed using the same pipeline. Briefly, each 

sample's sequences were marked for duplicates and then mapped to hg38 using STAR. 
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After running QC checks using RNAseqQC, gene-level count matrices were generated 

using RSEM. Instructions to run the pipeline are given in the Broad CCLE github 

repository https://github.com/broadinstitute/ccle_processing. Length-normalized values 

(TPM) were then transformed according to log2(TPM+1) for downstream analysis. We 

then scaled and centered the entire dataset to allow relative comparisons across sample 

types (Normal Liver, HCC, PDAC, and metastatic PDAC). 

We tested whether metastatic PDAC more closely resembles the metabolic state of the 

primary site (pancreas) or the dominant metastatic tissue of residence (liver) and used 

normal liver and hepatocellular carcinoma (HCC) profiles as relevant comparators. To do 

this, we trimmed the expression data to 3,240 metabolically associated genes using a 

literature-curated list. We then performed a cross-correlational analysis (Pearson’s r) 

across all samples and separated this matrix by study after clustering (Ward’s method). 

We then generated similarity scores for each metastatic sample (n = 49) by computing 

their average Pearson’s r to either primary PDAC, HCC, or normal liver samples. 

Statistical Analysis 

Results are represented as mean +/- standard deviation unless otherwise specified. 

Statistical analysis was performed using GraphPad Prism Software (Version 9.1.1). The 

statistical significance between two groups were calculated using unpaired two-tailed 

student t test where noted.  
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Figure legends 

Fig. 1. Primary and metastatic pancreatic tumors have similar metabolic phenotypes. (A) 

The same cancer cells isolated from a primary pancreatic tumor arising in a KPC mouse 

were engineered to express either mCherry or GFP and combined in equal numbers prior 

to implantation into different tissue sites in mice. Flow cytometry confirming that 

approximately equal representation of each labeled cancer cell population is present in 

the mixed population. (B-D) Representation of mCherry and GFP labeled cells in tumors 

derived from injection of the mixed population shown in A into the pancreas (B), liver (C), 

or subcutaneous space (D). (E-L) Paired pancreatic cancer cells derived from primary 

tumors or liver metastases arising in the KPC mouse model were implanted into the 

pancreas or liver, respectively, and the resulting tumor-bearing mice were infused for 6 

hours with U-13C glucose at 0.4 mg/min to assess glucose fate in tumors growing in each 

site. Fractional labeling of the indicated metabolites as determined by GC-MS is shown. 

Data are from 3-4 mice per group. Mean +/- stdev. (M-N) Relative metabolite levels in 

autochthonous paired primary pancreatic cancer and liver metastases arising in KPC 

mice were assessed by LC-MS. Metabolite levels were also measured for normal 

pancreas and liver tissue from age-matched wild-type mice. The metabolite data for each 

sample is clustered in two different ways: Unsupervised clustering represented as a 

heatmap (M) or K-means unsupervised clustering (N); 6 mice were used for the normal 

tissue analysis and 4 mice were used for the paired primary tumor and metastasis 

analysis.  
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Fig. 2. Pancreatic cancer cells derived from both the primary tumor and from metastatic 

sites generate tumors that grow fastest in the pancreas. (A) Schematic depicting 

transplantation experiments to quantitatively assess pancreatic cancer cell proliferation 

in different tissue sites. (B) Equal numbers of cancer cells isolated from primary 

pancreatic tumors or paired liver metastases arising in the KPC mouse model were 

implanted into the pancreas, liver, or subcutaneous space, and resulting tumor size 

assessed after four weeks. Tissue site indicates the site where cells were implanted, and 

cells injected indicates whether the cells injected were derived from a primary tumor or 

liver metastasis (liver met). Relative weights of tumor and associated normal tissue 

compared with normal tissue of age-matched mice, or tumor weight in the subcutaneous 

flank, is shown. n=3-5 per group. Male mice were used for all the comparisons. Mean+/- 

stdev is shown. * p < 0.05; n.s. – not significant. (C) Hematoxylin and Eosin (H&E) staining 

of tissue sections involving tumors arising from primary pancreas or liver metastatic 

cancer cells implanted in the pancreas or liver as indicated. The boundary between 

normal tissue and tumor is indicated. Scale bar- 3700 m (lower magnification; 0.3x); 500 

m (higher magnification; 2x) (D) The percent of cells that stain positive for Ki67 by 

immunohistochemistry was quantified in tissue sections from tumors arising from primary 

pancreatic cancer or liver metastatic cells implanted into the pancreas or liver as 

indicated. Data from 4-5 mice is shown; Ki67 percentage = number of positive stained 

cell in each image field was divided by the total number of cells in the same field x 100. 

One representative field per tumor was analyzed (E-F) The indicated number of cancer 

cells derived from a primary pancreatic tumor (P) or liver metastases (M) were implanted 

into either the pancreas (E) or the liver (F), and animals follow to determine if a tumor 
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formed as well as how long mice with tumors survived post-implantation; male mice were 

used for all the conditions. The number of mice with tumors is shown, with the total 

number of mice injected for each number of cells indicated in parentheses. These data 

were also used to calculate an approximate tumor initiating capacity (TIC) for primary- 

and metastasis-derived cells at each tissue site: Pancreas, primary (1/63.4), liver met 

(1/99.2), p-value = 0.531; Liver, primary (1/417), liver met (1/2005), p-value= 0.106. (G) 

Schematic depicting transplantation experiments to quantitatively assess pancreatic 

cancer cell proliferation in different tissue sites. (H) Equal numbers of cancer cells isolated 

from primary pancreatic tumors or paired liver or lung metastases arising in the KPC 

mouse model were implanted into the pancreas, liver, lung (via tail vein), or subcutaneous 

space, and resulting tumor size assessed after four weeks. As in B, relative weights of 

tumor and associated normal tissue compared with normal tissue of age-matched mice, 

or tumor weight in the subcutaneous flank, is shown, n=3-5 per group, Mean+/- stdev is 

shown. * p < 0.05, ** p< 0.05, and **** p < 0.0001; n.s. – not significant.   

 

Fig. 3. Pancreatic cancer cells retain metabolic phenotypes found in the primary tumor 

even when repeatedly passaged in a metastatic site. (A) Schematic depicting propagation 

of lung and liver pancreatic cancer metastases arising in KPC mice by implantation into 

the lung or liver to form tumors three times prior to use in transplantation experiments to 

quantitatively assess proliferation and metabolic phenotypes in different tissue sites. (B-

E) Equal numbers of cancer cells isolated from primary pancreatic tumors, paired liver, or 

lung metastases (P0), or liver or lung metastatic cancer cells that were passaged in the 

liver or lung as described in A (P3) were implanted into the pancreas, liver, lung (via tail 
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vein), or subcutaneous space, and resulting tumor size assessed after 3 weeks. Relative 

weights of tumor and associated normal tissue compared with normal tissue of age-

matched mice, or tumor weight in the subcutaneous flank, is shown. Mean+/- stdev; n.s.- 

not significant, ** p<0.005; *p <0.05; n=3-5 mice per group. (F-G) Relative metabolite 

levels arising in tumors from primary, P0 and P3 lung metastases cells implanted in the 

pancreas (primary) or lung were assessed by LC-MS. Metabolite levels were also 

measured for normal pancreas and liver tissue from age-matched wild-type mice. The 

metabolite data for each sample is clustered in two different ways: Unsupervised 

clustering represented as a heatmap (F) or K-means unsupervised clustering (G).  

 

Fig. 4. Tissue-of-origin influences the metabolism and tissue site preference for 

metastatic tumor growth. (A) Equal numbers of lung adenocarcinoma cells derived from 

the LSL-KrasG12D/+; Trp53fl/fl; Ad-Cre mouse model were implanted into the pancreas or 

delivered to the lung and resulting tumor size assessed after four weeks.  Relative weights 

of tumor and associated normal tissue compared with normal tissue from age-matched 

mice is shown. Mean+/- stdev; * p<0.05, **** p<0.0001; n=3-5 mice per group 

macroscopic images at the time of tissue harvest are also shown. (B) Equal numbers of 

RIL-176 hepatocellular carcinoma (HCC) cells were implanted into the pancreas or the 

liver and resulting tumor size assessed after four weeks.  Relative weights of tumor and 

associated normal tissue compared with normal tissue from age-matched mice is shown. 

Mean+/- stdev; * p<0.05. macroscopic images at the time of harvest are also shown. (C-

E) Analysis of metabolic gene expression from a mouse single cell RNA-seq (scRNA-

seq) dataset (22) represented as entire cell populations and comparing primary 
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pancreatic cancer (PDAC) and liver metastases (liver met) arising in the KPC model (C); 

UMAP plot comparing metabolic gene expression in single cells from primary PDAC, lung 

metastases (lung met), and liver metastases (liver met) in the KPC model (D); and the 

UMAP plot of metabolic gene expression analysis in D with each clonal populations 

represented; these clones are arbitrarily labeled as clones 1-6 and are do not represent 

clone numbers in the original publication (E). (F) Cross correlation of bulk metabolic gene 

expression profiles involving 3,240 genes from 620 samples with expression obtained 

from either hepatocellular carcinoma (HCC) TCGA, PDAC (Panc-seq), or PDAC TCGA 

data (top). Ranked metastatic samples with high degree of hepatocyte contamination as 

assessed by higher gene expression of hepatocyte markers and lower gene expression 

of ductal markers is shown on the bottom with corresponding correlation to normal liver. 
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