
 

 

Single molecule long-read real-time amplicon-based sequencing of CYP2D6: a proof-of-

concept with hybrid haplotypes 

Rachael Dong1* BSc, Megana Thamilselvan2*, Xiuying Hu3 MSc, Beatriz Carvalho Henriques3 

MSc, Yabing Wang3 PhD, Keanna Wallace3 BSc, Sudhakar Sivapalan3 MSc, Avery Buchner1,3 

BSc, Vasyl Yavorskyy2, 3 BSc, Kristina Martens4 BSc, Wolfgang Maier5 MD, Neven Henigsberg6 

PhD, Joanna Hauser7 PhD, Annamaria Cattaneo8, 9 PhD, Ole Mors10 PhD, Marcella Rietschel11 

MD, Gerald Pfeffer4,12 PhD, Katherine J. Aitchison1,3,13, 14, 15, 16** PhD 

 
1University of Alberta, Neuroscience and Mental Health Institute, University of Alberta, 

Edmonton, Canada 
2University of Alberta, College of Natural and Applied Sciences, Faculty of Science, Department 

of Biological Sciences, Edmonton, Canada 
3University of Alberta, College of Health Sciences, Department of Psychiatry, Edmonton, Canada  
4University of Calgary, Cumming School of Medicine, Hotchkiss Brain Institute, Department of 

Clinical Neurosciences, University of Calgary, Calgary, Canada 
5University of Bonn, Department of Psychiatry and Psychotherapy, Bonn, Germany 
6University of Zagreb School of Medicine, Centre for Excellence for Basic, Clinical and 

Translational Research, Croatian Institute for Brain Research, Zagreb, Croatia  
7Poznan University of Medical Sciences, Department of Psychiatry, Poznan, Poland  
8IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Biological Psychiatry Unit, 

Brescia, Italy.  
9University of Milan, Department of Pharmacological and Biomolecular Sciences, Milan, Italy.  
10Aarhus University Hospital, Psychosis Research Unit, Risskov, Denmark 
11Heidelberg University, Medical Faculty of Mannheim, Central Institute of Mental Health, 

Department of Genetic Epidemiology in Psychiatry, Mannheim, Germany 
12University of Calgary, Cumming School of Medicine, Alberta Child Health Research Institute 

& Department of Medical Genetics, Calgary, Canada 
13University of Alberta, College of Health Sciences, Department of Medical Genetics, Edmonton, 

Canada 
14King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic 

and Developmental Psychiatry Centre, London, England 
15Northern Ontario School of Medicine, Thunder Bay, Canada 
16University of Alberta, Women and Children’s Research Institute, Edmonton, AB Canada 

 

*These authors contributed equally to this work 

**Corresponding author: 

Dr. Katherine J. Aitchison, Neuroscience and Mental Health Institute; Women and Children’s 

Research Institute; College of Health Sciences, Faculty of Medicine and Dentistry, Departments 

of Psychiatry and Medical Genetics, University of Alberta, Edmonton, AB T6G 2E1, Canada 

Telephone: 1-780-492-4018; Email: kaitchis@ualberta.ca 

 

Running Title: SMRT multiplexed amplicon sequencing of CYP2D6  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.503990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.503990


 

 

Abstract 

CYP2D6 is a widely expressed human xenobiotic metabolizing enzyme, best known for its role in 

the hepatic phase I metabolism of up to 25% of prescribed medications, which is also expressed in 

other organs including the brain, where its potential role in physiology and mental health traits and 

disorders is under further investigation. Owing to the presence of homologous pseudogenes in the 

CYP2D locus and transposable repeat elements in the intergenic regions, the gene encoding the 

CYP2D6 enzyme, CYP2D6, is one of the most hypervariable known human genes - with more 

than 140 core haplotypes. Haplotypes include structural variants, with a subtype of these known 

as fusion genes comprising part of CYP2D6 and part of its adjacent pseudogene, CYP2D7. The 

fusion genes are particularly challenging to identify. The CYP2D6 enzyme activity corresponding 

to some of these fusion genes is known, while for others it is unknown.  The most recent (high 

fidelity, or HiFi) version of single molecule real-time (SMRT) long-read sequencing can cover 

whole CYP2D6 haplotypes in a single continuous sequence read, ideal for structural variant 

detection. In addition, the accuracy of base calling has increased to a level sufficient for accurate 

characterization of single nucleotide variants. As new CYP2D6 haplotypes are continuously being 

discovered, and likely many more remain to be identified in populations that are relatively 

understudied to date, a method of characterization that employs sequencing with at least this degree 

of accuracy is required. The aim of the work reported herein was to develop an efficient and 

accurate HiFi SMRT amplicon-based method capable of detecting the full range of CYP2D6 

haplotypes including fusion genes. We report proof-of-concept for 20 amplicons, aligned to fusion 

gene haplotypes, with prior cross-validation data. Amplicons with CYP2D6-D7 fusion genes 

aligned to *36, *63, *68, and *4 (*4-like; *4N, or *4.013) hybrid haplotypes. Amplicons with 

CYP2D7-D6 fusion genes aligned to the *13 subhaplotypes predicted (e.g., *13F, *13A2). Data 

analysis was efficient, and further method development indicates that this technique could suffice 

for the characterization of the full range of CYP2D6 haplotypes. Although included in drug 

labelling by regulatory bodies (the U.S. Food and Drug Administration, the European Medicines 

Agency, the Pharmaceuticals and Medical Devices Agency) and prescribing recommendations by 

consortia (Clinical Pharmacogenetics Implementation Consortium and the Dutch 

Pharmacogenetics Working Group), the identification of CYP2D6 variants is not yet routine in 

clinical practice.  The HiFi sequencing method reported herein is suitable for high throughput, 

efficient, identification of the full range of known CYP2D6 haplotypes and novel haplotypes, and 
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can be completed in a week or less.  Moreover, the method that we have developed could be 

extended to other complex loci and to other species in a multiplexed high throughput assay.   
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Introduction 

CYP2D6 is a xenobiotic metabolizing enzyme widely expressed in multiple organs including the 

liver, intestine, brain, gonads, and thyroid gland (Miksys et al., 2005; Aitchison et al., 2010; GTEx 

Portal, 2021). While it is best known for its role in hepatic phase I drug metabolism, where it plays 

a key role in the metabolism of an estimated 20-25% of all clinically used drugs (Ingelman-

Sundberg, 2005; Zanger et al., 2013), it also has physiological roles. In the brain, it is found in 

cerebellar Purkinje cells and cortical pyramidal neurones (GTEx, 2021; Siegle et al., 2001). It is 

colocalized with the dopamine transporter (Niznik et al., 1990), and dopamine transporter 

inhibitors such as cocaine also inhibit CYP2D6 (Shen et al., 2007; Han et al., 2006). Enzyme 

activity appears to modulate resting brain perfusion, with suggestive involvement in regions 

associated with alertness or serotonergic function (Kirchheiner et al., 2011), and a rodent model 

developed to further explore this (Cheng et al., 2013). It is involved in steroid biosynthesis 

(conducting the 21-hydroxylation of progesterone and allopregnanolone; Niwa et al., 2008), as 

well as in the synthesis of dopamine from m- and p-tyramine (Hiroi et al., 1998; Funae et al., 

2003), and of serotonin from 5-methoxyndolethylamines (Yu et al., 2003) including 5-

methoxytryptamine (a metabolite and precursor of melatonin; Yu et al., 2003). The enzyme is 

induced in alcoholism (Miksys et al., 2002) and also in pregnancy (Pan et al., 2017). There has 

also been suggestive evidence of an association between enzyme status and personality traits 

(Bertilsson et al., 1989; Gan et al., 2004; Gonzalez et al., 2008). 

The gene encoding the CYP2D6 enzyme, CYP2D6, lies at chromosome 22q13.2 adjacent 

to two pseudogenes, CYP2D7 and CYP2D8. The three genes are highly homologous (Kimura et 

al., 1989; Yasukochi and Satta, 2011; Yang et al., 2017), and this, together with transposable repeat 

elements in the intergenic regions (Yasukochi and Satta, 2011), predisposes the locus to the 

generation of structural variants and novel mutations. Indeed, with more than 140 core haplotypes 

(or strings of genetic variants) identified to date (PharmVar, 2022a; Gaedigk et al., 2018), CYP2D6 

is one of the most hypervariable known human genes. Variants include single nucleotide variants 

(SNVs), small insertions and/or deletions (indels), and structural variants (PharmVar, 2022b). 

Structural variants include gene duplications and multiplications, complete deletions of the entire 

gene, and recombination events involving CYP2D7 (Kramer et al., 2009 Gaedigk et al., 2010b; 

Black et al., 2012; Gaedigk, 2013; PharmVar, 2022b). The recombination events involving 

CYP2D7 result in the formation of hybrid or fusion genes (Figure 1; Panserat et al., 1995; Daly et 
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al., 1996; Kramer et al., 2009; Gaedigk et al., 2008; 2010a, 2010b, 2014; Black et al., 2012; 

PharmVar, 2022b). CYP2D7-2D6 fusions have a 5’-portion derived from CYP2D7 and a 3’-

portion derived from CYP2D6; these hybrids are non-functional (PharmVar, 2022b). CYP2D6-

2D7 fusions have a 5’-portion derived from CYP2D6 and a 3’-portion derived from CYP2D7.  

The Pharmacogene Variation Consortium assigns levels of function (no function, 

decreased, normal, or increased) to CYP2D6 haplotypes that correspond to enzyme or phenotype 

predictions (poor metabolizers, intermediate, normal, or ultrarapid, respectively) (PharmVar, 

2022a; Caudle et al., 2020). There have been recent refinements to the decreased function category 

(Caudle et al., 2020; Jukić et al., 2021; van der Lee et al., 2021). As an example of haplotype to 

phenotype prediction, an individual with two no function (or null) haplotypes is a poor 

metabolizer, with no active enzyme. This has implications for the metabolism of relevant 

medications. In this example, such individuals are unable to metabolize codeine from its inactive 

prodrug status to the metabolite with analgesic effect and hence do not experience any analgesic 

effect with this medication (Crews et al., 2021). The hybrid haplotypes have zero function, reduced 

function, or uncertain/unknown function (PharmVar, 2022a, 2022b). Hybrid haplotypes are found 

either as a single haplotype or in tandem with another CYP2D6 haplotype (Kramer et al., 2009; 

Black et al., 2012; Gaedigk et al., 2010a, 2010b, 2014; PharmVar, 2022b).  

CYP2D6 hybrid haplotypes are common in the general population, with a frequency 

estimated as at least 6.7% (Dalton et al., 2020). In our sample of 853 patients with depression, the 

frequency is 2.6% (22/853). Owing to the range of enzyme phenotype corresponding to CYP2D6 

hybrids, their accurate detection is important for predicting prescribing implications (Dalton et al., 

2020), as well as potentially for neuroscience and physiology more generally.  

The detection of CYP2D6 hybrid haplotypes is however, challenging for many genomic 

technologies, with incorrect and incomplete characterization (Carvalho Henriques et al., 2021b). 

For example, the AmpliChip CYP450 Test did not cover hybrid haplotypes, and hence none of the 

19 patients subsequently identified as having hybrid haplotypes had previously had these found, 

with 2 having been genotyped as CYP2D6*1/*1 (wild-type) and 4 as ‘no call.’ (Carvalho 

Henriques et al., 2021b). We have previously reported the use of methods including Sanger 

sequencing to characterize hybrid haplotypes (Carvalho Henriques et al., 2020a, 2021a, 2021b). 

However, Sanger sequencing poses limitations for haplotype phasing (determining which 

combination of variants lies on which allele) and discriminating whether sequence is derived from 
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CYP2D6 or CYP2D7 (Ardui et al., 2018). As a relatively labour-intensive and time-consuming 

technique, Sanger sequencing is best suited to low throughput.   

 Short-read next generation sequencing (NGS) is useful for the detection of SNVs and small 

indels, but less useful for structural variant detection with haplotype phasing, which require 

information across longer sequence or read lengths (Wenger et al., 2019). Single molecule real-

time (SMRT) long-read sequencing provided by Pacific Biosciences (PacBio) and Oxford 

Nanopore (ONT) can achieve structural variant detection with haplotype phasing. However, until 

relatively recently, these SMRT technologies had a lower accuracy than short-read NGS. In 2019, 

circular consensus sequencing (CCS) was optimized to generate highly accurate (99.8%) long high 

fidelity (HiFi) reads (Wenger et al., 2019), with a median length of 13.4 kb (van der Lee et al., 

2022). At this accuracy level, SNVs and short indels may be identified as well as structural 

variants. With CYP2D6 haplotypes being under 10 kb and including all types of variation, this 

technology is eminently suited for the identification of the full range of haplotypes including novel, 

unidentified haplotypes. The latter is important as to date, there are populations (e.g., Indigenous 

peoples) in which this gene is relatively less studied than in others.  

Some CYP2D6 sequencing using HiFi SMRT has already been conducted. For 25 

individuals with prior AmpliChip CYP450 genotype, including four with “XN” representing more 

than one copy of specific haplotypes (e.g., CYP2D6*1/*2XN), all genotypes were concordant with 

the genotype resulting from the SMRT data other than one (Buermans et al., 2017). In this case, 

the prior genotype was CYP2D6*4/*4 and the new genotype was CYP2D6*4/*5, with the 

CYP2D6*5 representing a complete deletion of the CYP2D6 gene that had been missed by the 

AmpliChip (the design of which is now recognized as being able to detect only a subset of 

CYP2D6*5 haplotypes; Carvalho Henriques et al., 2021b). In addition, one novel trinucleotide 

deletion and one novel SNV were detected in this group of samples, and confirmed by Sanger 

sequencing. SMRT data for CYP2D6 has also been compared to data from targeted Illumina NGS 

in 17 individuals (Fukunaga et al., 2021). These 17 included one hybrid haplotype (CYP2D6*36), 

including a duplication thereof and its occurrence together with CYP2D6*10 in a hybrid tandem 

(CYP2D6*36+*10). A recent study has applied the HiFi SMRT technology to 561 patients treated 

with tamoxifen, and to separate cohorts treated with tamoxifen and venlafaxine (van der Lee et al., 

2021).  In the tamoxifen-treated dataset, only four individuals with hybrids were identified by the 

SMRT, and the hybrid haplotype was not specified (Supplementary Table S2; van der Lee et al., 
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2021). The latest relevant SMRT paper used a long-range polymerase chain reaction (L-PCR) 

technique that amplified a 6.1 kb region spanning from 712 bp upstream to 1176 bp downstream 

of the NB_008376.4 CYP2D6 RefSeq coding sequence, and, in addition (by design), amplified the 

corresponding region from CYP2D7, generating a 7.6 kb amplicon in an analysis of 377 Solomon 

Islanders (Charnaud et al., 2022). From the SMRT data, 27/365 (7.6%) samples appeared to have 

a CYP2D6-2D7 fusion haplotype with breakpoints in exon 8 (consistent with a CYP2D6*63), and 

7/365 (2%) samples appeared to have CYP2D7-2D6 fusions (CYP2D6*13). However, there was a 

degree of discrepancy between the above and TaqMan CNV intron 9 and exon 9 data, with not all 

of the samples with a CYP2D6-2D7 predicted fusion haplotype having a higher intron 2 than exon 

9 CNV count, and 1/7 of the predicted CYP2D7-2D6 fusions not having a high exon 9 count. In 

addition, the upstream region covered was insufficient for submission of novel haplotypes to 

PharmVar, which requires at least 1600 bp upstream of the ATG start sequence (to cover the -

1584C/G SNP). 

The research gap that we address herein is therefore: creating an efficient and accurate HiFi 

SMRT amplicon-based method capable of detecting the full range of CYP2D6-2D7 and CYP2D7-

2D6 fusion genes.  

Methods 

Samples 

Used herein was the subset of 95 DNA samples from patients with depression in the Genome-

based therapeutic drugs for depression (GENDEP) pharmacogenomics clinical trial as previously 

described (Carvalho Henriques et al., 2021b), specifically, the 19 samples with CYP2D6 hybrid 

haplotypes, plus one additional putative hybrid identified by TaqMan copy number variant (CNV) 

screening using the methodology described by Carvalho Henriques et al. (2021b). GENDEP was 

designed to identify pharmacogenomic predictors of response to two antidepressants, nortriptyline 

and escitalopram, the metabolism of which both involve CYP2D6 (Carvalho Henriques et al., 

2020b). DNA was extracted from venous blood. The 19 samples had prior data from multiple 

technologies (the AmpliChip CYP450 test, TaqMan SNV and CNV data, the Ion AmpliSeq 

Pharmacogenomics Panel, PharmacoScan, and Sanger sequencing) resulting in consensus 

genotype calls, while the one additional sample had only prior AmpliChip CYP450 

(CYP2D6*1/*2) and TaqMan CNV data that were unequal across different regions of CYP2D6 
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(intron 2, intron 6, and exon 9 calls of 3, 3, and 2, respectively), indicating the presence of a 

CYP2D6-2D7 fusion gene. In total, there were 20 samples, two of which had consensus genotypes 

consistent with two hybrid haplotypes. In addition, we used two samples from the Genetic Testing 

Reference Material Program (GeT-RM) collection as positive controls for CYP2D6-2D7 

(NA18545, CYP2D6*5/*36x2+*10x2) and CYP2D7-2D6 (NA19785, CYP2D6*1/*13+*2) hybrid 

haplotypes, respectively (Gaedigk et al., 2019).  

 

L-PCRs using barcoded universal primers for multiplexing amplicons  

We adapted protocols for amplifying hybrid-specific amplicons E, G, and H as described (Kramer 

et al., 2009; Gaedigk et al., 2010b; Black et al., 2012; Carvalho Henriques et al., 2021b) for the 

PacBio barcoded universal primers for multiplexing amplicons method (PacBio, 2020). A 5’ 

universal sequence and a 5’ amino modifier C6 (5AmMC6, to prevent unbarcoded amplicons from 

being sequenced) were added to each primer (Supplementary Table S1, Thermo Fisher Scientific) 

for the first-round L-PCR.  

 First-Round L-PCRs were performed using KAPA HiFi HotStart ReadyMix (Roche 

Molecular Systems). Reactions (50 µl, in duplicate) contained primers at 0.3 µM each, dNTPs at 

0.6 µM, MgCl2 at 2.75 µM, 2% DMSO, and 3 µl of template at 25-202 ng/ µl (more template was 

used for samples previously showing a relatively low amplicon generating efficiency). For the E 

amplicon, DNA was amplified for 30 cycles with denaturation at 98°C for 30 s, cycling at 98°C 

for 10 s, annealing at 85°C for 30 s, and extension at 73°C for 7.5 min (latterly adjusted to 8 min), 

followed by a terminal extension step of 73°C for 10 min. For the G amplicon, conditions were: 

denaturation at 98°C for 30 s; 30 cycles of 98°C for 10 s, and annealing and extension at 72°C for 

6 min; followed by a terminal extension step of 72°C for 7 min.  For the H amplicon, conditions 

were: denaturation at 95°C; 35 cycles of 98°C for 20 s, annealing at 74°C for 30 s and extension 

at 73°C for 5 min; followed by a terminal extension step of 72°C for 10 min.   

PCR products were visualized on a 1% agarose gel, quantified using the Qubit dsDNA HS 

assay using a Qubit 3.0 Fluorometer (Thermo Fisher Scientific), and visualized using an Agilent 

DNA 12000 kit on an Agilent 2100 Bioanalyzer (Agilent Technologies) (Figure 2). As some 

nonspecific products and primer oligomers were seen on the Agilent output for amplicons E and 

H, respectively, size selection using AMPure PB Beads (PacBio) was used. Purified sample and 
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peak concentrations were measured with the Qubit dsDNA HS and Agilent DNA 12000 assays, 

respectively.  

In the second-round L-PCR, barcoded universal primers (barcoded universal F/R primers 

plate 96 v2, PacBio) were attached to the forward and reverse universal sequences in the amplicons 

from the first-round L-PCR. Reactions (25 µl, in duplicate or more, using KAPA HiFi HotStart 

ReadyMix) contained 2.5 µl barcoded primers, dNTPs at 0.6 µM, MgCl2 at 2.75 µM, 2% DMSO, 

and 1.5-3 ng template. For the E amplicons, cycling conditions were the same as those used in the 

first-round L-PCR, with reduction in the number of cycles to 20. For the G amplicons, conditions 

were: denaturation at 98°C for 30 s; followed by 30 cycles of 98°C for 10 s, annealing at 70°C for 

15 s, and extension 72°C for 6 min; then a terminal extension step at 72°C for 7 min. Conditions 

for the H amplicon were: denaturation at 98°C; 35 cycles of 98°C for 20s, annealing at 74°C for 

30 s and extension at 73°C for 5 min; followed by  a terminal extension step at 72°C for 10 min. 

After quantification of amplicons using the same methods as for the first-round, size selection and 

removal of excess primers was conducted using AMPure PB Beads (PacBio).  

 Samples were pooled in equimolar amounts (~23 fmol), calculated using approximations 

of estimated amplicon lengths and the NEBioCalculator (New England Bio Labs), to generate a 

pool mass of 1-2 μg, with size selection using AMPure PB Beads of the pool, and visualization 

using the Agilent DNA 12000 kit (Figure 3). 

 

Sequencing 

SMRTbell library construction using a pool input mass of 2 μg following visualization using an 

Agilent TapeStation, size selection using AMPure PB Beads, sequencing with a 30 hour movie 

time on an 8M cell using the Sequel IIe platform were conducted at The Centre for Applied 

Genomics (TCAG), the Hospital for Sick Children, Toronto, Canada. Data demultiplexing, 

resulting in files with extensions of bam, bam.pbi, and consensusreadset, was conducted by the 

bioinformatics team at TCAG. 

 

Data Analysis and Sequence Alignment 

After filtering CCS reads based on amplicon length, alignment versus reference sequences was 

conducted using SMRT Link Software version 10.2. Reference sequences (from National Center 
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for Biotechnology Information (NCBI) or PharmVar) for alignment were deduced from the 

consensus genotypes previously generated (Supplementary Table S1).  

 

Results 

Amplicons from twenty-one hybrid haplotypes were submitted (for one sample with two types of 

hybrids, only one was submitted) for sequencing, plus three positive controls. Data from twenty-

three hybrid haplotypes passed quality control and were analyzed including positive controls (13 

E, 8 G, and two H) (Tables 1-3). The E amplicons aligned to *36, *63, and *68 hybrid 

haplotypes as well as to sequences of the various hybrid haplotypes that have the 1847G>A 

(splice defect) SNV that is the defining SNV for the *4 haplotypes (Table 1). The latter include 

EU530605 (*4-like; Kramer et al., 2009), EU530604 (*4N; Kramer et al., 2009), and PV00250 

(PharmVar *4.013). Alignments against all three prior known *4 hybrid haplotypes are presented 

(Table 1) for the relevant amplicons apart from one, for which alignment against PV00250 was 

not possible (sample 5). For the aligned E and G amplicons, 8/13 (61.5%; Table 1) and 5/8 

(62.5%; or 6/9=66.6% including the technical replicate, Table 2), respectively, had a percentage 

alignment above 99% against at least one reference sequence. For the H amplicons (the least 

abundant size moiety in the pool), the alignments were above 97% (Table 3).  

 

Discussion 

In summary, we were able to develop and optimize an amplicon-based method of detecting a range 

of CYP2D6-2D7 and CYP2D7-2D6 fusion genes using PacBio barcoded universal primers (BUP) 

for multiplexing amplicons. This is the most challenging type of CYP2D6 variant to detect and 

characterize. Data analysis was highly efficient (taking a matter of minutes). Data were cross-

validated versus previous data from multiple technologies (Carvalho Henriques et al., 2021b), and 

many of the resulting percentage alignments were above 99%. This method would therefore appear 

to be more accurate and efficient than any of the other SMRT HiFi methodologies reported to date 

(Fukunaga et al., 2021; van der Lee et al., 2021; Charnaud et al., 2022) for the detection and 

characterization of CYP2D6 fusion genes. In addition, we have since used the forward primer for 

the E amplicon and the reverse primer for the G amplicon to generate an L-PCR product for non-

hybrid CYP2D6 haplotypes (data not shown). Therefore, the combination of four primer pairs (E 

forward, E reverse, G forward, G reverse) is sufficient for an amplicon-based method of CYP2D6 
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characterization apart from a minority of CYP2D7-2D6 hybrids for which the H amplicon appears 

to be required. Moreover, the E forward primer is 1909 base pairs (bp) upstream from the ATG 

start site, and the G reverse primer 619 bp downstream from the TAG stop site. The amplicon 

generated therefore covers the upstream (to -1600 bp) and downstream (to 265 bp) regions required 

for novel haplotype submission to PharmVar. 

For several G amplicons, the alignment was particularly good, with a relatively low number 

of differences between the aligned CCS and the reference sequence. There may be at least two 

potential reasons for this. Firstly, in the first-round L-PCRs for the Gs, we were able to generate 

amplicons with minimal non-specificity. Secondly, a *13 haplotype was the first type of CYP2D6 

fusion gene to be identified (Daly et al., 1996), and hence has been relatively well studied since 

(with there now being 10 publicly available sequences) in comparison to the other hybrid 

haplotypes.   

Within the E amplicon group, the variable alignment statistics for hybrid haplotypes in the 

*4 hybrid haplotypes may reflect the fact that (like the various *13 hybrid haplotypes; PharmVar 

2022b) this is a family of hybrid haplotypes containing the 1847G>A SNV. For samples 5, 6 and 

16, the alignments being comparable for the prior known *4 hybrid haplotypes and less than 98% 

may reflect either the need for better optimization of the E amplicon procedure, or that these 

samples in fact have a previously unreported *4 hybrid haplotype.  For the samples with a *36 

haplotype, the alignment statistics for the *36 core haplotype and various subhaplotyes were 

comparable. Sample NA18545 has not previously been sequenced, with the genotype being 

deduced from CNV testing using L-PCR and quantitative CNV analysis (Gaedigk, personal 

communication). At present the percentage alignments to the core *36 haplotype and four 

subhaplotypes presented is too similar to be able to discern which *36 subhaplotype is present 

(and, conceivably, as this sample has a *36 duplication, it may have more than one *36 

subhaplotype). Further optimization of the E amplicon procedure as below may resolve this.  The 

sample with a *68 haplotype aligned best to EU530606, with the alignment to the other *68 partial 

reference sequence (JF307779) being only 87.5%. The sample with a *63 haplotype had a 

percentage alignment that may again either reflect need for greater optimization, or potentially the 

presence of a slightly different haplotype than that previously reported. Of note, our E amplicons 

were longer (by ~1.7 kb) than previously described (Kramer et al., 2009; Black et al., 2012). Initial 

setting of the extension time in the cycling parameters reflected the shorter predicted length, and 
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while we subsequently set extension to 8 min, this could likely be further optimized to 8.5 min. 

Accurate amplicon sizing is important not only for L-PCR optimization but also for molar 

calculations in amplicon pooling.  

The percentage alignment being less (97.0-98.3%) for the H amplicons may well reflect 

the lower abundance of that amplicon in the pool. One of the H amplicons aligned best to 

haplotypes *13C, *13D and *13E. Prior Sanger sequencing data for one of our hybrids was 

consistent with a *13 haplotype with a switch region such that the possible haplotypes were *13C, 

*13D, or *13E. The SMRT data are therefore consistent with the Sanger sequencing data, but not 

yet robust enough to delineate between the three possible subhaplotypes. Of note, we have 

identified a step in the cycling parameters that can be optimized. We are therefore in the process 

of repeating the HiFi sequencing. The other H amplicon (NA19785, CYP2D6 genotype 

*1/*13+*2; Gaedigk et al., 2019) had comparable alignments to *13A1, *13A2 and *13B. The 

prior sequence aligns to *13A2 (Gaedigk, personal communication). We are also repeating the 

HiFi sequencing of this amplicon.  

Owing to the presence of some non-specific products at less than the correct length 

resulting from E L-PCRs, size selection to remove products less than ~3 kb was conducted using 

AMPure PB beads. Whilst the final pool profile indicates the persistence of such products, HiFi 

sequencing was nonetheless able to produce alignments for all but one of the amplicons supplied. 

This may be at least partly attributable to the relatively small number of multiplexed amplicons, 

resulting in a high degree of redundancy and read depth. However, the accuracy of less than 99% 

for some of our amplicons may reflect the need for a greater degree of optimization of the 

technique, particularly for the E amplicons (currently underway).  

The main limitation of the work reported herein is the variable percentage alignments, 

some of which may reflect factors such as PCR optimization achieved by the time of sequence 

submission. The alignment previously achieved by Sanger sequencing was slightly higher than 

that achieved by SMRT (e.g., sample 33, alignment 100%; sample 5, alignment 99.75% to *4-

like). This was, however, after manual curation of the Sanger sequencing data (e.g., if two pieces 

of sequencing data were concordant with the reference and one was not, the one discordant read 

was not counted). The SMRT alignment process was automated. Moreover, the entire SMRT 

process reported herein is much more efficient than Sanger sequencing.  
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This is the first report of an amplicon-based method of CYP2D6 SMRT sequencing on a 

range of fusion genes with haplotypes previously characterized by multiple technologies. Although 

some versions of CYP2D6-2D7 fusion genes (e.g., CYP2D6*61) were not in our sample set, we 

are not aware of any reason for our method not working for any CYP2D6-2D7 fusion gene.  

Although CYP2D6 plays a key role in the metabolism of ~20-25% of clinically used drugs 

(Ingelman-Sundberg, 2005; Zanger et al., 2013), and is included in drug labelling by regulatory 

bodies (the U.S. Food and Drug Administration, the European Medicines Agency, the 

Pharmaceuticals and Medical Devices Agency) and prescribing recommendations by consortia 

(Clinical Pharmacogenetics Implementation Consortium, the Dutch Pharmacogenetics Working 

Group), identification of CYP2D6 variants is not yet routine in clinical practice. This is despite the 

fact that dispensing data indicate that many patients are being prescribed medications for which 

the identification of CYP2D6 variants prior to these medications being dispensed could be helpful 

(Fan et al., 2021) One of the reasons for this is the complexity of the locus, and in particular the 

fact that the fusion genes are challenging to identify and accurately characterize. Another reason 

is that clinical implementation requires an efficient, high throughput method that requires 

relatively little personnel time. The HiFi sequencing method reported herein is suitable for high 

throughput, efficient, with accurate characterization of the full range of CYP2D6 haplotypes, and 

can be completed in a week or less.  Moreover, the method that we have developed could be 

extended (particularly for other complex loci with structural variants). In this manner a group of 

genes may be efficiently characterized in a multiplexed high throughput assay.   
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Figure 1. CYP2D wild-type locus and fusion genes, with amplicons diagrammed. (A) CYP2D wild-type locus. (B) Example 

CYP2D7-2D6 fusion gene. The G and H amplicons are predicted to be 5.7 and 5 kb, respectively (Kramer et al., 2009; Black et al., 

2012; Gaedigk et al., 2010b). (C) Example CYP2D6-2D7 fusion gene. The  E amplicon is predicted to be 6.7 kb (Kramer et al., 2009; 

Black et al., 2012). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.503990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.503990


 

 

 

 

 

 

 

Figure 2. Quality control of first-round L-PCR by agarose gel and Agilent 2100 Bioanalyzer (DNA 12000 assay) electrophoresis. 

(A) Representative E amplicon. (B) Representative G amplicon. (C) Amplicon H. For the Agilent output, the x-axis indicates length in 

base pairs (bp) and the y-axis fluorescence intensity in fluorescence units [FU]. The lower marker (50 bp) and upper marker (17000 bp) 

are the first and last peaks, respectively. Electropherogram plots are transformed into automated gel electrophoresis images (top left), 

where the bottom marker (green), top marker (purple), and PCR products are visualized alongside the ladder (bp). The 1% agarose gel 

with a 1 kb Plus DNA Ladder (Thermo Fisher Scientific) is shown in the top right.  
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Figure 3. Sample pool as visualized on the Agilent 1200 assay. The ~5.9 kb peak represents the G amplicons and the ~8.4 kb peak the 

E amplicons. The H amplicon are hidden in the region between the G peak and the nonspecific lower peaks.  
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Table 1. Alignment of E amplicons to reference sequences. For the hybrid haplotypes containing the 1847G>A defining SNV for *4, 

where possible, alignments to all three reference sequences are provided. Sequences For the rest of the samples aligned to more than one 

reference sequence, unless the percentage alignments were comparable, the best alignment is reported. Alignments with a much shorter 

read length than the best alignments are also omitted. For technical replicates, the best of the replicates is reported.  

Sample Consensus 

Genotype 

Haplotype Accession number Filter Aligned Read 

Length 

I D M Percentage 

Alignment 

3  *63+*1/*1a *63 EU530608 7680 - 9680 7739 40 53 88 97.66 

5 *4.013 +*4/*1 *4-like EU530605 7680 – 9680 6400 55 62 90 96.77 

5 *4.013 +*4/*1 *4N EU530604 7680 - 9680 7000 61 76 102 96.60 

6 *4.013+*4/*4 *4-like EU530605 7680 – 9680 6400 24 80 66 97.34 

6 *4.013+*4/*4 *4N EU530604 7680 – 9680 7000 24 80 70 97.51 

6 *4.013+*4/*4 *4.013 PV00250  

(PharmVar *4.013) 

7680 – 9680 

6739 23 87 64 97.42 

7 *36 + *10/*35 

 

*36 PV00460  

(PharmVar *36) 

7680 -12000 

6739 3 13 27 99.36 

7 *36 + *10/*35 

 

*36 PV00705  

(PharmVar *36.002) 

7680 – 9680 

6737 3 11 11 99.63 

7 *36 + *10/*35 

 

*36 PV01364  

(PharmVar *36.003) 

7680 – 9680 

6739 3 13 14 99.55 

7 *36 + *10/*35 

 

*36 PV01720  

(PharmVar *36.004) 

7680 – 9680 

6737 3 11 14 99.58 

8 *68+*4/*10 *68 EU530606 7680 -12000 4550 5 7 0 99.74 

9 *4.013+*4/*1 *4-like EU530605 7680 – 9680 6400 2 14 12 99.56 

9 *4.013+*4/*1 *4N EU530604 7680 – 9680 7000 2 14 16 99.54 

9 *4.013+*4/*1 *4.013 PV00250  

(PharmVar *4.013) 

7680 – 9680 

2191 236 40 37 81.15 

10 *4.013+*4/*1 *4-like EU530605 7680 – 9680 6400 2 5 12 99.70 

10 *4.013+*4/*1 *4N EU530604 7680 – 9680 7000 2 5 16 99.67 

10 *4.013+*4/*1 *4.013 PV00250  

(PharmVar *4.013) 

7680 – 9680 

6739 2 13 10 99.63 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 18, 2022. ; https://doi.org/10.1101/2022.08.17.503990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.17.503990


11 

(NA18545)  

*5/*36x2+*10x

2 

*36 PV00460  

(PharmVar *36) 

7680 – 12000 

6739 3 17 23 99.36 

11 

(NA18545)  

*5/*36x2+*10x

2 

*36 PV00222  

(PharmVar 36.001) 

7680 – 12000 6737 3 17 8 99.58 

11 

(NA18545)  

*5/*36x2+*10x

2 

*36 PV00705  

(PharmVar 36.002) 

7680 – 9680 6737 3 15 7 

99.63 

11 

(NA18545)  

*5/*36x2+*10x

2 

*36 PV00705  

(PharmVar 36.003) 

7680 – 9680 6737 3 17 10 

99.55 

11 

(NA18545)  

*5/*36x2+*10x

2 

*36 PV00705  

(PharmVar 36.004) 

7680 – 9680 6737 3 15 10 

99.58 

12 *4.013+*4/*35 *4-like EU530605 7680 – 9680 6400 64 103 70 96.30 

12 *4.013+*4/*35 *4N EU530604 7680 – 9680 6996 70 117 85 96.11 

12 *4.013+*4/*35 *4.013 PV00250  

(PharmVar 4.013) 

7680 – 9680 

6726 71 123 68 96.10 

14 *4.013+*4/*1 *4-like EU530605 7680 – 9680 3087 7 1 2 99.68 

14 *4.013+*4/*1 *4N EU530604 7680 – 9680 3087 7 1 3 99.64 

14 *4.013+*4/*1 *4.013 PV00250  

(PharmVar 4.013) 

7680 – 9680 

3187 7 1 2 99.69 

15 *4.013 

+*4/*4.002 

*4-like 

EU530605 

7680 – 9680 

6400 3 9 14 99.59 

15 *4.013 

+*4/*4.002 

*4N 

EU530604 

7680 – 9680 

7000 3 9 19 99.56 

15 *4.013 

+*4/*4.002 

*4.013 PV00250  

(PharmVar 4.013) 

7680 – 9680 

6739 2 16 13 99.54 

16 *4.013 +*4/*4 *4-like EU530605 7680 – 9680 6037 371 166 224 87.15 

16 *4.013 +*4/*4 *4N EU530604 7680 – 9680 6633 408 194 262 86.97 

16 *4.013 +*4/*4 *4.013 PV00250  

(PharmVar 4.013) 

7680 – 9680 

247 3 0 35 84.62 

18 *4.013+*4/*2 *4-like EU530605 7680 – 9680 6400 2 7 12 99.67 

18 *4.013+*4/*2 *4N EU530604 7680 – 9680 7000 3 5 16 99.66 

18 *4.013+*4/*2 *4.013 PV00250  

(PharmVar 4.013) 

7680 – 9680 

6739 2 12 10 99.64 
aConsensus deduced from a combination of AmpliChip CYP450 and TaqMan CNV data.  
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Table 2. Alignment of G amplicons to reference sequences.  For samples aligned to more than one reference sequence, unless the 

percentage alignments were close, the best alignment is reported. Alignments with a much shorter read length than the best alignments 

are also omitted.  

 

Sample Consensus 

Genotype 

Haplotype Accession number Filter Read 

Length 

I D M Percent 

Alignment 

22 *13/*4.013 *13F EU093102 4000 – 6000 5002 1 1 1 99.94 

23 *13/*1 *13F EU093102 4000 – 6000 5002 153 147 122 91.56 

24 *13/*1 *13F EU093102 4000 – 6000 5002 15 0 3 99.64 

25 *13+*2/*1 *13A2 GQ162807 4000 – 6000 5039 27 68 9 97.94 

28 *13+*10/*36 *13A2 GQ162807 4000 – 6000 5039 0 1 1 99.96 

30 *13/*4.013 *13F EU093102  4000 – 6000 5002 2 1 0 99.94 

32 *13+*2/*1 *13A2 GQ162807 4000 – 6000 5039 1 9 2 99.76 

33 *13+*2/*1 *13A2 GQ162807 4000 – 6000 5039 6 1 0 99.86 

37 

(NA19785) 

*1/*13+*2 

*13A2 

GQ162807 

 

4000 – 6000 

5039 15 27 17 98.83 

 

Note: samples 22 and 30 are technical replicates from the same participant. 
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Table 3. Alignment of H amplicons to reference sequences. The best three alignments per sample are reported.  

 

Sample Genotype Haplotype Accession 

number 

Filter Read Length I D M Percent Alignment 

39 *1/*13+*2 *13A1 EU098008 

 

4000 – 6000 

5026 12 27 57 98.09 

39 *1/*13+*2 *13A2 GQ162807 4000 – 6000 5022 15 27 55 98.07 

39 *1/*13+*2 *13B HM641839.1 

 

4000 – 6000 

5025 12 27 46 98.31 
4 

 
*13+*4/*5 *13C HM641840 

 

4000 – 6000 5019 

 9 35 105 97.03 

4 *13+*4/*5 *13D GQ162808 

 

4000 – 6000 5008 

 12 27 96 97.30 

4 *13+*4/*5 *13E EU098009.1 4000 – 6000 5021 7 34 98 97.23 
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