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Abstract 

Background: Juvenile-Onset Huntington’s disease (JOHD) is a rare form of Huntington’s 
disease (HD) which leads to chronic neurodegeneration which begins prior to the age of 25. 
Like HD, JOHD is triggered by a large expansion of CAG nucleotides in the HTT gene which 
leads to neurotoxicity and aberrant gene expression. However, unlike HD, in JOHD the 
relationship between the length of CAG expansion and age of disease onset is non-linear. 
Thus, it would be of interest to identify molecular biomarkers which indicate predisposition 
to the development of JOHD, and as microRNAs (miRNAs) circulate in bio-fluids they 
would be particularly useful biomarkers.  

Methods: We explored a large JOHD miRNA-mRNA expression dataset (GSE65776) to 
establish appropriate questions that could be addressed using Machine Learning (ML). We 
sought sets of features (mRNAs/ miRNAs) to predict JOHD or WT samples from aged or 
young mouse cortex samples, and we asked if a set of features could predict predisposition to 
JOHD or WT genotypes by training models on aged samples and testing the models on young 
samples. We used a k-best strategy which included oversampling for unbalanced classes, 
min_max scaling and 5-fold cross-validation. Several models were created using ADAboost, 
ExtraTrees, GaussianNB and Random Forest, and the best performing models were further 
analysed using AUC curves and PCA plots. Finally, genes used to train our miRNA-based 
predisposition model were compared to HD patient bio-fluid samples. 

Results: Our testing accuracies were between 66-100% and AUC scores were between 31-
100%. We generated several excellent models with testing accuracies >80% and AUC scores 
>90%. We also identified homologues of mmu-miR-154-5p, mmu-miR-181a-5p and mmu-
miR-212-3p, mmu-miR-378b, mmu-miR-382-5p and mmu-miR-770-5p to be circulating in HD 
patient blood samples at p.values of <0.05. 

Conclusions: We generated several age-based models which could differentiate between 
JOHD and WT samples, including an aged mRNA-based model with a 100% AUC score. We 
also identified several miRNAs used to train our miRNA-based predisposition model which 
were detectable in HD patient blood samples, which suggests they could be potential 
candidates for use as non-invasive biomarkers for JOHD/ HD research.  
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Introduction 

Huntington’s Disease (HD) is a rare autosomal dominant disease, characterised by the 
progressive destruction of cortical and striatal neurons. HD patients have decreased motor 
skills, memory, and overall ability to maintain themselves without aid (Casella et al. 2020). 
HD affects 9.3-13.7 individuals per 100,000 in western populations (Evans et al. 2013; 
Ohlmeier et al. 2019). Another form of the neurodegenerative disorder is Juvenile Onset 
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Huntington’s Disease (JOHD) which affects 1-9.6% of reported HD cases (Quarrell et al. 
2012). CAG nucleotide repeats in the Huntingtin gene (HTT) leads to the translation of 
mutated HTT proteins with large a polyglutamine (poly-Q) repeat chain. Genetic screening of 
the CAG repeats is performed regularly as the length of the CAG repeats inversely correlates 
with adult-onset HD. Having >27 CAG repeats is indicative of no penetrance of HD, 27-35 
CAG repeats indicate an intermediate chance of penetrance, and <36 CAG repeats will lead 
to full penetrance of HD (Semaka, Collins & Hayden 2010; Rosenblatt et al. 2012). Patients 
with at least 60 CAG repeats develop JOHD (Evans et al. 2013). HD patients show disease 
phenotypes during middle-aged life, and JOHD patients will show symptoms prior to age 25 
(Casella et al. 2020). Understanding the underlying mechanisms of the HTT protein is 
important in determining how the neurotoxicity is triggered. HTT is found in the cytoplasm 
of striatal and cortical neurons (Fusco et al. 1999). Many HEAT binding motifs are found on 
HTT implying it has roles as a scaffolding protein and is involved in many protein 
interactions (Takano & Gusella 2002). However, a large CAG nucleotide expansion in the 
HTT protein halts its ability to exit the nucleus and thus make mutated HTT (mHTT) 
incapable of interacting with other scaffolding proteins: B-tubulins, microtubulins, dynein, 
dynactin (Hoffner, Kahlem & Djian 2002; Cornett et al. 2005; Caviston et al. 2007). Gene 
expression changes indicate that HTT does have roles as a transcriptomic regulator. A well 
characterised example is normal HTT proteins bind and sequester REST (repressor element-1 
transcription factor) a negative regulator of BDNF (brain-derived neurotrophic factor) which 
is a neuron survival factor. Mutated HTT cannot sequester REST, leading to decreased 
BDNF levels, which has been observed in HD patients (Zuccato et al. 2003; McFarland et al. 
2014). 

Currently there are no therapies for HD or JOHD, and though age is a key risk factor for both 
diseases, further mechanistic knowledge is needed (Panas et al. 2008; Pan & Feigin 2021). 
This is shown by previous explorations of the length of mutations which cause JOHD showed 
non-linear correlations between age of onset of the disease and CAG repeats (Squitieri et al. 
2006; Cronin, Rosser & Massey 2019; Schultz, Moser & Nopoulos 2020). Furthermore, twin 
studies showed individuals with the same genotype did not have uniform experiences HD 
(Georgiou et al. 1999; Panas et al. 2008). Further understanding of genetic and epigenetic 
factors could lead to novel insights for HD /JOHD research. Transcriptomic studies have 
shown mHTT changes expression profiles of neuronal of mRNAs and non-coding RNAs 
such as microRNAs (miRNAs) (Langfelder et al. 2016; Langfelder et al. 2018). miRNAs are 
small (18-22 nucleotides) single stranded RNAs which negatively regulate specific mRNAs 
via complementary binding (Bartel 2009). miRNAs contain a 6-8 nucleotides long tract 
called the seed site on their 5’ end which complementary binds to target sites on the 3’-UTR 
of the mRNA (Doench & Sharp 2004). Biogenesis of a miRNA is a tightly regulated process 
which begins with transcription via RNA polymerase II (Lee et al. 2004). This produces a 
pri-miRNA (70-100 nucleotide long double stranded RNA hairpin) which will be processed 
by nuclear proteins DROSHA and DGCR8 (Han et al. 2004). This biogenesis step creates a 
pre-miRNA hairpin which are detected as cargo by EXP5 and transported to the cytoplasm 
(Lund & Dahlberg 2006). Cytoplasmic proteins DICER and TRBP perform further 
biogenesis and recruits the RISC complex which will attach itself to one of the mature 
miRNA strands which will act as the guide for the RISC complex (Chendrimada et al. 2005; 
Tsutsumi et al. 2010). The RISC complex comprises of sub-units such as AGO2 and a 
GW182 protein, and in mammals the GW182 protein is commonly responsible to mRNA 
silencing by orchestrating de-capping, de-adenylation and 5’-3’ decay events (Figure 1) 
(Chendrimada et al. 2005; Rehwinkel et al. 2005; Yamashita et al. 2005; Zekri et al. 2009; 
Jonas & Izaurralde 2013). Both the seed site of the miRNA and the binding sites found on the 
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3’-UTR of target mRNAs are highly evolutionarily conserved (Friedman et al. 2009). A 
major interest for neurodegenerative research in miRNAs is their ability to be shuttled in bio-
fluids as they could be used as non-invasive biomarkers which can be measured in blood 
plasma or cerebrospinal fluid (CSF) to assess the health of brains (Valadi et al. 2007; Kumar 
et al. 2017). 

In this paper we used machine learning (ML) to identify biomarkers for JOHD in different 
age groups and we also used ML to predict predisposition of young samples to JOHD (Figure 
2). A valuable dataset to explore potential biomarkers was stored in GSE65776. This dataset 
contained 168 RNAseq and miRNAseq samples from male and female mice cortexes, and the 
mice were sacrificed at 2, 6 and 10 months old. Most samples had knock-in mutations which 
would lead to JOHD in humans, and these were: 80, 92, 111, 140 and 175 CAG repeats in the 
HTT gene. This dataset also included WT samples and positive control samples which had 20 
CAG repeat knock-ins (Langfelder et al. 2016; Langfelder et al. 2018). The initial data 
generation and analysis paper showed striatal neuron samples had greater gene expression 
changes than cortical neuron samples, however we were more interested in cortical samples 
as cortical loss has been seen as an early pathological event of HD and this would be useful 
for our predisposition detection queries (Rosas et al. 2002). Initial data exploration with 
differential expression (DE) analysis and the TimiRGeN R package identified a batch effect in 
the data, high homology, and some gender differences (Patel et al. 2021). Based on this, the 
data was corrected (batch effect removed, gender differences reduced) and re-labelled so that 
JOHD and WT samples could be differentiated using ML. While miRNAs and mRNAs were 
kept separated, three lines of enquiry were established: identification of post-symptomatic 
markers in aged (10m) samples, identification of pre-symptomatic markers in young (2m) 
samples, and identification of predisposition markers by training on aged samples and testing 
on young samples. Several high-quality models were produced as training and testing 
accuracies ranged between 73%-100% and 66-100% respectively. Finally, we validated the 
miRNAs selected to train the best performing JOHD predisposition model by contrasting 
results from miRNA-based HD patient bio-fluid samples.  

Materials and Methods 

Data download and raw data pre-processing 

Fastq files were downloaded from GSE65776 (GSE65770 - mRNA and GSE657679 - 
miRNA) using SRA-toolkit (Leinonen, Sugawara & Shumway 2011). Quality of the fastq 
files were checked using FASTQC (Andrews & others 2010). For miRNA pre-processing, 
Mus_musculus.GRCm38.cdna.all.fa was used to create index files with Bowtie and mature 
miRNA count calling was performed with miRDeep2 (Langmead 2010; Friedländer et al. 
2012). mRNA samples were aligned into bam files using Salmon. mRNAs were converted 
into bam files and bam index files were created with Samtools. Salmon was used for 
alignment of the bam files to transcriptome Mus_musculus.GRCm38.cdna.all.fa (Patro et al. 
2017). Tximport was then used to normalise mRNA data to gene count levels (Soneson, Love 
& Robinson 2015). 

Initial data exploration 

The mRNA and miRNA data consisted of 168 samples each. Seven genotypes were present: 
WT, 20 (positive control), 80, 92, 111, 140 and 175 CAG repeats. The data consisted of three 
age groups: 2-month-old (m), 6m, 10m. Male and female samples were evenly distributed for 
most genotypes. Outliers were detected using PCA and removed, and lowly expressed genes 
were removed if their value was <10 in at least 1/3rd of the total number of samples leaving 
332 miRNAs and 13715 mRNAs. With DESeq2 gender and age matched DE contrasts were 
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made between 20 CAG/WT, 80 CAG/WT, 92 CAG/WT, 111 CAG/WT, 140 CAG/WT, 175 
CAG/WT (Love, Huber & Anders 2014). Genes with a Benjimini-Hochberg FDR of <0.05 
were kept. Significantly expressed genes from the gender based DE analysis was taken 
forward for miRNA-mRNA integrated analysis with the TimiRGeN R package for pathway 
enrichment analysis (Patel et al. 2021).  

Batch removal and removing variance from gender differences 

A batch effect in the 6m for the miRNAs and mRNAs was suspected after DE analysis so the 
6m was removed (Supplementary Figure 1). Variance from gender differences were reduced 
with combat (Leek et al. 2012). One 10m sample was removed by pca analysis, as it was not 
within 6* standard deviations from the mean. 

Data preparation prior to ML 

We found this data to be highly homogenous based on the lack of differentially expressed 
genes (DEGs) found when contrasting different mutation (Q) lengths with the WT samples, 
so we increased our sample power by labelling all Q80, Q92, Q111, Q140 and Q175 samples 
as “JOHD” samples, and the WT and Q20 samples were labelled as “WT” samples. Male and 
female samples from the same mutation categories were also labelled together after 
correcting for gender-based variance. For the miRNA and the mRNA data, genes were 
removed if their expression was <10 in at least half of the samples. Leaving 519 and 16432 
genes for the miRNA and mRNA data respectively. The mRNA data was further filtered to 
only contain genes which showed a log2fc >0.2 or <-0.2 (after contrasting JOHD and WT 
samples with DE), leaving a total of 532 mRNAs. Normalised gene expression levels were 
extracted from DESeq2 normalised counts.  

Identified questions to investigate with ML 

In line with data centric AI, we identified appropriate questions based on our data. We were 
interested in six questions: a) which set of miRNAs are the best predictors of JOHD after the 
onset of the symptoms (10m), b) which set of miRNAs are the best predictors of JOHD prior 
to the onset of the symptoms (2m), c) using miRNAs can we use the aged samples (10m) to 
predict predisposition to JOHD on young samples (2m), d) which set of mRNAs are the best 
predictors of JOHD after the onset of the symptoms, e) which set of mRNAs are the best 
predictors of JOHD prior to the onset of the symptoms, f) using mRNAs can we use the aged 
samples to predict predisposition to JOHD on young samples. 

Data processing for ML and model performances 

ML was performed with scikit-learn 2.2.4 (Pedregosa et al. 2011). miRNAs and mRNAs 
were analysed separately. 10M and 2M data were separated and split into training and testing 
sets at a 0.8:0.2 ratio, without shuffling. SMOTE was used to create random synthetic WT 
samples for each training step (but not for testing), and min_max scaling was performed on 
training and test data (Lemaître, Nogueira & Aridas 2017). 5-fold cross validations were 
performed during all model training steps. Recursive feature elimination (RFE) was 
performed using a linear SVM algorithm and a 5-fold cross-validation at an attempt to 
remove low variance genes from the training data. Eight popular classifiers were trained and 
tested, using the default settings for each algorithm, and these were: LinearSVM, 
PolynomialSVM, Guassian Process, Extra Trees (ET), Random Forest (RF), Neural Network, 
Adaboost (ADA), Gaussian Naïve Bayes (GNB). We found RFE led to overfitting. A K-best 
feature selection was instead utilised to identify if similar or better predictions could be 
generated with fewer genes. The four best performing classifiers (ADA, ET, GNB RF) for the 
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miRNA data from RFE were taken forward to determine the optimal features in a robust k-
best selection approach. The 1-100 best features found by the k-best method (highest F-score) 
were sequentially used to train models using each of the four classifiers. This process was 
repeated 100 times, resulting in 100 x 100 x 4 (40,000) trained models per ML question. To 
limit the randomness of some classifiers, the best three training accuracies from each 
classifier were taken forward to create hyperparameter tuned models (Supplementary Table 
1). For ADA number of estimators and learning rate were parametrised, for ET number of 
estimators and minimum splits were parameterised, for GNB the use of an automated 
variance smoother was contrasted against no variance smoother and if the results were the 
same – the scores from no variance smoother selected, and for RF number of estimators was 
parameterised. Training accuracies, testing accuracies, precision scores, recall scores, f1 
scores and confusion matrices were calculated for each model (Supplementary Table 2). 
ROC_AUC and PCA plots were made for the best performing model from each of the six 
questions (Figure 3). While TP = true positives, TN = true negatives, FP = false positives and 
FN = false negatives, the equations of importance are displayed below. 

Training/Testing accuracies = 𝑻𝑻𝑻𝑻+𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑻𝑻𝑻𝑻+𝑭𝑭𝑻𝑻+𝑭𝑭𝑻𝑻

                 

Precision = 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑻𝑻

              

Recall / True Positive Rate = 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑻𝑻

        

F1 = 𝟐𝟐. (𝑻𝑻𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷∗𝑹𝑹𝑷𝑷𝑷𝑷𝑹𝑹𝑹𝑹𝑹𝑹
𝑻𝑻𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷+𝑹𝑹𝑷𝑷𝑷𝑷𝑹𝑹𝑹𝑹𝑹𝑹

)                         

False Positive Rate = 𝑭𝑭𝑻𝑻
𝑭𝑭𝑻𝑻+𝑻𝑻𝑻𝑻

 

Systematic check in bio-fluid datasets 

Processed samples were downloaded from GSE167630, GSE108395 and GSE108396 (Dong 
& Scherzer Clemens 2019; Ferraldeschi et al. 2021). Each were adult-onset HD vs adult 
control datasets which were either created using human miRNA specific microarrays or 
microRNA-seq. GSE167630 measured miRNA expression in blood samples, GSE108395 
and GSE108396 were part of the same study (GSE108398) and respectively measured 
miRNAs in blood plasma and CSF. Datasets were checked if they were normalised and if 
there were visual outliers using MDS plots, and then analysed using standard methodology 
with either Limma or DESeq2 (Love et al. 2014; Ritchie et al. 2015). Using MirBase and 
TargetScans we found and 53 of the 80 mouse miRNAs used for training the best performing 
predisposition model had known human homologues (Kozomara, Birgaoanu & Griffiths-
Jones 2019; McGeary et al. 2019). The homologues were mined from the DE results of the 
three bio-fluid datasets. 

Results 

Initial data exploration found high homogeneity between WT and JOHD samples 

Using DE on age and gender matched miRNA samples found between 0-6 DEGs from the 
2m samples, between 0-17 DEGs from the 10m samples and surprisingly at least 230 DEGs 
from the 6m, including when contrasting the positive control 20 CAG samples with the WT 
samples. A similar trend was seen with the mRNAs as we found between 0-34 DEGs for the 
2m samples, between 0-814 DEGs for the 10m samples and over 2000 DEGs in many of the 
6m samples. This information made us suspect a batch effect in the 6m data, so it was 
removed from further analysis. The homogeneity of the data and the batch effect can be seen 
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in PCA plots (Supplementary Figure 1). DE also suggested that there may be some 
differences in how JOHD develops in different genders, and to further investigate for 
mechanistic differences between male and female samples we used the TimiRGeN R package. 
DEGs from: male 140 CAG 10m /male WT 10m samples were enriched in Triacyglyceride 
Synthesis, Sphingolipid Metabolism (integrated pathway) and Sphingolipid Metabolism 
(general overview), female 175 CAG 2m / female WT 2m samples were enriched in IL-9 
Signaling Pathway and female 175 CAG 10m / female WT 10m were enriched in Myometrial 
Relaxation and Contraction Pathways, Calcium Regulation in the Cardiac Cell, Omega-9 FA 
synthesis, Glycosis and Gluconeogenesis and Cholestoral metabolism. This informed us that 
it would be best to reduce variance between the genders. The major conclusion was that this 
data had very low numbers of DEGs (after removing the suspected batch effect) which 
indicated high homogeneity between WT and JOHD samples, and so we devised an 
alternative approach to identify miRNA biomarkers from this data set. We opted to re-label 
all JOHD samples (> 60 CAG) as “JOHD” and all WT and positive control samples (20 
CAG) as “WT” and trained ML models to decipher between JOHD and WT samples. 

Machine Learning approach identified miRNAs and mRNAs which can classify WT 
and JOHD samples 

The goal of this study was to identify potential miRNA and mRNA biomarkers in JOHD 
samples, and the initial data exploration helped set realistic queries. From our initial analysis 
we also found it important to separate the miRNAs and mRNAs, as the DE results showed 
there was greater variance seen in the mRNAs. The input data consisted of a young miRNAs 
(519 genes, 30 JOHD samples, 16 WT samples), aged miRNAs (519 genes, 29 JOHD 
samples, 16 WT samples), young mRNAs (532 genes, 30 JOHD, 16 WT samples) and aged 
mRNAs (532 gene, 29 JOHD samples, 16 WT samples). 

When finding markers for aged or young samples, a 0.8:0.2 split was used, and when looking 
for markers which indicate predisposition, the aged samples were trained on, and the young 
samples were tested on. We initially used RFE, with a 5-fold cross-validation, to identify an 
optimal minimal number of features, however high numbers of features were identified 
during aged miRNA training (274), predisposed miRNA training (127), aged mRNA training 
(140) and young mRNA training (185). RFE selected features were trained using multiple 
classifiers and the training scores of the miRNAs and mRNAs were usually 1 and testing 
scores for the miRNAs and mRNAs were respectively between 0.5-0.9 and 0.69-1, indicating 
a tendency for overfitting (Figure 4A). Instead, we opted to use a robust k-best based feature 
selection strategy with a smaller number of classifiers (ADA, ET, GNB, RF). These 
classifiers were selected because they were the best performing classifiers from the RFE 
based miRNA models. Other classifiers such as Linear SVM and Naïve Bayes also performed 
well but were not taken forward because they were the worst performing classifiers for the 
miRNA predisposition question. The number of features found to be responsible for the 
highest three training scores for each of the four classifiers were taken forward for 
hyperparameter tuning (Supplementary Table 1). Some classifiers (mainly ET) found a range 
of best features, and in contrast to RFE based models, the k-best based models test accuracies 
were higher and used fewer features for training. Training accuracy, testing accuracy, recall 
score, precision score, f-score and confusion matrixes were recorded for each model (Figure 
4B, Supplementary Table 2).  

Best performing models for each question were selected on two criteria – high testing 
accuracies, and high precision scores (Table 1). Including good precision scores meant 
models had to be able to be able to discriminate between WT and JOHD cases. In cases 
where multiple classifiers led to the same scores, the classifier which used the least number of 
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features was selected. We also avoided using models built with ET due to high variability of 
scores seen during the training steps. With reference to the six questions we identified, the 
best features and classifiers were: a) the 11 miRNAs used to train aged miRNA samples with 
RF which tested at 85%, b) the 6 miRNAs used to train young miRNA samples with RF 
which tested at 66%, c) the 80 miRNAs used to train predisposed samples with RF which 
tested at 84%, d) the 5 mRNAs used to train aged mRNA samples with ADA which tested at 
100%, e) the 87 mRNAs used to train young mRNA samples with ADA which tested at 90% 
and f) the 4 mRNAs used to train predisposed samples with GNB which tested at 83%.  

Investigating model performances 

AUC plots and PCA plots for the best performing models were created (Figure 5). 
Unsurprisingly, the mRNA-based models all outperformed their miRNA-based counterparts; 
most likely because mRNAs showed greater variance than miRNAs which was seen during 
DE analysis. The 2m and predisposition miRNA-based models were particularly difficult to 
train with AUC scores of 31% and 59% respectively, though the 10m miRNA-based model 
had an excellent AUC of 96%. In contrast the mRNA-based models performed well with 
AUC scores for the mRNA-based 10m, 2m and predisposition models to respectively be 
100%, 86% and 92%. The PCA plots for the miRNA-based 2m and predisposition models 
showed that the model performance was poor when trying to correctly classify true WT 
samples, meanwhile the PCAs showed the aged miRNA model, and all mRNA-based models 
were better at classifying WT samples correctly. 

Ratification using bio-fluid based transcriptomic datasets for the identified miRNAs 

We downloaded and performed DE on three publicly available miRNA-based HD patient 
bio-fluid datasets and identified if homologues of the 80 miRNAs used to train the miRNA-
based predisposition model were found to be DEGs in the datasets. Six miRNAs were 
identified to have p.values <0.05 from the blood based datasets. From GSE108395, hsa-miR-
382-5p had a p.value of 0.0017 and a log2fc value of 0.56, hsa-miR-770-5p had a p.value of 
0.012 and a log2fc of -0.48, hsa-miR-154-5p has a p.value of 0.02 and a log2fc value of 0.43, 
hsa-miR-181a-5p had a p.value of 0.034 and a log2fc value of 0.28 and, hsa-miR-212-3p had 
a p.value of 0.035 and a log2fc value of 0.38. Also, from GSE167630, hsa-miR-378b had a 
p.value of 0.097 and a log2fc value of -0.19. The cortex-based miRNAs needed to be checked 
if they could be detected while circulating in the bio-fluids to promote them as suitable 
candidates for use as non-invasive biomarkers for HD/ JOHD research.  

Discussion and Conclusion 

We analysed a publicly available dataset to train ML models with the aim of identifying 
potential biomarkers for predisposition to JOHD. Six questions were asked to achieve this 
aim: a) best features to train aged miRNA samples, b) best features to train young miRNA 
samples, c) best features to train predisposed miRNA samples, d) best features to train aged 
mRNA samples, e) best features to train young mRNA samples and f) best features to train 
predisposed mRNA samples. Initially we used a RFE method to remove poor training 
features, however this led to overfitting. Instead, our robust k-best feature selection method 
led to the creation several models which could differentiate JOHD and WT samples. For 
questions a, d, e, and f we generated models with prediction accuracies >80%, and even 
reached accuracies >90% for questions a, d and e. Models created for question b and c had 
decent test accuracies of 66% and 67% but poor AUC scores. All our selected mRNA-based 
models had AUC scores of at least 86%, and our aged miRNA-based model had an AUC of 
96%. We saw that our selected miRNA-based models performed worse - though this was 
expected as our DE analysis showed the miRNAs vary less than mRNAs.  
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The predisposition models (questions c and f) were particularly ambitious as the training 
(10m) and testing (2m) datasets were almost the same size (respectively 55 and 56 samples). 
However, this was an important question as we know that clinically detectable alterations in 
the brain and behaviour of HD patients can be seen up to 15 years prior to any the classic HD 
related motor-loss (Djoussé et al. 2003). Indicating early sign of the neurodegenerative 
disease should be detectable at the gene expression level. For question f we created an 
excellent model using four mRNAs. Enpp6 has been reported as a gene of interest in the 
hippocampus of HD mice and Gng11 was associated with 4 of 10 Parkinson’s disease related 
pathways in a GWAS study, which indicates both genes to be of interest to neurodegenerative 
research (Zhang et al. 2017; Skotte et al. 2018).  Gm5067 and Gm6089 are currently 
predicted protein-coding genes which may have novel roles during HD progression, and both 
were also identified as features for the best performing model in question e, and the former 
was identified in question d. Though the model we presented for question c performed 
poorer, there is substantial interest in miRNAs circulating in bio-fluids as they could be non-
invasive tools to measure the health of patients. Thus, DE results from three publicly 
available bio-fluids datasets were searched to find homologues of the 80 miRNAs selected to 
train the best performing miRNA-based predisposition model. We found hsa-miR-154-5p, 
hsa-miR-181a-5p and hsa-miR-212-3p, hsa-miR-378b, hsa-miR-382-5p and hsa-miR-770-5p 
to be DEGs in blood plasma with a p.value of <0.05. Interestingly, mmu-miR-212-3p was 
cited as a potential miRNA of interest in HD mice and hsa-miR-212 has been linked to 
neuronal plasticity and cognition (2016; Fukuoka et al. 2018). Also, mmu-miR-378b was one 
of the miRNAs highlighted in the data generation study and hsa-miR-382-5p has been 
identified as a miRNA of interest in a Parkinson’s Disease study and an Alzheimer’s disease 
study, which may indicate it to be a useful miRNA in neurodegenerative disease research 
(Lau et al. 2013; Nair & Ge 2016; Langfelder et al. 2018). Further functional investigation of 
these miRNAs could be helpful for JOHD/ HD research and could supplement known HD 
related miRNAs of interest such as miR-9 and miR-9* which are involved in the regulation of 
neuron survival antagonist REST (Packer et al. 2008). 

It is important to note that age may not have been the only variable of interest, as large 
systematic reviews of clinical studies of JOHD patients such as Predict-HD, Enroll-HD and 
kids-JOHD respectively found age to account for 26%, 59% and 86% of disease development 
(Squitieri et al. 2006; Cronin et al. 2019; Schultz et al. 2020). Thus, age is certainly an 
important factor in JOHD, but not the only one. Another important critique is to ask is how 
confident can we be that our mouse-based study is suitable for identifying biomarkers for the 
benefit of HD/ JOHD patient research. Mouse-Human HD progression does not correlate 
well, as genotypes which lead to severe neurodegenerative phenotypes via HD related 
neurotoxicity in humans may resolve as mildly affected/ WT mice, and Donaldson et al 
(2021) reviewed many cases where brain scans and behaviour of mice with human HD/ 
JOHD genotypes showed no clinical symptoms (Donaldson et al. 2021). However, it should 
be noted that many of the poly-glutamine repeat mice in the literature have a mix of CAG and 
CAA repeats, and CAA repeats have been linked to weaker onset of HD (Lee et al. 2019). 
The data we used was reported to be from mice that had undergone CAG knock-in 
experiments (Langfelder et al. 2016; Langfelder et al. 2018). Given this, when creating our 
ML models, we assumed the 2m mice to not have developed JOHD yet and the 10m mice to 
have developed JOHD symptoms. Overall, though age was predominantly reported as the 
major factor in HD research, further research is needed to understand the complexities of HD 
and JOHD (Gusella & MacDonald 2000; Djoussé et al. 2003).  

To conclude, we created several good models for mRNA-based samples, including an aged 
model with 100% accuracy using five mRNAs and an 85% accuracy predisposed model 
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using only four mRNAs - two of which were novel genes. We also highlighted six potential 
miRNAs which could be markers of predisposition to developing JOHD/ HD. Importantly, 
these miRNAs were detected in circulating blood samples of HD patients. We believe this 
analysis study serves as a useful means of hypothesis generation to aid JOHD/ HD 
researchers and clinicians. The potential of detecting early predisposition biomarkers non-
invasively could be of great benefit to neurodegenerative disease research and patient care.   
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Figures and Tables 

Figure 1 | miRNA biogenesis. The Illustrations show canonical mammalian miRNA 
biogenesis steps. (A) Shows the initial transcription of the mature miRNA via RNA 
polymerase II and subsequent processing by DROSHA and DGCR8, which creates a pre-
miRNA stem-loop structure which is exported into the cytoplasm by Exportin5. (B) Within 
the cytoplasm DICER and TRBP cut the loop of the pre-miRNA and the RISC complex is 
associated with the mature guide miRNA strand. The passenger strand is degraded. (C) The 
newly form miRISC complex will interfere with the eukaryotic initiation machinery via the 
GW182 protein binding to the PABPC protein. GW182 protein will then recruit 
deadenylation complexes, and this is followed by a decapping protein removing the CAP 
protein complex from the target mRNA. The naked mRNA structure is decayed by XRN1 
and the miRISC complex may be recycled. Some mammalian miRNA-based mRNA 
degradation is based on exonuclease activity by AGO2. Image was made with BioRender. 

Figure 2 | Simplified diagram of the JOHD ML project presented. The illustration shows the 
major steps of the project, including how the datasets used in this project were created, the 
separation of miRNAs and mRNAs, the data processing and ML steps. The image also shows 
the miRNA and mRNA biomarkers found through the predisposition models. The figure 
created using BioRender.  

Figure 3 | Machine learning approach. This is an illustration our ML approach, including 
how the data was prepared (yellow arrows) for each of the six questions and how the data 
was split (green arrows). For the age matched classification questions, a simple 0.8:0.2 
training to testing split was used, and for the more ambitious predisposition questions the 
10m data was trained on and the 2m data was tested on. Following this, the RFE and k-best 
based feature selection (blue arrows and blue triangle) were performed. RFE was performed 
first and from its results (pink boxes) we were able to inform our k-best strategy by using 
classifiers which performed best on the miRNA-based ML questions (orange arrows, 
Supplementary Table 1). The three best performing models (orange arrows) from each 
classifier were hyperparameter tuned (grey arrow), and performance scores were measured 
(Supplementary Table 2). For each question, the best performing model had AUC-ROC 
curves and PCA plots made for them. For all model training steps, oversampling of WT 
samples (red circles), min_max scaling (yellow circles) and a 5-fold cross-validation strategy 
(dark blue circles) was used. Oversampling and 5-fold cross validation were only performed 
with training samples to limit leakage, and scaling was performed on training and test data.  

Figure 4 | Feature selection approaches. (A) RFE was used to identify the optimal features 
for each question. Eight classifiers were used. The bar chart shows the results from training 
accuracies (blue) and testing accuracies (beige). (B) From a robust k-best based feature 
identification method the best number of features were taken forward for hyperparameter 
tuning. Each classifier had each selected set of features hyperparameter tuned. The Training 
accuracies (purple) testing accuracies (blue), precision scores (yellow-green), recall scores 
(green) and f1 scores (orange) have been measured from each model.  
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Table 1 | miRNAs/ mRNAs found to be the best features for training models to answer each 
question. The six questions asked using this dataset are displayed from a-f and the features 
used for training the best performing models for each question are displayed in alphabetical 

 
Question Genes/ Features used for training Performance 
a. Which set of 
miRNAs are the best 
predictors of JOHD 
after an assumed 
onset of the 
symptoms (10m)? 

mmu.let.7g.3p, mmu.miR.135b.5p, mmu.miR.138.1.3p, mmu.miR.212.3p   
mmu.miR.221.3p, mmu.miR.3069.5p,  mmu.miR.330.3p,   mmu.miR.370.5p,   
mmu.miR.433.5p,   mmu.miR.543.3p,  mmu.miR.872.5p   

Features: 11 
Train: 0.85 
Test: 0.9 
Precision: 1 
Recall: 0.87 
F1: 0.93 
CM: 
[[7 1] 
[0 3]] 

b. Which set of 
miRNAs are the best 
predictors of JOHD 
prior to an assumed 
onset of the 
symptoms (2m)? 

mmu.miR.151.3p, mmu.miR.191.5p, mmu.miR.218.1.3p, mmu.miR.376b.3p, 
mmu.miR.670.3p, mmu.miR.8114 

Features: 6 
Train: 0.85 
Test: 0.66 
Precision: 0.72 
Recall: 0.88 
F1: 0.8 
CM:  
[[8 1] 
[3 0]] 

c. Using miRNAs, 
can we use the aged 
samples (10m) to 
predict 
predisposition of 
JOHD in young 
samples (2m)? 

mmu.let.7a.2.3p, mmu.let.7f.5p, mmu.let.7g.3p, mmu.let.7i.3p, mmu.let.7i.5p, 
mmu.miR.1198.5p, mmu.miR.124.3p, mmu.miR.1247.5p, mmu.miR.125b.1.3p, 
mmu.miR.126a.5p, mmu.miR.130b.5p, mmu.miR.132.3p, mmu.miR.134.5p, 
mmu.miR.135b.5p, mmu.miR.136.5p, mmu.miR.140.5p, mmu.miR.153.5p, 
mmu.miR.154.5p, mmu.miR.15a.5p, mmu.miR.181a.1.3p, mmu.miR.181a.2.3p, 
mmu.miR.181a.5p, mmu.miR.181b.1.3p, mmu.miR.181b.5p, mmu.miR.181c.5p, 
mmu.miR.1843b.3p, mmu.miR.212.3p, mmu.miR.212.5p, mmu.miR.218.5p, 
mmu.miR.221.3p, mmu.miR.221.5p, mmu.miR.223.3p, mmu.miR.24.1.5p, 
mmu.miR.300.3p, mmu.miR.301a.5p, mmu.miR.3061.3p, mmu.miR.3087.3p, 
mmu.miR.30d.3p, mmu.miR.3102.3p, mmu.miR.320.3p, mmu.miR.33.3p,  
mmu.miR.330.3p, mmu.miR.346.5p, mmu.miR.3475.3p, mmu.miR.3535, 
mmu.miR.370.5p, mmu.miR.378b, mmu.miR.382.5p, mmu.miR.409.5p, 
mmu.miR.410.3p, mmu.miR.412.5p, mmu.miR.431.5p, mmu.miR.433.5p, 
mmu.miR.467e.5p, mmu.miR.484, mmu.miR.488.3p, mmu.miR.488.5p, 
mmu.miR.496a.3p, mmu.miR.497a.5p, mmu.miR.543.3p, mmu.miR.6236, 
mmu.miR.6418.3p, mmu.miR.664.3p, mmu.miR.665.3p, mmu.miR.667.3p, 
mmu.miR.671.3p, mmu.miR.674.3p, mmu.miR.674.5p, mmu.miR.7047.3p, 
mmu.miR.708.5p, mmu.miR.770.5p, mmu.miR.8103, mmu.miR.8111, mmu.miR.8114, 
mmu.miR.872.5p, mmu.miR.92b.3p, mmu.miR.92b.5p, mmu.miR.935, 
mmu.miR.98.3p, mmu.miR.99b.5p 

Features: 80 
Train: 0.84 
Test: 0.67 
Precision: 0.75 
Recall: 0.82 
F1: 0.78 
CM: 
[[33 7] 
[11 5]] 

d. Which set of 
mRNAs are the best 
predictors of JOHD 
after an assumed 
onset of the 
symptoms? 

Ccdc116, Gng11, Serpina3n, Enpp6, Gm6089 Features: 5 
Train: 0.93 
Test: 1 
Precision: 1 
Recall: 1 
F1: 1 
CM: 
[[8 0] 
[0 3]] 

e. Which set of 
mRNAs are the best 
predictors of JOHD 
prior to an assumed 
onset of the 
symptoms? 

Abca8a, Ada, Allc, Alx3, Amy2a4, Anln, Apol7e, Arhgap36, Arl4d, Armh1, Arrdc2, 
Atf3, Baiap3, Car5a, Cd209c, Cd28, Chdh, Chrna3, Chrnb4, Cnksr1, Ctla2b, Depp1, 
Derl3, Dlk1, Dmrtb1, Dsp, Ecel1, Enpp6, ENSMUSG00000098369, 
ENSMUSG00000102049, ENSMUSG00000115893, Gbx1, Gch1, Gck, Gdf10, 
Gimap5, Gm11331, Gm11627, Gm11847, Gm17084, Gm21168, Gm5067, Gm6089, 
Gm7361, Gm8206, Gpr153, Hcn4, Il1r1, Irag2, Kcnh4, Klhl1, Lbhd2, Lilrb4a, 
Mid1.ps1, Mslnl, Nat8f6, Ngfr, Nphs2, Omp, P4ha3, Pglyrp1, Pkhd1l1, Plxnb3, Poteb, 
Ptger2, Rpl17.ps5, Rps15a.ps4, Scara5, Serpina3n, Sfrp5, Slc27a3, Slc4a11, Smpdl3b, 
Spint1, Sspo, Stoml3, Strc, Sync, Tmc3, Tmem40, Trdn, Trh, Txnip, Ube2n.ps1, 
Vma21.ps, Vmn2r11, Wnt3 

Features 87 
Train: 0.93 
Test: 0.9  
Precision: 1 
Recall: 0.85 
F1: 0.92 
CM:  
[[6 1] 
[0 4]] 

f. Using mRNAs, 
can we use the aged 
samples to predict 
predisposition of 
JOHD in young 
samples? 

Gm6089, Gng11, Gm5067, Enpp6 Features: 4 
Train: 0.93 
Test: 0.83 
Precision: 0.89 
Recall: 0.87 
F1: 0.88 
CM:  
[[34 5] 
[4 12]] 
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order. Model scores are also provided, which state the number of features, training 
accuracies, testing accuracies, precision, recall, f1 and confusion matrices (CM). 

Figure 5 | AUC plots and PCA plots of the best performing models. For each of the questions 
of interest the best performing model was selected for further analysis. The ROC-AUC 
curves show the performance of the models and PCA plots show if the samples were 
correctly (triangle) or incorrectly (circle) predicted to be JOHD (red) or WT (blue).  
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